1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/limits.h> 35 #include <sys/lock.h> 36 #include <sys/mutex.h> 37 #include <sys/bio.h> 38 #include <sys/sbuf.h> 39 #include <sys/sysctl.h> 40 #include <sys/malloc.h> 41 #include <sys/eventhandler.h> 42 #include <vm/uma.h> 43 #include <geom/geom.h> 44 #include <geom/geom_dbg.h> 45 #include <sys/proc.h> 46 #include <sys/kthread.h> 47 #include <sys/sched.h> 48 #include <geom/raid/g_raid.h> 49 #include "g_raid_md_if.h" 50 #include "g_raid_tr_if.h" 51 52 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data"); 53 54 SYSCTL_DECL(_kern_geom); 55 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 56 "GEOM_RAID stuff"); 57 int g_raid_enable = 1; 58 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RWTUN, 59 &g_raid_enable, 0, "Enable on-disk metadata taste"); 60 u_int g_raid_aggressive_spare = 0; 61 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RWTUN, 62 &g_raid_aggressive_spare, 0, "Use disks without metadata as spare"); 63 u_int g_raid_debug = 0; 64 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid_debug, 0, 65 "Debug level"); 66 int g_raid_read_err_thresh = 10; 67 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RWTUN, 68 &g_raid_read_err_thresh, 0, 69 "Number of read errors equated to disk failure"); 70 u_int g_raid_start_timeout = 30; 71 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RWTUN, 72 &g_raid_start_timeout, 0, 73 "Time to wait for all array components"); 74 static u_int g_raid_clean_time = 5; 75 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RWTUN, 76 &g_raid_clean_time, 0, "Mark volume as clean when idling"); 77 static u_int g_raid_disconnect_on_failure = 1; 78 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN, 79 &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure."); 80 static u_int g_raid_name_format = 0; 81 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RWTUN, 82 &g_raid_name_format, 0, "Providers name format."); 83 static u_int g_raid_idle_threshold = 1000000; 84 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RWTUN, 85 &g_raid_idle_threshold, 1000000, 86 "Time in microseconds to consider a volume idle."); 87 88 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout) do { \ 89 G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \ 90 rv = msleep((ident), (mtx), (priority), (wmesg), (timeout)); \ 91 G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \ 92 } while (0) 93 94 LIST_HEAD(, g_raid_md_class) g_raid_md_classes = 95 LIST_HEAD_INITIALIZER(g_raid_md_classes); 96 97 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes = 98 LIST_HEAD_INITIALIZER(g_raid_tr_classes); 99 100 LIST_HEAD(, g_raid_volume) g_raid_volumes = 101 LIST_HEAD_INITIALIZER(g_raid_volumes); 102 103 static eventhandler_tag g_raid_post_sync = NULL; 104 static int g_raid_started = 0; 105 static int g_raid_shutdown = 0; 106 107 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp, 108 struct g_geom *gp); 109 static g_taste_t g_raid_taste; 110 static void g_raid_init(struct g_class *mp); 111 static void g_raid_fini(struct g_class *mp); 112 113 struct g_class g_raid_class = { 114 .name = G_RAID_CLASS_NAME, 115 .version = G_VERSION, 116 .ctlreq = g_raid_ctl, 117 .taste = g_raid_taste, 118 .destroy_geom = g_raid_destroy_geom, 119 .init = g_raid_init, 120 .fini = g_raid_fini 121 }; 122 123 static void g_raid_destroy_provider(struct g_raid_volume *vol); 124 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event); 125 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event); 126 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event); 127 static int g_raid_update_node(struct g_raid_softc *sc, u_int event); 128 static void g_raid_dumpconf(struct sbuf *sb, const char *indent, 129 struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); 130 static void g_raid_start(struct bio *bp); 131 static void g_raid_start_request(struct bio *bp); 132 static void g_raid_disk_done(struct bio *bp); 133 static void g_raid_poll(struct g_raid_softc *sc); 134 135 static const char * 136 g_raid_node_event2str(int event) 137 { 138 139 switch (event) { 140 case G_RAID_NODE_E_WAKE: 141 return ("WAKE"); 142 case G_RAID_NODE_E_START: 143 return ("START"); 144 default: 145 return ("INVALID"); 146 } 147 } 148 149 const char * 150 g_raid_disk_state2str(int state) 151 { 152 153 switch (state) { 154 case G_RAID_DISK_S_NONE: 155 return ("NONE"); 156 case G_RAID_DISK_S_OFFLINE: 157 return ("OFFLINE"); 158 case G_RAID_DISK_S_DISABLED: 159 return ("DISABLED"); 160 case G_RAID_DISK_S_FAILED: 161 return ("FAILED"); 162 case G_RAID_DISK_S_STALE_FAILED: 163 return ("STALE_FAILED"); 164 case G_RAID_DISK_S_SPARE: 165 return ("SPARE"); 166 case G_RAID_DISK_S_STALE: 167 return ("STALE"); 168 case G_RAID_DISK_S_ACTIVE: 169 return ("ACTIVE"); 170 default: 171 return ("INVALID"); 172 } 173 } 174 175 static const char * 176 g_raid_disk_event2str(int event) 177 { 178 179 switch (event) { 180 case G_RAID_DISK_E_DISCONNECTED: 181 return ("DISCONNECTED"); 182 default: 183 return ("INVALID"); 184 } 185 } 186 187 const char * 188 g_raid_subdisk_state2str(int state) 189 { 190 191 switch (state) { 192 case G_RAID_SUBDISK_S_NONE: 193 return ("NONE"); 194 case G_RAID_SUBDISK_S_FAILED: 195 return ("FAILED"); 196 case G_RAID_SUBDISK_S_NEW: 197 return ("NEW"); 198 case G_RAID_SUBDISK_S_REBUILD: 199 return ("REBUILD"); 200 case G_RAID_SUBDISK_S_UNINITIALIZED: 201 return ("UNINITIALIZED"); 202 case G_RAID_SUBDISK_S_STALE: 203 return ("STALE"); 204 case G_RAID_SUBDISK_S_RESYNC: 205 return ("RESYNC"); 206 case G_RAID_SUBDISK_S_ACTIVE: 207 return ("ACTIVE"); 208 default: 209 return ("INVALID"); 210 } 211 } 212 213 static const char * 214 g_raid_subdisk_event2str(int event) 215 { 216 217 switch (event) { 218 case G_RAID_SUBDISK_E_NEW: 219 return ("NEW"); 220 case G_RAID_SUBDISK_E_FAILED: 221 return ("FAILED"); 222 case G_RAID_SUBDISK_E_DISCONNECTED: 223 return ("DISCONNECTED"); 224 default: 225 return ("INVALID"); 226 } 227 } 228 229 const char * 230 g_raid_volume_state2str(int state) 231 { 232 233 switch (state) { 234 case G_RAID_VOLUME_S_STARTING: 235 return ("STARTING"); 236 case G_RAID_VOLUME_S_BROKEN: 237 return ("BROKEN"); 238 case G_RAID_VOLUME_S_DEGRADED: 239 return ("DEGRADED"); 240 case G_RAID_VOLUME_S_SUBOPTIMAL: 241 return ("SUBOPTIMAL"); 242 case G_RAID_VOLUME_S_OPTIMAL: 243 return ("OPTIMAL"); 244 case G_RAID_VOLUME_S_UNSUPPORTED: 245 return ("UNSUPPORTED"); 246 case G_RAID_VOLUME_S_STOPPED: 247 return ("STOPPED"); 248 default: 249 return ("INVALID"); 250 } 251 } 252 253 static const char * 254 g_raid_volume_event2str(int event) 255 { 256 257 switch (event) { 258 case G_RAID_VOLUME_E_UP: 259 return ("UP"); 260 case G_RAID_VOLUME_E_DOWN: 261 return ("DOWN"); 262 case G_RAID_VOLUME_E_START: 263 return ("START"); 264 case G_RAID_VOLUME_E_STARTMD: 265 return ("STARTMD"); 266 default: 267 return ("INVALID"); 268 } 269 } 270 271 const char * 272 g_raid_volume_level2str(int level, int qual) 273 { 274 275 switch (level) { 276 case G_RAID_VOLUME_RL_RAID0: 277 return ("RAID0"); 278 case G_RAID_VOLUME_RL_RAID1: 279 return ("RAID1"); 280 case G_RAID_VOLUME_RL_RAID3: 281 if (qual == G_RAID_VOLUME_RLQ_R3P0) 282 return ("RAID3-P0"); 283 if (qual == G_RAID_VOLUME_RLQ_R3PN) 284 return ("RAID3-PN"); 285 return ("RAID3"); 286 case G_RAID_VOLUME_RL_RAID4: 287 if (qual == G_RAID_VOLUME_RLQ_R4P0) 288 return ("RAID4-P0"); 289 if (qual == G_RAID_VOLUME_RLQ_R4PN) 290 return ("RAID4-PN"); 291 return ("RAID4"); 292 case G_RAID_VOLUME_RL_RAID5: 293 if (qual == G_RAID_VOLUME_RLQ_R5RA) 294 return ("RAID5-RA"); 295 if (qual == G_RAID_VOLUME_RLQ_R5RS) 296 return ("RAID5-RS"); 297 if (qual == G_RAID_VOLUME_RLQ_R5LA) 298 return ("RAID5-LA"); 299 if (qual == G_RAID_VOLUME_RLQ_R5LS) 300 return ("RAID5-LS"); 301 return ("RAID5"); 302 case G_RAID_VOLUME_RL_RAID6: 303 if (qual == G_RAID_VOLUME_RLQ_R6RA) 304 return ("RAID6-RA"); 305 if (qual == G_RAID_VOLUME_RLQ_R6RS) 306 return ("RAID6-RS"); 307 if (qual == G_RAID_VOLUME_RLQ_R6LA) 308 return ("RAID6-LA"); 309 if (qual == G_RAID_VOLUME_RLQ_R6LS) 310 return ("RAID6-LS"); 311 return ("RAID6"); 312 case G_RAID_VOLUME_RL_RAIDMDF: 313 if (qual == G_RAID_VOLUME_RLQ_RMDFRA) 314 return ("RAIDMDF-RA"); 315 if (qual == G_RAID_VOLUME_RLQ_RMDFRS) 316 return ("RAIDMDF-RS"); 317 if (qual == G_RAID_VOLUME_RLQ_RMDFLA) 318 return ("RAIDMDF-LA"); 319 if (qual == G_RAID_VOLUME_RLQ_RMDFLS) 320 return ("RAIDMDF-LS"); 321 return ("RAIDMDF"); 322 case G_RAID_VOLUME_RL_RAID1E: 323 if (qual == G_RAID_VOLUME_RLQ_R1EA) 324 return ("RAID1E-A"); 325 if (qual == G_RAID_VOLUME_RLQ_R1EO) 326 return ("RAID1E-O"); 327 return ("RAID1E"); 328 case G_RAID_VOLUME_RL_SINGLE: 329 return ("SINGLE"); 330 case G_RAID_VOLUME_RL_CONCAT: 331 return ("CONCAT"); 332 case G_RAID_VOLUME_RL_RAID5E: 333 if (qual == G_RAID_VOLUME_RLQ_R5ERA) 334 return ("RAID5E-RA"); 335 if (qual == G_RAID_VOLUME_RLQ_R5ERS) 336 return ("RAID5E-RS"); 337 if (qual == G_RAID_VOLUME_RLQ_R5ELA) 338 return ("RAID5E-LA"); 339 if (qual == G_RAID_VOLUME_RLQ_R5ELS) 340 return ("RAID5E-LS"); 341 return ("RAID5E"); 342 case G_RAID_VOLUME_RL_RAID5EE: 343 if (qual == G_RAID_VOLUME_RLQ_R5EERA) 344 return ("RAID5EE-RA"); 345 if (qual == G_RAID_VOLUME_RLQ_R5EERS) 346 return ("RAID5EE-RS"); 347 if (qual == G_RAID_VOLUME_RLQ_R5EELA) 348 return ("RAID5EE-LA"); 349 if (qual == G_RAID_VOLUME_RLQ_R5EELS) 350 return ("RAID5EE-LS"); 351 return ("RAID5EE"); 352 case G_RAID_VOLUME_RL_RAID5R: 353 if (qual == G_RAID_VOLUME_RLQ_R5RRA) 354 return ("RAID5R-RA"); 355 if (qual == G_RAID_VOLUME_RLQ_R5RRS) 356 return ("RAID5R-RS"); 357 if (qual == G_RAID_VOLUME_RLQ_R5RLA) 358 return ("RAID5R-LA"); 359 if (qual == G_RAID_VOLUME_RLQ_R5RLS) 360 return ("RAID5R-LS"); 361 return ("RAID5E"); 362 default: 363 return ("UNKNOWN"); 364 } 365 } 366 367 int 368 g_raid_volume_str2level(const char *str, int *level, int *qual) 369 { 370 371 *level = G_RAID_VOLUME_RL_UNKNOWN; 372 *qual = G_RAID_VOLUME_RLQ_NONE; 373 if (strcasecmp(str, "RAID0") == 0) 374 *level = G_RAID_VOLUME_RL_RAID0; 375 else if (strcasecmp(str, "RAID1") == 0) 376 *level = G_RAID_VOLUME_RL_RAID1; 377 else if (strcasecmp(str, "RAID3-P0") == 0) { 378 *level = G_RAID_VOLUME_RL_RAID3; 379 *qual = G_RAID_VOLUME_RLQ_R3P0; 380 } else if (strcasecmp(str, "RAID3-PN") == 0 || 381 strcasecmp(str, "RAID3") == 0) { 382 *level = G_RAID_VOLUME_RL_RAID3; 383 *qual = G_RAID_VOLUME_RLQ_R3PN; 384 } else if (strcasecmp(str, "RAID4-P0") == 0) { 385 *level = G_RAID_VOLUME_RL_RAID4; 386 *qual = G_RAID_VOLUME_RLQ_R4P0; 387 } else if (strcasecmp(str, "RAID4-PN") == 0 || 388 strcasecmp(str, "RAID4") == 0) { 389 *level = G_RAID_VOLUME_RL_RAID4; 390 *qual = G_RAID_VOLUME_RLQ_R4PN; 391 } else if (strcasecmp(str, "RAID5-RA") == 0) { 392 *level = G_RAID_VOLUME_RL_RAID5; 393 *qual = G_RAID_VOLUME_RLQ_R5RA; 394 } else if (strcasecmp(str, "RAID5-RS") == 0) { 395 *level = G_RAID_VOLUME_RL_RAID5; 396 *qual = G_RAID_VOLUME_RLQ_R5RS; 397 } else if (strcasecmp(str, "RAID5") == 0 || 398 strcasecmp(str, "RAID5-LA") == 0) { 399 *level = G_RAID_VOLUME_RL_RAID5; 400 *qual = G_RAID_VOLUME_RLQ_R5LA; 401 } else if (strcasecmp(str, "RAID5-LS") == 0) { 402 *level = G_RAID_VOLUME_RL_RAID5; 403 *qual = G_RAID_VOLUME_RLQ_R5LS; 404 } else if (strcasecmp(str, "RAID6-RA") == 0) { 405 *level = G_RAID_VOLUME_RL_RAID6; 406 *qual = G_RAID_VOLUME_RLQ_R6RA; 407 } else if (strcasecmp(str, "RAID6-RS") == 0) { 408 *level = G_RAID_VOLUME_RL_RAID6; 409 *qual = G_RAID_VOLUME_RLQ_R6RS; 410 } else if (strcasecmp(str, "RAID6") == 0 || 411 strcasecmp(str, "RAID6-LA") == 0) { 412 *level = G_RAID_VOLUME_RL_RAID6; 413 *qual = G_RAID_VOLUME_RLQ_R6LA; 414 } else if (strcasecmp(str, "RAID6-LS") == 0) { 415 *level = G_RAID_VOLUME_RL_RAID6; 416 *qual = G_RAID_VOLUME_RLQ_R6LS; 417 } else if (strcasecmp(str, "RAIDMDF-RA") == 0) { 418 *level = G_RAID_VOLUME_RL_RAIDMDF; 419 *qual = G_RAID_VOLUME_RLQ_RMDFRA; 420 } else if (strcasecmp(str, "RAIDMDF-RS") == 0) { 421 *level = G_RAID_VOLUME_RL_RAIDMDF; 422 *qual = G_RAID_VOLUME_RLQ_RMDFRS; 423 } else if (strcasecmp(str, "RAIDMDF") == 0 || 424 strcasecmp(str, "RAIDMDF-LA") == 0) { 425 *level = G_RAID_VOLUME_RL_RAIDMDF; 426 *qual = G_RAID_VOLUME_RLQ_RMDFLA; 427 } else if (strcasecmp(str, "RAIDMDF-LS") == 0) { 428 *level = G_RAID_VOLUME_RL_RAIDMDF; 429 *qual = G_RAID_VOLUME_RLQ_RMDFLS; 430 } else if (strcasecmp(str, "RAID10") == 0 || 431 strcasecmp(str, "RAID1E") == 0 || 432 strcasecmp(str, "RAID1E-A") == 0) { 433 *level = G_RAID_VOLUME_RL_RAID1E; 434 *qual = G_RAID_VOLUME_RLQ_R1EA; 435 } else if (strcasecmp(str, "RAID1E-O") == 0) { 436 *level = G_RAID_VOLUME_RL_RAID1E; 437 *qual = G_RAID_VOLUME_RLQ_R1EO; 438 } else if (strcasecmp(str, "SINGLE") == 0) 439 *level = G_RAID_VOLUME_RL_SINGLE; 440 else if (strcasecmp(str, "CONCAT") == 0) 441 *level = G_RAID_VOLUME_RL_CONCAT; 442 else if (strcasecmp(str, "RAID5E-RA") == 0) { 443 *level = G_RAID_VOLUME_RL_RAID5E; 444 *qual = G_RAID_VOLUME_RLQ_R5ERA; 445 } else if (strcasecmp(str, "RAID5E-RS") == 0) { 446 *level = G_RAID_VOLUME_RL_RAID5E; 447 *qual = G_RAID_VOLUME_RLQ_R5ERS; 448 } else if (strcasecmp(str, "RAID5E") == 0 || 449 strcasecmp(str, "RAID5E-LA") == 0) { 450 *level = G_RAID_VOLUME_RL_RAID5E; 451 *qual = G_RAID_VOLUME_RLQ_R5ELA; 452 } else if (strcasecmp(str, "RAID5E-LS") == 0) { 453 *level = G_RAID_VOLUME_RL_RAID5E; 454 *qual = G_RAID_VOLUME_RLQ_R5ELS; 455 } else if (strcasecmp(str, "RAID5EE-RA") == 0) { 456 *level = G_RAID_VOLUME_RL_RAID5EE; 457 *qual = G_RAID_VOLUME_RLQ_R5EERA; 458 } else if (strcasecmp(str, "RAID5EE-RS") == 0) { 459 *level = G_RAID_VOLUME_RL_RAID5EE; 460 *qual = G_RAID_VOLUME_RLQ_R5EERS; 461 } else if (strcasecmp(str, "RAID5EE") == 0 || 462 strcasecmp(str, "RAID5EE-LA") == 0) { 463 *level = G_RAID_VOLUME_RL_RAID5EE; 464 *qual = G_RAID_VOLUME_RLQ_R5EELA; 465 } else if (strcasecmp(str, "RAID5EE-LS") == 0) { 466 *level = G_RAID_VOLUME_RL_RAID5EE; 467 *qual = G_RAID_VOLUME_RLQ_R5EELS; 468 } else if (strcasecmp(str, "RAID5R-RA") == 0) { 469 *level = G_RAID_VOLUME_RL_RAID5R; 470 *qual = G_RAID_VOLUME_RLQ_R5RRA; 471 } else if (strcasecmp(str, "RAID5R-RS") == 0) { 472 *level = G_RAID_VOLUME_RL_RAID5R; 473 *qual = G_RAID_VOLUME_RLQ_R5RRS; 474 } else if (strcasecmp(str, "RAID5R") == 0 || 475 strcasecmp(str, "RAID5R-LA") == 0) { 476 *level = G_RAID_VOLUME_RL_RAID5R; 477 *qual = G_RAID_VOLUME_RLQ_R5RLA; 478 } else if (strcasecmp(str, "RAID5R-LS") == 0) { 479 *level = G_RAID_VOLUME_RL_RAID5R; 480 *qual = G_RAID_VOLUME_RLQ_R5RLS; 481 } else 482 return (-1); 483 return (0); 484 } 485 486 const char * 487 g_raid_get_diskname(struct g_raid_disk *disk) 488 { 489 490 if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL) 491 return ("[unknown]"); 492 return (disk->d_consumer->provider->name); 493 } 494 495 void 496 g_raid_get_disk_info(struct g_raid_disk *disk) 497 { 498 struct g_consumer *cp = disk->d_consumer; 499 int error, len; 500 501 /* Read kernel dumping information. */ 502 disk->d_kd.offset = 0; 503 disk->d_kd.length = OFF_MAX; 504 len = sizeof(disk->d_kd); 505 error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd); 506 if (error) 507 disk->d_kd.di.dumper = NULL; 508 if (disk->d_kd.di.dumper == NULL) 509 G_RAID_DEBUG1(2, disk->d_softc, 510 "Dumping not supported by %s: %d.", 511 cp->provider->name, error); 512 513 /* Read BIO_DELETE support. */ 514 error = g_getattr("GEOM::candelete", cp, &disk->d_candelete); 515 if (error) 516 disk->d_candelete = 0; 517 if (!disk->d_candelete) 518 G_RAID_DEBUG1(2, disk->d_softc, 519 "BIO_DELETE not supported by %s: %d.", 520 cp->provider->name, error); 521 } 522 523 void 524 g_raid_report_disk_state(struct g_raid_disk *disk) 525 { 526 struct g_raid_subdisk *sd; 527 int len, state; 528 uint32_t s; 529 530 if (disk->d_consumer == NULL) 531 return; 532 if (disk->d_state == G_RAID_DISK_S_DISABLED) { 533 s = G_STATE_ACTIVE; /* XXX */ 534 } else if (disk->d_state == G_RAID_DISK_S_FAILED || 535 disk->d_state == G_RAID_DISK_S_STALE_FAILED) { 536 s = G_STATE_FAILED; 537 } else { 538 state = G_RAID_SUBDISK_S_ACTIVE; 539 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 540 if (sd->sd_state < state) 541 state = sd->sd_state; 542 } 543 if (state == G_RAID_SUBDISK_S_FAILED) 544 s = G_STATE_FAILED; 545 else if (state == G_RAID_SUBDISK_S_NEW || 546 state == G_RAID_SUBDISK_S_REBUILD) 547 s = G_STATE_REBUILD; 548 else if (state == G_RAID_SUBDISK_S_STALE || 549 state == G_RAID_SUBDISK_S_RESYNC) 550 s = G_STATE_RESYNC; 551 else 552 s = G_STATE_ACTIVE; 553 } 554 len = sizeof(s); 555 g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s); 556 G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.", 557 g_raid_get_diskname(disk), s); 558 } 559 560 void 561 g_raid_change_disk_state(struct g_raid_disk *disk, int state) 562 { 563 564 G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.", 565 g_raid_get_diskname(disk), 566 g_raid_disk_state2str(disk->d_state), 567 g_raid_disk_state2str(state)); 568 disk->d_state = state; 569 g_raid_report_disk_state(disk); 570 } 571 572 void 573 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state) 574 { 575 576 G_RAID_DEBUG1(0, sd->sd_softc, 577 "Subdisk %s:%d-%s state changed from %s to %s.", 578 sd->sd_volume->v_name, sd->sd_pos, 579 sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]", 580 g_raid_subdisk_state2str(sd->sd_state), 581 g_raid_subdisk_state2str(state)); 582 sd->sd_state = state; 583 if (sd->sd_disk) 584 g_raid_report_disk_state(sd->sd_disk); 585 } 586 587 void 588 g_raid_change_volume_state(struct g_raid_volume *vol, int state) 589 { 590 591 G_RAID_DEBUG1(0, vol->v_softc, 592 "Volume %s state changed from %s to %s.", 593 vol->v_name, 594 g_raid_volume_state2str(vol->v_state), 595 g_raid_volume_state2str(state)); 596 vol->v_state = state; 597 } 598 599 /* 600 * --- Events handling functions --- 601 * Events in geom_raid are used to maintain subdisks and volumes status 602 * from one thread to simplify locking. 603 */ 604 static void 605 g_raid_event_free(struct g_raid_event *ep) 606 { 607 608 free(ep, M_RAID); 609 } 610 611 int 612 g_raid_event_send(void *arg, int event, int flags) 613 { 614 struct g_raid_softc *sc; 615 struct g_raid_event *ep; 616 int error; 617 618 if ((flags & G_RAID_EVENT_VOLUME) != 0) { 619 sc = ((struct g_raid_volume *)arg)->v_softc; 620 } else if ((flags & G_RAID_EVENT_DISK) != 0) { 621 sc = ((struct g_raid_disk *)arg)->d_softc; 622 } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) { 623 sc = ((struct g_raid_subdisk *)arg)->sd_softc; 624 } else { 625 sc = arg; 626 } 627 ep = malloc(sizeof(*ep), M_RAID, 628 sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT); 629 if (ep == NULL) 630 return (ENOMEM); 631 ep->e_tgt = arg; 632 ep->e_event = event; 633 ep->e_flags = flags; 634 ep->e_error = 0; 635 G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc); 636 mtx_lock(&sc->sc_queue_mtx); 637 TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next); 638 mtx_unlock(&sc->sc_queue_mtx); 639 wakeup(sc); 640 641 if ((flags & G_RAID_EVENT_WAIT) == 0) 642 return (0); 643 644 sx_assert(&sc->sc_lock, SX_XLOCKED); 645 G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep); 646 sx_xunlock(&sc->sc_lock); 647 while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) { 648 mtx_lock(&sc->sc_queue_mtx); 649 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event", 650 hz * 5); 651 } 652 error = ep->e_error; 653 g_raid_event_free(ep); 654 sx_xlock(&sc->sc_lock); 655 return (error); 656 } 657 658 static void 659 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt) 660 { 661 struct g_raid_event *ep, *tmpep; 662 663 sx_assert(&sc->sc_lock, SX_XLOCKED); 664 665 mtx_lock(&sc->sc_queue_mtx); 666 TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) { 667 if (ep->e_tgt != tgt) 668 continue; 669 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 670 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) 671 g_raid_event_free(ep); 672 else { 673 ep->e_error = ECANCELED; 674 wakeup(ep); 675 } 676 } 677 mtx_unlock(&sc->sc_queue_mtx); 678 } 679 680 static int 681 g_raid_event_check(struct g_raid_softc *sc, void *tgt) 682 { 683 struct g_raid_event *ep; 684 int res = 0; 685 686 sx_assert(&sc->sc_lock, SX_XLOCKED); 687 688 mtx_lock(&sc->sc_queue_mtx); 689 TAILQ_FOREACH(ep, &sc->sc_events, e_next) { 690 if (ep->e_tgt != tgt) 691 continue; 692 res = 1; 693 break; 694 } 695 mtx_unlock(&sc->sc_queue_mtx); 696 return (res); 697 } 698 699 /* 700 * Return the number of disks in given state. 701 * If state is equal to -1, count all connected disks. 702 */ 703 u_int 704 g_raid_ndisks(struct g_raid_softc *sc, int state) 705 { 706 struct g_raid_disk *disk; 707 u_int n; 708 709 sx_assert(&sc->sc_lock, SX_LOCKED); 710 711 n = 0; 712 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 713 if (disk->d_state == state || state == -1) 714 n++; 715 } 716 return (n); 717 } 718 719 /* 720 * Return the number of subdisks in given state. 721 * If state is equal to -1, count all connected disks. 722 */ 723 u_int 724 g_raid_nsubdisks(struct g_raid_volume *vol, int state) 725 { 726 struct g_raid_subdisk *subdisk; 727 struct g_raid_softc *sc __diagused; 728 u_int i, n ; 729 730 sc = vol->v_softc; 731 sx_assert(&sc->sc_lock, SX_LOCKED); 732 733 n = 0; 734 for (i = 0; i < vol->v_disks_count; i++) { 735 subdisk = &vol->v_subdisks[i]; 736 if ((state == -1 && 737 subdisk->sd_state != G_RAID_SUBDISK_S_NONE) || 738 subdisk->sd_state == state) 739 n++; 740 } 741 return (n); 742 } 743 744 /* 745 * Return the first subdisk in given state. 746 * If state is equal to -1, then the first connected disks. 747 */ 748 struct g_raid_subdisk * 749 g_raid_get_subdisk(struct g_raid_volume *vol, int state) 750 { 751 struct g_raid_subdisk *sd; 752 struct g_raid_softc *sc __diagused; 753 u_int i; 754 755 sc = vol->v_softc; 756 sx_assert(&sc->sc_lock, SX_LOCKED); 757 758 for (i = 0; i < vol->v_disks_count; i++) { 759 sd = &vol->v_subdisks[i]; 760 if ((state == -1 && 761 sd->sd_state != G_RAID_SUBDISK_S_NONE) || 762 sd->sd_state == state) 763 return (sd); 764 } 765 return (NULL); 766 } 767 768 struct g_consumer * 769 g_raid_open_consumer(struct g_raid_softc *sc, const char *name) 770 { 771 struct g_consumer *cp; 772 struct g_provider *pp; 773 774 g_topology_assert(); 775 776 if (strncmp(name, _PATH_DEV, 5) == 0) 777 name += 5; 778 pp = g_provider_by_name(name); 779 if (pp == NULL) 780 return (NULL); 781 cp = g_new_consumer(sc->sc_geom); 782 cp->flags |= G_CF_DIRECT_RECEIVE; 783 if (g_attach(cp, pp) != 0) { 784 g_destroy_consumer(cp); 785 return (NULL); 786 } 787 if (g_access(cp, 1, 1, 1) != 0) { 788 g_detach(cp); 789 g_destroy_consumer(cp); 790 return (NULL); 791 } 792 return (cp); 793 } 794 795 static u_int 796 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp) 797 { 798 struct bio *bp; 799 u_int nreqs = 0; 800 801 mtx_lock(&sc->sc_queue_mtx); 802 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 803 if (bp->bio_from == cp) 804 nreqs++; 805 } 806 mtx_unlock(&sc->sc_queue_mtx); 807 return (nreqs); 808 } 809 810 u_int 811 g_raid_nopens(struct g_raid_softc *sc) 812 { 813 struct g_raid_volume *vol; 814 u_int opens; 815 816 opens = 0; 817 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 818 if (vol->v_provider_open != 0) 819 opens++; 820 } 821 return (opens); 822 } 823 824 static int 825 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp) 826 { 827 828 if (cp->index > 0) { 829 G_RAID_DEBUG1(2, sc, 830 "I/O requests for %s exist, can't destroy it now.", 831 cp->provider->name); 832 return (1); 833 } 834 if (g_raid_nrequests(sc, cp) > 0) { 835 G_RAID_DEBUG1(2, sc, 836 "I/O requests for %s in queue, can't destroy it now.", 837 cp->provider->name); 838 return (1); 839 } 840 return (0); 841 } 842 843 static void 844 g_raid_destroy_consumer(void *arg, int flags __unused) 845 { 846 struct g_consumer *cp; 847 848 g_topology_assert(); 849 850 cp = arg; 851 G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name); 852 g_detach(cp); 853 g_destroy_consumer(cp); 854 } 855 856 void 857 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp) 858 { 859 struct g_provider *pp; 860 int retaste_wait; 861 862 g_topology_assert_not(); 863 864 g_topology_lock(); 865 cp->private = NULL; 866 if (g_raid_consumer_is_busy(sc, cp)) 867 goto out; 868 pp = cp->provider; 869 retaste_wait = 0; 870 if (cp->acw == 1) { 871 if ((pp->geom->flags & G_GEOM_WITHER) == 0) 872 retaste_wait = 1; 873 } 874 if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) 875 g_access(cp, -cp->acr, -cp->acw, -cp->ace); 876 if (retaste_wait) { 877 /* 878 * After retaste event was send (inside g_access()), we can send 879 * event to detach and destroy consumer. 880 * A class, which has consumer to the given provider connected 881 * will not receive retaste event for the provider. 882 * This is the way how I ignore retaste events when I close 883 * consumers opened for write: I detach and destroy consumer 884 * after retaste event is sent. 885 */ 886 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL); 887 goto out; 888 } 889 G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name); 890 g_detach(cp); 891 g_destroy_consumer(cp); 892 out: 893 g_topology_unlock(); 894 } 895 896 static void 897 g_raid_orphan(struct g_consumer *cp) 898 { 899 struct g_raid_disk *disk; 900 901 g_topology_assert(); 902 903 disk = cp->private; 904 if (disk == NULL) 905 return; 906 g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED, 907 G_RAID_EVENT_DISK); 908 } 909 910 static void 911 g_raid_clean(struct g_raid_volume *vol, int acw) 912 { 913 struct g_raid_softc *sc; 914 int timeout; 915 916 sc = vol->v_softc; 917 g_topology_assert_not(); 918 sx_assert(&sc->sc_lock, SX_XLOCKED); 919 920 // if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0) 921 // return; 922 if (!vol->v_dirty) 923 return; 924 if (vol->v_writes > 0) 925 return; 926 if (acw > 0 || (acw == -1 && 927 vol->v_provider != NULL && vol->v_provider->acw > 0)) { 928 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write); 929 if (!g_raid_shutdown && timeout > 0) 930 return; 931 } 932 vol->v_dirty = 0; 933 G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.", 934 vol->v_name); 935 g_raid_write_metadata(sc, vol, NULL, NULL); 936 } 937 938 static void 939 g_raid_dirty(struct g_raid_volume *vol) 940 { 941 struct g_raid_softc *sc; 942 943 sc = vol->v_softc; 944 g_topology_assert_not(); 945 sx_assert(&sc->sc_lock, SX_XLOCKED); 946 947 // if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0) 948 // return; 949 vol->v_dirty = 1; 950 G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.", 951 vol->v_name); 952 g_raid_write_metadata(sc, vol, NULL, NULL); 953 } 954 955 void 956 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp) 957 { 958 struct g_raid_volume *vol; 959 struct g_raid_subdisk *sd; 960 struct bio_queue_head queue; 961 struct bio *cbp; 962 int i; 963 964 vol = tr->tro_volume; 965 966 /* 967 * Allocate all bios before sending any request, so we can return 968 * ENOMEM in nice and clean way. 969 */ 970 bioq_init(&queue); 971 for (i = 0; i < vol->v_disks_count; i++) { 972 sd = &vol->v_subdisks[i]; 973 if (sd->sd_state == G_RAID_SUBDISK_S_NONE || 974 sd->sd_state == G_RAID_SUBDISK_S_FAILED) 975 continue; 976 cbp = g_clone_bio(bp); 977 if (cbp == NULL) 978 goto failure; 979 cbp->bio_caller1 = sd; 980 bioq_insert_tail(&queue, cbp); 981 } 982 while ((cbp = bioq_takefirst(&queue)) != NULL) { 983 sd = cbp->bio_caller1; 984 cbp->bio_caller1 = NULL; 985 g_raid_subdisk_iostart(sd, cbp); 986 } 987 return; 988 failure: 989 while ((cbp = bioq_takefirst(&queue)) != NULL) 990 g_destroy_bio(cbp); 991 if (bp->bio_error == 0) 992 bp->bio_error = ENOMEM; 993 g_raid_iodone(bp, bp->bio_error); 994 } 995 996 static void 997 g_raid_tr_kerneldump_common_done(struct bio *bp) 998 { 999 1000 bp->bio_flags |= BIO_DONE; 1001 } 1002 1003 int 1004 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr, 1005 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1006 { 1007 struct g_raid_softc *sc; 1008 struct g_raid_volume *vol; 1009 struct bio bp; 1010 1011 vol = tr->tro_volume; 1012 sc = vol->v_softc; 1013 1014 g_reset_bio(&bp); 1015 bp.bio_cmd = BIO_WRITE; 1016 bp.bio_done = g_raid_tr_kerneldump_common_done; 1017 bp.bio_attribute = NULL; 1018 bp.bio_offset = offset; 1019 bp.bio_length = length; 1020 bp.bio_data = virtual; 1021 bp.bio_to = vol->v_provider; 1022 1023 g_raid_start(&bp); 1024 while (!(bp.bio_flags & BIO_DONE)) { 1025 G_RAID_DEBUG1(4, sc, "Poll..."); 1026 g_raid_poll(sc); 1027 DELAY(10); 1028 } 1029 1030 return (bp.bio_error != 0 ? EIO : 0); 1031 } 1032 1033 static int 1034 g_raid_dump(void *arg, void *virtual, off_t offset, size_t length) 1035 { 1036 struct g_raid_volume *vol; 1037 int error; 1038 1039 vol = (struct g_raid_volume *)arg; 1040 G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.", 1041 (long long unsigned)offset, (long long unsigned)length); 1042 1043 error = G_RAID_TR_KERNELDUMP(vol->v_tr, virtual, offset, length); 1044 return (error); 1045 } 1046 1047 static void 1048 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp) 1049 { 1050 struct g_kerneldump *gkd; 1051 struct g_provider *pp; 1052 struct g_raid_volume *vol; 1053 1054 gkd = (struct g_kerneldump*)bp->bio_data; 1055 pp = bp->bio_to; 1056 vol = pp->private; 1057 g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)", 1058 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length); 1059 gkd->di.dumper = g_raid_dump; 1060 gkd->di.priv = vol; 1061 gkd->di.blocksize = vol->v_sectorsize; 1062 gkd->di.maxiosize = DFLTPHYS; 1063 gkd->di.mediaoffset = gkd->offset; 1064 if ((gkd->offset + gkd->length) > vol->v_mediasize) 1065 gkd->length = vol->v_mediasize - gkd->offset; 1066 gkd->di.mediasize = gkd->length; 1067 g_io_deliver(bp, 0); 1068 } 1069 1070 static void 1071 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp) 1072 { 1073 struct g_provider *pp; 1074 struct g_raid_volume *vol; 1075 struct g_raid_subdisk *sd; 1076 int i, val; 1077 1078 pp = bp->bio_to; 1079 vol = pp->private; 1080 for (i = 0; i < vol->v_disks_count; i++) { 1081 sd = &vol->v_subdisks[i]; 1082 if (sd->sd_state == G_RAID_SUBDISK_S_NONE) 1083 continue; 1084 if (sd->sd_disk->d_candelete) 1085 break; 1086 } 1087 val = i < vol->v_disks_count; 1088 g_handleattr(bp, "GEOM::candelete", &val, sizeof(val)); 1089 } 1090 1091 static void 1092 g_raid_start(struct bio *bp) 1093 { 1094 struct g_raid_softc *sc; 1095 1096 sc = bp->bio_to->geom->softc; 1097 /* 1098 * If sc == NULL or there are no valid disks, provider's error 1099 * should be set and g_raid_start() should not be called at all. 1100 */ 1101 // KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING, 1102 // ("Provider's error should be set (error=%d)(mirror=%s).", 1103 // bp->bio_to->error, bp->bio_to->name)); 1104 G_RAID_LOGREQ(3, bp, "Request received."); 1105 1106 switch (bp->bio_cmd) { 1107 case BIO_READ: 1108 case BIO_WRITE: 1109 case BIO_DELETE: 1110 case BIO_FLUSH: 1111 case BIO_SPEEDUP: 1112 break; 1113 case BIO_GETATTR: 1114 if (!strcmp(bp->bio_attribute, "GEOM::candelete")) 1115 g_raid_candelete(sc, bp); 1116 else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump")) 1117 g_raid_kerneldump(sc, bp); 1118 else 1119 g_io_deliver(bp, EOPNOTSUPP); 1120 return; 1121 default: 1122 g_io_deliver(bp, EOPNOTSUPP); 1123 return; 1124 } 1125 mtx_lock(&sc->sc_queue_mtx); 1126 bioq_insert_tail(&sc->sc_queue, bp); 1127 mtx_unlock(&sc->sc_queue_mtx); 1128 if (!dumping) { 1129 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc); 1130 wakeup(sc); 1131 } 1132 } 1133 1134 static int 1135 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len) 1136 { 1137 /* 1138 * 5 cases: 1139 * (1) bp entirely below NO 1140 * (2) bp entirely above NO 1141 * (3) bp start below, but end in range YES 1142 * (4) bp entirely within YES 1143 * (5) bp starts within, ends above YES 1144 * 1145 * lock range 10-19 (offset 10 length 10) 1146 * (1) 1-5: first if kicks it out 1147 * (2) 30-35: second if kicks it out 1148 * (3) 5-15: passes both ifs 1149 * (4) 12-14: passes both ifs 1150 * (5) 19-20: passes both 1151 */ 1152 off_t lend = lstart + len - 1; 1153 off_t bstart = bp->bio_offset; 1154 off_t bend = bp->bio_offset + bp->bio_length - 1; 1155 1156 if (bend < lstart) 1157 return (0); 1158 if (lend < bstart) 1159 return (0); 1160 return (1); 1161 } 1162 1163 static int 1164 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp) 1165 { 1166 struct g_raid_lock *lp; 1167 1168 sx_assert(&vol->v_softc->sc_lock, SX_LOCKED); 1169 1170 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1171 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length)) 1172 return (1); 1173 } 1174 return (0); 1175 } 1176 1177 static void 1178 g_raid_start_request(struct bio *bp) 1179 { 1180 struct g_raid_softc *sc __diagused; 1181 struct g_raid_volume *vol; 1182 1183 sc = bp->bio_to->geom->softc; 1184 sx_assert(&sc->sc_lock, SX_LOCKED); 1185 vol = bp->bio_to->private; 1186 1187 /* 1188 * Check to see if this item is in a locked range. If so, 1189 * queue it to our locked queue and return. We'll requeue 1190 * it when the range is unlocked. Internal I/O for the 1191 * rebuild/rescan/recovery process is excluded from this 1192 * check so we can actually do the recovery. 1193 */ 1194 if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) && 1195 g_raid_is_in_locked_range(vol, bp)) { 1196 G_RAID_LOGREQ(3, bp, "Defer request."); 1197 bioq_insert_tail(&vol->v_locked, bp); 1198 return; 1199 } 1200 1201 /* 1202 * If we're actually going to do the write/delete, then 1203 * update the idle stats for the volume. 1204 */ 1205 if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) { 1206 if (!vol->v_dirty) 1207 g_raid_dirty(vol); 1208 vol->v_writes++; 1209 } 1210 1211 /* 1212 * Put request onto inflight queue, so we can check if new 1213 * synchronization requests don't collide with it. Then tell 1214 * the transformation layer to start the I/O. 1215 */ 1216 bioq_insert_tail(&vol->v_inflight, bp); 1217 G_RAID_LOGREQ(4, bp, "Request started"); 1218 G_RAID_TR_IOSTART(vol->v_tr, bp); 1219 } 1220 1221 static void 1222 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp) 1223 { 1224 off_t off, len; 1225 struct bio *nbp; 1226 struct g_raid_lock *lp; 1227 1228 vol->v_pending_lock = 0; 1229 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1230 if (lp->l_pending) { 1231 off = lp->l_offset; 1232 len = lp->l_length; 1233 lp->l_pending = 0; 1234 TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) { 1235 if (g_raid_bio_overlaps(nbp, off, len)) 1236 lp->l_pending++; 1237 } 1238 if (lp->l_pending) { 1239 vol->v_pending_lock = 1; 1240 G_RAID_DEBUG1(4, vol->v_softc, 1241 "Deferred lock(%jd, %jd) has %d pending", 1242 (intmax_t)off, (intmax_t)(off + len), 1243 lp->l_pending); 1244 continue; 1245 } 1246 G_RAID_DEBUG1(4, vol->v_softc, 1247 "Deferred lock of %jd to %jd completed", 1248 (intmax_t)off, (intmax_t)(off + len)); 1249 G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg); 1250 } 1251 } 1252 } 1253 1254 void 1255 g_raid_iodone(struct bio *bp, int error) 1256 { 1257 struct g_raid_softc *sc __diagused; 1258 struct g_raid_volume *vol; 1259 1260 sc = bp->bio_to->geom->softc; 1261 sx_assert(&sc->sc_lock, SX_LOCKED); 1262 vol = bp->bio_to->private; 1263 G_RAID_LOGREQ(3, bp, "Request done: %d.", error); 1264 1265 /* Update stats if we done write/delete. */ 1266 if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) { 1267 vol->v_writes--; 1268 vol->v_last_write = time_uptime; 1269 } 1270 1271 bioq_remove(&vol->v_inflight, bp); 1272 if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp)) 1273 g_raid_finish_with_locked_ranges(vol, bp); 1274 getmicrouptime(&vol->v_last_done); 1275 g_io_deliver(bp, error); 1276 } 1277 1278 int 1279 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len, 1280 struct bio *ignore, void *argp) 1281 { 1282 struct g_raid_softc *sc; 1283 struct g_raid_lock *lp; 1284 struct bio *bp; 1285 1286 sc = vol->v_softc; 1287 lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO); 1288 LIST_INSERT_HEAD(&vol->v_locks, lp, l_next); 1289 lp->l_offset = off; 1290 lp->l_length = len; 1291 lp->l_callback_arg = argp; 1292 1293 lp->l_pending = 0; 1294 TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) { 1295 if (bp != ignore && g_raid_bio_overlaps(bp, off, len)) 1296 lp->l_pending++; 1297 } 1298 1299 /* 1300 * If there are any writes that are pending, we return EBUSY. All 1301 * callers will have to wait until all pending writes clear. 1302 */ 1303 if (lp->l_pending > 0) { 1304 vol->v_pending_lock = 1; 1305 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend", 1306 (intmax_t)off, (intmax_t)(off+len), lp->l_pending); 1307 return (EBUSY); 1308 } 1309 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd", 1310 (intmax_t)off, (intmax_t)(off+len)); 1311 G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg); 1312 return (0); 1313 } 1314 1315 int 1316 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len) 1317 { 1318 struct g_raid_lock *lp; 1319 struct g_raid_softc *sc; 1320 struct bio *bp; 1321 1322 sc = vol->v_softc; 1323 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1324 if (lp->l_offset == off && lp->l_length == len) { 1325 LIST_REMOVE(lp, l_next); 1326 /* XXX 1327 * Right now we just put them all back on the queue 1328 * and hope for the best. We hope this because any 1329 * locked ranges will go right back on this list 1330 * when the worker thread runs. 1331 * XXX 1332 */ 1333 G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd", 1334 (intmax_t)lp->l_offset, 1335 (intmax_t)(lp->l_offset+lp->l_length)); 1336 mtx_lock(&sc->sc_queue_mtx); 1337 while ((bp = bioq_takefirst(&vol->v_locked)) != NULL) 1338 bioq_insert_tail(&sc->sc_queue, bp); 1339 mtx_unlock(&sc->sc_queue_mtx); 1340 free(lp, M_RAID); 1341 return (0); 1342 } 1343 } 1344 return (EINVAL); 1345 } 1346 1347 void 1348 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp) 1349 { 1350 struct g_consumer *cp; 1351 struct g_raid_disk *disk, *tdisk; 1352 1353 bp->bio_caller1 = sd; 1354 1355 /* 1356 * Make sure that the disk is present. Generally it is a task of 1357 * transformation layers to not send requests to absent disks, but 1358 * it is better to be safe and report situation then sorry. 1359 */ 1360 if (sd->sd_disk == NULL) { 1361 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!"); 1362 nodisk: 1363 bp->bio_from = NULL; 1364 bp->bio_to = NULL; 1365 bp->bio_error = ENXIO; 1366 g_raid_disk_done(bp); 1367 return; 1368 } 1369 disk = sd->sd_disk; 1370 if (disk->d_state != G_RAID_DISK_S_ACTIVE && 1371 disk->d_state != G_RAID_DISK_S_FAILED) { 1372 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a " 1373 "wrong state (%s)!", g_raid_disk_state2str(disk->d_state)); 1374 goto nodisk; 1375 } 1376 1377 cp = disk->d_consumer; 1378 bp->bio_from = cp; 1379 bp->bio_to = cp->provider; 1380 cp->index++; 1381 1382 /* Update average disks load. */ 1383 TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) { 1384 if (tdisk->d_consumer == NULL) 1385 tdisk->d_load = 0; 1386 else 1387 tdisk->d_load = (tdisk->d_consumer->index * 1388 G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8; 1389 } 1390 1391 disk->d_last_offset = bp->bio_offset + bp->bio_length; 1392 if (dumping) { 1393 G_RAID_LOGREQ(3, bp, "Sending dumping request."); 1394 if (bp->bio_cmd == BIO_WRITE) { 1395 bp->bio_error = g_raid_subdisk_kerneldump(sd, 1396 bp->bio_data, bp->bio_offset, bp->bio_length); 1397 } else 1398 bp->bio_error = EOPNOTSUPP; 1399 g_raid_disk_done(bp); 1400 } else { 1401 bp->bio_done = g_raid_disk_done; 1402 bp->bio_offset += sd->sd_offset; 1403 G_RAID_LOGREQ(3, bp, "Sending request."); 1404 g_io_request(bp, cp); 1405 } 1406 } 1407 1408 int 1409 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd, void *virtual, 1410 off_t offset, size_t length) 1411 { 1412 1413 if (sd->sd_disk == NULL) 1414 return (ENXIO); 1415 if (sd->sd_disk->d_kd.di.dumper == NULL) 1416 return (EOPNOTSUPP); 1417 return (dump_write(&sd->sd_disk->d_kd.di, virtual, 1418 sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset, length)); 1419 } 1420 1421 static void 1422 g_raid_disk_done(struct bio *bp) 1423 { 1424 struct g_raid_softc *sc; 1425 struct g_raid_subdisk *sd; 1426 1427 sd = bp->bio_caller1; 1428 sc = sd->sd_softc; 1429 mtx_lock(&sc->sc_queue_mtx); 1430 bioq_insert_tail(&sc->sc_queue, bp); 1431 mtx_unlock(&sc->sc_queue_mtx); 1432 if (!dumping) 1433 wakeup(sc); 1434 } 1435 1436 static void 1437 g_raid_disk_done_request(struct bio *bp) 1438 { 1439 struct g_raid_softc *sc; 1440 struct g_raid_disk *disk; 1441 struct g_raid_subdisk *sd; 1442 struct g_raid_volume *vol; 1443 1444 g_topology_assert_not(); 1445 1446 G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error); 1447 sd = bp->bio_caller1; 1448 sc = sd->sd_softc; 1449 vol = sd->sd_volume; 1450 if (bp->bio_from != NULL) { 1451 bp->bio_from->index--; 1452 disk = bp->bio_from->private; 1453 if (disk == NULL) 1454 g_raid_kill_consumer(sc, bp->bio_from); 1455 } 1456 bp->bio_offset -= sd->sd_offset; 1457 1458 G_RAID_TR_IODONE(vol->v_tr, sd, bp); 1459 } 1460 1461 static void 1462 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep) 1463 { 1464 1465 if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0) 1466 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event); 1467 else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0) 1468 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event); 1469 else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0) 1470 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event); 1471 else 1472 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event); 1473 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) { 1474 KASSERT(ep->e_error == 0, 1475 ("Error cannot be handled.")); 1476 g_raid_event_free(ep); 1477 } else { 1478 ep->e_flags |= G_RAID_EVENT_DONE; 1479 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep); 1480 mtx_lock(&sc->sc_queue_mtx); 1481 wakeup(ep); 1482 mtx_unlock(&sc->sc_queue_mtx); 1483 } 1484 } 1485 1486 /* 1487 * Worker thread. 1488 */ 1489 static void 1490 g_raid_worker(void *arg) 1491 { 1492 struct g_raid_softc *sc; 1493 struct g_raid_event *ep; 1494 struct g_raid_volume *vol; 1495 struct bio *bp; 1496 struct timeval now, t; 1497 int timeout, rv; 1498 1499 sc = arg; 1500 thread_lock(curthread); 1501 sched_prio(curthread, PRIBIO); 1502 thread_unlock(curthread); 1503 1504 sx_xlock(&sc->sc_lock); 1505 for (;;) { 1506 mtx_lock(&sc->sc_queue_mtx); 1507 /* 1508 * First take a look at events. 1509 * This is important to handle events before any I/O requests. 1510 */ 1511 bp = NULL; 1512 vol = NULL; 1513 rv = 0; 1514 ep = TAILQ_FIRST(&sc->sc_events); 1515 if (ep != NULL) 1516 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 1517 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL) 1518 ; 1519 else { 1520 getmicrouptime(&now); 1521 t = now; 1522 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1523 if (bioq_first(&vol->v_inflight) == NULL && 1524 vol->v_tr && 1525 timevalcmp(&vol->v_last_done, &t, < )) 1526 t = vol->v_last_done; 1527 } 1528 timevalsub(&t, &now); 1529 timeout = g_raid_idle_threshold + 1530 t.tv_sec * 1000000 + t.tv_usec; 1531 if (timeout > 0) { 1532 /* 1533 * Two steps to avoid overflows at HZ=1000 1534 * and idle timeouts > 2.1s. Some rounding 1535 * errors can occur, but they are < 1tick, 1536 * which is deemed to be close enough for 1537 * this purpose. 1538 */ 1539 int micpertic = 1000000 / hz; 1540 timeout = (timeout + micpertic - 1) / micpertic; 1541 sx_xunlock(&sc->sc_lock); 1542 MSLEEP(rv, sc, &sc->sc_queue_mtx, 1543 PRIBIO | PDROP, "-", timeout); 1544 sx_xlock(&sc->sc_lock); 1545 goto process; 1546 } else 1547 rv = EWOULDBLOCK; 1548 } 1549 mtx_unlock(&sc->sc_queue_mtx); 1550 process: 1551 if (ep != NULL) { 1552 g_raid_handle_event(sc, ep); 1553 } else if (bp != NULL) { 1554 if (bp->bio_to != NULL && 1555 bp->bio_to->geom == sc->sc_geom) 1556 g_raid_start_request(bp); 1557 else 1558 g_raid_disk_done_request(bp); 1559 } else if (rv == EWOULDBLOCK) { 1560 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1561 g_raid_clean(vol, -1); 1562 if (bioq_first(&vol->v_inflight) == NULL && 1563 vol->v_tr) { 1564 t.tv_sec = g_raid_idle_threshold / 1000000; 1565 t.tv_usec = g_raid_idle_threshold % 1000000; 1566 timevaladd(&t, &vol->v_last_done); 1567 getmicrouptime(&now); 1568 if (timevalcmp(&t, &now, <= )) { 1569 G_RAID_TR_IDLE(vol->v_tr); 1570 vol->v_last_done = now; 1571 } 1572 } 1573 } 1574 } 1575 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 1576 g_raid_destroy_node(sc, 1); /* May not return. */ 1577 } 1578 } 1579 1580 static void 1581 g_raid_poll(struct g_raid_softc *sc) 1582 { 1583 struct g_raid_event *ep; 1584 struct bio *bp; 1585 1586 sx_xlock(&sc->sc_lock); 1587 mtx_lock(&sc->sc_queue_mtx); 1588 /* 1589 * First take a look at events. 1590 * This is important to handle events before any I/O requests. 1591 */ 1592 ep = TAILQ_FIRST(&sc->sc_events); 1593 if (ep != NULL) { 1594 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 1595 mtx_unlock(&sc->sc_queue_mtx); 1596 g_raid_handle_event(sc, ep); 1597 goto out; 1598 } 1599 bp = bioq_takefirst(&sc->sc_queue); 1600 if (bp != NULL) { 1601 mtx_unlock(&sc->sc_queue_mtx); 1602 if (bp->bio_from == NULL || 1603 bp->bio_from->geom != sc->sc_geom) 1604 g_raid_start_request(bp); 1605 else 1606 g_raid_disk_done_request(bp); 1607 } 1608 out: 1609 sx_xunlock(&sc->sc_lock); 1610 } 1611 1612 static void 1613 g_raid_launch_provider(struct g_raid_volume *vol) 1614 { 1615 struct g_raid_disk *disk; 1616 struct g_raid_subdisk *sd; 1617 struct g_raid_softc *sc; 1618 struct g_provider *pp; 1619 char name[G_RAID_MAX_VOLUMENAME]; 1620 off_t off; 1621 int i; 1622 1623 sc = vol->v_softc; 1624 sx_assert(&sc->sc_lock, SX_LOCKED); 1625 1626 g_topology_lock(); 1627 /* Try to name provider with volume name. */ 1628 snprintf(name, sizeof(name), "raid/%s", vol->v_name); 1629 if (g_raid_name_format == 0 || vol->v_name[0] == 0 || 1630 g_provider_by_name(name) != NULL) { 1631 /* Otherwise use sequential volume number. */ 1632 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id); 1633 } 1634 1635 pp = g_new_providerf(sc->sc_geom, "%s", name); 1636 pp->flags |= G_PF_DIRECT_RECEIVE; 1637 if (vol->v_tr->tro_class->trc_accept_unmapped) { 1638 pp->flags |= G_PF_ACCEPT_UNMAPPED; 1639 for (i = 0; i < vol->v_disks_count; i++) { 1640 sd = &vol->v_subdisks[i]; 1641 if (sd->sd_state == G_RAID_SUBDISK_S_NONE) 1642 continue; 1643 if ((sd->sd_disk->d_consumer->provider->flags & 1644 G_PF_ACCEPT_UNMAPPED) == 0) 1645 pp->flags &= ~G_PF_ACCEPT_UNMAPPED; 1646 } 1647 } 1648 pp->private = vol; 1649 pp->mediasize = vol->v_mediasize; 1650 pp->sectorsize = vol->v_sectorsize; 1651 pp->stripesize = 0; 1652 pp->stripeoffset = 0; 1653 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 || 1654 vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 || 1655 vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE || 1656 vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) { 1657 if ((disk = vol->v_subdisks[0].sd_disk) != NULL && 1658 disk->d_consumer != NULL && 1659 disk->d_consumer->provider != NULL) { 1660 pp->stripesize = disk->d_consumer->provider->stripesize; 1661 off = disk->d_consumer->provider->stripeoffset; 1662 pp->stripeoffset = off + vol->v_subdisks[0].sd_offset; 1663 if (off > 0) 1664 pp->stripeoffset %= off; 1665 } 1666 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) { 1667 pp->stripesize *= (vol->v_disks_count - 1); 1668 pp->stripeoffset *= (vol->v_disks_count - 1); 1669 } 1670 } else 1671 pp->stripesize = vol->v_strip_size; 1672 vol->v_provider = pp; 1673 g_error_provider(pp, 0); 1674 g_topology_unlock(); 1675 G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.", 1676 pp->name, vol->v_name); 1677 } 1678 1679 static void 1680 g_raid_destroy_provider(struct g_raid_volume *vol) 1681 { 1682 struct g_raid_softc *sc; 1683 struct g_provider *pp; 1684 struct bio *bp, *tmp; 1685 1686 g_topology_assert_not(); 1687 sc = vol->v_softc; 1688 pp = vol->v_provider; 1689 KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name)); 1690 1691 g_topology_lock(); 1692 g_error_provider(pp, ENXIO); 1693 mtx_lock(&sc->sc_queue_mtx); 1694 TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) { 1695 if (bp->bio_to != pp) 1696 continue; 1697 bioq_remove(&sc->sc_queue, bp); 1698 g_io_deliver(bp, ENXIO); 1699 } 1700 mtx_unlock(&sc->sc_queue_mtx); 1701 G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.", 1702 pp->name, vol->v_name); 1703 g_wither_provider(pp, ENXIO); 1704 g_topology_unlock(); 1705 vol->v_provider = NULL; 1706 } 1707 1708 /* 1709 * Update device state. 1710 */ 1711 static int 1712 g_raid_update_volume(struct g_raid_volume *vol, u_int event) 1713 { 1714 struct g_raid_softc *sc; 1715 1716 sc = vol->v_softc; 1717 sx_assert(&sc->sc_lock, SX_XLOCKED); 1718 1719 G_RAID_DEBUG1(2, sc, "Event %s for volume %s.", 1720 g_raid_volume_event2str(event), 1721 vol->v_name); 1722 switch (event) { 1723 case G_RAID_VOLUME_E_DOWN: 1724 if (vol->v_provider != NULL) 1725 g_raid_destroy_provider(vol); 1726 break; 1727 case G_RAID_VOLUME_E_UP: 1728 if (vol->v_provider == NULL) 1729 g_raid_launch_provider(vol); 1730 break; 1731 case G_RAID_VOLUME_E_START: 1732 if (vol->v_tr) 1733 G_RAID_TR_START(vol->v_tr); 1734 return (0); 1735 default: 1736 if (sc->sc_md) 1737 G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event); 1738 return (0); 1739 } 1740 1741 /* Manage root mount release. */ 1742 if (vol->v_starting) { 1743 vol->v_starting = 0; 1744 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount); 1745 root_mount_rel(vol->v_rootmount); 1746 vol->v_rootmount = NULL; 1747 } 1748 if (vol->v_stopping && vol->v_provider_open == 0) 1749 g_raid_destroy_volume(vol); 1750 return (0); 1751 } 1752 1753 /* 1754 * Update subdisk state. 1755 */ 1756 static int 1757 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event) 1758 { 1759 struct g_raid_softc *sc; 1760 struct g_raid_volume *vol; 1761 1762 sc = sd->sd_softc; 1763 vol = sd->sd_volume; 1764 sx_assert(&sc->sc_lock, SX_XLOCKED); 1765 1766 G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.", 1767 g_raid_subdisk_event2str(event), 1768 vol->v_name, sd->sd_pos, 1769 sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]"); 1770 if (vol->v_tr) 1771 G_RAID_TR_EVENT(vol->v_tr, sd, event); 1772 1773 return (0); 1774 } 1775 1776 /* 1777 * Update disk state. 1778 */ 1779 static int 1780 g_raid_update_disk(struct g_raid_disk *disk, u_int event) 1781 { 1782 struct g_raid_softc *sc; 1783 1784 sc = disk->d_softc; 1785 sx_assert(&sc->sc_lock, SX_XLOCKED); 1786 1787 G_RAID_DEBUG1(2, sc, "Event %s for disk %s.", 1788 g_raid_disk_event2str(event), 1789 g_raid_get_diskname(disk)); 1790 1791 if (sc->sc_md) 1792 G_RAID_MD_EVENT(sc->sc_md, disk, event); 1793 return (0); 1794 } 1795 1796 /* 1797 * Node event. 1798 */ 1799 static int 1800 g_raid_update_node(struct g_raid_softc *sc, u_int event) 1801 { 1802 sx_assert(&sc->sc_lock, SX_XLOCKED); 1803 1804 G_RAID_DEBUG1(2, sc, "Event %s for the array.", 1805 g_raid_node_event2str(event)); 1806 1807 if (event == G_RAID_NODE_E_WAKE) 1808 return (0); 1809 if (sc->sc_md) 1810 G_RAID_MD_EVENT(sc->sc_md, NULL, event); 1811 return (0); 1812 } 1813 1814 static int 1815 g_raid_access(struct g_provider *pp, int acr, int acw, int ace) 1816 { 1817 struct g_raid_volume *vol; 1818 struct g_raid_softc *sc; 1819 int dcw, opens, error = 0; 1820 1821 g_topology_assert(); 1822 sc = pp->geom->softc; 1823 vol = pp->private; 1824 KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name)); 1825 KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name)); 1826 1827 G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name, 1828 acr, acw, ace); 1829 dcw = pp->acw + acw; 1830 1831 g_topology_unlock(); 1832 sx_xlock(&sc->sc_lock); 1833 /* Deny new opens while dying. */ 1834 if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) { 1835 error = ENXIO; 1836 goto out; 1837 } 1838 /* Deny write opens for read-only volumes. */ 1839 if (vol->v_read_only && acw > 0) { 1840 error = EROFS; 1841 goto out; 1842 } 1843 if (dcw == 0) 1844 g_raid_clean(vol, dcw); 1845 vol->v_provider_open += acr + acw + ace; 1846 /* Handle delayed node destruction. */ 1847 if (sc->sc_stopping == G_RAID_DESTROY_DELAYED && 1848 vol->v_provider_open == 0) { 1849 /* Count open volumes. */ 1850 opens = g_raid_nopens(sc); 1851 if (opens == 0) { 1852 sc->sc_stopping = G_RAID_DESTROY_HARD; 1853 /* Wake up worker to make it selfdestruct. */ 1854 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 1855 } 1856 } 1857 /* Handle open volume destruction. */ 1858 if (vol->v_stopping && vol->v_provider_open == 0) 1859 g_raid_destroy_volume(vol); 1860 out: 1861 sx_xunlock(&sc->sc_lock); 1862 g_topology_lock(); 1863 return (error); 1864 } 1865 1866 struct g_raid_softc * 1867 g_raid_create_node(struct g_class *mp, 1868 const char *name, struct g_raid_md_object *md) 1869 { 1870 struct g_raid_softc *sc; 1871 struct g_geom *gp; 1872 int error; 1873 1874 g_topology_assert(); 1875 G_RAID_DEBUG(1, "Creating array %s.", name); 1876 1877 gp = g_new_geomf(mp, "%s", name); 1878 sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO); 1879 gp->start = g_raid_start; 1880 gp->orphan = g_raid_orphan; 1881 gp->access = g_raid_access; 1882 gp->dumpconf = g_raid_dumpconf; 1883 1884 sc->sc_md = md; 1885 sc->sc_geom = gp; 1886 sc->sc_flags = 0; 1887 TAILQ_INIT(&sc->sc_volumes); 1888 TAILQ_INIT(&sc->sc_disks); 1889 sx_init(&sc->sc_lock, "graid:lock"); 1890 mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF); 1891 TAILQ_INIT(&sc->sc_events); 1892 bioq_init(&sc->sc_queue); 1893 gp->softc = sc; 1894 error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0, 1895 "g_raid %s", name); 1896 if (error != 0) { 1897 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name); 1898 mtx_destroy(&sc->sc_queue_mtx); 1899 sx_destroy(&sc->sc_lock); 1900 g_destroy_geom(sc->sc_geom); 1901 free(sc, M_RAID); 1902 return (NULL); 1903 } 1904 1905 G_RAID_DEBUG1(0, sc, "Array %s created.", name); 1906 return (sc); 1907 } 1908 1909 struct g_raid_volume * 1910 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id) 1911 { 1912 struct g_raid_volume *vol, *vol1; 1913 int i; 1914 1915 G_RAID_DEBUG1(1, sc, "Creating volume %s.", name); 1916 vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO); 1917 vol->v_softc = sc; 1918 strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME); 1919 vol->v_state = G_RAID_VOLUME_S_STARTING; 1920 vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN; 1921 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN; 1922 vol->v_rotate_parity = 1; 1923 bioq_init(&vol->v_inflight); 1924 bioq_init(&vol->v_locked); 1925 LIST_INIT(&vol->v_locks); 1926 for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) { 1927 vol->v_subdisks[i].sd_softc = sc; 1928 vol->v_subdisks[i].sd_volume = vol; 1929 vol->v_subdisks[i].sd_pos = i; 1930 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE; 1931 } 1932 1933 /* Find free ID for this volume. */ 1934 g_topology_lock(); 1935 vol1 = vol; 1936 if (id >= 0) { 1937 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) { 1938 if (vol1->v_global_id == id) 1939 break; 1940 } 1941 } 1942 if (vol1 != NULL) { 1943 for (id = 0; ; id++) { 1944 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) { 1945 if (vol1->v_global_id == id) 1946 break; 1947 } 1948 if (vol1 == NULL) 1949 break; 1950 } 1951 } 1952 vol->v_global_id = id; 1953 LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next); 1954 g_topology_unlock(); 1955 1956 /* Delay root mounting. */ 1957 vol->v_rootmount = root_mount_hold("GRAID"); 1958 G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount); 1959 vol->v_starting = 1; 1960 TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next); 1961 return (vol); 1962 } 1963 1964 struct g_raid_disk * 1965 g_raid_create_disk(struct g_raid_softc *sc) 1966 { 1967 struct g_raid_disk *disk; 1968 1969 G_RAID_DEBUG1(1, sc, "Creating disk."); 1970 disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO); 1971 disk->d_softc = sc; 1972 disk->d_state = G_RAID_DISK_S_NONE; 1973 TAILQ_INIT(&disk->d_subdisks); 1974 TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next); 1975 return (disk); 1976 } 1977 1978 int g_raid_start_volume(struct g_raid_volume *vol) 1979 { 1980 struct g_raid_tr_class *class; 1981 struct g_raid_tr_object *obj; 1982 int status; 1983 1984 G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name); 1985 LIST_FOREACH(class, &g_raid_tr_classes, trc_list) { 1986 if (!class->trc_enable) 1987 continue; 1988 G_RAID_DEBUG1(2, vol->v_softc, 1989 "Tasting volume %s for %s transformation.", 1990 vol->v_name, class->name); 1991 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 1992 M_WAITOK); 1993 obj->tro_class = class; 1994 obj->tro_volume = vol; 1995 status = G_RAID_TR_TASTE(obj, vol); 1996 if (status != G_RAID_TR_TASTE_FAIL) 1997 break; 1998 kobj_delete((kobj_t)obj, M_RAID); 1999 } 2000 if (class == NULL) { 2001 G_RAID_DEBUG1(0, vol->v_softc, 2002 "No transformation module found for %s.", 2003 vol->v_name); 2004 vol->v_tr = NULL; 2005 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED); 2006 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN, 2007 G_RAID_EVENT_VOLUME); 2008 return (-1); 2009 } 2010 G_RAID_DEBUG1(2, vol->v_softc, 2011 "Transformation module %s chosen for %s.", 2012 class->name, vol->v_name); 2013 vol->v_tr = obj; 2014 return (0); 2015 } 2016 2017 int 2018 g_raid_destroy_node(struct g_raid_softc *sc, int worker) 2019 { 2020 struct g_raid_volume *vol, *tmpv; 2021 struct g_raid_disk *disk, *tmpd; 2022 int error = 0; 2023 2024 sc->sc_stopping = G_RAID_DESTROY_HARD; 2025 TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) { 2026 if (g_raid_destroy_volume(vol)) 2027 error = EBUSY; 2028 } 2029 if (error) 2030 return (error); 2031 TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) { 2032 if (g_raid_destroy_disk(disk)) 2033 error = EBUSY; 2034 } 2035 if (error) 2036 return (error); 2037 if (sc->sc_md) { 2038 G_RAID_MD_FREE(sc->sc_md); 2039 kobj_delete((kobj_t)sc->sc_md, M_RAID); 2040 sc->sc_md = NULL; 2041 } 2042 if (sc->sc_geom != NULL) { 2043 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name); 2044 g_topology_lock(); 2045 sc->sc_geom->softc = NULL; 2046 g_wither_geom(sc->sc_geom, ENXIO); 2047 g_topology_unlock(); 2048 sc->sc_geom = NULL; 2049 } else 2050 G_RAID_DEBUG(1, "Array destroyed."); 2051 if (worker) { 2052 g_raid_event_cancel(sc, sc); 2053 mtx_destroy(&sc->sc_queue_mtx); 2054 sx_xunlock(&sc->sc_lock); 2055 sx_destroy(&sc->sc_lock); 2056 wakeup(&sc->sc_stopping); 2057 free(sc, M_RAID); 2058 curthread->td_pflags &= ~TDP_GEOM; 2059 G_RAID_DEBUG(1, "Thread exiting."); 2060 kproc_exit(0); 2061 } else { 2062 /* Wake up worker to make it selfdestruct. */ 2063 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2064 } 2065 return (0); 2066 } 2067 2068 int 2069 g_raid_destroy_volume(struct g_raid_volume *vol) 2070 { 2071 struct g_raid_softc *sc; 2072 struct g_raid_disk *disk; 2073 int i; 2074 2075 sc = vol->v_softc; 2076 G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name); 2077 vol->v_stopping = 1; 2078 if (vol->v_state != G_RAID_VOLUME_S_STOPPED) { 2079 if (vol->v_tr) { 2080 G_RAID_TR_STOP(vol->v_tr); 2081 return (EBUSY); 2082 } else 2083 vol->v_state = G_RAID_VOLUME_S_STOPPED; 2084 } 2085 if (g_raid_event_check(sc, vol) != 0) 2086 return (EBUSY); 2087 if (vol->v_provider != NULL) 2088 return (EBUSY); 2089 if (vol->v_provider_open != 0) 2090 return (EBUSY); 2091 if (vol->v_tr) { 2092 G_RAID_TR_FREE(vol->v_tr); 2093 kobj_delete((kobj_t)vol->v_tr, M_RAID); 2094 vol->v_tr = NULL; 2095 } 2096 if (vol->v_rootmount) 2097 root_mount_rel(vol->v_rootmount); 2098 g_topology_lock(); 2099 LIST_REMOVE(vol, v_global_next); 2100 g_topology_unlock(); 2101 TAILQ_REMOVE(&sc->sc_volumes, vol, v_next); 2102 for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) { 2103 g_raid_event_cancel(sc, &vol->v_subdisks[i]); 2104 disk = vol->v_subdisks[i].sd_disk; 2105 if (disk == NULL) 2106 continue; 2107 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next); 2108 } 2109 G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name); 2110 if (sc->sc_md) 2111 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol); 2112 g_raid_event_cancel(sc, vol); 2113 free(vol, M_RAID); 2114 if (sc->sc_stopping == G_RAID_DESTROY_HARD) { 2115 /* Wake up worker to let it selfdestruct. */ 2116 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2117 } 2118 return (0); 2119 } 2120 2121 int 2122 g_raid_destroy_disk(struct g_raid_disk *disk) 2123 { 2124 struct g_raid_softc *sc; 2125 struct g_raid_subdisk *sd, *tmp; 2126 2127 sc = disk->d_softc; 2128 G_RAID_DEBUG1(2, sc, "Destroying disk."); 2129 if (disk->d_consumer) { 2130 g_raid_kill_consumer(sc, disk->d_consumer); 2131 disk->d_consumer = NULL; 2132 } 2133 TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) { 2134 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE); 2135 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED, 2136 G_RAID_EVENT_SUBDISK); 2137 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next); 2138 sd->sd_disk = NULL; 2139 } 2140 TAILQ_REMOVE(&sc->sc_disks, disk, d_next); 2141 if (sc->sc_md) 2142 G_RAID_MD_FREE_DISK(sc->sc_md, disk); 2143 g_raid_event_cancel(sc, disk); 2144 free(disk, M_RAID); 2145 return (0); 2146 } 2147 2148 int 2149 g_raid_destroy(struct g_raid_softc *sc, int how) 2150 { 2151 int error, opens; 2152 2153 g_topology_assert_not(); 2154 if (sc == NULL) 2155 return (ENXIO); 2156 sx_assert(&sc->sc_lock, SX_XLOCKED); 2157 2158 /* Count open volumes. */ 2159 opens = g_raid_nopens(sc); 2160 2161 /* React on some opened volumes. */ 2162 if (opens > 0) { 2163 switch (how) { 2164 case G_RAID_DESTROY_SOFT: 2165 G_RAID_DEBUG1(1, sc, 2166 "%d volumes are still open.", 2167 opens); 2168 sx_xunlock(&sc->sc_lock); 2169 return (EBUSY); 2170 case G_RAID_DESTROY_DELAYED: 2171 G_RAID_DEBUG1(1, sc, 2172 "Array will be destroyed on last close."); 2173 sc->sc_stopping = G_RAID_DESTROY_DELAYED; 2174 sx_xunlock(&sc->sc_lock); 2175 return (EBUSY); 2176 case G_RAID_DESTROY_HARD: 2177 G_RAID_DEBUG1(1, sc, 2178 "%d volumes are still open.", 2179 opens); 2180 } 2181 } 2182 2183 /* Mark node for destruction. */ 2184 sc->sc_stopping = G_RAID_DESTROY_HARD; 2185 /* Wake up worker to let it selfdestruct. */ 2186 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2187 /* Sleep until node destroyed. */ 2188 error = sx_sleep(&sc->sc_stopping, &sc->sc_lock, 2189 PRIBIO | PDROP, "r:destroy", hz * 3); 2190 return (error == EWOULDBLOCK ? EBUSY : 0); 2191 } 2192 2193 static void 2194 g_raid_taste_orphan(struct g_consumer *cp) 2195 { 2196 2197 KASSERT(1 == 0, ("%s called while tasting %s.", __func__, 2198 cp->provider->name)); 2199 } 2200 2201 static struct g_geom * 2202 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) 2203 { 2204 struct g_consumer *cp; 2205 struct g_geom *gp, *geom; 2206 struct g_raid_md_class *class; 2207 struct g_raid_md_object *obj; 2208 int status; 2209 2210 g_topology_assert(); 2211 g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); 2212 if (!g_raid_enable) 2213 return (NULL); 2214 G_RAID_DEBUG(2, "Tasting provider %s.", pp->name); 2215 2216 geom = NULL; 2217 status = G_RAID_MD_TASTE_FAIL; 2218 gp = g_new_geomf(mp, "raid:taste"); 2219 /* 2220 * This orphan function should be never called. 2221 */ 2222 gp->orphan = g_raid_taste_orphan; 2223 cp = g_new_consumer(gp); 2224 cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; 2225 if (g_attach(cp, pp) != 0) 2226 goto ofail2; 2227 if (g_access(cp, 1, 0, 0) != 0) 2228 goto ofail; 2229 2230 LIST_FOREACH(class, &g_raid_md_classes, mdc_list) { 2231 if (!class->mdc_enable) 2232 continue; 2233 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.", 2234 pp->name, class->name); 2235 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2236 M_WAITOK); 2237 obj->mdo_class = class; 2238 status = G_RAID_MD_TASTE(obj, mp, cp, &geom); 2239 if (status != G_RAID_MD_TASTE_NEW) 2240 kobj_delete((kobj_t)obj, M_RAID); 2241 if (status != G_RAID_MD_TASTE_FAIL) 2242 break; 2243 } 2244 2245 if (status == G_RAID_MD_TASTE_FAIL) 2246 (void)g_access(cp, -1, 0, 0); 2247 ofail: 2248 g_detach(cp); 2249 ofail2: 2250 g_destroy_consumer(cp); 2251 g_destroy_geom(gp); 2252 G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name); 2253 return (geom); 2254 } 2255 2256 int 2257 g_raid_create_node_format(const char *format, struct gctl_req *req, 2258 struct g_geom **gp) 2259 { 2260 struct g_raid_md_class *class; 2261 struct g_raid_md_object *obj; 2262 int status; 2263 2264 G_RAID_DEBUG(2, "Creating array for %s metadata.", format); 2265 LIST_FOREACH(class, &g_raid_md_classes, mdc_list) { 2266 if (strcasecmp(class->name, format) == 0) 2267 break; 2268 } 2269 if (class == NULL) { 2270 G_RAID_DEBUG(1, "No support for %s metadata.", format); 2271 return (G_RAID_MD_TASTE_FAIL); 2272 } 2273 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2274 M_WAITOK); 2275 obj->mdo_class = class; 2276 status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp); 2277 if (status != G_RAID_MD_TASTE_NEW) 2278 kobj_delete((kobj_t)obj, M_RAID); 2279 return (status); 2280 } 2281 2282 static int 2283 g_raid_destroy_geom(struct gctl_req *req __unused, 2284 struct g_class *mp __unused, struct g_geom *gp) 2285 { 2286 struct g_raid_softc *sc; 2287 int error; 2288 2289 g_topology_unlock(); 2290 sc = gp->softc; 2291 sx_xlock(&sc->sc_lock); 2292 g_cancel_event(sc); 2293 error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT); 2294 g_topology_lock(); 2295 return (error); 2296 } 2297 2298 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol, 2299 struct g_raid_subdisk *sd, struct g_raid_disk *disk) 2300 { 2301 2302 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 2303 return; 2304 if (sc->sc_md) 2305 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk); 2306 } 2307 2308 void g_raid_fail_disk(struct g_raid_softc *sc, 2309 struct g_raid_subdisk *sd, struct g_raid_disk *disk) 2310 { 2311 2312 if (disk == NULL) 2313 disk = sd->sd_disk; 2314 if (disk == NULL) { 2315 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!"); 2316 return; 2317 } 2318 if (disk->d_state != G_RAID_DISK_S_ACTIVE) { 2319 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a " 2320 "wrong state (%s)!", g_raid_disk_state2str(disk->d_state)); 2321 return; 2322 } 2323 if (sc->sc_md) 2324 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk); 2325 } 2326 2327 static void 2328 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, 2329 struct g_consumer *cp, struct g_provider *pp) 2330 { 2331 struct g_raid_softc *sc; 2332 struct g_raid_volume *vol; 2333 struct g_raid_subdisk *sd; 2334 struct g_raid_disk *disk; 2335 int i, s; 2336 2337 g_topology_assert(); 2338 2339 sc = gp->softc; 2340 if (sc == NULL) 2341 return; 2342 if (pp != NULL) { 2343 vol = pp->private; 2344 g_topology_unlock(); 2345 sx_xlock(&sc->sc_lock); 2346 sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent, 2347 sc->sc_md->mdo_class->name, 2348 g_raid_volume_level2str(vol->v_raid_level, 2349 vol->v_raid_level_qualifier)); 2350 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent, 2351 vol->v_name); 2352 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent, 2353 g_raid_volume_level2str(vol->v_raid_level, 2354 vol->v_raid_level_qualifier)); 2355 sbuf_printf(sb, 2356 "%s<Transformation>%s</Transformation>\n", indent, 2357 vol->v_tr ? vol->v_tr->tro_class->name : "NONE"); 2358 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent, 2359 vol->v_disks_count); 2360 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent, 2361 vol->v_strip_size); 2362 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2363 g_raid_volume_state2str(vol->v_state)); 2364 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent, 2365 vol->v_dirty ? "Yes" : "No"); 2366 sbuf_printf(sb, "%s<Subdisks>", indent); 2367 for (i = 0; i < vol->v_disks_count; i++) { 2368 sd = &vol->v_subdisks[i]; 2369 if (sd->sd_disk != NULL && 2370 sd->sd_disk->d_consumer != NULL) { 2371 sbuf_printf(sb, "%s ", 2372 g_raid_get_diskname(sd->sd_disk)); 2373 } else { 2374 sbuf_cat(sb, "NONE "); 2375 } 2376 sbuf_printf(sb, "(%s", 2377 g_raid_subdisk_state2str(sd->sd_state)); 2378 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2379 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2380 sbuf_printf(sb, " %d%%", 2381 (int)(sd->sd_rebuild_pos * 100 / 2382 sd->sd_size)); 2383 } 2384 sbuf_cat(sb, ")"); 2385 if (i + 1 < vol->v_disks_count) 2386 sbuf_cat(sb, ", "); 2387 } 2388 sbuf_cat(sb, "</Subdisks>\n"); 2389 sx_xunlock(&sc->sc_lock); 2390 g_topology_lock(); 2391 } else if (cp != NULL) { 2392 disk = cp->private; 2393 if (disk == NULL) 2394 return; 2395 g_topology_unlock(); 2396 sx_xlock(&sc->sc_lock); 2397 sbuf_printf(sb, "%s<State>%s", indent, 2398 g_raid_disk_state2str(disk->d_state)); 2399 if (!TAILQ_EMPTY(&disk->d_subdisks)) { 2400 sbuf_cat(sb, " ("); 2401 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 2402 sbuf_printf(sb, "%s", 2403 g_raid_subdisk_state2str(sd->sd_state)); 2404 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2405 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2406 sbuf_printf(sb, " %d%%", 2407 (int)(sd->sd_rebuild_pos * 100 / 2408 sd->sd_size)); 2409 } 2410 if (TAILQ_NEXT(sd, sd_next)) 2411 sbuf_cat(sb, ", "); 2412 } 2413 sbuf_cat(sb, ")"); 2414 } 2415 sbuf_cat(sb, "</State>\n"); 2416 sbuf_printf(sb, "%s<Subdisks>", indent); 2417 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 2418 sbuf_printf(sb, "r%d(%s):%d@%ju", 2419 sd->sd_volume->v_global_id, 2420 sd->sd_volume->v_name, 2421 sd->sd_pos, (uintmax_t)sd->sd_offset); 2422 if (TAILQ_NEXT(sd, sd_next)) 2423 sbuf_cat(sb, ", "); 2424 } 2425 sbuf_cat(sb, "</Subdisks>\n"); 2426 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent, 2427 disk->d_read_errs); 2428 sx_xunlock(&sc->sc_lock); 2429 g_topology_lock(); 2430 } else { 2431 g_topology_unlock(); 2432 sx_xlock(&sc->sc_lock); 2433 if (sc->sc_md) { 2434 sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent, 2435 sc->sc_md->mdo_class->name); 2436 } 2437 if (!TAILQ_EMPTY(&sc->sc_volumes)) { 2438 s = 0xff; 2439 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 2440 if (vol->v_state < s) 2441 s = vol->v_state; 2442 } 2443 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2444 g_raid_volume_state2str(s)); 2445 } 2446 sx_xunlock(&sc->sc_lock); 2447 g_topology_lock(); 2448 } 2449 } 2450 2451 static void 2452 g_raid_shutdown_post_sync(void *arg, int howto) 2453 { 2454 struct g_class *mp; 2455 struct g_geom *gp, *gp2; 2456 struct g_raid_softc *sc; 2457 struct g_raid_volume *vol; 2458 2459 mp = arg; 2460 g_topology_lock(); 2461 g_raid_shutdown = 1; 2462 LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) { 2463 if ((sc = gp->softc) == NULL) 2464 continue; 2465 g_topology_unlock(); 2466 sx_xlock(&sc->sc_lock); 2467 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) 2468 g_raid_clean(vol, -1); 2469 g_cancel_event(sc); 2470 g_raid_destroy(sc, G_RAID_DESTROY_DELAYED); 2471 g_topology_lock(); 2472 } 2473 g_topology_unlock(); 2474 } 2475 2476 static void 2477 g_raid_init(struct g_class *mp) 2478 { 2479 2480 g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync, 2481 g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST); 2482 if (g_raid_post_sync == NULL) 2483 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event."); 2484 g_raid_started = 1; 2485 } 2486 2487 static void 2488 g_raid_fini(struct g_class *mp) 2489 { 2490 2491 if (g_raid_post_sync != NULL) 2492 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync); 2493 g_raid_started = 0; 2494 } 2495 2496 int 2497 g_raid_md_modevent(module_t mod, int type, void *arg) 2498 { 2499 struct g_raid_md_class *class, *c, *nc; 2500 int error; 2501 2502 error = 0; 2503 class = arg; 2504 switch (type) { 2505 case MOD_LOAD: 2506 c = LIST_FIRST(&g_raid_md_classes); 2507 if (c == NULL || c->mdc_priority > class->mdc_priority) 2508 LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list); 2509 else { 2510 while ((nc = LIST_NEXT(c, mdc_list)) != NULL && 2511 nc->mdc_priority < class->mdc_priority) 2512 c = nc; 2513 LIST_INSERT_AFTER(c, class, mdc_list); 2514 } 2515 if (g_raid_started) 2516 g_retaste(&g_raid_class); 2517 break; 2518 case MOD_UNLOAD: 2519 LIST_REMOVE(class, mdc_list); 2520 break; 2521 default: 2522 error = EOPNOTSUPP; 2523 break; 2524 } 2525 2526 return (error); 2527 } 2528 2529 int 2530 g_raid_tr_modevent(module_t mod, int type, void *arg) 2531 { 2532 struct g_raid_tr_class *class, *c, *nc; 2533 int error; 2534 2535 error = 0; 2536 class = arg; 2537 switch (type) { 2538 case MOD_LOAD: 2539 c = LIST_FIRST(&g_raid_tr_classes); 2540 if (c == NULL || c->trc_priority > class->trc_priority) 2541 LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list); 2542 else { 2543 while ((nc = LIST_NEXT(c, trc_list)) != NULL && 2544 nc->trc_priority < class->trc_priority) 2545 c = nc; 2546 LIST_INSERT_AFTER(c, class, trc_list); 2547 } 2548 break; 2549 case MOD_UNLOAD: 2550 LIST_REMOVE(class, trc_list); 2551 break; 2552 default: 2553 error = EOPNOTSUPP; 2554 break; 2555 } 2556 2557 return (error); 2558 } 2559 2560 /* 2561 * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid) 2562 * to reduce module priority, allowing submodules to register them first. 2563 */ 2564 static moduledata_t g_raid_mod = { 2565 "g_raid", 2566 g_modevent, 2567 &g_raid_class 2568 }; 2569 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD); 2570 MODULE_VERSION(geom_raid, 0); 2571