1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/limits.h> 37 #include <sys/lock.h> 38 #include <sys/mutex.h> 39 #include <sys/bio.h> 40 #include <sys/sbuf.h> 41 #include <sys/sysctl.h> 42 #include <sys/malloc.h> 43 #include <sys/eventhandler.h> 44 #include <vm/uma.h> 45 #include <geom/geom.h> 46 #include <sys/proc.h> 47 #include <sys/kthread.h> 48 #include <sys/sched.h> 49 #include <geom/raid/g_raid.h> 50 #include "g_raid_md_if.h" 51 #include "g_raid_tr_if.h" 52 53 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data"); 54 55 SYSCTL_DECL(_kern_geom); 56 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW, 0, "GEOM_RAID stuff"); 57 int g_raid_enable = 1; 58 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RWTUN, 59 &g_raid_enable, 0, "Enable on-disk metadata taste"); 60 u_int g_raid_aggressive_spare = 0; 61 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RWTUN, 62 &g_raid_aggressive_spare, 0, "Use disks without metadata as spare"); 63 u_int g_raid_debug = 0; 64 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid_debug, 0, 65 "Debug level"); 66 int g_raid_read_err_thresh = 10; 67 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RWTUN, 68 &g_raid_read_err_thresh, 0, 69 "Number of read errors equated to disk failure"); 70 u_int g_raid_start_timeout = 30; 71 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RWTUN, 72 &g_raid_start_timeout, 0, 73 "Time to wait for all array components"); 74 static u_int g_raid_clean_time = 5; 75 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RWTUN, 76 &g_raid_clean_time, 0, "Mark volume as clean when idling"); 77 static u_int g_raid_disconnect_on_failure = 1; 78 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN, 79 &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure."); 80 static u_int g_raid_name_format = 0; 81 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RWTUN, 82 &g_raid_name_format, 0, "Providers name format."); 83 static u_int g_raid_idle_threshold = 1000000; 84 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RWTUN, 85 &g_raid_idle_threshold, 1000000, 86 "Time in microseconds to consider a volume idle."); 87 88 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout) do { \ 89 G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \ 90 rv = msleep((ident), (mtx), (priority), (wmesg), (timeout)); \ 91 G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \ 92 } while (0) 93 94 LIST_HEAD(, g_raid_md_class) g_raid_md_classes = 95 LIST_HEAD_INITIALIZER(g_raid_md_classes); 96 97 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes = 98 LIST_HEAD_INITIALIZER(g_raid_tr_classes); 99 100 LIST_HEAD(, g_raid_volume) g_raid_volumes = 101 LIST_HEAD_INITIALIZER(g_raid_volumes); 102 103 static eventhandler_tag g_raid_post_sync = NULL; 104 static int g_raid_started = 0; 105 static int g_raid_shutdown = 0; 106 107 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp, 108 struct g_geom *gp); 109 static g_taste_t g_raid_taste; 110 static void g_raid_init(struct g_class *mp); 111 static void g_raid_fini(struct g_class *mp); 112 113 struct g_class g_raid_class = { 114 .name = G_RAID_CLASS_NAME, 115 .version = G_VERSION, 116 .ctlreq = g_raid_ctl, 117 .taste = g_raid_taste, 118 .destroy_geom = g_raid_destroy_geom, 119 .init = g_raid_init, 120 .fini = g_raid_fini 121 }; 122 123 static void g_raid_destroy_provider(struct g_raid_volume *vol); 124 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event); 125 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event); 126 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event); 127 static int g_raid_update_node(struct g_raid_softc *sc, u_int event); 128 static void g_raid_dumpconf(struct sbuf *sb, const char *indent, 129 struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); 130 static void g_raid_start(struct bio *bp); 131 static void g_raid_start_request(struct bio *bp); 132 static void g_raid_disk_done(struct bio *bp); 133 static void g_raid_poll(struct g_raid_softc *sc); 134 135 static const char * 136 g_raid_node_event2str(int event) 137 { 138 139 switch (event) { 140 case G_RAID_NODE_E_WAKE: 141 return ("WAKE"); 142 case G_RAID_NODE_E_START: 143 return ("START"); 144 default: 145 return ("INVALID"); 146 } 147 } 148 149 const char * 150 g_raid_disk_state2str(int state) 151 { 152 153 switch (state) { 154 case G_RAID_DISK_S_NONE: 155 return ("NONE"); 156 case G_RAID_DISK_S_OFFLINE: 157 return ("OFFLINE"); 158 case G_RAID_DISK_S_DISABLED: 159 return ("DISABLED"); 160 case G_RAID_DISK_S_FAILED: 161 return ("FAILED"); 162 case G_RAID_DISK_S_STALE_FAILED: 163 return ("STALE_FAILED"); 164 case G_RAID_DISK_S_SPARE: 165 return ("SPARE"); 166 case G_RAID_DISK_S_STALE: 167 return ("STALE"); 168 case G_RAID_DISK_S_ACTIVE: 169 return ("ACTIVE"); 170 default: 171 return ("INVALID"); 172 } 173 } 174 175 static const char * 176 g_raid_disk_event2str(int event) 177 { 178 179 switch (event) { 180 case G_RAID_DISK_E_DISCONNECTED: 181 return ("DISCONNECTED"); 182 default: 183 return ("INVALID"); 184 } 185 } 186 187 const char * 188 g_raid_subdisk_state2str(int state) 189 { 190 191 switch (state) { 192 case G_RAID_SUBDISK_S_NONE: 193 return ("NONE"); 194 case G_RAID_SUBDISK_S_FAILED: 195 return ("FAILED"); 196 case G_RAID_SUBDISK_S_NEW: 197 return ("NEW"); 198 case G_RAID_SUBDISK_S_REBUILD: 199 return ("REBUILD"); 200 case G_RAID_SUBDISK_S_UNINITIALIZED: 201 return ("UNINITIALIZED"); 202 case G_RAID_SUBDISK_S_STALE: 203 return ("STALE"); 204 case G_RAID_SUBDISK_S_RESYNC: 205 return ("RESYNC"); 206 case G_RAID_SUBDISK_S_ACTIVE: 207 return ("ACTIVE"); 208 default: 209 return ("INVALID"); 210 } 211 } 212 213 static const char * 214 g_raid_subdisk_event2str(int event) 215 { 216 217 switch (event) { 218 case G_RAID_SUBDISK_E_NEW: 219 return ("NEW"); 220 case G_RAID_SUBDISK_E_FAILED: 221 return ("FAILED"); 222 case G_RAID_SUBDISK_E_DISCONNECTED: 223 return ("DISCONNECTED"); 224 default: 225 return ("INVALID"); 226 } 227 } 228 229 const char * 230 g_raid_volume_state2str(int state) 231 { 232 233 switch (state) { 234 case G_RAID_VOLUME_S_STARTING: 235 return ("STARTING"); 236 case G_RAID_VOLUME_S_BROKEN: 237 return ("BROKEN"); 238 case G_RAID_VOLUME_S_DEGRADED: 239 return ("DEGRADED"); 240 case G_RAID_VOLUME_S_SUBOPTIMAL: 241 return ("SUBOPTIMAL"); 242 case G_RAID_VOLUME_S_OPTIMAL: 243 return ("OPTIMAL"); 244 case G_RAID_VOLUME_S_UNSUPPORTED: 245 return ("UNSUPPORTED"); 246 case G_RAID_VOLUME_S_STOPPED: 247 return ("STOPPED"); 248 default: 249 return ("INVALID"); 250 } 251 } 252 253 static const char * 254 g_raid_volume_event2str(int event) 255 { 256 257 switch (event) { 258 case G_RAID_VOLUME_E_UP: 259 return ("UP"); 260 case G_RAID_VOLUME_E_DOWN: 261 return ("DOWN"); 262 case G_RAID_VOLUME_E_START: 263 return ("START"); 264 case G_RAID_VOLUME_E_STARTMD: 265 return ("STARTMD"); 266 default: 267 return ("INVALID"); 268 } 269 } 270 271 const char * 272 g_raid_volume_level2str(int level, int qual) 273 { 274 275 switch (level) { 276 case G_RAID_VOLUME_RL_RAID0: 277 return ("RAID0"); 278 case G_RAID_VOLUME_RL_RAID1: 279 return ("RAID1"); 280 case G_RAID_VOLUME_RL_RAID3: 281 if (qual == G_RAID_VOLUME_RLQ_R3P0) 282 return ("RAID3-P0"); 283 if (qual == G_RAID_VOLUME_RLQ_R3PN) 284 return ("RAID3-PN"); 285 return ("RAID3"); 286 case G_RAID_VOLUME_RL_RAID4: 287 if (qual == G_RAID_VOLUME_RLQ_R4P0) 288 return ("RAID4-P0"); 289 if (qual == G_RAID_VOLUME_RLQ_R4PN) 290 return ("RAID4-PN"); 291 return ("RAID4"); 292 case G_RAID_VOLUME_RL_RAID5: 293 if (qual == G_RAID_VOLUME_RLQ_R5RA) 294 return ("RAID5-RA"); 295 if (qual == G_RAID_VOLUME_RLQ_R5RS) 296 return ("RAID5-RS"); 297 if (qual == G_RAID_VOLUME_RLQ_R5LA) 298 return ("RAID5-LA"); 299 if (qual == G_RAID_VOLUME_RLQ_R5LS) 300 return ("RAID5-LS"); 301 return ("RAID5"); 302 case G_RAID_VOLUME_RL_RAID6: 303 if (qual == G_RAID_VOLUME_RLQ_R6RA) 304 return ("RAID6-RA"); 305 if (qual == G_RAID_VOLUME_RLQ_R6RS) 306 return ("RAID6-RS"); 307 if (qual == G_RAID_VOLUME_RLQ_R6LA) 308 return ("RAID6-LA"); 309 if (qual == G_RAID_VOLUME_RLQ_R6LS) 310 return ("RAID6-LS"); 311 return ("RAID6"); 312 case G_RAID_VOLUME_RL_RAIDMDF: 313 if (qual == G_RAID_VOLUME_RLQ_RMDFRA) 314 return ("RAIDMDF-RA"); 315 if (qual == G_RAID_VOLUME_RLQ_RMDFRS) 316 return ("RAIDMDF-RS"); 317 if (qual == G_RAID_VOLUME_RLQ_RMDFLA) 318 return ("RAIDMDF-LA"); 319 if (qual == G_RAID_VOLUME_RLQ_RMDFLS) 320 return ("RAIDMDF-LS"); 321 return ("RAIDMDF"); 322 case G_RAID_VOLUME_RL_RAID1E: 323 if (qual == G_RAID_VOLUME_RLQ_R1EA) 324 return ("RAID1E-A"); 325 if (qual == G_RAID_VOLUME_RLQ_R1EO) 326 return ("RAID1E-O"); 327 return ("RAID1E"); 328 case G_RAID_VOLUME_RL_SINGLE: 329 return ("SINGLE"); 330 case G_RAID_VOLUME_RL_CONCAT: 331 return ("CONCAT"); 332 case G_RAID_VOLUME_RL_RAID5E: 333 if (qual == G_RAID_VOLUME_RLQ_R5ERA) 334 return ("RAID5E-RA"); 335 if (qual == G_RAID_VOLUME_RLQ_R5ERS) 336 return ("RAID5E-RS"); 337 if (qual == G_RAID_VOLUME_RLQ_R5ELA) 338 return ("RAID5E-LA"); 339 if (qual == G_RAID_VOLUME_RLQ_R5ELS) 340 return ("RAID5E-LS"); 341 return ("RAID5E"); 342 case G_RAID_VOLUME_RL_RAID5EE: 343 if (qual == G_RAID_VOLUME_RLQ_R5EERA) 344 return ("RAID5EE-RA"); 345 if (qual == G_RAID_VOLUME_RLQ_R5EERS) 346 return ("RAID5EE-RS"); 347 if (qual == G_RAID_VOLUME_RLQ_R5EELA) 348 return ("RAID5EE-LA"); 349 if (qual == G_RAID_VOLUME_RLQ_R5EELS) 350 return ("RAID5EE-LS"); 351 return ("RAID5EE"); 352 case G_RAID_VOLUME_RL_RAID5R: 353 if (qual == G_RAID_VOLUME_RLQ_R5RRA) 354 return ("RAID5R-RA"); 355 if (qual == G_RAID_VOLUME_RLQ_R5RRS) 356 return ("RAID5R-RS"); 357 if (qual == G_RAID_VOLUME_RLQ_R5RLA) 358 return ("RAID5R-LA"); 359 if (qual == G_RAID_VOLUME_RLQ_R5RLS) 360 return ("RAID5R-LS"); 361 return ("RAID5E"); 362 default: 363 return ("UNKNOWN"); 364 } 365 } 366 367 int 368 g_raid_volume_str2level(const char *str, int *level, int *qual) 369 { 370 371 *level = G_RAID_VOLUME_RL_UNKNOWN; 372 *qual = G_RAID_VOLUME_RLQ_NONE; 373 if (strcasecmp(str, "RAID0") == 0) 374 *level = G_RAID_VOLUME_RL_RAID0; 375 else if (strcasecmp(str, "RAID1") == 0) 376 *level = G_RAID_VOLUME_RL_RAID1; 377 else if (strcasecmp(str, "RAID3-P0") == 0) { 378 *level = G_RAID_VOLUME_RL_RAID3; 379 *qual = G_RAID_VOLUME_RLQ_R3P0; 380 } else if (strcasecmp(str, "RAID3-PN") == 0 || 381 strcasecmp(str, "RAID3") == 0) { 382 *level = G_RAID_VOLUME_RL_RAID3; 383 *qual = G_RAID_VOLUME_RLQ_R3PN; 384 } else if (strcasecmp(str, "RAID4-P0") == 0) { 385 *level = G_RAID_VOLUME_RL_RAID4; 386 *qual = G_RAID_VOLUME_RLQ_R4P0; 387 } else if (strcasecmp(str, "RAID4-PN") == 0 || 388 strcasecmp(str, "RAID4") == 0) { 389 *level = G_RAID_VOLUME_RL_RAID4; 390 *qual = G_RAID_VOLUME_RLQ_R4PN; 391 } else if (strcasecmp(str, "RAID5-RA") == 0) { 392 *level = G_RAID_VOLUME_RL_RAID5; 393 *qual = G_RAID_VOLUME_RLQ_R5RA; 394 } else if (strcasecmp(str, "RAID5-RS") == 0) { 395 *level = G_RAID_VOLUME_RL_RAID5; 396 *qual = G_RAID_VOLUME_RLQ_R5RS; 397 } else if (strcasecmp(str, "RAID5") == 0 || 398 strcasecmp(str, "RAID5-LA") == 0) { 399 *level = G_RAID_VOLUME_RL_RAID5; 400 *qual = G_RAID_VOLUME_RLQ_R5LA; 401 } else if (strcasecmp(str, "RAID5-LS") == 0) { 402 *level = G_RAID_VOLUME_RL_RAID5; 403 *qual = G_RAID_VOLUME_RLQ_R5LS; 404 } else if (strcasecmp(str, "RAID6-RA") == 0) { 405 *level = G_RAID_VOLUME_RL_RAID6; 406 *qual = G_RAID_VOLUME_RLQ_R6RA; 407 } else if (strcasecmp(str, "RAID6-RS") == 0) { 408 *level = G_RAID_VOLUME_RL_RAID6; 409 *qual = G_RAID_VOLUME_RLQ_R6RS; 410 } else if (strcasecmp(str, "RAID6") == 0 || 411 strcasecmp(str, "RAID6-LA") == 0) { 412 *level = G_RAID_VOLUME_RL_RAID6; 413 *qual = G_RAID_VOLUME_RLQ_R6LA; 414 } else if (strcasecmp(str, "RAID6-LS") == 0) { 415 *level = G_RAID_VOLUME_RL_RAID6; 416 *qual = G_RAID_VOLUME_RLQ_R6LS; 417 } else if (strcasecmp(str, "RAIDMDF-RA") == 0) { 418 *level = G_RAID_VOLUME_RL_RAIDMDF; 419 *qual = G_RAID_VOLUME_RLQ_RMDFRA; 420 } else if (strcasecmp(str, "RAIDMDF-RS") == 0) { 421 *level = G_RAID_VOLUME_RL_RAIDMDF; 422 *qual = G_RAID_VOLUME_RLQ_RMDFRS; 423 } else if (strcasecmp(str, "RAIDMDF") == 0 || 424 strcasecmp(str, "RAIDMDF-LA") == 0) { 425 *level = G_RAID_VOLUME_RL_RAIDMDF; 426 *qual = G_RAID_VOLUME_RLQ_RMDFLA; 427 } else if (strcasecmp(str, "RAIDMDF-LS") == 0) { 428 *level = G_RAID_VOLUME_RL_RAIDMDF; 429 *qual = G_RAID_VOLUME_RLQ_RMDFLS; 430 } else if (strcasecmp(str, "RAID10") == 0 || 431 strcasecmp(str, "RAID1E") == 0 || 432 strcasecmp(str, "RAID1E-A") == 0) { 433 *level = G_RAID_VOLUME_RL_RAID1E; 434 *qual = G_RAID_VOLUME_RLQ_R1EA; 435 } else if (strcasecmp(str, "RAID1E-O") == 0) { 436 *level = G_RAID_VOLUME_RL_RAID1E; 437 *qual = G_RAID_VOLUME_RLQ_R1EO; 438 } else if (strcasecmp(str, "SINGLE") == 0) 439 *level = G_RAID_VOLUME_RL_SINGLE; 440 else if (strcasecmp(str, "CONCAT") == 0) 441 *level = G_RAID_VOLUME_RL_CONCAT; 442 else if (strcasecmp(str, "RAID5E-RA") == 0) { 443 *level = G_RAID_VOLUME_RL_RAID5E; 444 *qual = G_RAID_VOLUME_RLQ_R5ERA; 445 } else if (strcasecmp(str, "RAID5E-RS") == 0) { 446 *level = G_RAID_VOLUME_RL_RAID5E; 447 *qual = G_RAID_VOLUME_RLQ_R5ERS; 448 } else if (strcasecmp(str, "RAID5E") == 0 || 449 strcasecmp(str, "RAID5E-LA") == 0) { 450 *level = G_RAID_VOLUME_RL_RAID5E; 451 *qual = G_RAID_VOLUME_RLQ_R5ELA; 452 } else if (strcasecmp(str, "RAID5E-LS") == 0) { 453 *level = G_RAID_VOLUME_RL_RAID5E; 454 *qual = G_RAID_VOLUME_RLQ_R5ELS; 455 } else if (strcasecmp(str, "RAID5EE-RA") == 0) { 456 *level = G_RAID_VOLUME_RL_RAID5EE; 457 *qual = G_RAID_VOLUME_RLQ_R5EERA; 458 } else if (strcasecmp(str, "RAID5EE-RS") == 0) { 459 *level = G_RAID_VOLUME_RL_RAID5EE; 460 *qual = G_RAID_VOLUME_RLQ_R5EERS; 461 } else if (strcasecmp(str, "RAID5EE") == 0 || 462 strcasecmp(str, "RAID5EE-LA") == 0) { 463 *level = G_RAID_VOLUME_RL_RAID5EE; 464 *qual = G_RAID_VOLUME_RLQ_R5EELA; 465 } else if (strcasecmp(str, "RAID5EE-LS") == 0) { 466 *level = G_RAID_VOLUME_RL_RAID5EE; 467 *qual = G_RAID_VOLUME_RLQ_R5EELS; 468 } else if (strcasecmp(str, "RAID5R-RA") == 0) { 469 *level = G_RAID_VOLUME_RL_RAID5R; 470 *qual = G_RAID_VOLUME_RLQ_R5RRA; 471 } else if (strcasecmp(str, "RAID5R-RS") == 0) { 472 *level = G_RAID_VOLUME_RL_RAID5R; 473 *qual = G_RAID_VOLUME_RLQ_R5RRS; 474 } else if (strcasecmp(str, "RAID5R") == 0 || 475 strcasecmp(str, "RAID5R-LA") == 0) { 476 *level = G_RAID_VOLUME_RL_RAID5R; 477 *qual = G_RAID_VOLUME_RLQ_R5RLA; 478 } else if (strcasecmp(str, "RAID5R-LS") == 0) { 479 *level = G_RAID_VOLUME_RL_RAID5R; 480 *qual = G_RAID_VOLUME_RLQ_R5RLS; 481 } else 482 return (-1); 483 return (0); 484 } 485 486 const char * 487 g_raid_get_diskname(struct g_raid_disk *disk) 488 { 489 490 if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL) 491 return ("[unknown]"); 492 return (disk->d_consumer->provider->name); 493 } 494 495 void 496 g_raid_get_disk_info(struct g_raid_disk *disk) 497 { 498 struct g_consumer *cp = disk->d_consumer; 499 int error, len; 500 501 /* Read kernel dumping information. */ 502 disk->d_kd.offset = 0; 503 disk->d_kd.length = OFF_MAX; 504 len = sizeof(disk->d_kd); 505 error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd); 506 if (error) 507 disk->d_kd.di.dumper = NULL; 508 if (disk->d_kd.di.dumper == NULL) 509 G_RAID_DEBUG1(2, disk->d_softc, 510 "Dumping not supported by %s: %d.", 511 cp->provider->name, error); 512 513 /* Read BIO_DELETE support. */ 514 error = g_getattr("GEOM::candelete", cp, &disk->d_candelete); 515 if (error) 516 disk->d_candelete = 0; 517 if (!disk->d_candelete) 518 G_RAID_DEBUG1(2, disk->d_softc, 519 "BIO_DELETE not supported by %s: %d.", 520 cp->provider->name, error); 521 } 522 523 void 524 g_raid_report_disk_state(struct g_raid_disk *disk) 525 { 526 struct g_raid_subdisk *sd; 527 int len, state; 528 uint32_t s; 529 530 if (disk->d_consumer == NULL) 531 return; 532 if (disk->d_state == G_RAID_DISK_S_DISABLED) { 533 s = G_STATE_ACTIVE; /* XXX */ 534 } else if (disk->d_state == G_RAID_DISK_S_FAILED || 535 disk->d_state == G_RAID_DISK_S_STALE_FAILED) { 536 s = G_STATE_FAILED; 537 } else { 538 state = G_RAID_SUBDISK_S_ACTIVE; 539 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 540 if (sd->sd_state < state) 541 state = sd->sd_state; 542 } 543 if (state == G_RAID_SUBDISK_S_FAILED) 544 s = G_STATE_FAILED; 545 else if (state == G_RAID_SUBDISK_S_NEW || 546 state == G_RAID_SUBDISK_S_REBUILD) 547 s = G_STATE_REBUILD; 548 else if (state == G_RAID_SUBDISK_S_STALE || 549 state == G_RAID_SUBDISK_S_RESYNC) 550 s = G_STATE_RESYNC; 551 else 552 s = G_STATE_ACTIVE; 553 } 554 len = sizeof(s); 555 g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s); 556 G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.", 557 g_raid_get_diskname(disk), s); 558 } 559 560 void 561 g_raid_change_disk_state(struct g_raid_disk *disk, int state) 562 { 563 564 G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.", 565 g_raid_get_diskname(disk), 566 g_raid_disk_state2str(disk->d_state), 567 g_raid_disk_state2str(state)); 568 disk->d_state = state; 569 g_raid_report_disk_state(disk); 570 } 571 572 void 573 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state) 574 { 575 576 G_RAID_DEBUG1(0, sd->sd_softc, 577 "Subdisk %s:%d-%s state changed from %s to %s.", 578 sd->sd_volume->v_name, sd->sd_pos, 579 sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]", 580 g_raid_subdisk_state2str(sd->sd_state), 581 g_raid_subdisk_state2str(state)); 582 sd->sd_state = state; 583 if (sd->sd_disk) 584 g_raid_report_disk_state(sd->sd_disk); 585 } 586 587 void 588 g_raid_change_volume_state(struct g_raid_volume *vol, int state) 589 { 590 591 G_RAID_DEBUG1(0, vol->v_softc, 592 "Volume %s state changed from %s to %s.", 593 vol->v_name, 594 g_raid_volume_state2str(vol->v_state), 595 g_raid_volume_state2str(state)); 596 vol->v_state = state; 597 } 598 599 /* 600 * --- Events handling functions --- 601 * Events in geom_raid are used to maintain subdisks and volumes status 602 * from one thread to simplify locking. 603 */ 604 static void 605 g_raid_event_free(struct g_raid_event *ep) 606 { 607 608 free(ep, M_RAID); 609 } 610 611 int 612 g_raid_event_send(void *arg, int event, int flags) 613 { 614 struct g_raid_softc *sc; 615 struct g_raid_event *ep; 616 int error; 617 618 if ((flags & G_RAID_EVENT_VOLUME) != 0) { 619 sc = ((struct g_raid_volume *)arg)->v_softc; 620 } else if ((flags & G_RAID_EVENT_DISK) != 0) { 621 sc = ((struct g_raid_disk *)arg)->d_softc; 622 } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) { 623 sc = ((struct g_raid_subdisk *)arg)->sd_softc; 624 } else { 625 sc = arg; 626 } 627 ep = malloc(sizeof(*ep), M_RAID, 628 sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT); 629 if (ep == NULL) 630 return (ENOMEM); 631 ep->e_tgt = arg; 632 ep->e_event = event; 633 ep->e_flags = flags; 634 ep->e_error = 0; 635 G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc); 636 mtx_lock(&sc->sc_queue_mtx); 637 TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next); 638 mtx_unlock(&sc->sc_queue_mtx); 639 wakeup(sc); 640 641 if ((flags & G_RAID_EVENT_WAIT) == 0) 642 return (0); 643 644 sx_assert(&sc->sc_lock, SX_XLOCKED); 645 G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep); 646 sx_xunlock(&sc->sc_lock); 647 while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) { 648 mtx_lock(&sc->sc_queue_mtx); 649 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event", 650 hz * 5); 651 } 652 error = ep->e_error; 653 g_raid_event_free(ep); 654 sx_xlock(&sc->sc_lock); 655 return (error); 656 } 657 658 static void 659 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt) 660 { 661 struct g_raid_event *ep, *tmpep; 662 663 sx_assert(&sc->sc_lock, SX_XLOCKED); 664 665 mtx_lock(&sc->sc_queue_mtx); 666 TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) { 667 if (ep->e_tgt != tgt) 668 continue; 669 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 670 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) 671 g_raid_event_free(ep); 672 else { 673 ep->e_error = ECANCELED; 674 wakeup(ep); 675 } 676 } 677 mtx_unlock(&sc->sc_queue_mtx); 678 } 679 680 static int 681 g_raid_event_check(struct g_raid_softc *sc, void *tgt) 682 { 683 struct g_raid_event *ep; 684 int res = 0; 685 686 sx_assert(&sc->sc_lock, SX_XLOCKED); 687 688 mtx_lock(&sc->sc_queue_mtx); 689 TAILQ_FOREACH(ep, &sc->sc_events, e_next) { 690 if (ep->e_tgt != tgt) 691 continue; 692 res = 1; 693 break; 694 } 695 mtx_unlock(&sc->sc_queue_mtx); 696 return (res); 697 } 698 699 /* 700 * Return the number of disks in given state. 701 * If state is equal to -1, count all connected disks. 702 */ 703 u_int 704 g_raid_ndisks(struct g_raid_softc *sc, int state) 705 { 706 struct g_raid_disk *disk; 707 u_int n; 708 709 sx_assert(&sc->sc_lock, SX_LOCKED); 710 711 n = 0; 712 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 713 if (disk->d_state == state || state == -1) 714 n++; 715 } 716 return (n); 717 } 718 719 /* 720 * Return the number of subdisks in given state. 721 * If state is equal to -1, count all connected disks. 722 */ 723 u_int 724 g_raid_nsubdisks(struct g_raid_volume *vol, int state) 725 { 726 struct g_raid_subdisk *subdisk; 727 struct g_raid_softc *sc; 728 u_int i, n ; 729 730 sc = vol->v_softc; 731 sx_assert(&sc->sc_lock, SX_LOCKED); 732 733 n = 0; 734 for (i = 0; i < vol->v_disks_count; i++) { 735 subdisk = &vol->v_subdisks[i]; 736 if ((state == -1 && 737 subdisk->sd_state != G_RAID_SUBDISK_S_NONE) || 738 subdisk->sd_state == state) 739 n++; 740 } 741 return (n); 742 } 743 744 /* 745 * Return the first subdisk in given state. 746 * If state is equal to -1, then the first connected disks. 747 */ 748 struct g_raid_subdisk * 749 g_raid_get_subdisk(struct g_raid_volume *vol, int state) 750 { 751 struct g_raid_subdisk *sd; 752 struct g_raid_softc *sc; 753 u_int i; 754 755 sc = vol->v_softc; 756 sx_assert(&sc->sc_lock, SX_LOCKED); 757 758 for (i = 0; i < vol->v_disks_count; i++) { 759 sd = &vol->v_subdisks[i]; 760 if ((state == -1 && 761 sd->sd_state != G_RAID_SUBDISK_S_NONE) || 762 sd->sd_state == state) 763 return (sd); 764 } 765 return (NULL); 766 } 767 768 struct g_consumer * 769 g_raid_open_consumer(struct g_raid_softc *sc, const char *name) 770 { 771 struct g_consumer *cp; 772 struct g_provider *pp; 773 774 g_topology_assert(); 775 776 if (strncmp(name, "/dev/", 5) == 0) 777 name += 5; 778 pp = g_provider_by_name(name); 779 if (pp == NULL) 780 return (NULL); 781 cp = g_new_consumer(sc->sc_geom); 782 cp->flags |= G_CF_DIRECT_RECEIVE; 783 if (g_attach(cp, pp) != 0) { 784 g_destroy_consumer(cp); 785 return (NULL); 786 } 787 if (g_access(cp, 1, 1, 1) != 0) { 788 g_detach(cp); 789 g_destroy_consumer(cp); 790 return (NULL); 791 } 792 return (cp); 793 } 794 795 static u_int 796 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp) 797 { 798 struct bio *bp; 799 u_int nreqs = 0; 800 801 mtx_lock(&sc->sc_queue_mtx); 802 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 803 if (bp->bio_from == cp) 804 nreqs++; 805 } 806 mtx_unlock(&sc->sc_queue_mtx); 807 return (nreqs); 808 } 809 810 u_int 811 g_raid_nopens(struct g_raid_softc *sc) 812 { 813 struct g_raid_volume *vol; 814 u_int opens; 815 816 opens = 0; 817 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 818 if (vol->v_provider_open != 0) 819 opens++; 820 } 821 return (opens); 822 } 823 824 static int 825 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp) 826 { 827 828 if (cp->index > 0) { 829 G_RAID_DEBUG1(2, sc, 830 "I/O requests for %s exist, can't destroy it now.", 831 cp->provider->name); 832 return (1); 833 } 834 if (g_raid_nrequests(sc, cp) > 0) { 835 G_RAID_DEBUG1(2, sc, 836 "I/O requests for %s in queue, can't destroy it now.", 837 cp->provider->name); 838 return (1); 839 } 840 return (0); 841 } 842 843 static void 844 g_raid_destroy_consumer(void *arg, int flags __unused) 845 { 846 struct g_consumer *cp; 847 848 g_topology_assert(); 849 850 cp = arg; 851 G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name); 852 g_detach(cp); 853 g_destroy_consumer(cp); 854 } 855 856 void 857 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp) 858 { 859 struct g_provider *pp; 860 int retaste_wait; 861 862 g_topology_assert_not(); 863 864 g_topology_lock(); 865 cp->private = NULL; 866 if (g_raid_consumer_is_busy(sc, cp)) 867 goto out; 868 pp = cp->provider; 869 retaste_wait = 0; 870 if (cp->acw == 1) { 871 if ((pp->geom->flags & G_GEOM_WITHER) == 0) 872 retaste_wait = 1; 873 } 874 if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) 875 g_access(cp, -cp->acr, -cp->acw, -cp->ace); 876 if (retaste_wait) { 877 /* 878 * After retaste event was send (inside g_access()), we can send 879 * event to detach and destroy consumer. 880 * A class, which has consumer to the given provider connected 881 * will not receive retaste event for the provider. 882 * This is the way how I ignore retaste events when I close 883 * consumers opened for write: I detach and destroy consumer 884 * after retaste event is sent. 885 */ 886 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL); 887 goto out; 888 } 889 G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name); 890 g_detach(cp); 891 g_destroy_consumer(cp); 892 out: 893 g_topology_unlock(); 894 } 895 896 static void 897 g_raid_orphan(struct g_consumer *cp) 898 { 899 struct g_raid_disk *disk; 900 901 g_topology_assert(); 902 903 disk = cp->private; 904 if (disk == NULL) 905 return; 906 g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED, 907 G_RAID_EVENT_DISK); 908 } 909 910 static void 911 g_raid_clean(struct g_raid_volume *vol, int acw) 912 { 913 struct g_raid_softc *sc; 914 int timeout; 915 916 sc = vol->v_softc; 917 g_topology_assert_not(); 918 sx_assert(&sc->sc_lock, SX_XLOCKED); 919 920 // if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0) 921 // return; 922 if (!vol->v_dirty) 923 return; 924 if (vol->v_writes > 0) 925 return; 926 if (acw > 0 || (acw == -1 && 927 vol->v_provider != NULL && vol->v_provider->acw > 0)) { 928 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write); 929 if (!g_raid_shutdown && timeout > 0) 930 return; 931 } 932 vol->v_dirty = 0; 933 G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.", 934 vol->v_name); 935 g_raid_write_metadata(sc, vol, NULL, NULL); 936 } 937 938 static void 939 g_raid_dirty(struct g_raid_volume *vol) 940 { 941 struct g_raid_softc *sc; 942 943 sc = vol->v_softc; 944 g_topology_assert_not(); 945 sx_assert(&sc->sc_lock, SX_XLOCKED); 946 947 // if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0) 948 // return; 949 vol->v_dirty = 1; 950 G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.", 951 vol->v_name); 952 g_raid_write_metadata(sc, vol, NULL, NULL); 953 } 954 955 void 956 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp) 957 { 958 struct g_raid_volume *vol; 959 struct g_raid_subdisk *sd; 960 struct bio_queue_head queue; 961 struct bio *cbp; 962 int i; 963 964 vol = tr->tro_volume; 965 966 /* 967 * Allocate all bios before sending any request, so we can return 968 * ENOMEM in nice and clean way. 969 */ 970 bioq_init(&queue); 971 for (i = 0; i < vol->v_disks_count; i++) { 972 sd = &vol->v_subdisks[i]; 973 if (sd->sd_state == G_RAID_SUBDISK_S_NONE || 974 sd->sd_state == G_RAID_SUBDISK_S_FAILED) 975 continue; 976 cbp = g_clone_bio(bp); 977 if (cbp == NULL) 978 goto failure; 979 cbp->bio_caller1 = sd; 980 bioq_insert_tail(&queue, cbp); 981 } 982 while ((cbp = bioq_takefirst(&queue)) != NULL) { 983 sd = cbp->bio_caller1; 984 cbp->bio_caller1 = NULL; 985 g_raid_subdisk_iostart(sd, cbp); 986 } 987 return; 988 failure: 989 while ((cbp = bioq_takefirst(&queue)) != NULL) 990 g_destroy_bio(cbp); 991 if (bp->bio_error == 0) 992 bp->bio_error = ENOMEM; 993 g_raid_iodone(bp, bp->bio_error); 994 } 995 996 static void 997 g_raid_tr_kerneldump_common_done(struct bio *bp) 998 { 999 1000 bp->bio_flags |= BIO_DONE; 1001 } 1002 1003 int 1004 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr, 1005 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1006 { 1007 struct g_raid_softc *sc; 1008 struct g_raid_volume *vol; 1009 struct bio bp; 1010 1011 vol = tr->tro_volume; 1012 sc = vol->v_softc; 1013 1014 g_reset_bio(&bp); 1015 bp.bio_cmd = BIO_WRITE; 1016 bp.bio_done = g_raid_tr_kerneldump_common_done; 1017 bp.bio_attribute = NULL; 1018 bp.bio_offset = offset; 1019 bp.bio_length = length; 1020 bp.bio_data = virtual; 1021 bp.bio_to = vol->v_provider; 1022 1023 g_raid_start(&bp); 1024 while (!(bp.bio_flags & BIO_DONE)) { 1025 G_RAID_DEBUG1(4, sc, "Poll..."); 1026 g_raid_poll(sc); 1027 DELAY(10); 1028 } 1029 1030 return (bp.bio_error != 0 ? EIO : 0); 1031 } 1032 1033 static int 1034 g_raid_dump(void *arg, 1035 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1036 { 1037 struct g_raid_volume *vol; 1038 int error; 1039 1040 vol = (struct g_raid_volume *)arg; 1041 G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.", 1042 (long long unsigned)offset, (long long unsigned)length); 1043 1044 error = G_RAID_TR_KERNELDUMP(vol->v_tr, 1045 virtual, physical, offset, length); 1046 return (error); 1047 } 1048 1049 static void 1050 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp) 1051 { 1052 struct g_kerneldump *gkd; 1053 struct g_provider *pp; 1054 struct g_raid_volume *vol; 1055 1056 gkd = (struct g_kerneldump*)bp->bio_data; 1057 pp = bp->bio_to; 1058 vol = pp->private; 1059 g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)", 1060 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length); 1061 gkd->di.dumper = g_raid_dump; 1062 gkd->di.priv = vol; 1063 gkd->di.blocksize = vol->v_sectorsize; 1064 gkd->di.maxiosize = DFLTPHYS; 1065 gkd->di.mediaoffset = gkd->offset; 1066 if ((gkd->offset + gkd->length) > vol->v_mediasize) 1067 gkd->length = vol->v_mediasize - gkd->offset; 1068 gkd->di.mediasize = gkd->length; 1069 g_io_deliver(bp, 0); 1070 } 1071 1072 static void 1073 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp) 1074 { 1075 struct g_provider *pp; 1076 struct g_raid_volume *vol; 1077 struct g_raid_subdisk *sd; 1078 int i, val; 1079 1080 pp = bp->bio_to; 1081 vol = pp->private; 1082 for (i = 0; i < vol->v_disks_count; i++) { 1083 sd = &vol->v_subdisks[i]; 1084 if (sd->sd_state == G_RAID_SUBDISK_S_NONE) 1085 continue; 1086 if (sd->sd_disk->d_candelete) 1087 break; 1088 } 1089 val = i < vol->v_disks_count; 1090 g_handleattr(bp, "GEOM::candelete", &val, sizeof(val)); 1091 } 1092 1093 static void 1094 g_raid_start(struct bio *bp) 1095 { 1096 struct g_raid_softc *sc; 1097 1098 sc = bp->bio_to->geom->softc; 1099 /* 1100 * If sc == NULL or there are no valid disks, provider's error 1101 * should be set and g_raid_start() should not be called at all. 1102 */ 1103 // KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING, 1104 // ("Provider's error should be set (error=%d)(mirror=%s).", 1105 // bp->bio_to->error, bp->bio_to->name)); 1106 G_RAID_LOGREQ(3, bp, "Request received."); 1107 1108 switch (bp->bio_cmd) { 1109 case BIO_READ: 1110 case BIO_WRITE: 1111 case BIO_DELETE: 1112 case BIO_FLUSH: 1113 break; 1114 case BIO_GETATTR: 1115 if (!strcmp(bp->bio_attribute, "GEOM::candelete")) 1116 g_raid_candelete(sc, bp); 1117 else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump")) 1118 g_raid_kerneldump(sc, bp); 1119 else 1120 g_io_deliver(bp, EOPNOTSUPP); 1121 return; 1122 default: 1123 g_io_deliver(bp, EOPNOTSUPP); 1124 return; 1125 } 1126 mtx_lock(&sc->sc_queue_mtx); 1127 bioq_insert_tail(&sc->sc_queue, bp); 1128 mtx_unlock(&sc->sc_queue_mtx); 1129 if (!dumping) { 1130 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc); 1131 wakeup(sc); 1132 } 1133 } 1134 1135 static int 1136 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len) 1137 { 1138 /* 1139 * 5 cases: 1140 * (1) bp entirely below NO 1141 * (2) bp entirely above NO 1142 * (3) bp start below, but end in range YES 1143 * (4) bp entirely within YES 1144 * (5) bp starts within, ends above YES 1145 * 1146 * lock range 10-19 (offset 10 length 10) 1147 * (1) 1-5: first if kicks it out 1148 * (2) 30-35: second if kicks it out 1149 * (3) 5-15: passes both ifs 1150 * (4) 12-14: passes both ifs 1151 * (5) 19-20: passes both 1152 */ 1153 off_t lend = lstart + len - 1; 1154 off_t bstart = bp->bio_offset; 1155 off_t bend = bp->bio_offset + bp->bio_length - 1; 1156 1157 if (bend < lstart) 1158 return (0); 1159 if (lend < bstart) 1160 return (0); 1161 return (1); 1162 } 1163 1164 static int 1165 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp) 1166 { 1167 struct g_raid_lock *lp; 1168 1169 sx_assert(&vol->v_softc->sc_lock, SX_LOCKED); 1170 1171 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1172 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length)) 1173 return (1); 1174 } 1175 return (0); 1176 } 1177 1178 static void 1179 g_raid_start_request(struct bio *bp) 1180 { 1181 struct g_raid_softc *sc; 1182 struct g_raid_volume *vol; 1183 1184 sc = bp->bio_to->geom->softc; 1185 sx_assert(&sc->sc_lock, SX_LOCKED); 1186 vol = bp->bio_to->private; 1187 1188 /* 1189 * Check to see if this item is in a locked range. If so, 1190 * queue it to our locked queue and return. We'll requeue 1191 * it when the range is unlocked. Internal I/O for the 1192 * rebuild/rescan/recovery process is excluded from this 1193 * check so we can actually do the recovery. 1194 */ 1195 if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) && 1196 g_raid_is_in_locked_range(vol, bp)) { 1197 G_RAID_LOGREQ(3, bp, "Defer request."); 1198 bioq_insert_tail(&vol->v_locked, bp); 1199 return; 1200 } 1201 1202 /* 1203 * If we're actually going to do the write/delete, then 1204 * update the idle stats for the volume. 1205 */ 1206 if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) { 1207 if (!vol->v_dirty) 1208 g_raid_dirty(vol); 1209 vol->v_writes++; 1210 } 1211 1212 /* 1213 * Put request onto inflight queue, so we can check if new 1214 * synchronization requests don't collide with it. Then tell 1215 * the transformation layer to start the I/O. 1216 */ 1217 bioq_insert_tail(&vol->v_inflight, bp); 1218 G_RAID_LOGREQ(4, bp, "Request started"); 1219 G_RAID_TR_IOSTART(vol->v_tr, bp); 1220 } 1221 1222 static void 1223 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp) 1224 { 1225 off_t off, len; 1226 struct bio *nbp; 1227 struct g_raid_lock *lp; 1228 1229 vol->v_pending_lock = 0; 1230 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1231 if (lp->l_pending) { 1232 off = lp->l_offset; 1233 len = lp->l_length; 1234 lp->l_pending = 0; 1235 TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) { 1236 if (g_raid_bio_overlaps(nbp, off, len)) 1237 lp->l_pending++; 1238 } 1239 if (lp->l_pending) { 1240 vol->v_pending_lock = 1; 1241 G_RAID_DEBUG1(4, vol->v_softc, 1242 "Deferred lock(%jd, %jd) has %d pending", 1243 (intmax_t)off, (intmax_t)(off + len), 1244 lp->l_pending); 1245 continue; 1246 } 1247 G_RAID_DEBUG1(4, vol->v_softc, 1248 "Deferred lock of %jd to %jd completed", 1249 (intmax_t)off, (intmax_t)(off + len)); 1250 G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg); 1251 } 1252 } 1253 } 1254 1255 void 1256 g_raid_iodone(struct bio *bp, int error) 1257 { 1258 struct g_raid_softc *sc; 1259 struct g_raid_volume *vol; 1260 1261 sc = bp->bio_to->geom->softc; 1262 sx_assert(&sc->sc_lock, SX_LOCKED); 1263 vol = bp->bio_to->private; 1264 G_RAID_LOGREQ(3, bp, "Request done: %d.", error); 1265 1266 /* Update stats if we done write/delete. */ 1267 if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) { 1268 vol->v_writes--; 1269 vol->v_last_write = time_uptime; 1270 } 1271 1272 bioq_remove(&vol->v_inflight, bp); 1273 if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp)) 1274 g_raid_finish_with_locked_ranges(vol, bp); 1275 getmicrouptime(&vol->v_last_done); 1276 g_io_deliver(bp, error); 1277 } 1278 1279 int 1280 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len, 1281 struct bio *ignore, void *argp) 1282 { 1283 struct g_raid_softc *sc; 1284 struct g_raid_lock *lp; 1285 struct bio *bp; 1286 1287 sc = vol->v_softc; 1288 lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO); 1289 LIST_INSERT_HEAD(&vol->v_locks, lp, l_next); 1290 lp->l_offset = off; 1291 lp->l_length = len; 1292 lp->l_callback_arg = argp; 1293 1294 lp->l_pending = 0; 1295 TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) { 1296 if (bp != ignore && g_raid_bio_overlaps(bp, off, len)) 1297 lp->l_pending++; 1298 } 1299 1300 /* 1301 * If there are any writes that are pending, we return EBUSY. All 1302 * callers will have to wait until all pending writes clear. 1303 */ 1304 if (lp->l_pending > 0) { 1305 vol->v_pending_lock = 1; 1306 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend", 1307 (intmax_t)off, (intmax_t)(off+len), lp->l_pending); 1308 return (EBUSY); 1309 } 1310 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd", 1311 (intmax_t)off, (intmax_t)(off+len)); 1312 G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg); 1313 return (0); 1314 } 1315 1316 int 1317 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len) 1318 { 1319 struct g_raid_lock *lp; 1320 struct g_raid_softc *sc; 1321 struct bio *bp; 1322 1323 sc = vol->v_softc; 1324 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1325 if (lp->l_offset == off && lp->l_length == len) { 1326 LIST_REMOVE(lp, l_next); 1327 /* XXX 1328 * Right now we just put them all back on the queue 1329 * and hope for the best. We hope this because any 1330 * locked ranges will go right back on this list 1331 * when the worker thread runs. 1332 * XXX 1333 */ 1334 G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd", 1335 (intmax_t)lp->l_offset, 1336 (intmax_t)(lp->l_offset+lp->l_length)); 1337 mtx_lock(&sc->sc_queue_mtx); 1338 while ((bp = bioq_takefirst(&vol->v_locked)) != NULL) 1339 bioq_insert_tail(&sc->sc_queue, bp); 1340 mtx_unlock(&sc->sc_queue_mtx); 1341 free(lp, M_RAID); 1342 return (0); 1343 } 1344 } 1345 return (EINVAL); 1346 } 1347 1348 void 1349 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp) 1350 { 1351 struct g_consumer *cp; 1352 struct g_raid_disk *disk, *tdisk; 1353 1354 bp->bio_caller1 = sd; 1355 1356 /* 1357 * Make sure that the disk is present. Generally it is a task of 1358 * transformation layers to not send requests to absent disks, but 1359 * it is better to be safe and report situation then sorry. 1360 */ 1361 if (sd->sd_disk == NULL) { 1362 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!"); 1363 nodisk: 1364 bp->bio_from = NULL; 1365 bp->bio_to = NULL; 1366 bp->bio_error = ENXIO; 1367 g_raid_disk_done(bp); 1368 return; 1369 } 1370 disk = sd->sd_disk; 1371 if (disk->d_state != G_RAID_DISK_S_ACTIVE && 1372 disk->d_state != G_RAID_DISK_S_FAILED) { 1373 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a " 1374 "wrong state (%s)!", g_raid_disk_state2str(disk->d_state)); 1375 goto nodisk; 1376 } 1377 1378 cp = disk->d_consumer; 1379 bp->bio_from = cp; 1380 bp->bio_to = cp->provider; 1381 cp->index++; 1382 1383 /* Update average disks load. */ 1384 TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) { 1385 if (tdisk->d_consumer == NULL) 1386 tdisk->d_load = 0; 1387 else 1388 tdisk->d_load = (tdisk->d_consumer->index * 1389 G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8; 1390 } 1391 1392 disk->d_last_offset = bp->bio_offset + bp->bio_length; 1393 if (dumping) { 1394 G_RAID_LOGREQ(3, bp, "Sending dumping request."); 1395 if (bp->bio_cmd == BIO_WRITE) { 1396 bp->bio_error = g_raid_subdisk_kerneldump(sd, 1397 bp->bio_data, 0, bp->bio_offset, bp->bio_length); 1398 } else 1399 bp->bio_error = EOPNOTSUPP; 1400 g_raid_disk_done(bp); 1401 } else { 1402 bp->bio_done = g_raid_disk_done; 1403 bp->bio_offset += sd->sd_offset; 1404 G_RAID_LOGREQ(3, bp, "Sending request."); 1405 g_io_request(bp, cp); 1406 } 1407 } 1408 1409 int 1410 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd, 1411 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1412 { 1413 1414 if (sd->sd_disk == NULL) 1415 return (ENXIO); 1416 if (sd->sd_disk->d_kd.di.dumper == NULL) 1417 return (EOPNOTSUPP); 1418 return (dump_write(&sd->sd_disk->d_kd.di, 1419 virtual, physical, 1420 sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset, 1421 length)); 1422 } 1423 1424 static void 1425 g_raid_disk_done(struct bio *bp) 1426 { 1427 struct g_raid_softc *sc; 1428 struct g_raid_subdisk *sd; 1429 1430 sd = bp->bio_caller1; 1431 sc = sd->sd_softc; 1432 mtx_lock(&sc->sc_queue_mtx); 1433 bioq_insert_tail(&sc->sc_queue, bp); 1434 mtx_unlock(&sc->sc_queue_mtx); 1435 if (!dumping) 1436 wakeup(sc); 1437 } 1438 1439 static void 1440 g_raid_disk_done_request(struct bio *bp) 1441 { 1442 struct g_raid_softc *sc; 1443 struct g_raid_disk *disk; 1444 struct g_raid_subdisk *sd; 1445 struct g_raid_volume *vol; 1446 1447 g_topology_assert_not(); 1448 1449 G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error); 1450 sd = bp->bio_caller1; 1451 sc = sd->sd_softc; 1452 vol = sd->sd_volume; 1453 if (bp->bio_from != NULL) { 1454 bp->bio_from->index--; 1455 disk = bp->bio_from->private; 1456 if (disk == NULL) 1457 g_raid_kill_consumer(sc, bp->bio_from); 1458 } 1459 bp->bio_offset -= sd->sd_offset; 1460 1461 G_RAID_TR_IODONE(vol->v_tr, sd, bp); 1462 } 1463 1464 static void 1465 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep) 1466 { 1467 1468 if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0) 1469 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event); 1470 else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0) 1471 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event); 1472 else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0) 1473 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event); 1474 else 1475 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event); 1476 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) { 1477 KASSERT(ep->e_error == 0, 1478 ("Error cannot be handled.")); 1479 g_raid_event_free(ep); 1480 } else { 1481 ep->e_flags |= G_RAID_EVENT_DONE; 1482 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep); 1483 mtx_lock(&sc->sc_queue_mtx); 1484 wakeup(ep); 1485 mtx_unlock(&sc->sc_queue_mtx); 1486 } 1487 } 1488 1489 /* 1490 * Worker thread. 1491 */ 1492 static void 1493 g_raid_worker(void *arg) 1494 { 1495 struct g_raid_softc *sc; 1496 struct g_raid_event *ep; 1497 struct g_raid_volume *vol; 1498 struct bio *bp; 1499 struct timeval now, t; 1500 int timeout, rv; 1501 1502 sc = arg; 1503 thread_lock(curthread); 1504 sched_prio(curthread, PRIBIO); 1505 thread_unlock(curthread); 1506 1507 sx_xlock(&sc->sc_lock); 1508 for (;;) { 1509 mtx_lock(&sc->sc_queue_mtx); 1510 /* 1511 * First take a look at events. 1512 * This is important to handle events before any I/O requests. 1513 */ 1514 bp = NULL; 1515 vol = NULL; 1516 rv = 0; 1517 ep = TAILQ_FIRST(&sc->sc_events); 1518 if (ep != NULL) 1519 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 1520 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL) 1521 ; 1522 else { 1523 getmicrouptime(&now); 1524 t = now; 1525 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1526 if (bioq_first(&vol->v_inflight) == NULL && 1527 vol->v_tr && 1528 timevalcmp(&vol->v_last_done, &t, < )) 1529 t = vol->v_last_done; 1530 } 1531 timevalsub(&t, &now); 1532 timeout = g_raid_idle_threshold + 1533 t.tv_sec * 1000000 + t.tv_usec; 1534 if (timeout > 0) { 1535 /* 1536 * Two steps to avoid overflows at HZ=1000 1537 * and idle timeouts > 2.1s. Some rounding 1538 * errors can occur, but they are < 1tick, 1539 * which is deemed to be close enough for 1540 * this purpose. 1541 */ 1542 int micpertic = 1000000 / hz; 1543 timeout = (timeout + micpertic - 1) / micpertic; 1544 sx_xunlock(&sc->sc_lock); 1545 MSLEEP(rv, sc, &sc->sc_queue_mtx, 1546 PRIBIO | PDROP, "-", timeout); 1547 sx_xlock(&sc->sc_lock); 1548 goto process; 1549 } else 1550 rv = EWOULDBLOCK; 1551 } 1552 mtx_unlock(&sc->sc_queue_mtx); 1553 process: 1554 if (ep != NULL) { 1555 g_raid_handle_event(sc, ep); 1556 } else if (bp != NULL) { 1557 if (bp->bio_to != NULL && 1558 bp->bio_to->geom == sc->sc_geom) 1559 g_raid_start_request(bp); 1560 else 1561 g_raid_disk_done_request(bp); 1562 } else if (rv == EWOULDBLOCK) { 1563 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1564 g_raid_clean(vol, -1); 1565 if (bioq_first(&vol->v_inflight) == NULL && 1566 vol->v_tr) { 1567 t.tv_sec = g_raid_idle_threshold / 1000000; 1568 t.tv_usec = g_raid_idle_threshold % 1000000; 1569 timevaladd(&t, &vol->v_last_done); 1570 getmicrouptime(&now); 1571 if (timevalcmp(&t, &now, <= )) { 1572 G_RAID_TR_IDLE(vol->v_tr); 1573 vol->v_last_done = now; 1574 } 1575 } 1576 } 1577 } 1578 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 1579 g_raid_destroy_node(sc, 1); /* May not return. */ 1580 } 1581 } 1582 1583 static void 1584 g_raid_poll(struct g_raid_softc *sc) 1585 { 1586 struct g_raid_event *ep; 1587 struct bio *bp; 1588 1589 sx_xlock(&sc->sc_lock); 1590 mtx_lock(&sc->sc_queue_mtx); 1591 /* 1592 * First take a look at events. 1593 * This is important to handle events before any I/O requests. 1594 */ 1595 ep = TAILQ_FIRST(&sc->sc_events); 1596 if (ep != NULL) { 1597 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 1598 mtx_unlock(&sc->sc_queue_mtx); 1599 g_raid_handle_event(sc, ep); 1600 goto out; 1601 } 1602 bp = bioq_takefirst(&sc->sc_queue); 1603 if (bp != NULL) { 1604 mtx_unlock(&sc->sc_queue_mtx); 1605 if (bp->bio_from == NULL || 1606 bp->bio_from->geom != sc->sc_geom) 1607 g_raid_start_request(bp); 1608 else 1609 g_raid_disk_done_request(bp); 1610 } 1611 out: 1612 sx_xunlock(&sc->sc_lock); 1613 } 1614 1615 static void 1616 g_raid_launch_provider(struct g_raid_volume *vol) 1617 { 1618 struct g_raid_disk *disk; 1619 struct g_raid_subdisk *sd; 1620 struct g_raid_softc *sc; 1621 struct g_provider *pp; 1622 char name[G_RAID_MAX_VOLUMENAME]; 1623 off_t off; 1624 int i; 1625 1626 sc = vol->v_softc; 1627 sx_assert(&sc->sc_lock, SX_LOCKED); 1628 1629 g_topology_lock(); 1630 /* Try to name provider with volume name. */ 1631 snprintf(name, sizeof(name), "raid/%s", vol->v_name); 1632 if (g_raid_name_format == 0 || vol->v_name[0] == 0 || 1633 g_provider_by_name(name) != NULL) { 1634 /* Otherwise use sequential volume number. */ 1635 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id); 1636 } 1637 1638 pp = g_new_providerf(sc->sc_geom, "%s", name); 1639 pp->flags |= G_PF_DIRECT_RECEIVE; 1640 if (vol->v_tr->tro_class->trc_accept_unmapped) { 1641 pp->flags |= G_PF_ACCEPT_UNMAPPED; 1642 for (i = 0; i < vol->v_disks_count; i++) { 1643 sd = &vol->v_subdisks[i]; 1644 if (sd->sd_state == G_RAID_SUBDISK_S_NONE) 1645 continue; 1646 if ((sd->sd_disk->d_consumer->provider->flags & 1647 G_PF_ACCEPT_UNMAPPED) == 0) 1648 pp->flags &= ~G_PF_ACCEPT_UNMAPPED; 1649 } 1650 } 1651 pp->private = vol; 1652 pp->mediasize = vol->v_mediasize; 1653 pp->sectorsize = vol->v_sectorsize; 1654 pp->stripesize = 0; 1655 pp->stripeoffset = 0; 1656 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 || 1657 vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 || 1658 vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE || 1659 vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) { 1660 if ((disk = vol->v_subdisks[0].sd_disk) != NULL && 1661 disk->d_consumer != NULL && 1662 disk->d_consumer->provider != NULL) { 1663 pp->stripesize = disk->d_consumer->provider->stripesize; 1664 off = disk->d_consumer->provider->stripeoffset; 1665 pp->stripeoffset = off + vol->v_subdisks[0].sd_offset; 1666 if (off > 0) 1667 pp->stripeoffset %= off; 1668 } 1669 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) { 1670 pp->stripesize *= (vol->v_disks_count - 1); 1671 pp->stripeoffset *= (vol->v_disks_count - 1); 1672 } 1673 } else 1674 pp->stripesize = vol->v_strip_size; 1675 vol->v_provider = pp; 1676 g_error_provider(pp, 0); 1677 g_topology_unlock(); 1678 G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.", 1679 pp->name, vol->v_name); 1680 } 1681 1682 static void 1683 g_raid_destroy_provider(struct g_raid_volume *vol) 1684 { 1685 struct g_raid_softc *sc; 1686 struct g_provider *pp; 1687 struct bio *bp, *tmp; 1688 1689 g_topology_assert_not(); 1690 sc = vol->v_softc; 1691 pp = vol->v_provider; 1692 KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name)); 1693 1694 g_topology_lock(); 1695 g_error_provider(pp, ENXIO); 1696 mtx_lock(&sc->sc_queue_mtx); 1697 TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) { 1698 if (bp->bio_to != pp) 1699 continue; 1700 bioq_remove(&sc->sc_queue, bp); 1701 g_io_deliver(bp, ENXIO); 1702 } 1703 mtx_unlock(&sc->sc_queue_mtx); 1704 G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.", 1705 pp->name, vol->v_name); 1706 g_wither_provider(pp, ENXIO); 1707 g_topology_unlock(); 1708 vol->v_provider = NULL; 1709 } 1710 1711 /* 1712 * Update device state. 1713 */ 1714 static int 1715 g_raid_update_volume(struct g_raid_volume *vol, u_int event) 1716 { 1717 struct g_raid_softc *sc; 1718 1719 sc = vol->v_softc; 1720 sx_assert(&sc->sc_lock, SX_XLOCKED); 1721 1722 G_RAID_DEBUG1(2, sc, "Event %s for volume %s.", 1723 g_raid_volume_event2str(event), 1724 vol->v_name); 1725 switch (event) { 1726 case G_RAID_VOLUME_E_DOWN: 1727 if (vol->v_provider != NULL) 1728 g_raid_destroy_provider(vol); 1729 break; 1730 case G_RAID_VOLUME_E_UP: 1731 if (vol->v_provider == NULL) 1732 g_raid_launch_provider(vol); 1733 break; 1734 case G_RAID_VOLUME_E_START: 1735 if (vol->v_tr) 1736 G_RAID_TR_START(vol->v_tr); 1737 return (0); 1738 default: 1739 if (sc->sc_md) 1740 G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event); 1741 return (0); 1742 } 1743 1744 /* Manage root mount release. */ 1745 if (vol->v_starting) { 1746 vol->v_starting = 0; 1747 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount); 1748 root_mount_rel(vol->v_rootmount); 1749 vol->v_rootmount = NULL; 1750 } 1751 if (vol->v_stopping && vol->v_provider_open == 0) 1752 g_raid_destroy_volume(vol); 1753 return (0); 1754 } 1755 1756 /* 1757 * Update subdisk state. 1758 */ 1759 static int 1760 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event) 1761 { 1762 struct g_raid_softc *sc; 1763 struct g_raid_volume *vol; 1764 1765 sc = sd->sd_softc; 1766 vol = sd->sd_volume; 1767 sx_assert(&sc->sc_lock, SX_XLOCKED); 1768 1769 G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.", 1770 g_raid_subdisk_event2str(event), 1771 vol->v_name, sd->sd_pos, 1772 sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]"); 1773 if (vol->v_tr) 1774 G_RAID_TR_EVENT(vol->v_tr, sd, event); 1775 1776 return (0); 1777 } 1778 1779 /* 1780 * Update disk state. 1781 */ 1782 static int 1783 g_raid_update_disk(struct g_raid_disk *disk, u_int event) 1784 { 1785 struct g_raid_softc *sc; 1786 1787 sc = disk->d_softc; 1788 sx_assert(&sc->sc_lock, SX_XLOCKED); 1789 1790 G_RAID_DEBUG1(2, sc, "Event %s for disk %s.", 1791 g_raid_disk_event2str(event), 1792 g_raid_get_diskname(disk)); 1793 1794 if (sc->sc_md) 1795 G_RAID_MD_EVENT(sc->sc_md, disk, event); 1796 return (0); 1797 } 1798 1799 /* 1800 * Node event. 1801 */ 1802 static int 1803 g_raid_update_node(struct g_raid_softc *sc, u_int event) 1804 { 1805 sx_assert(&sc->sc_lock, SX_XLOCKED); 1806 1807 G_RAID_DEBUG1(2, sc, "Event %s for the array.", 1808 g_raid_node_event2str(event)); 1809 1810 if (event == G_RAID_NODE_E_WAKE) 1811 return (0); 1812 if (sc->sc_md) 1813 G_RAID_MD_EVENT(sc->sc_md, NULL, event); 1814 return (0); 1815 } 1816 1817 static int 1818 g_raid_access(struct g_provider *pp, int acr, int acw, int ace) 1819 { 1820 struct g_raid_volume *vol; 1821 struct g_raid_softc *sc; 1822 int dcw, opens, error = 0; 1823 1824 g_topology_assert(); 1825 sc = pp->geom->softc; 1826 vol = pp->private; 1827 KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name)); 1828 KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name)); 1829 1830 G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name, 1831 acr, acw, ace); 1832 dcw = pp->acw + acw; 1833 1834 g_topology_unlock(); 1835 sx_xlock(&sc->sc_lock); 1836 /* Deny new opens while dying. */ 1837 if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) { 1838 error = ENXIO; 1839 goto out; 1840 } 1841 /* Deny write opens for read-only volumes. */ 1842 if (vol->v_read_only && acw > 0) { 1843 error = EROFS; 1844 goto out; 1845 } 1846 if (dcw == 0) 1847 g_raid_clean(vol, dcw); 1848 vol->v_provider_open += acr + acw + ace; 1849 /* Handle delayed node destruction. */ 1850 if (sc->sc_stopping == G_RAID_DESTROY_DELAYED && 1851 vol->v_provider_open == 0) { 1852 /* Count open volumes. */ 1853 opens = g_raid_nopens(sc); 1854 if (opens == 0) { 1855 sc->sc_stopping = G_RAID_DESTROY_HARD; 1856 /* Wake up worker to make it selfdestruct. */ 1857 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 1858 } 1859 } 1860 /* Handle open volume destruction. */ 1861 if (vol->v_stopping && vol->v_provider_open == 0) 1862 g_raid_destroy_volume(vol); 1863 out: 1864 sx_xunlock(&sc->sc_lock); 1865 g_topology_lock(); 1866 return (error); 1867 } 1868 1869 struct g_raid_softc * 1870 g_raid_create_node(struct g_class *mp, 1871 const char *name, struct g_raid_md_object *md) 1872 { 1873 struct g_raid_softc *sc; 1874 struct g_geom *gp; 1875 int error; 1876 1877 g_topology_assert(); 1878 G_RAID_DEBUG(1, "Creating array %s.", name); 1879 1880 gp = g_new_geomf(mp, "%s", name); 1881 sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO); 1882 gp->start = g_raid_start; 1883 gp->orphan = g_raid_orphan; 1884 gp->access = g_raid_access; 1885 gp->dumpconf = g_raid_dumpconf; 1886 1887 sc->sc_md = md; 1888 sc->sc_geom = gp; 1889 sc->sc_flags = 0; 1890 TAILQ_INIT(&sc->sc_volumes); 1891 TAILQ_INIT(&sc->sc_disks); 1892 sx_init(&sc->sc_lock, "graid:lock"); 1893 mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF); 1894 TAILQ_INIT(&sc->sc_events); 1895 bioq_init(&sc->sc_queue); 1896 gp->softc = sc; 1897 error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0, 1898 "g_raid %s", name); 1899 if (error != 0) { 1900 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name); 1901 mtx_destroy(&sc->sc_queue_mtx); 1902 sx_destroy(&sc->sc_lock); 1903 g_destroy_geom(sc->sc_geom); 1904 free(sc, M_RAID); 1905 return (NULL); 1906 } 1907 1908 G_RAID_DEBUG1(0, sc, "Array %s created.", name); 1909 return (sc); 1910 } 1911 1912 struct g_raid_volume * 1913 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id) 1914 { 1915 struct g_raid_volume *vol, *vol1; 1916 int i; 1917 1918 G_RAID_DEBUG1(1, sc, "Creating volume %s.", name); 1919 vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO); 1920 vol->v_softc = sc; 1921 strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME); 1922 vol->v_state = G_RAID_VOLUME_S_STARTING; 1923 vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN; 1924 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN; 1925 vol->v_rotate_parity = 1; 1926 bioq_init(&vol->v_inflight); 1927 bioq_init(&vol->v_locked); 1928 LIST_INIT(&vol->v_locks); 1929 for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) { 1930 vol->v_subdisks[i].sd_softc = sc; 1931 vol->v_subdisks[i].sd_volume = vol; 1932 vol->v_subdisks[i].sd_pos = i; 1933 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE; 1934 } 1935 1936 /* Find free ID for this volume. */ 1937 g_topology_lock(); 1938 vol1 = vol; 1939 if (id >= 0) { 1940 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) { 1941 if (vol1->v_global_id == id) 1942 break; 1943 } 1944 } 1945 if (vol1 != NULL) { 1946 for (id = 0; ; id++) { 1947 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) { 1948 if (vol1->v_global_id == id) 1949 break; 1950 } 1951 if (vol1 == NULL) 1952 break; 1953 } 1954 } 1955 vol->v_global_id = id; 1956 LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next); 1957 g_topology_unlock(); 1958 1959 /* Delay root mounting. */ 1960 vol->v_rootmount = root_mount_hold("GRAID"); 1961 G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount); 1962 vol->v_starting = 1; 1963 TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next); 1964 return (vol); 1965 } 1966 1967 struct g_raid_disk * 1968 g_raid_create_disk(struct g_raid_softc *sc) 1969 { 1970 struct g_raid_disk *disk; 1971 1972 G_RAID_DEBUG1(1, sc, "Creating disk."); 1973 disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO); 1974 disk->d_softc = sc; 1975 disk->d_state = G_RAID_DISK_S_NONE; 1976 TAILQ_INIT(&disk->d_subdisks); 1977 TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next); 1978 return (disk); 1979 } 1980 1981 int g_raid_start_volume(struct g_raid_volume *vol) 1982 { 1983 struct g_raid_tr_class *class; 1984 struct g_raid_tr_object *obj; 1985 int status; 1986 1987 G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name); 1988 LIST_FOREACH(class, &g_raid_tr_classes, trc_list) { 1989 if (!class->trc_enable) 1990 continue; 1991 G_RAID_DEBUG1(2, vol->v_softc, 1992 "Tasting volume %s for %s transformation.", 1993 vol->v_name, class->name); 1994 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 1995 M_WAITOK); 1996 obj->tro_class = class; 1997 obj->tro_volume = vol; 1998 status = G_RAID_TR_TASTE(obj, vol); 1999 if (status != G_RAID_TR_TASTE_FAIL) 2000 break; 2001 kobj_delete((kobj_t)obj, M_RAID); 2002 } 2003 if (class == NULL) { 2004 G_RAID_DEBUG1(0, vol->v_softc, 2005 "No transformation module found for %s.", 2006 vol->v_name); 2007 vol->v_tr = NULL; 2008 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED); 2009 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN, 2010 G_RAID_EVENT_VOLUME); 2011 return (-1); 2012 } 2013 G_RAID_DEBUG1(2, vol->v_softc, 2014 "Transformation module %s chosen for %s.", 2015 class->name, vol->v_name); 2016 vol->v_tr = obj; 2017 return (0); 2018 } 2019 2020 int 2021 g_raid_destroy_node(struct g_raid_softc *sc, int worker) 2022 { 2023 struct g_raid_volume *vol, *tmpv; 2024 struct g_raid_disk *disk, *tmpd; 2025 int error = 0; 2026 2027 sc->sc_stopping = G_RAID_DESTROY_HARD; 2028 TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) { 2029 if (g_raid_destroy_volume(vol)) 2030 error = EBUSY; 2031 } 2032 if (error) 2033 return (error); 2034 TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) { 2035 if (g_raid_destroy_disk(disk)) 2036 error = EBUSY; 2037 } 2038 if (error) 2039 return (error); 2040 if (sc->sc_md) { 2041 G_RAID_MD_FREE(sc->sc_md); 2042 kobj_delete((kobj_t)sc->sc_md, M_RAID); 2043 sc->sc_md = NULL; 2044 } 2045 if (sc->sc_geom != NULL) { 2046 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name); 2047 g_topology_lock(); 2048 sc->sc_geom->softc = NULL; 2049 g_wither_geom(sc->sc_geom, ENXIO); 2050 g_topology_unlock(); 2051 sc->sc_geom = NULL; 2052 } else 2053 G_RAID_DEBUG(1, "Array destroyed."); 2054 if (worker) { 2055 g_raid_event_cancel(sc, sc); 2056 mtx_destroy(&sc->sc_queue_mtx); 2057 sx_xunlock(&sc->sc_lock); 2058 sx_destroy(&sc->sc_lock); 2059 wakeup(&sc->sc_stopping); 2060 free(sc, M_RAID); 2061 curthread->td_pflags &= ~TDP_GEOM; 2062 G_RAID_DEBUG(1, "Thread exiting."); 2063 kproc_exit(0); 2064 } else { 2065 /* Wake up worker to make it selfdestruct. */ 2066 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2067 } 2068 return (0); 2069 } 2070 2071 int 2072 g_raid_destroy_volume(struct g_raid_volume *vol) 2073 { 2074 struct g_raid_softc *sc; 2075 struct g_raid_disk *disk; 2076 int i; 2077 2078 sc = vol->v_softc; 2079 G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name); 2080 vol->v_stopping = 1; 2081 if (vol->v_state != G_RAID_VOLUME_S_STOPPED) { 2082 if (vol->v_tr) { 2083 G_RAID_TR_STOP(vol->v_tr); 2084 return (EBUSY); 2085 } else 2086 vol->v_state = G_RAID_VOLUME_S_STOPPED; 2087 } 2088 if (g_raid_event_check(sc, vol) != 0) 2089 return (EBUSY); 2090 if (vol->v_provider != NULL) 2091 return (EBUSY); 2092 if (vol->v_provider_open != 0) 2093 return (EBUSY); 2094 if (vol->v_tr) { 2095 G_RAID_TR_FREE(vol->v_tr); 2096 kobj_delete((kobj_t)vol->v_tr, M_RAID); 2097 vol->v_tr = NULL; 2098 } 2099 if (vol->v_rootmount) 2100 root_mount_rel(vol->v_rootmount); 2101 g_topology_lock(); 2102 LIST_REMOVE(vol, v_global_next); 2103 g_topology_unlock(); 2104 TAILQ_REMOVE(&sc->sc_volumes, vol, v_next); 2105 for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) { 2106 g_raid_event_cancel(sc, &vol->v_subdisks[i]); 2107 disk = vol->v_subdisks[i].sd_disk; 2108 if (disk == NULL) 2109 continue; 2110 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next); 2111 } 2112 G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name); 2113 if (sc->sc_md) 2114 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol); 2115 g_raid_event_cancel(sc, vol); 2116 free(vol, M_RAID); 2117 if (sc->sc_stopping == G_RAID_DESTROY_HARD) { 2118 /* Wake up worker to let it selfdestruct. */ 2119 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2120 } 2121 return (0); 2122 } 2123 2124 int 2125 g_raid_destroy_disk(struct g_raid_disk *disk) 2126 { 2127 struct g_raid_softc *sc; 2128 struct g_raid_subdisk *sd, *tmp; 2129 2130 sc = disk->d_softc; 2131 G_RAID_DEBUG1(2, sc, "Destroying disk."); 2132 if (disk->d_consumer) { 2133 g_raid_kill_consumer(sc, disk->d_consumer); 2134 disk->d_consumer = NULL; 2135 } 2136 TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) { 2137 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE); 2138 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED, 2139 G_RAID_EVENT_SUBDISK); 2140 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next); 2141 sd->sd_disk = NULL; 2142 } 2143 TAILQ_REMOVE(&sc->sc_disks, disk, d_next); 2144 if (sc->sc_md) 2145 G_RAID_MD_FREE_DISK(sc->sc_md, disk); 2146 g_raid_event_cancel(sc, disk); 2147 free(disk, M_RAID); 2148 return (0); 2149 } 2150 2151 int 2152 g_raid_destroy(struct g_raid_softc *sc, int how) 2153 { 2154 int error, opens; 2155 2156 g_topology_assert_not(); 2157 if (sc == NULL) 2158 return (ENXIO); 2159 sx_assert(&sc->sc_lock, SX_XLOCKED); 2160 2161 /* Count open volumes. */ 2162 opens = g_raid_nopens(sc); 2163 2164 /* React on some opened volumes. */ 2165 if (opens > 0) { 2166 switch (how) { 2167 case G_RAID_DESTROY_SOFT: 2168 G_RAID_DEBUG1(1, sc, 2169 "%d volumes are still open.", 2170 opens); 2171 sx_xunlock(&sc->sc_lock); 2172 return (EBUSY); 2173 case G_RAID_DESTROY_DELAYED: 2174 G_RAID_DEBUG1(1, sc, 2175 "Array will be destroyed on last close."); 2176 sc->sc_stopping = G_RAID_DESTROY_DELAYED; 2177 sx_xunlock(&sc->sc_lock); 2178 return (EBUSY); 2179 case G_RAID_DESTROY_HARD: 2180 G_RAID_DEBUG1(1, sc, 2181 "%d volumes are still open.", 2182 opens); 2183 } 2184 } 2185 2186 /* Mark node for destruction. */ 2187 sc->sc_stopping = G_RAID_DESTROY_HARD; 2188 /* Wake up worker to let it selfdestruct. */ 2189 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2190 /* Sleep until node destroyed. */ 2191 error = sx_sleep(&sc->sc_stopping, &sc->sc_lock, 2192 PRIBIO | PDROP, "r:destroy", hz * 3); 2193 return (error == EWOULDBLOCK ? EBUSY : 0); 2194 } 2195 2196 static void 2197 g_raid_taste_orphan(struct g_consumer *cp) 2198 { 2199 2200 KASSERT(1 == 0, ("%s called while tasting %s.", __func__, 2201 cp->provider->name)); 2202 } 2203 2204 static struct g_geom * 2205 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) 2206 { 2207 struct g_consumer *cp; 2208 struct g_geom *gp, *geom; 2209 struct g_raid_md_class *class; 2210 struct g_raid_md_object *obj; 2211 int status; 2212 2213 g_topology_assert(); 2214 g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); 2215 if (!g_raid_enable) 2216 return (NULL); 2217 G_RAID_DEBUG(2, "Tasting provider %s.", pp->name); 2218 2219 geom = NULL; 2220 status = G_RAID_MD_TASTE_FAIL; 2221 gp = g_new_geomf(mp, "raid:taste"); 2222 /* 2223 * This orphan function should be never called. 2224 */ 2225 gp->orphan = g_raid_taste_orphan; 2226 cp = g_new_consumer(gp); 2227 cp->flags |= G_CF_DIRECT_RECEIVE; 2228 g_attach(cp, pp); 2229 if (g_access(cp, 1, 0, 0) != 0) 2230 goto ofail; 2231 2232 LIST_FOREACH(class, &g_raid_md_classes, mdc_list) { 2233 if (!class->mdc_enable) 2234 continue; 2235 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.", 2236 pp->name, class->name); 2237 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2238 M_WAITOK); 2239 obj->mdo_class = class; 2240 status = G_RAID_MD_TASTE(obj, mp, cp, &geom); 2241 if (status != G_RAID_MD_TASTE_NEW) 2242 kobj_delete((kobj_t)obj, M_RAID); 2243 if (status != G_RAID_MD_TASTE_FAIL) 2244 break; 2245 } 2246 2247 if (status == G_RAID_MD_TASTE_FAIL) 2248 (void)g_access(cp, -1, 0, 0); 2249 ofail: 2250 g_detach(cp); 2251 g_destroy_consumer(cp); 2252 g_destroy_geom(gp); 2253 G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name); 2254 return (geom); 2255 } 2256 2257 int 2258 g_raid_create_node_format(const char *format, struct gctl_req *req, 2259 struct g_geom **gp) 2260 { 2261 struct g_raid_md_class *class; 2262 struct g_raid_md_object *obj; 2263 int status; 2264 2265 G_RAID_DEBUG(2, "Creating array for %s metadata.", format); 2266 LIST_FOREACH(class, &g_raid_md_classes, mdc_list) { 2267 if (strcasecmp(class->name, format) == 0) 2268 break; 2269 } 2270 if (class == NULL) { 2271 G_RAID_DEBUG(1, "No support for %s metadata.", format); 2272 return (G_RAID_MD_TASTE_FAIL); 2273 } 2274 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2275 M_WAITOK); 2276 obj->mdo_class = class; 2277 status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp); 2278 if (status != G_RAID_MD_TASTE_NEW) 2279 kobj_delete((kobj_t)obj, M_RAID); 2280 return (status); 2281 } 2282 2283 static int 2284 g_raid_destroy_geom(struct gctl_req *req __unused, 2285 struct g_class *mp __unused, struct g_geom *gp) 2286 { 2287 struct g_raid_softc *sc; 2288 int error; 2289 2290 g_topology_unlock(); 2291 sc = gp->softc; 2292 sx_xlock(&sc->sc_lock); 2293 g_cancel_event(sc); 2294 error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT); 2295 g_topology_lock(); 2296 return (error); 2297 } 2298 2299 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol, 2300 struct g_raid_subdisk *sd, struct g_raid_disk *disk) 2301 { 2302 2303 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 2304 return; 2305 if (sc->sc_md) 2306 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk); 2307 } 2308 2309 void g_raid_fail_disk(struct g_raid_softc *sc, 2310 struct g_raid_subdisk *sd, struct g_raid_disk *disk) 2311 { 2312 2313 if (disk == NULL) 2314 disk = sd->sd_disk; 2315 if (disk == NULL) { 2316 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!"); 2317 return; 2318 } 2319 if (disk->d_state != G_RAID_DISK_S_ACTIVE) { 2320 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a " 2321 "wrong state (%s)!", g_raid_disk_state2str(disk->d_state)); 2322 return; 2323 } 2324 if (sc->sc_md) 2325 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk); 2326 } 2327 2328 static void 2329 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, 2330 struct g_consumer *cp, struct g_provider *pp) 2331 { 2332 struct g_raid_softc *sc; 2333 struct g_raid_volume *vol; 2334 struct g_raid_subdisk *sd; 2335 struct g_raid_disk *disk; 2336 int i, s; 2337 2338 g_topology_assert(); 2339 2340 sc = gp->softc; 2341 if (sc == NULL) 2342 return; 2343 if (pp != NULL) { 2344 vol = pp->private; 2345 g_topology_unlock(); 2346 sx_xlock(&sc->sc_lock); 2347 sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent, 2348 sc->sc_md->mdo_class->name, 2349 g_raid_volume_level2str(vol->v_raid_level, 2350 vol->v_raid_level_qualifier)); 2351 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent, 2352 vol->v_name); 2353 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent, 2354 g_raid_volume_level2str(vol->v_raid_level, 2355 vol->v_raid_level_qualifier)); 2356 sbuf_printf(sb, 2357 "%s<Transformation>%s</Transformation>\n", indent, 2358 vol->v_tr ? vol->v_tr->tro_class->name : "NONE"); 2359 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent, 2360 vol->v_disks_count); 2361 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent, 2362 vol->v_strip_size); 2363 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2364 g_raid_volume_state2str(vol->v_state)); 2365 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent, 2366 vol->v_dirty ? "Yes" : "No"); 2367 sbuf_printf(sb, "%s<Subdisks>", indent); 2368 for (i = 0; i < vol->v_disks_count; i++) { 2369 sd = &vol->v_subdisks[i]; 2370 if (sd->sd_disk != NULL && 2371 sd->sd_disk->d_consumer != NULL) { 2372 sbuf_printf(sb, "%s ", 2373 g_raid_get_diskname(sd->sd_disk)); 2374 } else { 2375 sbuf_printf(sb, "NONE "); 2376 } 2377 sbuf_printf(sb, "(%s", 2378 g_raid_subdisk_state2str(sd->sd_state)); 2379 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2380 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2381 sbuf_printf(sb, " %d%%", 2382 (int)(sd->sd_rebuild_pos * 100 / 2383 sd->sd_size)); 2384 } 2385 sbuf_printf(sb, ")"); 2386 if (i + 1 < vol->v_disks_count) 2387 sbuf_printf(sb, ", "); 2388 } 2389 sbuf_printf(sb, "</Subdisks>\n"); 2390 sx_xunlock(&sc->sc_lock); 2391 g_topology_lock(); 2392 } else if (cp != NULL) { 2393 disk = cp->private; 2394 if (disk == NULL) 2395 return; 2396 g_topology_unlock(); 2397 sx_xlock(&sc->sc_lock); 2398 sbuf_printf(sb, "%s<State>%s", indent, 2399 g_raid_disk_state2str(disk->d_state)); 2400 if (!TAILQ_EMPTY(&disk->d_subdisks)) { 2401 sbuf_printf(sb, " ("); 2402 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 2403 sbuf_printf(sb, "%s", 2404 g_raid_subdisk_state2str(sd->sd_state)); 2405 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2406 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2407 sbuf_printf(sb, " %d%%", 2408 (int)(sd->sd_rebuild_pos * 100 / 2409 sd->sd_size)); 2410 } 2411 if (TAILQ_NEXT(sd, sd_next)) 2412 sbuf_printf(sb, ", "); 2413 } 2414 sbuf_printf(sb, ")"); 2415 } 2416 sbuf_printf(sb, "</State>\n"); 2417 sbuf_printf(sb, "%s<Subdisks>", indent); 2418 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 2419 sbuf_printf(sb, "r%d(%s):%d@%ju", 2420 sd->sd_volume->v_global_id, 2421 sd->sd_volume->v_name, 2422 sd->sd_pos, (uintmax_t)sd->sd_offset); 2423 if (TAILQ_NEXT(sd, sd_next)) 2424 sbuf_printf(sb, ", "); 2425 } 2426 sbuf_printf(sb, "</Subdisks>\n"); 2427 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent, 2428 disk->d_read_errs); 2429 sx_xunlock(&sc->sc_lock); 2430 g_topology_lock(); 2431 } else { 2432 g_topology_unlock(); 2433 sx_xlock(&sc->sc_lock); 2434 if (sc->sc_md) { 2435 sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent, 2436 sc->sc_md->mdo_class->name); 2437 } 2438 if (!TAILQ_EMPTY(&sc->sc_volumes)) { 2439 s = 0xff; 2440 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 2441 if (vol->v_state < s) 2442 s = vol->v_state; 2443 } 2444 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2445 g_raid_volume_state2str(s)); 2446 } 2447 sx_xunlock(&sc->sc_lock); 2448 g_topology_lock(); 2449 } 2450 } 2451 2452 static void 2453 g_raid_shutdown_post_sync(void *arg, int howto) 2454 { 2455 struct g_class *mp; 2456 struct g_geom *gp, *gp2; 2457 struct g_raid_softc *sc; 2458 struct g_raid_volume *vol; 2459 2460 mp = arg; 2461 g_topology_lock(); 2462 g_raid_shutdown = 1; 2463 LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) { 2464 if ((sc = gp->softc) == NULL) 2465 continue; 2466 g_topology_unlock(); 2467 sx_xlock(&sc->sc_lock); 2468 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) 2469 g_raid_clean(vol, -1); 2470 g_cancel_event(sc); 2471 g_raid_destroy(sc, G_RAID_DESTROY_DELAYED); 2472 g_topology_lock(); 2473 } 2474 g_topology_unlock(); 2475 } 2476 2477 static void 2478 g_raid_init(struct g_class *mp) 2479 { 2480 2481 g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync, 2482 g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST); 2483 if (g_raid_post_sync == NULL) 2484 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event."); 2485 g_raid_started = 1; 2486 } 2487 2488 static void 2489 g_raid_fini(struct g_class *mp) 2490 { 2491 2492 if (g_raid_post_sync != NULL) 2493 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync); 2494 g_raid_started = 0; 2495 } 2496 2497 int 2498 g_raid_md_modevent(module_t mod, int type, void *arg) 2499 { 2500 struct g_raid_md_class *class, *c, *nc; 2501 int error; 2502 2503 error = 0; 2504 class = arg; 2505 switch (type) { 2506 case MOD_LOAD: 2507 c = LIST_FIRST(&g_raid_md_classes); 2508 if (c == NULL || c->mdc_priority > class->mdc_priority) 2509 LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list); 2510 else { 2511 while ((nc = LIST_NEXT(c, mdc_list)) != NULL && 2512 nc->mdc_priority < class->mdc_priority) 2513 c = nc; 2514 LIST_INSERT_AFTER(c, class, mdc_list); 2515 } 2516 if (g_raid_started) 2517 g_retaste(&g_raid_class); 2518 break; 2519 case MOD_UNLOAD: 2520 LIST_REMOVE(class, mdc_list); 2521 break; 2522 default: 2523 error = EOPNOTSUPP; 2524 break; 2525 } 2526 2527 return (error); 2528 } 2529 2530 int 2531 g_raid_tr_modevent(module_t mod, int type, void *arg) 2532 { 2533 struct g_raid_tr_class *class, *c, *nc; 2534 int error; 2535 2536 error = 0; 2537 class = arg; 2538 switch (type) { 2539 case MOD_LOAD: 2540 c = LIST_FIRST(&g_raid_tr_classes); 2541 if (c == NULL || c->trc_priority > class->trc_priority) 2542 LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list); 2543 else { 2544 while ((nc = LIST_NEXT(c, trc_list)) != NULL && 2545 nc->trc_priority < class->trc_priority) 2546 c = nc; 2547 LIST_INSERT_AFTER(c, class, trc_list); 2548 } 2549 break; 2550 case MOD_UNLOAD: 2551 LIST_REMOVE(class, trc_list); 2552 break; 2553 default: 2554 error = EOPNOTSUPP; 2555 break; 2556 } 2557 2558 return (error); 2559 } 2560 2561 /* 2562 * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid) 2563 * to reduce module priority, allowing submodules to register them first. 2564 */ 2565 static moduledata_t g_raid_mod = { 2566 "g_raid", 2567 g_modevent, 2568 &g_raid_class 2569 }; 2570 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD); 2571 MODULE_VERSION(geom_raid, 0); 2572