1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/limits.h> 37 #include <sys/lock.h> 38 #include <sys/mutex.h> 39 #include <sys/bio.h> 40 #include <sys/sbuf.h> 41 #include <sys/sysctl.h> 42 #include <sys/malloc.h> 43 #include <sys/eventhandler.h> 44 #include <vm/uma.h> 45 #include <geom/geom.h> 46 #include <geom/geom_dbg.h> 47 #include <sys/proc.h> 48 #include <sys/kthread.h> 49 #include <sys/sched.h> 50 #include <geom/raid/g_raid.h> 51 #include "g_raid_md_if.h" 52 #include "g_raid_tr_if.h" 53 54 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data"); 55 56 SYSCTL_DECL(_kern_geom); 57 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 58 "GEOM_RAID stuff"); 59 int g_raid_enable = 1; 60 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RWTUN, 61 &g_raid_enable, 0, "Enable on-disk metadata taste"); 62 u_int g_raid_aggressive_spare = 0; 63 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RWTUN, 64 &g_raid_aggressive_spare, 0, "Use disks without metadata as spare"); 65 u_int g_raid_debug = 0; 66 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid_debug, 0, 67 "Debug level"); 68 int g_raid_read_err_thresh = 10; 69 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RWTUN, 70 &g_raid_read_err_thresh, 0, 71 "Number of read errors equated to disk failure"); 72 u_int g_raid_start_timeout = 30; 73 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RWTUN, 74 &g_raid_start_timeout, 0, 75 "Time to wait for all array components"); 76 static u_int g_raid_clean_time = 5; 77 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RWTUN, 78 &g_raid_clean_time, 0, "Mark volume as clean when idling"); 79 static u_int g_raid_disconnect_on_failure = 1; 80 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN, 81 &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure."); 82 static u_int g_raid_name_format = 0; 83 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RWTUN, 84 &g_raid_name_format, 0, "Providers name format."); 85 static u_int g_raid_idle_threshold = 1000000; 86 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RWTUN, 87 &g_raid_idle_threshold, 1000000, 88 "Time in microseconds to consider a volume idle."); 89 90 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout) do { \ 91 G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \ 92 rv = msleep((ident), (mtx), (priority), (wmesg), (timeout)); \ 93 G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \ 94 } while (0) 95 96 LIST_HEAD(, g_raid_md_class) g_raid_md_classes = 97 LIST_HEAD_INITIALIZER(g_raid_md_classes); 98 99 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes = 100 LIST_HEAD_INITIALIZER(g_raid_tr_classes); 101 102 LIST_HEAD(, g_raid_volume) g_raid_volumes = 103 LIST_HEAD_INITIALIZER(g_raid_volumes); 104 105 static eventhandler_tag g_raid_post_sync = NULL; 106 static int g_raid_started = 0; 107 static int g_raid_shutdown = 0; 108 109 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp, 110 struct g_geom *gp); 111 static g_taste_t g_raid_taste; 112 static void g_raid_init(struct g_class *mp); 113 static void g_raid_fini(struct g_class *mp); 114 115 struct g_class g_raid_class = { 116 .name = G_RAID_CLASS_NAME, 117 .version = G_VERSION, 118 .ctlreq = g_raid_ctl, 119 .taste = g_raid_taste, 120 .destroy_geom = g_raid_destroy_geom, 121 .init = g_raid_init, 122 .fini = g_raid_fini 123 }; 124 125 static void g_raid_destroy_provider(struct g_raid_volume *vol); 126 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event); 127 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event); 128 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event); 129 static int g_raid_update_node(struct g_raid_softc *sc, u_int event); 130 static void g_raid_dumpconf(struct sbuf *sb, const char *indent, 131 struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); 132 static void g_raid_start(struct bio *bp); 133 static void g_raid_start_request(struct bio *bp); 134 static void g_raid_disk_done(struct bio *bp); 135 static void g_raid_poll(struct g_raid_softc *sc); 136 137 static const char * 138 g_raid_node_event2str(int event) 139 { 140 141 switch (event) { 142 case G_RAID_NODE_E_WAKE: 143 return ("WAKE"); 144 case G_RAID_NODE_E_START: 145 return ("START"); 146 default: 147 return ("INVALID"); 148 } 149 } 150 151 const char * 152 g_raid_disk_state2str(int state) 153 { 154 155 switch (state) { 156 case G_RAID_DISK_S_NONE: 157 return ("NONE"); 158 case G_RAID_DISK_S_OFFLINE: 159 return ("OFFLINE"); 160 case G_RAID_DISK_S_DISABLED: 161 return ("DISABLED"); 162 case G_RAID_DISK_S_FAILED: 163 return ("FAILED"); 164 case G_RAID_DISK_S_STALE_FAILED: 165 return ("STALE_FAILED"); 166 case G_RAID_DISK_S_SPARE: 167 return ("SPARE"); 168 case G_RAID_DISK_S_STALE: 169 return ("STALE"); 170 case G_RAID_DISK_S_ACTIVE: 171 return ("ACTIVE"); 172 default: 173 return ("INVALID"); 174 } 175 } 176 177 static const char * 178 g_raid_disk_event2str(int event) 179 { 180 181 switch (event) { 182 case G_RAID_DISK_E_DISCONNECTED: 183 return ("DISCONNECTED"); 184 default: 185 return ("INVALID"); 186 } 187 } 188 189 const char * 190 g_raid_subdisk_state2str(int state) 191 { 192 193 switch (state) { 194 case G_RAID_SUBDISK_S_NONE: 195 return ("NONE"); 196 case G_RAID_SUBDISK_S_FAILED: 197 return ("FAILED"); 198 case G_RAID_SUBDISK_S_NEW: 199 return ("NEW"); 200 case G_RAID_SUBDISK_S_REBUILD: 201 return ("REBUILD"); 202 case G_RAID_SUBDISK_S_UNINITIALIZED: 203 return ("UNINITIALIZED"); 204 case G_RAID_SUBDISK_S_STALE: 205 return ("STALE"); 206 case G_RAID_SUBDISK_S_RESYNC: 207 return ("RESYNC"); 208 case G_RAID_SUBDISK_S_ACTIVE: 209 return ("ACTIVE"); 210 default: 211 return ("INVALID"); 212 } 213 } 214 215 static const char * 216 g_raid_subdisk_event2str(int event) 217 { 218 219 switch (event) { 220 case G_RAID_SUBDISK_E_NEW: 221 return ("NEW"); 222 case G_RAID_SUBDISK_E_FAILED: 223 return ("FAILED"); 224 case G_RAID_SUBDISK_E_DISCONNECTED: 225 return ("DISCONNECTED"); 226 default: 227 return ("INVALID"); 228 } 229 } 230 231 const char * 232 g_raid_volume_state2str(int state) 233 { 234 235 switch (state) { 236 case G_RAID_VOLUME_S_STARTING: 237 return ("STARTING"); 238 case G_RAID_VOLUME_S_BROKEN: 239 return ("BROKEN"); 240 case G_RAID_VOLUME_S_DEGRADED: 241 return ("DEGRADED"); 242 case G_RAID_VOLUME_S_SUBOPTIMAL: 243 return ("SUBOPTIMAL"); 244 case G_RAID_VOLUME_S_OPTIMAL: 245 return ("OPTIMAL"); 246 case G_RAID_VOLUME_S_UNSUPPORTED: 247 return ("UNSUPPORTED"); 248 case G_RAID_VOLUME_S_STOPPED: 249 return ("STOPPED"); 250 default: 251 return ("INVALID"); 252 } 253 } 254 255 static const char * 256 g_raid_volume_event2str(int event) 257 { 258 259 switch (event) { 260 case G_RAID_VOLUME_E_UP: 261 return ("UP"); 262 case G_RAID_VOLUME_E_DOWN: 263 return ("DOWN"); 264 case G_RAID_VOLUME_E_START: 265 return ("START"); 266 case G_RAID_VOLUME_E_STARTMD: 267 return ("STARTMD"); 268 default: 269 return ("INVALID"); 270 } 271 } 272 273 const char * 274 g_raid_volume_level2str(int level, int qual) 275 { 276 277 switch (level) { 278 case G_RAID_VOLUME_RL_RAID0: 279 return ("RAID0"); 280 case G_RAID_VOLUME_RL_RAID1: 281 return ("RAID1"); 282 case G_RAID_VOLUME_RL_RAID3: 283 if (qual == G_RAID_VOLUME_RLQ_R3P0) 284 return ("RAID3-P0"); 285 if (qual == G_RAID_VOLUME_RLQ_R3PN) 286 return ("RAID3-PN"); 287 return ("RAID3"); 288 case G_RAID_VOLUME_RL_RAID4: 289 if (qual == G_RAID_VOLUME_RLQ_R4P0) 290 return ("RAID4-P0"); 291 if (qual == G_RAID_VOLUME_RLQ_R4PN) 292 return ("RAID4-PN"); 293 return ("RAID4"); 294 case G_RAID_VOLUME_RL_RAID5: 295 if (qual == G_RAID_VOLUME_RLQ_R5RA) 296 return ("RAID5-RA"); 297 if (qual == G_RAID_VOLUME_RLQ_R5RS) 298 return ("RAID5-RS"); 299 if (qual == G_RAID_VOLUME_RLQ_R5LA) 300 return ("RAID5-LA"); 301 if (qual == G_RAID_VOLUME_RLQ_R5LS) 302 return ("RAID5-LS"); 303 return ("RAID5"); 304 case G_RAID_VOLUME_RL_RAID6: 305 if (qual == G_RAID_VOLUME_RLQ_R6RA) 306 return ("RAID6-RA"); 307 if (qual == G_RAID_VOLUME_RLQ_R6RS) 308 return ("RAID6-RS"); 309 if (qual == G_RAID_VOLUME_RLQ_R6LA) 310 return ("RAID6-LA"); 311 if (qual == G_RAID_VOLUME_RLQ_R6LS) 312 return ("RAID6-LS"); 313 return ("RAID6"); 314 case G_RAID_VOLUME_RL_RAIDMDF: 315 if (qual == G_RAID_VOLUME_RLQ_RMDFRA) 316 return ("RAIDMDF-RA"); 317 if (qual == G_RAID_VOLUME_RLQ_RMDFRS) 318 return ("RAIDMDF-RS"); 319 if (qual == G_RAID_VOLUME_RLQ_RMDFLA) 320 return ("RAIDMDF-LA"); 321 if (qual == G_RAID_VOLUME_RLQ_RMDFLS) 322 return ("RAIDMDF-LS"); 323 return ("RAIDMDF"); 324 case G_RAID_VOLUME_RL_RAID1E: 325 if (qual == G_RAID_VOLUME_RLQ_R1EA) 326 return ("RAID1E-A"); 327 if (qual == G_RAID_VOLUME_RLQ_R1EO) 328 return ("RAID1E-O"); 329 return ("RAID1E"); 330 case G_RAID_VOLUME_RL_SINGLE: 331 return ("SINGLE"); 332 case G_RAID_VOLUME_RL_CONCAT: 333 return ("CONCAT"); 334 case G_RAID_VOLUME_RL_RAID5E: 335 if (qual == G_RAID_VOLUME_RLQ_R5ERA) 336 return ("RAID5E-RA"); 337 if (qual == G_RAID_VOLUME_RLQ_R5ERS) 338 return ("RAID5E-RS"); 339 if (qual == G_RAID_VOLUME_RLQ_R5ELA) 340 return ("RAID5E-LA"); 341 if (qual == G_RAID_VOLUME_RLQ_R5ELS) 342 return ("RAID5E-LS"); 343 return ("RAID5E"); 344 case G_RAID_VOLUME_RL_RAID5EE: 345 if (qual == G_RAID_VOLUME_RLQ_R5EERA) 346 return ("RAID5EE-RA"); 347 if (qual == G_RAID_VOLUME_RLQ_R5EERS) 348 return ("RAID5EE-RS"); 349 if (qual == G_RAID_VOLUME_RLQ_R5EELA) 350 return ("RAID5EE-LA"); 351 if (qual == G_RAID_VOLUME_RLQ_R5EELS) 352 return ("RAID5EE-LS"); 353 return ("RAID5EE"); 354 case G_RAID_VOLUME_RL_RAID5R: 355 if (qual == G_RAID_VOLUME_RLQ_R5RRA) 356 return ("RAID5R-RA"); 357 if (qual == G_RAID_VOLUME_RLQ_R5RRS) 358 return ("RAID5R-RS"); 359 if (qual == G_RAID_VOLUME_RLQ_R5RLA) 360 return ("RAID5R-LA"); 361 if (qual == G_RAID_VOLUME_RLQ_R5RLS) 362 return ("RAID5R-LS"); 363 return ("RAID5E"); 364 default: 365 return ("UNKNOWN"); 366 } 367 } 368 369 int 370 g_raid_volume_str2level(const char *str, int *level, int *qual) 371 { 372 373 *level = G_RAID_VOLUME_RL_UNKNOWN; 374 *qual = G_RAID_VOLUME_RLQ_NONE; 375 if (strcasecmp(str, "RAID0") == 0) 376 *level = G_RAID_VOLUME_RL_RAID0; 377 else if (strcasecmp(str, "RAID1") == 0) 378 *level = G_RAID_VOLUME_RL_RAID1; 379 else if (strcasecmp(str, "RAID3-P0") == 0) { 380 *level = G_RAID_VOLUME_RL_RAID3; 381 *qual = G_RAID_VOLUME_RLQ_R3P0; 382 } else if (strcasecmp(str, "RAID3-PN") == 0 || 383 strcasecmp(str, "RAID3") == 0) { 384 *level = G_RAID_VOLUME_RL_RAID3; 385 *qual = G_RAID_VOLUME_RLQ_R3PN; 386 } else if (strcasecmp(str, "RAID4-P0") == 0) { 387 *level = G_RAID_VOLUME_RL_RAID4; 388 *qual = G_RAID_VOLUME_RLQ_R4P0; 389 } else if (strcasecmp(str, "RAID4-PN") == 0 || 390 strcasecmp(str, "RAID4") == 0) { 391 *level = G_RAID_VOLUME_RL_RAID4; 392 *qual = G_RAID_VOLUME_RLQ_R4PN; 393 } else if (strcasecmp(str, "RAID5-RA") == 0) { 394 *level = G_RAID_VOLUME_RL_RAID5; 395 *qual = G_RAID_VOLUME_RLQ_R5RA; 396 } else if (strcasecmp(str, "RAID5-RS") == 0) { 397 *level = G_RAID_VOLUME_RL_RAID5; 398 *qual = G_RAID_VOLUME_RLQ_R5RS; 399 } else if (strcasecmp(str, "RAID5") == 0 || 400 strcasecmp(str, "RAID5-LA") == 0) { 401 *level = G_RAID_VOLUME_RL_RAID5; 402 *qual = G_RAID_VOLUME_RLQ_R5LA; 403 } else if (strcasecmp(str, "RAID5-LS") == 0) { 404 *level = G_RAID_VOLUME_RL_RAID5; 405 *qual = G_RAID_VOLUME_RLQ_R5LS; 406 } else if (strcasecmp(str, "RAID6-RA") == 0) { 407 *level = G_RAID_VOLUME_RL_RAID6; 408 *qual = G_RAID_VOLUME_RLQ_R6RA; 409 } else if (strcasecmp(str, "RAID6-RS") == 0) { 410 *level = G_RAID_VOLUME_RL_RAID6; 411 *qual = G_RAID_VOLUME_RLQ_R6RS; 412 } else if (strcasecmp(str, "RAID6") == 0 || 413 strcasecmp(str, "RAID6-LA") == 0) { 414 *level = G_RAID_VOLUME_RL_RAID6; 415 *qual = G_RAID_VOLUME_RLQ_R6LA; 416 } else if (strcasecmp(str, "RAID6-LS") == 0) { 417 *level = G_RAID_VOLUME_RL_RAID6; 418 *qual = G_RAID_VOLUME_RLQ_R6LS; 419 } else if (strcasecmp(str, "RAIDMDF-RA") == 0) { 420 *level = G_RAID_VOLUME_RL_RAIDMDF; 421 *qual = G_RAID_VOLUME_RLQ_RMDFRA; 422 } else if (strcasecmp(str, "RAIDMDF-RS") == 0) { 423 *level = G_RAID_VOLUME_RL_RAIDMDF; 424 *qual = G_RAID_VOLUME_RLQ_RMDFRS; 425 } else if (strcasecmp(str, "RAIDMDF") == 0 || 426 strcasecmp(str, "RAIDMDF-LA") == 0) { 427 *level = G_RAID_VOLUME_RL_RAIDMDF; 428 *qual = G_RAID_VOLUME_RLQ_RMDFLA; 429 } else if (strcasecmp(str, "RAIDMDF-LS") == 0) { 430 *level = G_RAID_VOLUME_RL_RAIDMDF; 431 *qual = G_RAID_VOLUME_RLQ_RMDFLS; 432 } else if (strcasecmp(str, "RAID10") == 0 || 433 strcasecmp(str, "RAID1E") == 0 || 434 strcasecmp(str, "RAID1E-A") == 0) { 435 *level = G_RAID_VOLUME_RL_RAID1E; 436 *qual = G_RAID_VOLUME_RLQ_R1EA; 437 } else if (strcasecmp(str, "RAID1E-O") == 0) { 438 *level = G_RAID_VOLUME_RL_RAID1E; 439 *qual = G_RAID_VOLUME_RLQ_R1EO; 440 } else if (strcasecmp(str, "SINGLE") == 0) 441 *level = G_RAID_VOLUME_RL_SINGLE; 442 else if (strcasecmp(str, "CONCAT") == 0) 443 *level = G_RAID_VOLUME_RL_CONCAT; 444 else if (strcasecmp(str, "RAID5E-RA") == 0) { 445 *level = G_RAID_VOLUME_RL_RAID5E; 446 *qual = G_RAID_VOLUME_RLQ_R5ERA; 447 } else if (strcasecmp(str, "RAID5E-RS") == 0) { 448 *level = G_RAID_VOLUME_RL_RAID5E; 449 *qual = G_RAID_VOLUME_RLQ_R5ERS; 450 } else if (strcasecmp(str, "RAID5E") == 0 || 451 strcasecmp(str, "RAID5E-LA") == 0) { 452 *level = G_RAID_VOLUME_RL_RAID5E; 453 *qual = G_RAID_VOLUME_RLQ_R5ELA; 454 } else if (strcasecmp(str, "RAID5E-LS") == 0) { 455 *level = G_RAID_VOLUME_RL_RAID5E; 456 *qual = G_RAID_VOLUME_RLQ_R5ELS; 457 } else if (strcasecmp(str, "RAID5EE-RA") == 0) { 458 *level = G_RAID_VOLUME_RL_RAID5EE; 459 *qual = G_RAID_VOLUME_RLQ_R5EERA; 460 } else if (strcasecmp(str, "RAID5EE-RS") == 0) { 461 *level = G_RAID_VOLUME_RL_RAID5EE; 462 *qual = G_RAID_VOLUME_RLQ_R5EERS; 463 } else if (strcasecmp(str, "RAID5EE") == 0 || 464 strcasecmp(str, "RAID5EE-LA") == 0) { 465 *level = G_RAID_VOLUME_RL_RAID5EE; 466 *qual = G_RAID_VOLUME_RLQ_R5EELA; 467 } else if (strcasecmp(str, "RAID5EE-LS") == 0) { 468 *level = G_RAID_VOLUME_RL_RAID5EE; 469 *qual = G_RAID_VOLUME_RLQ_R5EELS; 470 } else if (strcasecmp(str, "RAID5R-RA") == 0) { 471 *level = G_RAID_VOLUME_RL_RAID5R; 472 *qual = G_RAID_VOLUME_RLQ_R5RRA; 473 } else if (strcasecmp(str, "RAID5R-RS") == 0) { 474 *level = G_RAID_VOLUME_RL_RAID5R; 475 *qual = G_RAID_VOLUME_RLQ_R5RRS; 476 } else if (strcasecmp(str, "RAID5R") == 0 || 477 strcasecmp(str, "RAID5R-LA") == 0) { 478 *level = G_RAID_VOLUME_RL_RAID5R; 479 *qual = G_RAID_VOLUME_RLQ_R5RLA; 480 } else if (strcasecmp(str, "RAID5R-LS") == 0) { 481 *level = G_RAID_VOLUME_RL_RAID5R; 482 *qual = G_RAID_VOLUME_RLQ_R5RLS; 483 } else 484 return (-1); 485 return (0); 486 } 487 488 const char * 489 g_raid_get_diskname(struct g_raid_disk *disk) 490 { 491 492 if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL) 493 return ("[unknown]"); 494 return (disk->d_consumer->provider->name); 495 } 496 497 void 498 g_raid_get_disk_info(struct g_raid_disk *disk) 499 { 500 struct g_consumer *cp = disk->d_consumer; 501 int error, len; 502 503 /* Read kernel dumping information. */ 504 disk->d_kd.offset = 0; 505 disk->d_kd.length = OFF_MAX; 506 len = sizeof(disk->d_kd); 507 error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd); 508 if (error) 509 disk->d_kd.di.dumper = NULL; 510 if (disk->d_kd.di.dumper == NULL) 511 G_RAID_DEBUG1(2, disk->d_softc, 512 "Dumping not supported by %s: %d.", 513 cp->provider->name, error); 514 515 /* Read BIO_DELETE support. */ 516 error = g_getattr("GEOM::candelete", cp, &disk->d_candelete); 517 if (error) 518 disk->d_candelete = 0; 519 if (!disk->d_candelete) 520 G_RAID_DEBUG1(2, disk->d_softc, 521 "BIO_DELETE not supported by %s: %d.", 522 cp->provider->name, error); 523 } 524 525 void 526 g_raid_report_disk_state(struct g_raid_disk *disk) 527 { 528 struct g_raid_subdisk *sd; 529 int len, state; 530 uint32_t s; 531 532 if (disk->d_consumer == NULL) 533 return; 534 if (disk->d_state == G_RAID_DISK_S_DISABLED) { 535 s = G_STATE_ACTIVE; /* XXX */ 536 } else if (disk->d_state == G_RAID_DISK_S_FAILED || 537 disk->d_state == G_RAID_DISK_S_STALE_FAILED) { 538 s = G_STATE_FAILED; 539 } else { 540 state = G_RAID_SUBDISK_S_ACTIVE; 541 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 542 if (sd->sd_state < state) 543 state = sd->sd_state; 544 } 545 if (state == G_RAID_SUBDISK_S_FAILED) 546 s = G_STATE_FAILED; 547 else if (state == G_RAID_SUBDISK_S_NEW || 548 state == G_RAID_SUBDISK_S_REBUILD) 549 s = G_STATE_REBUILD; 550 else if (state == G_RAID_SUBDISK_S_STALE || 551 state == G_RAID_SUBDISK_S_RESYNC) 552 s = G_STATE_RESYNC; 553 else 554 s = G_STATE_ACTIVE; 555 } 556 len = sizeof(s); 557 g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s); 558 G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.", 559 g_raid_get_diskname(disk), s); 560 } 561 562 void 563 g_raid_change_disk_state(struct g_raid_disk *disk, int state) 564 { 565 566 G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.", 567 g_raid_get_diskname(disk), 568 g_raid_disk_state2str(disk->d_state), 569 g_raid_disk_state2str(state)); 570 disk->d_state = state; 571 g_raid_report_disk_state(disk); 572 } 573 574 void 575 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state) 576 { 577 578 G_RAID_DEBUG1(0, sd->sd_softc, 579 "Subdisk %s:%d-%s state changed from %s to %s.", 580 sd->sd_volume->v_name, sd->sd_pos, 581 sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]", 582 g_raid_subdisk_state2str(sd->sd_state), 583 g_raid_subdisk_state2str(state)); 584 sd->sd_state = state; 585 if (sd->sd_disk) 586 g_raid_report_disk_state(sd->sd_disk); 587 } 588 589 void 590 g_raid_change_volume_state(struct g_raid_volume *vol, int state) 591 { 592 593 G_RAID_DEBUG1(0, vol->v_softc, 594 "Volume %s state changed from %s to %s.", 595 vol->v_name, 596 g_raid_volume_state2str(vol->v_state), 597 g_raid_volume_state2str(state)); 598 vol->v_state = state; 599 } 600 601 /* 602 * --- Events handling functions --- 603 * Events in geom_raid are used to maintain subdisks and volumes status 604 * from one thread to simplify locking. 605 */ 606 static void 607 g_raid_event_free(struct g_raid_event *ep) 608 { 609 610 free(ep, M_RAID); 611 } 612 613 int 614 g_raid_event_send(void *arg, int event, int flags) 615 { 616 struct g_raid_softc *sc; 617 struct g_raid_event *ep; 618 int error; 619 620 if ((flags & G_RAID_EVENT_VOLUME) != 0) { 621 sc = ((struct g_raid_volume *)arg)->v_softc; 622 } else if ((flags & G_RAID_EVENT_DISK) != 0) { 623 sc = ((struct g_raid_disk *)arg)->d_softc; 624 } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) { 625 sc = ((struct g_raid_subdisk *)arg)->sd_softc; 626 } else { 627 sc = arg; 628 } 629 ep = malloc(sizeof(*ep), M_RAID, 630 sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT); 631 if (ep == NULL) 632 return (ENOMEM); 633 ep->e_tgt = arg; 634 ep->e_event = event; 635 ep->e_flags = flags; 636 ep->e_error = 0; 637 G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc); 638 mtx_lock(&sc->sc_queue_mtx); 639 TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next); 640 mtx_unlock(&sc->sc_queue_mtx); 641 wakeup(sc); 642 643 if ((flags & G_RAID_EVENT_WAIT) == 0) 644 return (0); 645 646 sx_assert(&sc->sc_lock, SX_XLOCKED); 647 G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep); 648 sx_xunlock(&sc->sc_lock); 649 while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) { 650 mtx_lock(&sc->sc_queue_mtx); 651 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event", 652 hz * 5); 653 } 654 error = ep->e_error; 655 g_raid_event_free(ep); 656 sx_xlock(&sc->sc_lock); 657 return (error); 658 } 659 660 static void 661 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt) 662 { 663 struct g_raid_event *ep, *tmpep; 664 665 sx_assert(&sc->sc_lock, SX_XLOCKED); 666 667 mtx_lock(&sc->sc_queue_mtx); 668 TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) { 669 if (ep->e_tgt != tgt) 670 continue; 671 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 672 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) 673 g_raid_event_free(ep); 674 else { 675 ep->e_error = ECANCELED; 676 wakeup(ep); 677 } 678 } 679 mtx_unlock(&sc->sc_queue_mtx); 680 } 681 682 static int 683 g_raid_event_check(struct g_raid_softc *sc, void *tgt) 684 { 685 struct g_raid_event *ep; 686 int res = 0; 687 688 sx_assert(&sc->sc_lock, SX_XLOCKED); 689 690 mtx_lock(&sc->sc_queue_mtx); 691 TAILQ_FOREACH(ep, &sc->sc_events, e_next) { 692 if (ep->e_tgt != tgt) 693 continue; 694 res = 1; 695 break; 696 } 697 mtx_unlock(&sc->sc_queue_mtx); 698 return (res); 699 } 700 701 /* 702 * Return the number of disks in given state. 703 * If state is equal to -1, count all connected disks. 704 */ 705 u_int 706 g_raid_ndisks(struct g_raid_softc *sc, int state) 707 { 708 struct g_raid_disk *disk; 709 u_int n; 710 711 sx_assert(&sc->sc_lock, SX_LOCKED); 712 713 n = 0; 714 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 715 if (disk->d_state == state || state == -1) 716 n++; 717 } 718 return (n); 719 } 720 721 /* 722 * Return the number of subdisks in given state. 723 * If state is equal to -1, count all connected disks. 724 */ 725 u_int 726 g_raid_nsubdisks(struct g_raid_volume *vol, int state) 727 { 728 struct g_raid_subdisk *subdisk; 729 struct g_raid_softc *sc __diagused; 730 u_int i, n ; 731 732 sc = vol->v_softc; 733 sx_assert(&sc->sc_lock, SX_LOCKED); 734 735 n = 0; 736 for (i = 0; i < vol->v_disks_count; i++) { 737 subdisk = &vol->v_subdisks[i]; 738 if ((state == -1 && 739 subdisk->sd_state != G_RAID_SUBDISK_S_NONE) || 740 subdisk->sd_state == state) 741 n++; 742 } 743 return (n); 744 } 745 746 /* 747 * Return the first subdisk in given state. 748 * If state is equal to -1, then the first connected disks. 749 */ 750 struct g_raid_subdisk * 751 g_raid_get_subdisk(struct g_raid_volume *vol, int state) 752 { 753 struct g_raid_subdisk *sd; 754 struct g_raid_softc *sc __diagused; 755 u_int i; 756 757 sc = vol->v_softc; 758 sx_assert(&sc->sc_lock, SX_LOCKED); 759 760 for (i = 0; i < vol->v_disks_count; i++) { 761 sd = &vol->v_subdisks[i]; 762 if ((state == -1 && 763 sd->sd_state != G_RAID_SUBDISK_S_NONE) || 764 sd->sd_state == state) 765 return (sd); 766 } 767 return (NULL); 768 } 769 770 struct g_consumer * 771 g_raid_open_consumer(struct g_raid_softc *sc, const char *name) 772 { 773 struct g_consumer *cp; 774 struct g_provider *pp; 775 776 g_topology_assert(); 777 778 if (strncmp(name, _PATH_DEV, 5) == 0) 779 name += 5; 780 pp = g_provider_by_name(name); 781 if (pp == NULL) 782 return (NULL); 783 cp = g_new_consumer(sc->sc_geom); 784 cp->flags |= G_CF_DIRECT_RECEIVE; 785 if (g_attach(cp, pp) != 0) { 786 g_destroy_consumer(cp); 787 return (NULL); 788 } 789 if (g_access(cp, 1, 1, 1) != 0) { 790 g_detach(cp); 791 g_destroy_consumer(cp); 792 return (NULL); 793 } 794 return (cp); 795 } 796 797 static u_int 798 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp) 799 { 800 struct bio *bp; 801 u_int nreqs = 0; 802 803 mtx_lock(&sc->sc_queue_mtx); 804 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 805 if (bp->bio_from == cp) 806 nreqs++; 807 } 808 mtx_unlock(&sc->sc_queue_mtx); 809 return (nreqs); 810 } 811 812 u_int 813 g_raid_nopens(struct g_raid_softc *sc) 814 { 815 struct g_raid_volume *vol; 816 u_int opens; 817 818 opens = 0; 819 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 820 if (vol->v_provider_open != 0) 821 opens++; 822 } 823 return (opens); 824 } 825 826 static int 827 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp) 828 { 829 830 if (cp->index > 0) { 831 G_RAID_DEBUG1(2, sc, 832 "I/O requests for %s exist, can't destroy it now.", 833 cp->provider->name); 834 return (1); 835 } 836 if (g_raid_nrequests(sc, cp) > 0) { 837 G_RAID_DEBUG1(2, sc, 838 "I/O requests for %s in queue, can't destroy it now.", 839 cp->provider->name); 840 return (1); 841 } 842 return (0); 843 } 844 845 static void 846 g_raid_destroy_consumer(void *arg, int flags __unused) 847 { 848 struct g_consumer *cp; 849 850 g_topology_assert(); 851 852 cp = arg; 853 G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name); 854 g_detach(cp); 855 g_destroy_consumer(cp); 856 } 857 858 void 859 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp) 860 { 861 struct g_provider *pp; 862 int retaste_wait; 863 864 g_topology_assert_not(); 865 866 g_topology_lock(); 867 cp->private = NULL; 868 if (g_raid_consumer_is_busy(sc, cp)) 869 goto out; 870 pp = cp->provider; 871 retaste_wait = 0; 872 if (cp->acw == 1) { 873 if ((pp->geom->flags & G_GEOM_WITHER) == 0) 874 retaste_wait = 1; 875 } 876 if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) 877 g_access(cp, -cp->acr, -cp->acw, -cp->ace); 878 if (retaste_wait) { 879 /* 880 * After retaste event was send (inside g_access()), we can send 881 * event to detach and destroy consumer. 882 * A class, which has consumer to the given provider connected 883 * will not receive retaste event for the provider. 884 * This is the way how I ignore retaste events when I close 885 * consumers opened for write: I detach and destroy consumer 886 * after retaste event is sent. 887 */ 888 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL); 889 goto out; 890 } 891 G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name); 892 g_detach(cp); 893 g_destroy_consumer(cp); 894 out: 895 g_topology_unlock(); 896 } 897 898 static void 899 g_raid_orphan(struct g_consumer *cp) 900 { 901 struct g_raid_disk *disk; 902 903 g_topology_assert(); 904 905 disk = cp->private; 906 if (disk == NULL) 907 return; 908 g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED, 909 G_RAID_EVENT_DISK); 910 } 911 912 static void 913 g_raid_clean(struct g_raid_volume *vol, int acw) 914 { 915 struct g_raid_softc *sc; 916 int timeout; 917 918 sc = vol->v_softc; 919 g_topology_assert_not(); 920 sx_assert(&sc->sc_lock, SX_XLOCKED); 921 922 // if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0) 923 // return; 924 if (!vol->v_dirty) 925 return; 926 if (vol->v_writes > 0) 927 return; 928 if (acw > 0 || (acw == -1 && 929 vol->v_provider != NULL && vol->v_provider->acw > 0)) { 930 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write); 931 if (!g_raid_shutdown && timeout > 0) 932 return; 933 } 934 vol->v_dirty = 0; 935 G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.", 936 vol->v_name); 937 g_raid_write_metadata(sc, vol, NULL, NULL); 938 } 939 940 static void 941 g_raid_dirty(struct g_raid_volume *vol) 942 { 943 struct g_raid_softc *sc; 944 945 sc = vol->v_softc; 946 g_topology_assert_not(); 947 sx_assert(&sc->sc_lock, SX_XLOCKED); 948 949 // if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0) 950 // return; 951 vol->v_dirty = 1; 952 G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.", 953 vol->v_name); 954 g_raid_write_metadata(sc, vol, NULL, NULL); 955 } 956 957 void 958 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp) 959 { 960 struct g_raid_volume *vol; 961 struct g_raid_subdisk *sd; 962 struct bio_queue_head queue; 963 struct bio *cbp; 964 int i; 965 966 vol = tr->tro_volume; 967 968 /* 969 * Allocate all bios before sending any request, so we can return 970 * ENOMEM in nice and clean way. 971 */ 972 bioq_init(&queue); 973 for (i = 0; i < vol->v_disks_count; i++) { 974 sd = &vol->v_subdisks[i]; 975 if (sd->sd_state == G_RAID_SUBDISK_S_NONE || 976 sd->sd_state == G_RAID_SUBDISK_S_FAILED) 977 continue; 978 cbp = g_clone_bio(bp); 979 if (cbp == NULL) 980 goto failure; 981 cbp->bio_caller1 = sd; 982 bioq_insert_tail(&queue, cbp); 983 } 984 while ((cbp = bioq_takefirst(&queue)) != NULL) { 985 sd = cbp->bio_caller1; 986 cbp->bio_caller1 = NULL; 987 g_raid_subdisk_iostart(sd, cbp); 988 } 989 return; 990 failure: 991 while ((cbp = bioq_takefirst(&queue)) != NULL) 992 g_destroy_bio(cbp); 993 if (bp->bio_error == 0) 994 bp->bio_error = ENOMEM; 995 g_raid_iodone(bp, bp->bio_error); 996 } 997 998 static void 999 g_raid_tr_kerneldump_common_done(struct bio *bp) 1000 { 1001 1002 bp->bio_flags |= BIO_DONE; 1003 } 1004 1005 int 1006 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr, 1007 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1008 { 1009 struct g_raid_softc *sc; 1010 struct g_raid_volume *vol; 1011 struct bio bp; 1012 1013 vol = tr->tro_volume; 1014 sc = vol->v_softc; 1015 1016 g_reset_bio(&bp); 1017 bp.bio_cmd = BIO_WRITE; 1018 bp.bio_done = g_raid_tr_kerneldump_common_done; 1019 bp.bio_attribute = NULL; 1020 bp.bio_offset = offset; 1021 bp.bio_length = length; 1022 bp.bio_data = virtual; 1023 bp.bio_to = vol->v_provider; 1024 1025 g_raid_start(&bp); 1026 while (!(bp.bio_flags & BIO_DONE)) { 1027 G_RAID_DEBUG1(4, sc, "Poll..."); 1028 g_raid_poll(sc); 1029 DELAY(10); 1030 } 1031 1032 return (bp.bio_error != 0 ? EIO : 0); 1033 } 1034 1035 static int 1036 g_raid_dump(void *arg, 1037 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1038 { 1039 struct g_raid_volume *vol; 1040 int error; 1041 1042 vol = (struct g_raid_volume *)arg; 1043 G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.", 1044 (long long unsigned)offset, (long long unsigned)length); 1045 1046 error = G_RAID_TR_KERNELDUMP(vol->v_tr, 1047 virtual, physical, offset, length); 1048 return (error); 1049 } 1050 1051 static void 1052 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp) 1053 { 1054 struct g_kerneldump *gkd; 1055 struct g_provider *pp; 1056 struct g_raid_volume *vol; 1057 1058 gkd = (struct g_kerneldump*)bp->bio_data; 1059 pp = bp->bio_to; 1060 vol = pp->private; 1061 g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)", 1062 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length); 1063 gkd->di.dumper = g_raid_dump; 1064 gkd->di.priv = vol; 1065 gkd->di.blocksize = vol->v_sectorsize; 1066 gkd->di.maxiosize = DFLTPHYS; 1067 gkd->di.mediaoffset = gkd->offset; 1068 if ((gkd->offset + gkd->length) > vol->v_mediasize) 1069 gkd->length = vol->v_mediasize - gkd->offset; 1070 gkd->di.mediasize = gkd->length; 1071 g_io_deliver(bp, 0); 1072 } 1073 1074 static void 1075 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp) 1076 { 1077 struct g_provider *pp; 1078 struct g_raid_volume *vol; 1079 struct g_raid_subdisk *sd; 1080 int i, val; 1081 1082 pp = bp->bio_to; 1083 vol = pp->private; 1084 for (i = 0; i < vol->v_disks_count; i++) { 1085 sd = &vol->v_subdisks[i]; 1086 if (sd->sd_state == G_RAID_SUBDISK_S_NONE) 1087 continue; 1088 if (sd->sd_disk->d_candelete) 1089 break; 1090 } 1091 val = i < vol->v_disks_count; 1092 g_handleattr(bp, "GEOM::candelete", &val, sizeof(val)); 1093 } 1094 1095 static void 1096 g_raid_start(struct bio *bp) 1097 { 1098 struct g_raid_softc *sc; 1099 1100 sc = bp->bio_to->geom->softc; 1101 /* 1102 * If sc == NULL or there are no valid disks, provider's error 1103 * should be set and g_raid_start() should not be called at all. 1104 */ 1105 // KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING, 1106 // ("Provider's error should be set (error=%d)(mirror=%s).", 1107 // bp->bio_to->error, bp->bio_to->name)); 1108 G_RAID_LOGREQ(3, bp, "Request received."); 1109 1110 switch (bp->bio_cmd) { 1111 case BIO_READ: 1112 case BIO_WRITE: 1113 case BIO_DELETE: 1114 case BIO_FLUSH: 1115 case BIO_SPEEDUP: 1116 break; 1117 case BIO_GETATTR: 1118 if (!strcmp(bp->bio_attribute, "GEOM::candelete")) 1119 g_raid_candelete(sc, bp); 1120 else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump")) 1121 g_raid_kerneldump(sc, bp); 1122 else 1123 g_io_deliver(bp, EOPNOTSUPP); 1124 return; 1125 default: 1126 g_io_deliver(bp, EOPNOTSUPP); 1127 return; 1128 } 1129 mtx_lock(&sc->sc_queue_mtx); 1130 bioq_insert_tail(&sc->sc_queue, bp); 1131 mtx_unlock(&sc->sc_queue_mtx); 1132 if (!dumping) { 1133 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc); 1134 wakeup(sc); 1135 } 1136 } 1137 1138 static int 1139 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len) 1140 { 1141 /* 1142 * 5 cases: 1143 * (1) bp entirely below NO 1144 * (2) bp entirely above NO 1145 * (3) bp start below, but end in range YES 1146 * (4) bp entirely within YES 1147 * (5) bp starts within, ends above YES 1148 * 1149 * lock range 10-19 (offset 10 length 10) 1150 * (1) 1-5: first if kicks it out 1151 * (2) 30-35: second if kicks it out 1152 * (3) 5-15: passes both ifs 1153 * (4) 12-14: passes both ifs 1154 * (5) 19-20: passes both 1155 */ 1156 off_t lend = lstart + len - 1; 1157 off_t bstart = bp->bio_offset; 1158 off_t bend = bp->bio_offset + bp->bio_length - 1; 1159 1160 if (bend < lstart) 1161 return (0); 1162 if (lend < bstart) 1163 return (0); 1164 return (1); 1165 } 1166 1167 static int 1168 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp) 1169 { 1170 struct g_raid_lock *lp; 1171 1172 sx_assert(&vol->v_softc->sc_lock, SX_LOCKED); 1173 1174 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1175 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length)) 1176 return (1); 1177 } 1178 return (0); 1179 } 1180 1181 static void 1182 g_raid_start_request(struct bio *bp) 1183 { 1184 struct g_raid_softc *sc __diagused; 1185 struct g_raid_volume *vol; 1186 1187 sc = bp->bio_to->geom->softc; 1188 sx_assert(&sc->sc_lock, SX_LOCKED); 1189 vol = bp->bio_to->private; 1190 1191 /* 1192 * Check to see if this item is in a locked range. If so, 1193 * queue it to our locked queue and return. We'll requeue 1194 * it when the range is unlocked. Internal I/O for the 1195 * rebuild/rescan/recovery process is excluded from this 1196 * check so we can actually do the recovery. 1197 */ 1198 if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) && 1199 g_raid_is_in_locked_range(vol, bp)) { 1200 G_RAID_LOGREQ(3, bp, "Defer request."); 1201 bioq_insert_tail(&vol->v_locked, bp); 1202 return; 1203 } 1204 1205 /* 1206 * If we're actually going to do the write/delete, then 1207 * update the idle stats for the volume. 1208 */ 1209 if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) { 1210 if (!vol->v_dirty) 1211 g_raid_dirty(vol); 1212 vol->v_writes++; 1213 } 1214 1215 /* 1216 * Put request onto inflight queue, so we can check if new 1217 * synchronization requests don't collide with it. Then tell 1218 * the transformation layer to start the I/O. 1219 */ 1220 bioq_insert_tail(&vol->v_inflight, bp); 1221 G_RAID_LOGREQ(4, bp, "Request started"); 1222 G_RAID_TR_IOSTART(vol->v_tr, bp); 1223 } 1224 1225 static void 1226 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp) 1227 { 1228 off_t off, len; 1229 struct bio *nbp; 1230 struct g_raid_lock *lp; 1231 1232 vol->v_pending_lock = 0; 1233 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1234 if (lp->l_pending) { 1235 off = lp->l_offset; 1236 len = lp->l_length; 1237 lp->l_pending = 0; 1238 TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) { 1239 if (g_raid_bio_overlaps(nbp, off, len)) 1240 lp->l_pending++; 1241 } 1242 if (lp->l_pending) { 1243 vol->v_pending_lock = 1; 1244 G_RAID_DEBUG1(4, vol->v_softc, 1245 "Deferred lock(%jd, %jd) has %d pending", 1246 (intmax_t)off, (intmax_t)(off + len), 1247 lp->l_pending); 1248 continue; 1249 } 1250 G_RAID_DEBUG1(4, vol->v_softc, 1251 "Deferred lock of %jd to %jd completed", 1252 (intmax_t)off, (intmax_t)(off + len)); 1253 G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg); 1254 } 1255 } 1256 } 1257 1258 void 1259 g_raid_iodone(struct bio *bp, int error) 1260 { 1261 struct g_raid_softc *sc __diagused; 1262 struct g_raid_volume *vol; 1263 1264 sc = bp->bio_to->geom->softc; 1265 sx_assert(&sc->sc_lock, SX_LOCKED); 1266 vol = bp->bio_to->private; 1267 G_RAID_LOGREQ(3, bp, "Request done: %d.", error); 1268 1269 /* Update stats if we done write/delete. */ 1270 if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) { 1271 vol->v_writes--; 1272 vol->v_last_write = time_uptime; 1273 } 1274 1275 bioq_remove(&vol->v_inflight, bp); 1276 if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp)) 1277 g_raid_finish_with_locked_ranges(vol, bp); 1278 getmicrouptime(&vol->v_last_done); 1279 g_io_deliver(bp, error); 1280 } 1281 1282 int 1283 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len, 1284 struct bio *ignore, void *argp) 1285 { 1286 struct g_raid_softc *sc; 1287 struct g_raid_lock *lp; 1288 struct bio *bp; 1289 1290 sc = vol->v_softc; 1291 lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO); 1292 LIST_INSERT_HEAD(&vol->v_locks, lp, l_next); 1293 lp->l_offset = off; 1294 lp->l_length = len; 1295 lp->l_callback_arg = argp; 1296 1297 lp->l_pending = 0; 1298 TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) { 1299 if (bp != ignore && g_raid_bio_overlaps(bp, off, len)) 1300 lp->l_pending++; 1301 } 1302 1303 /* 1304 * If there are any writes that are pending, we return EBUSY. All 1305 * callers will have to wait until all pending writes clear. 1306 */ 1307 if (lp->l_pending > 0) { 1308 vol->v_pending_lock = 1; 1309 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend", 1310 (intmax_t)off, (intmax_t)(off+len), lp->l_pending); 1311 return (EBUSY); 1312 } 1313 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd", 1314 (intmax_t)off, (intmax_t)(off+len)); 1315 G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg); 1316 return (0); 1317 } 1318 1319 int 1320 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len) 1321 { 1322 struct g_raid_lock *lp; 1323 struct g_raid_softc *sc; 1324 struct bio *bp; 1325 1326 sc = vol->v_softc; 1327 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1328 if (lp->l_offset == off && lp->l_length == len) { 1329 LIST_REMOVE(lp, l_next); 1330 /* XXX 1331 * Right now we just put them all back on the queue 1332 * and hope for the best. We hope this because any 1333 * locked ranges will go right back on this list 1334 * when the worker thread runs. 1335 * XXX 1336 */ 1337 G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd", 1338 (intmax_t)lp->l_offset, 1339 (intmax_t)(lp->l_offset+lp->l_length)); 1340 mtx_lock(&sc->sc_queue_mtx); 1341 while ((bp = bioq_takefirst(&vol->v_locked)) != NULL) 1342 bioq_insert_tail(&sc->sc_queue, bp); 1343 mtx_unlock(&sc->sc_queue_mtx); 1344 free(lp, M_RAID); 1345 return (0); 1346 } 1347 } 1348 return (EINVAL); 1349 } 1350 1351 void 1352 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp) 1353 { 1354 struct g_consumer *cp; 1355 struct g_raid_disk *disk, *tdisk; 1356 1357 bp->bio_caller1 = sd; 1358 1359 /* 1360 * Make sure that the disk is present. Generally it is a task of 1361 * transformation layers to not send requests to absent disks, but 1362 * it is better to be safe and report situation then sorry. 1363 */ 1364 if (sd->sd_disk == NULL) { 1365 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!"); 1366 nodisk: 1367 bp->bio_from = NULL; 1368 bp->bio_to = NULL; 1369 bp->bio_error = ENXIO; 1370 g_raid_disk_done(bp); 1371 return; 1372 } 1373 disk = sd->sd_disk; 1374 if (disk->d_state != G_RAID_DISK_S_ACTIVE && 1375 disk->d_state != G_RAID_DISK_S_FAILED) { 1376 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a " 1377 "wrong state (%s)!", g_raid_disk_state2str(disk->d_state)); 1378 goto nodisk; 1379 } 1380 1381 cp = disk->d_consumer; 1382 bp->bio_from = cp; 1383 bp->bio_to = cp->provider; 1384 cp->index++; 1385 1386 /* Update average disks load. */ 1387 TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) { 1388 if (tdisk->d_consumer == NULL) 1389 tdisk->d_load = 0; 1390 else 1391 tdisk->d_load = (tdisk->d_consumer->index * 1392 G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8; 1393 } 1394 1395 disk->d_last_offset = bp->bio_offset + bp->bio_length; 1396 if (dumping) { 1397 G_RAID_LOGREQ(3, bp, "Sending dumping request."); 1398 if (bp->bio_cmd == BIO_WRITE) { 1399 bp->bio_error = g_raid_subdisk_kerneldump(sd, 1400 bp->bio_data, 0, bp->bio_offset, bp->bio_length); 1401 } else 1402 bp->bio_error = EOPNOTSUPP; 1403 g_raid_disk_done(bp); 1404 } else { 1405 bp->bio_done = g_raid_disk_done; 1406 bp->bio_offset += sd->sd_offset; 1407 G_RAID_LOGREQ(3, bp, "Sending request."); 1408 g_io_request(bp, cp); 1409 } 1410 } 1411 1412 int 1413 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd, 1414 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1415 { 1416 1417 if (sd->sd_disk == NULL) 1418 return (ENXIO); 1419 if (sd->sd_disk->d_kd.di.dumper == NULL) 1420 return (EOPNOTSUPP); 1421 return (dump_write(&sd->sd_disk->d_kd.di, 1422 virtual, physical, 1423 sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset, 1424 length)); 1425 } 1426 1427 static void 1428 g_raid_disk_done(struct bio *bp) 1429 { 1430 struct g_raid_softc *sc; 1431 struct g_raid_subdisk *sd; 1432 1433 sd = bp->bio_caller1; 1434 sc = sd->sd_softc; 1435 mtx_lock(&sc->sc_queue_mtx); 1436 bioq_insert_tail(&sc->sc_queue, bp); 1437 mtx_unlock(&sc->sc_queue_mtx); 1438 if (!dumping) 1439 wakeup(sc); 1440 } 1441 1442 static void 1443 g_raid_disk_done_request(struct bio *bp) 1444 { 1445 struct g_raid_softc *sc; 1446 struct g_raid_disk *disk; 1447 struct g_raid_subdisk *sd; 1448 struct g_raid_volume *vol; 1449 1450 g_topology_assert_not(); 1451 1452 G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error); 1453 sd = bp->bio_caller1; 1454 sc = sd->sd_softc; 1455 vol = sd->sd_volume; 1456 if (bp->bio_from != NULL) { 1457 bp->bio_from->index--; 1458 disk = bp->bio_from->private; 1459 if (disk == NULL) 1460 g_raid_kill_consumer(sc, bp->bio_from); 1461 } 1462 bp->bio_offset -= sd->sd_offset; 1463 1464 G_RAID_TR_IODONE(vol->v_tr, sd, bp); 1465 } 1466 1467 static void 1468 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep) 1469 { 1470 1471 if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0) 1472 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event); 1473 else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0) 1474 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event); 1475 else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0) 1476 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event); 1477 else 1478 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event); 1479 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) { 1480 KASSERT(ep->e_error == 0, 1481 ("Error cannot be handled.")); 1482 g_raid_event_free(ep); 1483 } else { 1484 ep->e_flags |= G_RAID_EVENT_DONE; 1485 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep); 1486 mtx_lock(&sc->sc_queue_mtx); 1487 wakeup(ep); 1488 mtx_unlock(&sc->sc_queue_mtx); 1489 } 1490 } 1491 1492 /* 1493 * Worker thread. 1494 */ 1495 static void 1496 g_raid_worker(void *arg) 1497 { 1498 struct g_raid_softc *sc; 1499 struct g_raid_event *ep; 1500 struct g_raid_volume *vol; 1501 struct bio *bp; 1502 struct timeval now, t; 1503 int timeout, rv; 1504 1505 sc = arg; 1506 thread_lock(curthread); 1507 sched_prio(curthread, PRIBIO); 1508 thread_unlock(curthread); 1509 1510 sx_xlock(&sc->sc_lock); 1511 for (;;) { 1512 mtx_lock(&sc->sc_queue_mtx); 1513 /* 1514 * First take a look at events. 1515 * This is important to handle events before any I/O requests. 1516 */ 1517 bp = NULL; 1518 vol = NULL; 1519 rv = 0; 1520 ep = TAILQ_FIRST(&sc->sc_events); 1521 if (ep != NULL) 1522 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 1523 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL) 1524 ; 1525 else { 1526 getmicrouptime(&now); 1527 t = now; 1528 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1529 if (bioq_first(&vol->v_inflight) == NULL && 1530 vol->v_tr && 1531 timevalcmp(&vol->v_last_done, &t, < )) 1532 t = vol->v_last_done; 1533 } 1534 timevalsub(&t, &now); 1535 timeout = g_raid_idle_threshold + 1536 t.tv_sec * 1000000 + t.tv_usec; 1537 if (timeout > 0) { 1538 /* 1539 * Two steps to avoid overflows at HZ=1000 1540 * and idle timeouts > 2.1s. Some rounding 1541 * errors can occur, but they are < 1tick, 1542 * which is deemed to be close enough for 1543 * this purpose. 1544 */ 1545 int micpertic = 1000000 / hz; 1546 timeout = (timeout + micpertic - 1) / micpertic; 1547 sx_xunlock(&sc->sc_lock); 1548 MSLEEP(rv, sc, &sc->sc_queue_mtx, 1549 PRIBIO | PDROP, "-", timeout); 1550 sx_xlock(&sc->sc_lock); 1551 goto process; 1552 } else 1553 rv = EWOULDBLOCK; 1554 } 1555 mtx_unlock(&sc->sc_queue_mtx); 1556 process: 1557 if (ep != NULL) { 1558 g_raid_handle_event(sc, ep); 1559 } else if (bp != NULL) { 1560 if (bp->bio_to != NULL && 1561 bp->bio_to->geom == sc->sc_geom) 1562 g_raid_start_request(bp); 1563 else 1564 g_raid_disk_done_request(bp); 1565 } else if (rv == EWOULDBLOCK) { 1566 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1567 g_raid_clean(vol, -1); 1568 if (bioq_first(&vol->v_inflight) == NULL && 1569 vol->v_tr) { 1570 t.tv_sec = g_raid_idle_threshold / 1000000; 1571 t.tv_usec = g_raid_idle_threshold % 1000000; 1572 timevaladd(&t, &vol->v_last_done); 1573 getmicrouptime(&now); 1574 if (timevalcmp(&t, &now, <= )) { 1575 G_RAID_TR_IDLE(vol->v_tr); 1576 vol->v_last_done = now; 1577 } 1578 } 1579 } 1580 } 1581 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 1582 g_raid_destroy_node(sc, 1); /* May not return. */ 1583 } 1584 } 1585 1586 static void 1587 g_raid_poll(struct g_raid_softc *sc) 1588 { 1589 struct g_raid_event *ep; 1590 struct bio *bp; 1591 1592 sx_xlock(&sc->sc_lock); 1593 mtx_lock(&sc->sc_queue_mtx); 1594 /* 1595 * First take a look at events. 1596 * This is important to handle events before any I/O requests. 1597 */ 1598 ep = TAILQ_FIRST(&sc->sc_events); 1599 if (ep != NULL) { 1600 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 1601 mtx_unlock(&sc->sc_queue_mtx); 1602 g_raid_handle_event(sc, ep); 1603 goto out; 1604 } 1605 bp = bioq_takefirst(&sc->sc_queue); 1606 if (bp != NULL) { 1607 mtx_unlock(&sc->sc_queue_mtx); 1608 if (bp->bio_from == NULL || 1609 bp->bio_from->geom != sc->sc_geom) 1610 g_raid_start_request(bp); 1611 else 1612 g_raid_disk_done_request(bp); 1613 } 1614 out: 1615 sx_xunlock(&sc->sc_lock); 1616 } 1617 1618 static void 1619 g_raid_launch_provider(struct g_raid_volume *vol) 1620 { 1621 struct g_raid_disk *disk; 1622 struct g_raid_subdisk *sd; 1623 struct g_raid_softc *sc; 1624 struct g_provider *pp; 1625 char name[G_RAID_MAX_VOLUMENAME]; 1626 off_t off; 1627 int i; 1628 1629 sc = vol->v_softc; 1630 sx_assert(&sc->sc_lock, SX_LOCKED); 1631 1632 g_topology_lock(); 1633 /* Try to name provider with volume name. */ 1634 snprintf(name, sizeof(name), "raid/%s", vol->v_name); 1635 if (g_raid_name_format == 0 || vol->v_name[0] == 0 || 1636 g_provider_by_name(name) != NULL) { 1637 /* Otherwise use sequential volume number. */ 1638 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id); 1639 } 1640 1641 pp = g_new_providerf(sc->sc_geom, "%s", name); 1642 pp->flags |= G_PF_DIRECT_RECEIVE; 1643 if (vol->v_tr->tro_class->trc_accept_unmapped) { 1644 pp->flags |= G_PF_ACCEPT_UNMAPPED; 1645 for (i = 0; i < vol->v_disks_count; i++) { 1646 sd = &vol->v_subdisks[i]; 1647 if (sd->sd_state == G_RAID_SUBDISK_S_NONE) 1648 continue; 1649 if ((sd->sd_disk->d_consumer->provider->flags & 1650 G_PF_ACCEPT_UNMAPPED) == 0) 1651 pp->flags &= ~G_PF_ACCEPT_UNMAPPED; 1652 } 1653 } 1654 pp->private = vol; 1655 pp->mediasize = vol->v_mediasize; 1656 pp->sectorsize = vol->v_sectorsize; 1657 pp->stripesize = 0; 1658 pp->stripeoffset = 0; 1659 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 || 1660 vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 || 1661 vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE || 1662 vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) { 1663 if ((disk = vol->v_subdisks[0].sd_disk) != NULL && 1664 disk->d_consumer != NULL && 1665 disk->d_consumer->provider != NULL) { 1666 pp->stripesize = disk->d_consumer->provider->stripesize; 1667 off = disk->d_consumer->provider->stripeoffset; 1668 pp->stripeoffset = off + vol->v_subdisks[0].sd_offset; 1669 if (off > 0) 1670 pp->stripeoffset %= off; 1671 } 1672 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) { 1673 pp->stripesize *= (vol->v_disks_count - 1); 1674 pp->stripeoffset *= (vol->v_disks_count - 1); 1675 } 1676 } else 1677 pp->stripesize = vol->v_strip_size; 1678 vol->v_provider = pp; 1679 g_error_provider(pp, 0); 1680 g_topology_unlock(); 1681 G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.", 1682 pp->name, vol->v_name); 1683 } 1684 1685 static void 1686 g_raid_destroy_provider(struct g_raid_volume *vol) 1687 { 1688 struct g_raid_softc *sc; 1689 struct g_provider *pp; 1690 struct bio *bp, *tmp; 1691 1692 g_topology_assert_not(); 1693 sc = vol->v_softc; 1694 pp = vol->v_provider; 1695 KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name)); 1696 1697 g_topology_lock(); 1698 g_error_provider(pp, ENXIO); 1699 mtx_lock(&sc->sc_queue_mtx); 1700 TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) { 1701 if (bp->bio_to != pp) 1702 continue; 1703 bioq_remove(&sc->sc_queue, bp); 1704 g_io_deliver(bp, ENXIO); 1705 } 1706 mtx_unlock(&sc->sc_queue_mtx); 1707 G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.", 1708 pp->name, vol->v_name); 1709 g_wither_provider(pp, ENXIO); 1710 g_topology_unlock(); 1711 vol->v_provider = NULL; 1712 } 1713 1714 /* 1715 * Update device state. 1716 */ 1717 static int 1718 g_raid_update_volume(struct g_raid_volume *vol, u_int event) 1719 { 1720 struct g_raid_softc *sc; 1721 1722 sc = vol->v_softc; 1723 sx_assert(&sc->sc_lock, SX_XLOCKED); 1724 1725 G_RAID_DEBUG1(2, sc, "Event %s for volume %s.", 1726 g_raid_volume_event2str(event), 1727 vol->v_name); 1728 switch (event) { 1729 case G_RAID_VOLUME_E_DOWN: 1730 if (vol->v_provider != NULL) 1731 g_raid_destroy_provider(vol); 1732 break; 1733 case G_RAID_VOLUME_E_UP: 1734 if (vol->v_provider == NULL) 1735 g_raid_launch_provider(vol); 1736 break; 1737 case G_RAID_VOLUME_E_START: 1738 if (vol->v_tr) 1739 G_RAID_TR_START(vol->v_tr); 1740 return (0); 1741 default: 1742 if (sc->sc_md) 1743 G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event); 1744 return (0); 1745 } 1746 1747 /* Manage root mount release. */ 1748 if (vol->v_starting) { 1749 vol->v_starting = 0; 1750 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount); 1751 root_mount_rel(vol->v_rootmount); 1752 vol->v_rootmount = NULL; 1753 } 1754 if (vol->v_stopping && vol->v_provider_open == 0) 1755 g_raid_destroy_volume(vol); 1756 return (0); 1757 } 1758 1759 /* 1760 * Update subdisk state. 1761 */ 1762 static int 1763 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event) 1764 { 1765 struct g_raid_softc *sc; 1766 struct g_raid_volume *vol; 1767 1768 sc = sd->sd_softc; 1769 vol = sd->sd_volume; 1770 sx_assert(&sc->sc_lock, SX_XLOCKED); 1771 1772 G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.", 1773 g_raid_subdisk_event2str(event), 1774 vol->v_name, sd->sd_pos, 1775 sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]"); 1776 if (vol->v_tr) 1777 G_RAID_TR_EVENT(vol->v_tr, sd, event); 1778 1779 return (0); 1780 } 1781 1782 /* 1783 * Update disk state. 1784 */ 1785 static int 1786 g_raid_update_disk(struct g_raid_disk *disk, u_int event) 1787 { 1788 struct g_raid_softc *sc; 1789 1790 sc = disk->d_softc; 1791 sx_assert(&sc->sc_lock, SX_XLOCKED); 1792 1793 G_RAID_DEBUG1(2, sc, "Event %s for disk %s.", 1794 g_raid_disk_event2str(event), 1795 g_raid_get_diskname(disk)); 1796 1797 if (sc->sc_md) 1798 G_RAID_MD_EVENT(sc->sc_md, disk, event); 1799 return (0); 1800 } 1801 1802 /* 1803 * Node event. 1804 */ 1805 static int 1806 g_raid_update_node(struct g_raid_softc *sc, u_int event) 1807 { 1808 sx_assert(&sc->sc_lock, SX_XLOCKED); 1809 1810 G_RAID_DEBUG1(2, sc, "Event %s for the array.", 1811 g_raid_node_event2str(event)); 1812 1813 if (event == G_RAID_NODE_E_WAKE) 1814 return (0); 1815 if (sc->sc_md) 1816 G_RAID_MD_EVENT(sc->sc_md, NULL, event); 1817 return (0); 1818 } 1819 1820 static int 1821 g_raid_access(struct g_provider *pp, int acr, int acw, int ace) 1822 { 1823 struct g_raid_volume *vol; 1824 struct g_raid_softc *sc; 1825 int dcw, opens, error = 0; 1826 1827 g_topology_assert(); 1828 sc = pp->geom->softc; 1829 vol = pp->private; 1830 KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name)); 1831 KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name)); 1832 1833 G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name, 1834 acr, acw, ace); 1835 dcw = pp->acw + acw; 1836 1837 g_topology_unlock(); 1838 sx_xlock(&sc->sc_lock); 1839 /* Deny new opens while dying. */ 1840 if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) { 1841 error = ENXIO; 1842 goto out; 1843 } 1844 /* Deny write opens for read-only volumes. */ 1845 if (vol->v_read_only && acw > 0) { 1846 error = EROFS; 1847 goto out; 1848 } 1849 if (dcw == 0) 1850 g_raid_clean(vol, dcw); 1851 vol->v_provider_open += acr + acw + ace; 1852 /* Handle delayed node destruction. */ 1853 if (sc->sc_stopping == G_RAID_DESTROY_DELAYED && 1854 vol->v_provider_open == 0) { 1855 /* Count open volumes. */ 1856 opens = g_raid_nopens(sc); 1857 if (opens == 0) { 1858 sc->sc_stopping = G_RAID_DESTROY_HARD; 1859 /* Wake up worker to make it selfdestruct. */ 1860 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 1861 } 1862 } 1863 /* Handle open volume destruction. */ 1864 if (vol->v_stopping && vol->v_provider_open == 0) 1865 g_raid_destroy_volume(vol); 1866 out: 1867 sx_xunlock(&sc->sc_lock); 1868 g_topology_lock(); 1869 return (error); 1870 } 1871 1872 struct g_raid_softc * 1873 g_raid_create_node(struct g_class *mp, 1874 const char *name, struct g_raid_md_object *md) 1875 { 1876 struct g_raid_softc *sc; 1877 struct g_geom *gp; 1878 int error; 1879 1880 g_topology_assert(); 1881 G_RAID_DEBUG(1, "Creating array %s.", name); 1882 1883 gp = g_new_geomf(mp, "%s", name); 1884 sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO); 1885 gp->start = g_raid_start; 1886 gp->orphan = g_raid_orphan; 1887 gp->access = g_raid_access; 1888 gp->dumpconf = g_raid_dumpconf; 1889 1890 sc->sc_md = md; 1891 sc->sc_geom = gp; 1892 sc->sc_flags = 0; 1893 TAILQ_INIT(&sc->sc_volumes); 1894 TAILQ_INIT(&sc->sc_disks); 1895 sx_init(&sc->sc_lock, "graid:lock"); 1896 mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF); 1897 TAILQ_INIT(&sc->sc_events); 1898 bioq_init(&sc->sc_queue); 1899 gp->softc = sc; 1900 error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0, 1901 "g_raid %s", name); 1902 if (error != 0) { 1903 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name); 1904 mtx_destroy(&sc->sc_queue_mtx); 1905 sx_destroy(&sc->sc_lock); 1906 g_destroy_geom(sc->sc_geom); 1907 free(sc, M_RAID); 1908 return (NULL); 1909 } 1910 1911 G_RAID_DEBUG1(0, sc, "Array %s created.", name); 1912 return (sc); 1913 } 1914 1915 struct g_raid_volume * 1916 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id) 1917 { 1918 struct g_raid_volume *vol, *vol1; 1919 int i; 1920 1921 G_RAID_DEBUG1(1, sc, "Creating volume %s.", name); 1922 vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO); 1923 vol->v_softc = sc; 1924 strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME); 1925 vol->v_state = G_RAID_VOLUME_S_STARTING; 1926 vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN; 1927 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN; 1928 vol->v_rotate_parity = 1; 1929 bioq_init(&vol->v_inflight); 1930 bioq_init(&vol->v_locked); 1931 LIST_INIT(&vol->v_locks); 1932 for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) { 1933 vol->v_subdisks[i].sd_softc = sc; 1934 vol->v_subdisks[i].sd_volume = vol; 1935 vol->v_subdisks[i].sd_pos = i; 1936 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE; 1937 } 1938 1939 /* Find free ID for this volume. */ 1940 g_topology_lock(); 1941 vol1 = vol; 1942 if (id >= 0) { 1943 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) { 1944 if (vol1->v_global_id == id) 1945 break; 1946 } 1947 } 1948 if (vol1 != NULL) { 1949 for (id = 0; ; id++) { 1950 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) { 1951 if (vol1->v_global_id == id) 1952 break; 1953 } 1954 if (vol1 == NULL) 1955 break; 1956 } 1957 } 1958 vol->v_global_id = id; 1959 LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next); 1960 g_topology_unlock(); 1961 1962 /* Delay root mounting. */ 1963 vol->v_rootmount = root_mount_hold("GRAID"); 1964 G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount); 1965 vol->v_starting = 1; 1966 TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next); 1967 return (vol); 1968 } 1969 1970 struct g_raid_disk * 1971 g_raid_create_disk(struct g_raid_softc *sc) 1972 { 1973 struct g_raid_disk *disk; 1974 1975 G_RAID_DEBUG1(1, sc, "Creating disk."); 1976 disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO); 1977 disk->d_softc = sc; 1978 disk->d_state = G_RAID_DISK_S_NONE; 1979 TAILQ_INIT(&disk->d_subdisks); 1980 TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next); 1981 return (disk); 1982 } 1983 1984 int g_raid_start_volume(struct g_raid_volume *vol) 1985 { 1986 struct g_raid_tr_class *class; 1987 struct g_raid_tr_object *obj; 1988 int status; 1989 1990 G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name); 1991 LIST_FOREACH(class, &g_raid_tr_classes, trc_list) { 1992 if (!class->trc_enable) 1993 continue; 1994 G_RAID_DEBUG1(2, vol->v_softc, 1995 "Tasting volume %s for %s transformation.", 1996 vol->v_name, class->name); 1997 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 1998 M_WAITOK); 1999 obj->tro_class = class; 2000 obj->tro_volume = vol; 2001 status = G_RAID_TR_TASTE(obj, vol); 2002 if (status != G_RAID_TR_TASTE_FAIL) 2003 break; 2004 kobj_delete((kobj_t)obj, M_RAID); 2005 } 2006 if (class == NULL) { 2007 G_RAID_DEBUG1(0, vol->v_softc, 2008 "No transformation module found for %s.", 2009 vol->v_name); 2010 vol->v_tr = NULL; 2011 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED); 2012 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN, 2013 G_RAID_EVENT_VOLUME); 2014 return (-1); 2015 } 2016 G_RAID_DEBUG1(2, vol->v_softc, 2017 "Transformation module %s chosen for %s.", 2018 class->name, vol->v_name); 2019 vol->v_tr = obj; 2020 return (0); 2021 } 2022 2023 int 2024 g_raid_destroy_node(struct g_raid_softc *sc, int worker) 2025 { 2026 struct g_raid_volume *vol, *tmpv; 2027 struct g_raid_disk *disk, *tmpd; 2028 int error = 0; 2029 2030 sc->sc_stopping = G_RAID_DESTROY_HARD; 2031 TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) { 2032 if (g_raid_destroy_volume(vol)) 2033 error = EBUSY; 2034 } 2035 if (error) 2036 return (error); 2037 TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) { 2038 if (g_raid_destroy_disk(disk)) 2039 error = EBUSY; 2040 } 2041 if (error) 2042 return (error); 2043 if (sc->sc_md) { 2044 G_RAID_MD_FREE(sc->sc_md); 2045 kobj_delete((kobj_t)sc->sc_md, M_RAID); 2046 sc->sc_md = NULL; 2047 } 2048 if (sc->sc_geom != NULL) { 2049 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name); 2050 g_topology_lock(); 2051 sc->sc_geom->softc = NULL; 2052 g_wither_geom(sc->sc_geom, ENXIO); 2053 g_topology_unlock(); 2054 sc->sc_geom = NULL; 2055 } else 2056 G_RAID_DEBUG(1, "Array destroyed."); 2057 if (worker) { 2058 g_raid_event_cancel(sc, sc); 2059 mtx_destroy(&sc->sc_queue_mtx); 2060 sx_xunlock(&sc->sc_lock); 2061 sx_destroy(&sc->sc_lock); 2062 wakeup(&sc->sc_stopping); 2063 free(sc, M_RAID); 2064 curthread->td_pflags &= ~TDP_GEOM; 2065 G_RAID_DEBUG(1, "Thread exiting."); 2066 kproc_exit(0); 2067 } else { 2068 /* Wake up worker to make it selfdestruct. */ 2069 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2070 } 2071 return (0); 2072 } 2073 2074 int 2075 g_raid_destroy_volume(struct g_raid_volume *vol) 2076 { 2077 struct g_raid_softc *sc; 2078 struct g_raid_disk *disk; 2079 int i; 2080 2081 sc = vol->v_softc; 2082 G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name); 2083 vol->v_stopping = 1; 2084 if (vol->v_state != G_RAID_VOLUME_S_STOPPED) { 2085 if (vol->v_tr) { 2086 G_RAID_TR_STOP(vol->v_tr); 2087 return (EBUSY); 2088 } else 2089 vol->v_state = G_RAID_VOLUME_S_STOPPED; 2090 } 2091 if (g_raid_event_check(sc, vol) != 0) 2092 return (EBUSY); 2093 if (vol->v_provider != NULL) 2094 return (EBUSY); 2095 if (vol->v_provider_open != 0) 2096 return (EBUSY); 2097 if (vol->v_tr) { 2098 G_RAID_TR_FREE(vol->v_tr); 2099 kobj_delete((kobj_t)vol->v_tr, M_RAID); 2100 vol->v_tr = NULL; 2101 } 2102 if (vol->v_rootmount) 2103 root_mount_rel(vol->v_rootmount); 2104 g_topology_lock(); 2105 LIST_REMOVE(vol, v_global_next); 2106 g_topology_unlock(); 2107 TAILQ_REMOVE(&sc->sc_volumes, vol, v_next); 2108 for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) { 2109 g_raid_event_cancel(sc, &vol->v_subdisks[i]); 2110 disk = vol->v_subdisks[i].sd_disk; 2111 if (disk == NULL) 2112 continue; 2113 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next); 2114 } 2115 G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name); 2116 if (sc->sc_md) 2117 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol); 2118 g_raid_event_cancel(sc, vol); 2119 free(vol, M_RAID); 2120 if (sc->sc_stopping == G_RAID_DESTROY_HARD) { 2121 /* Wake up worker to let it selfdestruct. */ 2122 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2123 } 2124 return (0); 2125 } 2126 2127 int 2128 g_raid_destroy_disk(struct g_raid_disk *disk) 2129 { 2130 struct g_raid_softc *sc; 2131 struct g_raid_subdisk *sd, *tmp; 2132 2133 sc = disk->d_softc; 2134 G_RAID_DEBUG1(2, sc, "Destroying disk."); 2135 if (disk->d_consumer) { 2136 g_raid_kill_consumer(sc, disk->d_consumer); 2137 disk->d_consumer = NULL; 2138 } 2139 TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) { 2140 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE); 2141 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED, 2142 G_RAID_EVENT_SUBDISK); 2143 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next); 2144 sd->sd_disk = NULL; 2145 } 2146 TAILQ_REMOVE(&sc->sc_disks, disk, d_next); 2147 if (sc->sc_md) 2148 G_RAID_MD_FREE_DISK(sc->sc_md, disk); 2149 g_raid_event_cancel(sc, disk); 2150 free(disk, M_RAID); 2151 return (0); 2152 } 2153 2154 int 2155 g_raid_destroy(struct g_raid_softc *sc, int how) 2156 { 2157 int error, opens; 2158 2159 g_topology_assert_not(); 2160 if (sc == NULL) 2161 return (ENXIO); 2162 sx_assert(&sc->sc_lock, SX_XLOCKED); 2163 2164 /* Count open volumes. */ 2165 opens = g_raid_nopens(sc); 2166 2167 /* React on some opened volumes. */ 2168 if (opens > 0) { 2169 switch (how) { 2170 case G_RAID_DESTROY_SOFT: 2171 G_RAID_DEBUG1(1, sc, 2172 "%d volumes are still open.", 2173 opens); 2174 sx_xunlock(&sc->sc_lock); 2175 return (EBUSY); 2176 case G_RAID_DESTROY_DELAYED: 2177 G_RAID_DEBUG1(1, sc, 2178 "Array will be destroyed on last close."); 2179 sc->sc_stopping = G_RAID_DESTROY_DELAYED; 2180 sx_xunlock(&sc->sc_lock); 2181 return (EBUSY); 2182 case G_RAID_DESTROY_HARD: 2183 G_RAID_DEBUG1(1, sc, 2184 "%d volumes are still open.", 2185 opens); 2186 } 2187 } 2188 2189 /* Mark node for destruction. */ 2190 sc->sc_stopping = G_RAID_DESTROY_HARD; 2191 /* Wake up worker to let it selfdestruct. */ 2192 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2193 /* Sleep until node destroyed. */ 2194 error = sx_sleep(&sc->sc_stopping, &sc->sc_lock, 2195 PRIBIO | PDROP, "r:destroy", hz * 3); 2196 return (error == EWOULDBLOCK ? EBUSY : 0); 2197 } 2198 2199 static void 2200 g_raid_taste_orphan(struct g_consumer *cp) 2201 { 2202 2203 KASSERT(1 == 0, ("%s called while tasting %s.", __func__, 2204 cp->provider->name)); 2205 } 2206 2207 static struct g_geom * 2208 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) 2209 { 2210 struct g_consumer *cp; 2211 struct g_geom *gp, *geom; 2212 struct g_raid_md_class *class; 2213 struct g_raid_md_object *obj; 2214 int status; 2215 2216 g_topology_assert(); 2217 g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); 2218 if (!g_raid_enable) 2219 return (NULL); 2220 G_RAID_DEBUG(2, "Tasting provider %s.", pp->name); 2221 2222 geom = NULL; 2223 status = G_RAID_MD_TASTE_FAIL; 2224 gp = g_new_geomf(mp, "raid:taste"); 2225 /* 2226 * This orphan function should be never called. 2227 */ 2228 gp->orphan = g_raid_taste_orphan; 2229 cp = g_new_consumer(gp); 2230 cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; 2231 if (g_attach(cp, pp) != 0) 2232 goto ofail2; 2233 if (g_access(cp, 1, 0, 0) != 0) 2234 goto ofail; 2235 2236 LIST_FOREACH(class, &g_raid_md_classes, mdc_list) { 2237 if (!class->mdc_enable) 2238 continue; 2239 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.", 2240 pp->name, class->name); 2241 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2242 M_WAITOK); 2243 obj->mdo_class = class; 2244 status = G_RAID_MD_TASTE(obj, mp, cp, &geom); 2245 if (status != G_RAID_MD_TASTE_NEW) 2246 kobj_delete((kobj_t)obj, M_RAID); 2247 if (status != G_RAID_MD_TASTE_FAIL) 2248 break; 2249 } 2250 2251 if (status == G_RAID_MD_TASTE_FAIL) 2252 (void)g_access(cp, -1, 0, 0); 2253 ofail: 2254 g_detach(cp); 2255 ofail2: 2256 g_destroy_consumer(cp); 2257 g_destroy_geom(gp); 2258 G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name); 2259 return (geom); 2260 } 2261 2262 int 2263 g_raid_create_node_format(const char *format, struct gctl_req *req, 2264 struct g_geom **gp) 2265 { 2266 struct g_raid_md_class *class; 2267 struct g_raid_md_object *obj; 2268 int status; 2269 2270 G_RAID_DEBUG(2, "Creating array for %s metadata.", format); 2271 LIST_FOREACH(class, &g_raid_md_classes, mdc_list) { 2272 if (strcasecmp(class->name, format) == 0) 2273 break; 2274 } 2275 if (class == NULL) { 2276 G_RAID_DEBUG(1, "No support for %s metadata.", format); 2277 return (G_RAID_MD_TASTE_FAIL); 2278 } 2279 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2280 M_WAITOK); 2281 obj->mdo_class = class; 2282 status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp); 2283 if (status != G_RAID_MD_TASTE_NEW) 2284 kobj_delete((kobj_t)obj, M_RAID); 2285 return (status); 2286 } 2287 2288 static int 2289 g_raid_destroy_geom(struct gctl_req *req __unused, 2290 struct g_class *mp __unused, struct g_geom *gp) 2291 { 2292 struct g_raid_softc *sc; 2293 int error; 2294 2295 g_topology_unlock(); 2296 sc = gp->softc; 2297 sx_xlock(&sc->sc_lock); 2298 g_cancel_event(sc); 2299 error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT); 2300 g_topology_lock(); 2301 return (error); 2302 } 2303 2304 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol, 2305 struct g_raid_subdisk *sd, struct g_raid_disk *disk) 2306 { 2307 2308 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 2309 return; 2310 if (sc->sc_md) 2311 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk); 2312 } 2313 2314 void g_raid_fail_disk(struct g_raid_softc *sc, 2315 struct g_raid_subdisk *sd, struct g_raid_disk *disk) 2316 { 2317 2318 if (disk == NULL) 2319 disk = sd->sd_disk; 2320 if (disk == NULL) { 2321 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!"); 2322 return; 2323 } 2324 if (disk->d_state != G_RAID_DISK_S_ACTIVE) { 2325 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a " 2326 "wrong state (%s)!", g_raid_disk_state2str(disk->d_state)); 2327 return; 2328 } 2329 if (sc->sc_md) 2330 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk); 2331 } 2332 2333 static void 2334 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, 2335 struct g_consumer *cp, struct g_provider *pp) 2336 { 2337 struct g_raid_softc *sc; 2338 struct g_raid_volume *vol; 2339 struct g_raid_subdisk *sd; 2340 struct g_raid_disk *disk; 2341 int i, s; 2342 2343 g_topology_assert(); 2344 2345 sc = gp->softc; 2346 if (sc == NULL) 2347 return; 2348 if (pp != NULL) { 2349 vol = pp->private; 2350 g_topology_unlock(); 2351 sx_xlock(&sc->sc_lock); 2352 sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent, 2353 sc->sc_md->mdo_class->name, 2354 g_raid_volume_level2str(vol->v_raid_level, 2355 vol->v_raid_level_qualifier)); 2356 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent, 2357 vol->v_name); 2358 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent, 2359 g_raid_volume_level2str(vol->v_raid_level, 2360 vol->v_raid_level_qualifier)); 2361 sbuf_printf(sb, 2362 "%s<Transformation>%s</Transformation>\n", indent, 2363 vol->v_tr ? vol->v_tr->tro_class->name : "NONE"); 2364 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent, 2365 vol->v_disks_count); 2366 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent, 2367 vol->v_strip_size); 2368 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2369 g_raid_volume_state2str(vol->v_state)); 2370 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent, 2371 vol->v_dirty ? "Yes" : "No"); 2372 sbuf_printf(sb, "%s<Subdisks>", indent); 2373 for (i = 0; i < vol->v_disks_count; i++) { 2374 sd = &vol->v_subdisks[i]; 2375 if (sd->sd_disk != NULL && 2376 sd->sd_disk->d_consumer != NULL) { 2377 sbuf_printf(sb, "%s ", 2378 g_raid_get_diskname(sd->sd_disk)); 2379 } else { 2380 sbuf_cat(sb, "NONE "); 2381 } 2382 sbuf_printf(sb, "(%s", 2383 g_raid_subdisk_state2str(sd->sd_state)); 2384 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2385 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2386 sbuf_printf(sb, " %d%%", 2387 (int)(sd->sd_rebuild_pos * 100 / 2388 sd->sd_size)); 2389 } 2390 sbuf_cat(sb, ")"); 2391 if (i + 1 < vol->v_disks_count) 2392 sbuf_cat(sb, ", "); 2393 } 2394 sbuf_cat(sb, "</Subdisks>\n"); 2395 sx_xunlock(&sc->sc_lock); 2396 g_topology_lock(); 2397 } else if (cp != NULL) { 2398 disk = cp->private; 2399 if (disk == NULL) 2400 return; 2401 g_topology_unlock(); 2402 sx_xlock(&sc->sc_lock); 2403 sbuf_printf(sb, "%s<State>%s", indent, 2404 g_raid_disk_state2str(disk->d_state)); 2405 if (!TAILQ_EMPTY(&disk->d_subdisks)) { 2406 sbuf_cat(sb, " ("); 2407 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 2408 sbuf_printf(sb, "%s", 2409 g_raid_subdisk_state2str(sd->sd_state)); 2410 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2411 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2412 sbuf_printf(sb, " %d%%", 2413 (int)(sd->sd_rebuild_pos * 100 / 2414 sd->sd_size)); 2415 } 2416 if (TAILQ_NEXT(sd, sd_next)) 2417 sbuf_cat(sb, ", "); 2418 } 2419 sbuf_cat(sb, ")"); 2420 } 2421 sbuf_cat(sb, "</State>\n"); 2422 sbuf_printf(sb, "%s<Subdisks>", indent); 2423 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 2424 sbuf_printf(sb, "r%d(%s):%d@%ju", 2425 sd->sd_volume->v_global_id, 2426 sd->sd_volume->v_name, 2427 sd->sd_pos, (uintmax_t)sd->sd_offset); 2428 if (TAILQ_NEXT(sd, sd_next)) 2429 sbuf_cat(sb, ", "); 2430 } 2431 sbuf_cat(sb, "</Subdisks>\n"); 2432 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent, 2433 disk->d_read_errs); 2434 sx_xunlock(&sc->sc_lock); 2435 g_topology_lock(); 2436 } else { 2437 g_topology_unlock(); 2438 sx_xlock(&sc->sc_lock); 2439 if (sc->sc_md) { 2440 sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent, 2441 sc->sc_md->mdo_class->name); 2442 } 2443 if (!TAILQ_EMPTY(&sc->sc_volumes)) { 2444 s = 0xff; 2445 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 2446 if (vol->v_state < s) 2447 s = vol->v_state; 2448 } 2449 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2450 g_raid_volume_state2str(s)); 2451 } 2452 sx_xunlock(&sc->sc_lock); 2453 g_topology_lock(); 2454 } 2455 } 2456 2457 static void 2458 g_raid_shutdown_post_sync(void *arg, int howto) 2459 { 2460 struct g_class *mp; 2461 struct g_geom *gp, *gp2; 2462 struct g_raid_softc *sc; 2463 struct g_raid_volume *vol; 2464 2465 mp = arg; 2466 g_topology_lock(); 2467 g_raid_shutdown = 1; 2468 LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) { 2469 if ((sc = gp->softc) == NULL) 2470 continue; 2471 g_topology_unlock(); 2472 sx_xlock(&sc->sc_lock); 2473 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) 2474 g_raid_clean(vol, -1); 2475 g_cancel_event(sc); 2476 g_raid_destroy(sc, G_RAID_DESTROY_DELAYED); 2477 g_topology_lock(); 2478 } 2479 g_topology_unlock(); 2480 } 2481 2482 static void 2483 g_raid_init(struct g_class *mp) 2484 { 2485 2486 g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync, 2487 g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST); 2488 if (g_raid_post_sync == NULL) 2489 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event."); 2490 g_raid_started = 1; 2491 } 2492 2493 static void 2494 g_raid_fini(struct g_class *mp) 2495 { 2496 2497 if (g_raid_post_sync != NULL) 2498 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync); 2499 g_raid_started = 0; 2500 } 2501 2502 int 2503 g_raid_md_modevent(module_t mod, int type, void *arg) 2504 { 2505 struct g_raid_md_class *class, *c, *nc; 2506 int error; 2507 2508 error = 0; 2509 class = arg; 2510 switch (type) { 2511 case MOD_LOAD: 2512 c = LIST_FIRST(&g_raid_md_classes); 2513 if (c == NULL || c->mdc_priority > class->mdc_priority) 2514 LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list); 2515 else { 2516 while ((nc = LIST_NEXT(c, mdc_list)) != NULL && 2517 nc->mdc_priority < class->mdc_priority) 2518 c = nc; 2519 LIST_INSERT_AFTER(c, class, mdc_list); 2520 } 2521 if (g_raid_started) 2522 g_retaste(&g_raid_class); 2523 break; 2524 case MOD_UNLOAD: 2525 LIST_REMOVE(class, mdc_list); 2526 break; 2527 default: 2528 error = EOPNOTSUPP; 2529 break; 2530 } 2531 2532 return (error); 2533 } 2534 2535 int 2536 g_raid_tr_modevent(module_t mod, int type, void *arg) 2537 { 2538 struct g_raid_tr_class *class, *c, *nc; 2539 int error; 2540 2541 error = 0; 2542 class = arg; 2543 switch (type) { 2544 case MOD_LOAD: 2545 c = LIST_FIRST(&g_raid_tr_classes); 2546 if (c == NULL || c->trc_priority > class->trc_priority) 2547 LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list); 2548 else { 2549 while ((nc = LIST_NEXT(c, trc_list)) != NULL && 2550 nc->trc_priority < class->trc_priority) 2551 c = nc; 2552 LIST_INSERT_AFTER(c, class, trc_list); 2553 } 2554 break; 2555 case MOD_UNLOAD: 2556 LIST_REMOVE(class, trc_list); 2557 break; 2558 default: 2559 error = EOPNOTSUPP; 2560 break; 2561 } 2562 2563 return (error); 2564 } 2565 2566 /* 2567 * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid) 2568 * to reduce module priority, allowing submodules to register them first. 2569 */ 2570 static moduledata_t g_raid_mod = { 2571 "g_raid", 2572 g_modevent, 2573 &g_raid_class 2574 }; 2575 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD); 2576 MODULE_VERSION(geom_raid, 0); 2577