1 /*- 2 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/limits.h> 35 #include <sys/lock.h> 36 #include <sys/mutex.h> 37 #include <sys/bio.h> 38 #include <sys/sbuf.h> 39 #include <sys/sysctl.h> 40 #include <sys/malloc.h> 41 #include <sys/eventhandler.h> 42 #include <vm/uma.h> 43 #include <geom/geom.h> 44 #include <sys/proc.h> 45 #include <sys/kthread.h> 46 #include <sys/sched.h> 47 #include <geom/raid/g_raid.h> 48 #include "g_raid_md_if.h" 49 #include "g_raid_tr_if.h" 50 51 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data"); 52 53 SYSCTL_DECL(_kern_geom); 54 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW, 0, "GEOM_RAID stuff"); 55 int g_raid_enable = 1; 56 TUNABLE_INT("kern.geom.raid.enable", &g_raid_enable); 57 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RW, 58 &g_raid_enable, 0, "Enable on-disk metadata taste"); 59 u_int g_raid_aggressive_spare = 0; 60 TUNABLE_INT("kern.geom.raid.aggressive_spare", &g_raid_aggressive_spare); 61 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RW, 62 &g_raid_aggressive_spare, 0, "Use disks without metadata as spare"); 63 u_int g_raid_debug = 0; 64 TUNABLE_INT("kern.geom.raid.debug", &g_raid_debug); 65 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RW, &g_raid_debug, 0, 66 "Debug level"); 67 int g_raid_read_err_thresh = 10; 68 TUNABLE_INT("kern.geom.raid.read_err_thresh", &g_raid_read_err_thresh); 69 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RW, 70 &g_raid_read_err_thresh, 0, 71 "Number of read errors equated to disk failure"); 72 u_int g_raid_start_timeout = 30; 73 TUNABLE_INT("kern.geom.raid.start_timeout", &g_raid_start_timeout); 74 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RW, 75 &g_raid_start_timeout, 0, 76 "Time to wait for all array components"); 77 static u_int g_raid_clean_time = 5; 78 TUNABLE_INT("kern.geom.raid.clean_time", &g_raid_clean_time); 79 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RW, 80 &g_raid_clean_time, 0, "Mark volume as clean when idling"); 81 static u_int g_raid_disconnect_on_failure = 1; 82 TUNABLE_INT("kern.geom.raid.disconnect_on_failure", 83 &g_raid_disconnect_on_failure); 84 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RW, 85 &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure."); 86 static u_int g_raid_name_format = 0; 87 TUNABLE_INT("kern.geom.raid.name_format", &g_raid_name_format); 88 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RW, 89 &g_raid_name_format, 0, "Providers name format."); 90 static u_int g_raid_idle_threshold = 1000000; 91 TUNABLE_INT("kern.geom.raid.idle_threshold", &g_raid_idle_threshold); 92 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RW, 93 &g_raid_idle_threshold, 1000000, 94 "Time in microseconds to consider a volume idle."); 95 static u_int ar_legacy_aliases = 1; 96 SYSCTL_INT(_kern_geom_raid, OID_AUTO, legacy_aliases, CTLFLAG_RW, 97 &ar_legacy_aliases, 0, "Create aliases named as the legacy ataraid style."); 98 TUNABLE_INT("kern.geom_raid.legacy_aliases", &ar_legacy_aliases); 99 100 101 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout) do { \ 102 G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \ 103 rv = msleep((ident), (mtx), (priority), (wmesg), (timeout)); \ 104 G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \ 105 } while (0) 106 107 LIST_HEAD(, g_raid_md_class) g_raid_md_classes = 108 LIST_HEAD_INITIALIZER(g_raid_md_classes); 109 110 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes = 111 LIST_HEAD_INITIALIZER(g_raid_tr_classes); 112 113 LIST_HEAD(, g_raid_volume) g_raid_volumes = 114 LIST_HEAD_INITIALIZER(g_raid_volumes); 115 116 static eventhandler_tag g_raid_post_sync = NULL; 117 static int g_raid_started = 0; 118 static int g_raid_shutdown = 0; 119 120 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp, 121 struct g_geom *gp); 122 static g_taste_t g_raid_taste; 123 static void g_raid_init(struct g_class *mp); 124 static void g_raid_fini(struct g_class *mp); 125 126 struct g_class g_raid_class = { 127 .name = G_RAID_CLASS_NAME, 128 .version = G_VERSION, 129 .ctlreq = g_raid_ctl, 130 .taste = g_raid_taste, 131 .destroy_geom = g_raid_destroy_geom, 132 .init = g_raid_init, 133 .fini = g_raid_fini 134 }; 135 136 static void g_raid_destroy_provider(struct g_raid_volume *vol); 137 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event); 138 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event); 139 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event); 140 static int g_raid_update_node(struct g_raid_softc *sc, u_int event); 141 static void g_raid_dumpconf(struct sbuf *sb, const char *indent, 142 struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); 143 static void g_raid_start(struct bio *bp); 144 static void g_raid_start_request(struct bio *bp); 145 static void g_raid_disk_done(struct bio *bp); 146 static void g_raid_poll(struct g_raid_softc *sc); 147 148 static const char * 149 g_raid_node_event2str(int event) 150 { 151 152 switch (event) { 153 case G_RAID_NODE_E_WAKE: 154 return ("WAKE"); 155 case G_RAID_NODE_E_START: 156 return ("START"); 157 default: 158 return ("INVALID"); 159 } 160 } 161 162 const char * 163 g_raid_disk_state2str(int state) 164 { 165 166 switch (state) { 167 case G_RAID_DISK_S_NONE: 168 return ("NONE"); 169 case G_RAID_DISK_S_OFFLINE: 170 return ("OFFLINE"); 171 case G_RAID_DISK_S_DISABLED: 172 return ("DISABLED"); 173 case G_RAID_DISK_S_FAILED: 174 return ("FAILED"); 175 case G_RAID_DISK_S_STALE_FAILED: 176 return ("STALE_FAILED"); 177 case G_RAID_DISK_S_SPARE: 178 return ("SPARE"); 179 case G_RAID_DISK_S_STALE: 180 return ("STALE"); 181 case G_RAID_DISK_S_ACTIVE: 182 return ("ACTIVE"); 183 default: 184 return ("INVALID"); 185 } 186 } 187 188 static const char * 189 g_raid_disk_event2str(int event) 190 { 191 192 switch (event) { 193 case G_RAID_DISK_E_DISCONNECTED: 194 return ("DISCONNECTED"); 195 default: 196 return ("INVALID"); 197 } 198 } 199 200 const char * 201 g_raid_subdisk_state2str(int state) 202 { 203 204 switch (state) { 205 case G_RAID_SUBDISK_S_NONE: 206 return ("NONE"); 207 case G_RAID_SUBDISK_S_FAILED: 208 return ("FAILED"); 209 case G_RAID_SUBDISK_S_NEW: 210 return ("NEW"); 211 case G_RAID_SUBDISK_S_REBUILD: 212 return ("REBUILD"); 213 case G_RAID_SUBDISK_S_UNINITIALIZED: 214 return ("UNINITIALIZED"); 215 case G_RAID_SUBDISK_S_STALE: 216 return ("STALE"); 217 case G_RAID_SUBDISK_S_RESYNC: 218 return ("RESYNC"); 219 case G_RAID_SUBDISK_S_ACTIVE: 220 return ("ACTIVE"); 221 default: 222 return ("INVALID"); 223 } 224 } 225 226 static const char * 227 g_raid_subdisk_event2str(int event) 228 { 229 230 switch (event) { 231 case G_RAID_SUBDISK_E_NEW: 232 return ("NEW"); 233 case G_RAID_SUBDISK_E_FAILED: 234 return ("FAILED"); 235 case G_RAID_SUBDISK_E_DISCONNECTED: 236 return ("DISCONNECTED"); 237 default: 238 return ("INVALID"); 239 } 240 } 241 242 const char * 243 g_raid_volume_state2str(int state) 244 { 245 246 switch (state) { 247 case G_RAID_VOLUME_S_STARTING: 248 return ("STARTING"); 249 case G_RAID_VOLUME_S_BROKEN: 250 return ("BROKEN"); 251 case G_RAID_VOLUME_S_DEGRADED: 252 return ("DEGRADED"); 253 case G_RAID_VOLUME_S_SUBOPTIMAL: 254 return ("SUBOPTIMAL"); 255 case G_RAID_VOLUME_S_OPTIMAL: 256 return ("OPTIMAL"); 257 case G_RAID_VOLUME_S_UNSUPPORTED: 258 return ("UNSUPPORTED"); 259 case G_RAID_VOLUME_S_STOPPED: 260 return ("STOPPED"); 261 default: 262 return ("INVALID"); 263 } 264 } 265 266 static const char * 267 g_raid_volume_event2str(int event) 268 { 269 270 switch (event) { 271 case G_RAID_VOLUME_E_UP: 272 return ("UP"); 273 case G_RAID_VOLUME_E_DOWN: 274 return ("DOWN"); 275 case G_RAID_VOLUME_E_START: 276 return ("START"); 277 case G_RAID_VOLUME_E_STARTMD: 278 return ("STARTMD"); 279 default: 280 return ("INVALID"); 281 } 282 } 283 284 const char * 285 g_raid_volume_level2str(int level, int qual) 286 { 287 288 switch (level) { 289 case G_RAID_VOLUME_RL_RAID0: 290 return ("RAID0"); 291 case G_RAID_VOLUME_RL_RAID1: 292 return ("RAID1"); 293 case G_RAID_VOLUME_RL_RAID3: 294 if (qual == G_RAID_VOLUME_RLQ_R3P0) 295 return ("RAID3-P0"); 296 if (qual == G_RAID_VOLUME_RLQ_R3PN) 297 return ("RAID3-PN"); 298 return ("RAID3"); 299 case G_RAID_VOLUME_RL_RAID4: 300 if (qual == G_RAID_VOLUME_RLQ_R4P0) 301 return ("RAID4-P0"); 302 if (qual == G_RAID_VOLUME_RLQ_R4PN) 303 return ("RAID4-PN"); 304 return ("RAID4"); 305 case G_RAID_VOLUME_RL_RAID5: 306 if (qual == G_RAID_VOLUME_RLQ_R5RA) 307 return ("RAID5-RA"); 308 if (qual == G_RAID_VOLUME_RLQ_R5RS) 309 return ("RAID5-RS"); 310 if (qual == G_RAID_VOLUME_RLQ_R5LA) 311 return ("RAID5-LA"); 312 if (qual == G_RAID_VOLUME_RLQ_R5LS) 313 return ("RAID5-LS"); 314 return ("RAID5"); 315 case G_RAID_VOLUME_RL_RAID6: 316 if (qual == G_RAID_VOLUME_RLQ_R6RA) 317 return ("RAID6-RA"); 318 if (qual == G_RAID_VOLUME_RLQ_R6RS) 319 return ("RAID6-RS"); 320 if (qual == G_RAID_VOLUME_RLQ_R6LA) 321 return ("RAID6-LA"); 322 if (qual == G_RAID_VOLUME_RLQ_R6LS) 323 return ("RAID6-LS"); 324 return ("RAID6"); 325 case G_RAID_VOLUME_RL_RAIDMDF: 326 if (qual == G_RAID_VOLUME_RLQ_RMDFRA) 327 return ("RAIDMDF-RA"); 328 if (qual == G_RAID_VOLUME_RLQ_RMDFRS) 329 return ("RAIDMDF-RS"); 330 if (qual == G_RAID_VOLUME_RLQ_RMDFLA) 331 return ("RAIDMDF-LA"); 332 if (qual == G_RAID_VOLUME_RLQ_RMDFLS) 333 return ("RAIDMDF-LS"); 334 return ("RAIDMDF"); 335 case G_RAID_VOLUME_RL_RAID1E: 336 if (qual == G_RAID_VOLUME_RLQ_R1EA) 337 return ("RAID1E-A"); 338 if (qual == G_RAID_VOLUME_RLQ_R1EO) 339 return ("RAID1E-O"); 340 return ("RAID1E"); 341 case G_RAID_VOLUME_RL_SINGLE: 342 return ("SINGLE"); 343 case G_RAID_VOLUME_RL_CONCAT: 344 return ("CONCAT"); 345 case G_RAID_VOLUME_RL_RAID5E: 346 if (qual == G_RAID_VOLUME_RLQ_R5ERA) 347 return ("RAID5E-RA"); 348 if (qual == G_RAID_VOLUME_RLQ_R5ERS) 349 return ("RAID5E-RS"); 350 if (qual == G_RAID_VOLUME_RLQ_R5ELA) 351 return ("RAID5E-LA"); 352 if (qual == G_RAID_VOLUME_RLQ_R5ELS) 353 return ("RAID5E-LS"); 354 return ("RAID5E"); 355 case G_RAID_VOLUME_RL_RAID5EE: 356 if (qual == G_RAID_VOLUME_RLQ_R5EERA) 357 return ("RAID5EE-RA"); 358 if (qual == G_RAID_VOLUME_RLQ_R5EERS) 359 return ("RAID5EE-RS"); 360 if (qual == G_RAID_VOLUME_RLQ_R5EELA) 361 return ("RAID5EE-LA"); 362 if (qual == G_RAID_VOLUME_RLQ_R5EELS) 363 return ("RAID5EE-LS"); 364 return ("RAID5EE"); 365 case G_RAID_VOLUME_RL_RAID5R: 366 if (qual == G_RAID_VOLUME_RLQ_R5RRA) 367 return ("RAID5R-RA"); 368 if (qual == G_RAID_VOLUME_RLQ_R5RRS) 369 return ("RAID5R-RS"); 370 if (qual == G_RAID_VOLUME_RLQ_R5RLA) 371 return ("RAID5R-LA"); 372 if (qual == G_RAID_VOLUME_RLQ_R5RLS) 373 return ("RAID5R-LS"); 374 return ("RAID5E"); 375 default: 376 return ("UNKNOWN"); 377 } 378 } 379 380 int 381 g_raid_volume_str2level(const char *str, int *level, int *qual) 382 { 383 384 *level = G_RAID_VOLUME_RL_UNKNOWN; 385 *qual = G_RAID_VOLUME_RLQ_NONE; 386 if (strcasecmp(str, "RAID0") == 0) 387 *level = G_RAID_VOLUME_RL_RAID0; 388 else if (strcasecmp(str, "RAID1") == 0) 389 *level = G_RAID_VOLUME_RL_RAID1; 390 else if (strcasecmp(str, "RAID3-P0") == 0) { 391 *level = G_RAID_VOLUME_RL_RAID3; 392 *qual = G_RAID_VOLUME_RLQ_R3P0; 393 } else if (strcasecmp(str, "RAID3-PN") == 0 || 394 strcasecmp(str, "RAID3") == 0) { 395 *level = G_RAID_VOLUME_RL_RAID3; 396 *qual = G_RAID_VOLUME_RLQ_R3PN; 397 } else if (strcasecmp(str, "RAID4-P0") == 0) { 398 *level = G_RAID_VOLUME_RL_RAID4; 399 *qual = G_RAID_VOLUME_RLQ_R4P0; 400 } else if (strcasecmp(str, "RAID4-PN") == 0 || 401 strcasecmp(str, "RAID4") == 0) { 402 *level = G_RAID_VOLUME_RL_RAID4; 403 *qual = G_RAID_VOLUME_RLQ_R4PN; 404 } else if (strcasecmp(str, "RAID5-RA") == 0) { 405 *level = G_RAID_VOLUME_RL_RAID5; 406 *qual = G_RAID_VOLUME_RLQ_R5RA; 407 } else if (strcasecmp(str, "RAID5-RS") == 0) { 408 *level = G_RAID_VOLUME_RL_RAID5; 409 *qual = G_RAID_VOLUME_RLQ_R5RS; 410 } else if (strcasecmp(str, "RAID5") == 0 || 411 strcasecmp(str, "RAID5-LA") == 0) { 412 *level = G_RAID_VOLUME_RL_RAID5; 413 *qual = G_RAID_VOLUME_RLQ_R5LA; 414 } else if (strcasecmp(str, "RAID5-LS") == 0) { 415 *level = G_RAID_VOLUME_RL_RAID5; 416 *qual = G_RAID_VOLUME_RLQ_R5LS; 417 } else if (strcasecmp(str, "RAID6-RA") == 0) { 418 *level = G_RAID_VOLUME_RL_RAID6; 419 *qual = G_RAID_VOLUME_RLQ_R6RA; 420 } else if (strcasecmp(str, "RAID6-RS") == 0) { 421 *level = G_RAID_VOLUME_RL_RAID6; 422 *qual = G_RAID_VOLUME_RLQ_R6RS; 423 } else if (strcasecmp(str, "RAID6") == 0 || 424 strcasecmp(str, "RAID6-LA") == 0) { 425 *level = G_RAID_VOLUME_RL_RAID6; 426 *qual = G_RAID_VOLUME_RLQ_R6LA; 427 } else if (strcasecmp(str, "RAID6-LS") == 0) { 428 *level = G_RAID_VOLUME_RL_RAID6; 429 *qual = G_RAID_VOLUME_RLQ_R6LS; 430 } else if (strcasecmp(str, "RAIDMDF-RA") == 0) { 431 *level = G_RAID_VOLUME_RL_RAIDMDF; 432 *qual = G_RAID_VOLUME_RLQ_RMDFRA; 433 } else if (strcasecmp(str, "RAIDMDF-RS") == 0) { 434 *level = G_RAID_VOLUME_RL_RAIDMDF; 435 *qual = G_RAID_VOLUME_RLQ_RMDFRS; 436 } else if (strcasecmp(str, "RAIDMDF") == 0 || 437 strcasecmp(str, "RAIDMDF-LA") == 0) { 438 *level = G_RAID_VOLUME_RL_RAIDMDF; 439 *qual = G_RAID_VOLUME_RLQ_RMDFLA; 440 } else if (strcasecmp(str, "RAIDMDF-LS") == 0) { 441 *level = G_RAID_VOLUME_RL_RAIDMDF; 442 *qual = G_RAID_VOLUME_RLQ_RMDFLS; 443 } else if (strcasecmp(str, "RAID10") == 0 || 444 strcasecmp(str, "RAID1E") == 0 || 445 strcasecmp(str, "RAID1E-A") == 0) { 446 *level = G_RAID_VOLUME_RL_RAID1E; 447 *qual = G_RAID_VOLUME_RLQ_R1EA; 448 } else if (strcasecmp(str, "RAID1E-O") == 0) { 449 *level = G_RAID_VOLUME_RL_RAID1E; 450 *qual = G_RAID_VOLUME_RLQ_R1EO; 451 } else if (strcasecmp(str, "SINGLE") == 0) 452 *level = G_RAID_VOLUME_RL_SINGLE; 453 else if (strcasecmp(str, "CONCAT") == 0) 454 *level = G_RAID_VOLUME_RL_CONCAT; 455 else if (strcasecmp(str, "RAID5E-RA") == 0) { 456 *level = G_RAID_VOLUME_RL_RAID5E; 457 *qual = G_RAID_VOLUME_RLQ_R5ERA; 458 } else if (strcasecmp(str, "RAID5E-RS") == 0) { 459 *level = G_RAID_VOLUME_RL_RAID5E; 460 *qual = G_RAID_VOLUME_RLQ_R5ERS; 461 } else if (strcasecmp(str, "RAID5E") == 0 || 462 strcasecmp(str, "RAID5E-LA") == 0) { 463 *level = G_RAID_VOLUME_RL_RAID5E; 464 *qual = G_RAID_VOLUME_RLQ_R5ELA; 465 } else if (strcasecmp(str, "RAID5E-LS") == 0) { 466 *level = G_RAID_VOLUME_RL_RAID5E; 467 *qual = G_RAID_VOLUME_RLQ_R5ELS; 468 } else if (strcasecmp(str, "RAID5EE-RA") == 0) { 469 *level = G_RAID_VOLUME_RL_RAID5EE; 470 *qual = G_RAID_VOLUME_RLQ_R5EERA; 471 } else if (strcasecmp(str, "RAID5EE-RS") == 0) { 472 *level = G_RAID_VOLUME_RL_RAID5EE; 473 *qual = G_RAID_VOLUME_RLQ_R5EERS; 474 } else if (strcasecmp(str, "RAID5EE") == 0 || 475 strcasecmp(str, "RAID5EE-LA") == 0) { 476 *level = G_RAID_VOLUME_RL_RAID5EE; 477 *qual = G_RAID_VOLUME_RLQ_R5EELA; 478 } else if (strcasecmp(str, "RAID5EE-LS") == 0) { 479 *level = G_RAID_VOLUME_RL_RAID5EE; 480 *qual = G_RAID_VOLUME_RLQ_R5EELS; 481 } else if (strcasecmp(str, "RAID5R-RA") == 0) { 482 *level = G_RAID_VOLUME_RL_RAID5R; 483 *qual = G_RAID_VOLUME_RLQ_R5RRA; 484 } else if (strcasecmp(str, "RAID5R-RS") == 0) { 485 *level = G_RAID_VOLUME_RL_RAID5R; 486 *qual = G_RAID_VOLUME_RLQ_R5RRS; 487 } else if (strcasecmp(str, "RAID5R") == 0 || 488 strcasecmp(str, "RAID5R-LA") == 0) { 489 *level = G_RAID_VOLUME_RL_RAID5R; 490 *qual = G_RAID_VOLUME_RLQ_R5RLA; 491 } else if (strcasecmp(str, "RAID5R-LS") == 0) { 492 *level = G_RAID_VOLUME_RL_RAID5R; 493 *qual = G_RAID_VOLUME_RLQ_R5RLS; 494 } else 495 return (-1); 496 return (0); 497 } 498 499 const char * 500 g_raid_get_diskname(struct g_raid_disk *disk) 501 { 502 503 if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL) 504 return ("[unknown]"); 505 return (disk->d_consumer->provider->name); 506 } 507 508 void 509 g_raid_get_disk_info(struct g_raid_disk *disk) 510 { 511 struct g_consumer *cp = disk->d_consumer; 512 int error, len; 513 514 /* Read kernel dumping information. */ 515 disk->d_kd.offset = 0; 516 disk->d_kd.length = OFF_MAX; 517 len = sizeof(disk->d_kd); 518 error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd); 519 if (error) 520 disk->d_kd.di.dumper = NULL; 521 if (disk->d_kd.di.dumper == NULL) 522 G_RAID_DEBUG1(2, disk->d_softc, 523 "Dumping not supported by %s: %d.", 524 cp->provider->name, error); 525 526 /* Read BIO_DELETE support. */ 527 error = g_getattr("GEOM::candelete", cp, &disk->d_candelete); 528 if (error) 529 disk->d_candelete = 0; 530 if (!disk->d_candelete) 531 G_RAID_DEBUG1(2, disk->d_softc, 532 "BIO_DELETE not supported by %s: %d.", 533 cp->provider->name, error); 534 } 535 536 void 537 g_raid_report_disk_state(struct g_raid_disk *disk) 538 { 539 struct g_raid_subdisk *sd; 540 int len, state; 541 uint32_t s; 542 543 if (disk->d_consumer == NULL) 544 return; 545 if (disk->d_state == G_RAID_DISK_S_DISABLED) { 546 s = G_STATE_ACTIVE; /* XXX */ 547 } else if (disk->d_state == G_RAID_DISK_S_FAILED || 548 disk->d_state == G_RAID_DISK_S_STALE_FAILED) { 549 s = G_STATE_FAILED; 550 } else { 551 state = G_RAID_SUBDISK_S_ACTIVE; 552 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 553 if (sd->sd_state < state) 554 state = sd->sd_state; 555 } 556 if (state == G_RAID_SUBDISK_S_FAILED) 557 s = G_STATE_FAILED; 558 else if (state == G_RAID_SUBDISK_S_NEW || 559 state == G_RAID_SUBDISK_S_REBUILD) 560 s = G_STATE_REBUILD; 561 else if (state == G_RAID_SUBDISK_S_STALE || 562 state == G_RAID_SUBDISK_S_RESYNC) 563 s = G_STATE_RESYNC; 564 else 565 s = G_STATE_ACTIVE; 566 } 567 len = sizeof(s); 568 g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s); 569 G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.", 570 g_raid_get_diskname(disk), s); 571 } 572 573 void 574 g_raid_change_disk_state(struct g_raid_disk *disk, int state) 575 { 576 577 G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.", 578 g_raid_get_diskname(disk), 579 g_raid_disk_state2str(disk->d_state), 580 g_raid_disk_state2str(state)); 581 disk->d_state = state; 582 g_raid_report_disk_state(disk); 583 } 584 585 void 586 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state) 587 { 588 589 G_RAID_DEBUG1(0, sd->sd_softc, 590 "Subdisk %s:%d-%s state changed from %s to %s.", 591 sd->sd_volume->v_name, sd->sd_pos, 592 sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]", 593 g_raid_subdisk_state2str(sd->sd_state), 594 g_raid_subdisk_state2str(state)); 595 sd->sd_state = state; 596 if (sd->sd_disk) 597 g_raid_report_disk_state(sd->sd_disk); 598 } 599 600 void 601 g_raid_change_volume_state(struct g_raid_volume *vol, int state) 602 { 603 604 G_RAID_DEBUG1(0, vol->v_softc, 605 "Volume %s state changed from %s to %s.", 606 vol->v_name, 607 g_raid_volume_state2str(vol->v_state), 608 g_raid_volume_state2str(state)); 609 vol->v_state = state; 610 } 611 612 /* 613 * --- Events handling functions --- 614 * Events in geom_raid are used to maintain subdisks and volumes status 615 * from one thread to simplify locking. 616 */ 617 static void 618 g_raid_event_free(struct g_raid_event *ep) 619 { 620 621 free(ep, M_RAID); 622 } 623 624 int 625 g_raid_event_send(void *arg, int event, int flags) 626 { 627 struct g_raid_softc *sc; 628 struct g_raid_event *ep; 629 int error; 630 631 if ((flags & G_RAID_EVENT_VOLUME) != 0) { 632 sc = ((struct g_raid_volume *)arg)->v_softc; 633 } else if ((flags & G_RAID_EVENT_DISK) != 0) { 634 sc = ((struct g_raid_disk *)arg)->d_softc; 635 } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) { 636 sc = ((struct g_raid_subdisk *)arg)->sd_softc; 637 } else { 638 sc = arg; 639 } 640 ep = malloc(sizeof(*ep), M_RAID, 641 sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT); 642 if (ep == NULL) 643 return (ENOMEM); 644 ep->e_tgt = arg; 645 ep->e_event = event; 646 ep->e_flags = flags; 647 ep->e_error = 0; 648 G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc); 649 mtx_lock(&sc->sc_queue_mtx); 650 TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next); 651 mtx_unlock(&sc->sc_queue_mtx); 652 wakeup(sc); 653 654 if ((flags & G_RAID_EVENT_WAIT) == 0) 655 return (0); 656 657 sx_assert(&sc->sc_lock, SX_XLOCKED); 658 G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep); 659 sx_xunlock(&sc->sc_lock); 660 while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) { 661 mtx_lock(&sc->sc_queue_mtx); 662 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event", 663 hz * 5); 664 } 665 error = ep->e_error; 666 g_raid_event_free(ep); 667 sx_xlock(&sc->sc_lock); 668 return (error); 669 } 670 671 static void 672 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt) 673 { 674 struct g_raid_event *ep, *tmpep; 675 676 sx_assert(&sc->sc_lock, SX_XLOCKED); 677 678 mtx_lock(&sc->sc_queue_mtx); 679 TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) { 680 if (ep->e_tgt != tgt) 681 continue; 682 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 683 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) 684 g_raid_event_free(ep); 685 else { 686 ep->e_error = ECANCELED; 687 wakeup(ep); 688 } 689 } 690 mtx_unlock(&sc->sc_queue_mtx); 691 } 692 693 static int 694 g_raid_event_check(struct g_raid_softc *sc, void *tgt) 695 { 696 struct g_raid_event *ep; 697 int res = 0; 698 699 sx_assert(&sc->sc_lock, SX_XLOCKED); 700 701 mtx_lock(&sc->sc_queue_mtx); 702 TAILQ_FOREACH(ep, &sc->sc_events, e_next) { 703 if (ep->e_tgt != tgt) 704 continue; 705 res = 1; 706 break; 707 } 708 mtx_unlock(&sc->sc_queue_mtx); 709 return (res); 710 } 711 712 /* 713 * Return the number of disks in given state. 714 * If state is equal to -1, count all connected disks. 715 */ 716 u_int 717 g_raid_ndisks(struct g_raid_softc *sc, int state) 718 { 719 struct g_raid_disk *disk; 720 u_int n; 721 722 sx_assert(&sc->sc_lock, SX_LOCKED); 723 724 n = 0; 725 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 726 if (disk->d_state == state || state == -1) 727 n++; 728 } 729 return (n); 730 } 731 732 /* 733 * Return the number of subdisks in given state. 734 * If state is equal to -1, count all connected disks. 735 */ 736 u_int 737 g_raid_nsubdisks(struct g_raid_volume *vol, int state) 738 { 739 struct g_raid_subdisk *subdisk; 740 struct g_raid_softc *sc; 741 u_int i, n ; 742 743 sc = vol->v_softc; 744 sx_assert(&sc->sc_lock, SX_LOCKED); 745 746 n = 0; 747 for (i = 0; i < vol->v_disks_count; i++) { 748 subdisk = &vol->v_subdisks[i]; 749 if ((state == -1 && 750 subdisk->sd_state != G_RAID_SUBDISK_S_NONE) || 751 subdisk->sd_state == state) 752 n++; 753 } 754 return (n); 755 } 756 757 /* 758 * Return the first subdisk in given state. 759 * If state is equal to -1, then the first connected disks. 760 */ 761 struct g_raid_subdisk * 762 g_raid_get_subdisk(struct g_raid_volume *vol, int state) 763 { 764 struct g_raid_subdisk *sd; 765 struct g_raid_softc *sc; 766 u_int i; 767 768 sc = vol->v_softc; 769 sx_assert(&sc->sc_lock, SX_LOCKED); 770 771 for (i = 0; i < vol->v_disks_count; i++) { 772 sd = &vol->v_subdisks[i]; 773 if ((state == -1 && 774 sd->sd_state != G_RAID_SUBDISK_S_NONE) || 775 sd->sd_state == state) 776 return (sd); 777 } 778 return (NULL); 779 } 780 781 struct g_consumer * 782 g_raid_open_consumer(struct g_raid_softc *sc, const char *name) 783 { 784 struct g_consumer *cp; 785 struct g_provider *pp; 786 787 g_topology_assert(); 788 789 if (strncmp(name, "/dev/", 5) == 0) 790 name += 5; 791 pp = g_provider_by_name(name); 792 if (pp == NULL) 793 return (NULL); 794 cp = g_new_consumer(sc->sc_geom); 795 if (g_attach(cp, pp) != 0) { 796 g_destroy_consumer(cp); 797 return (NULL); 798 } 799 if (g_access(cp, 1, 1, 1) != 0) { 800 g_detach(cp); 801 g_destroy_consumer(cp); 802 return (NULL); 803 } 804 return (cp); 805 } 806 807 static u_int 808 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp) 809 { 810 struct bio *bp; 811 u_int nreqs = 0; 812 813 mtx_lock(&sc->sc_queue_mtx); 814 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 815 if (bp->bio_from == cp) 816 nreqs++; 817 } 818 mtx_unlock(&sc->sc_queue_mtx); 819 return (nreqs); 820 } 821 822 u_int 823 g_raid_nopens(struct g_raid_softc *sc) 824 { 825 struct g_raid_volume *vol; 826 u_int opens; 827 828 opens = 0; 829 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 830 if (vol->v_provider_open != 0) 831 opens++; 832 } 833 return (opens); 834 } 835 836 static int 837 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp) 838 { 839 840 if (cp->index > 0) { 841 G_RAID_DEBUG1(2, sc, 842 "I/O requests for %s exist, can't destroy it now.", 843 cp->provider->name); 844 return (1); 845 } 846 if (g_raid_nrequests(sc, cp) > 0) { 847 G_RAID_DEBUG1(2, sc, 848 "I/O requests for %s in queue, can't destroy it now.", 849 cp->provider->name); 850 return (1); 851 } 852 return (0); 853 } 854 855 static void 856 g_raid_destroy_consumer(void *arg, int flags __unused) 857 { 858 struct g_consumer *cp; 859 860 g_topology_assert(); 861 862 cp = arg; 863 G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name); 864 g_detach(cp); 865 g_destroy_consumer(cp); 866 } 867 868 void 869 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp) 870 { 871 struct g_provider *pp; 872 int retaste_wait; 873 874 g_topology_assert_not(); 875 876 g_topology_lock(); 877 cp->private = NULL; 878 if (g_raid_consumer_is_busy(sc, cp)) 879 goto out; 880 pp = cp->provider; 881 retaste_wait = 0; 882 if (cp->acw == 1) { 883 if ((pp->geom->flags & G_GEOM_WITHER) == 0) 884 retaste_wait = 1; 885 } 886 if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) 887 g_access(cp, -cp->acr, -cp->acw, -cp->ace); 888 if (retaste_wait) { 889 /* 890 * After retaste event was send (inside g_access()), we can send 891 * event to detach and destroy consumer. 892 * A class, which has consumer to the given provider connected 893 * will not receive retaste event for the provider. 894 * This is the way how I ignore retaste events when I close 895 * consumers opened for write: I detach and destroy consumer 896 * after retaste event is sent. 897 */ 898 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL); 899 goto out; 900 } 901 G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name); 902 g_detach(cp); 903 g_destroy_consumer(cp); 904 out: 905 g_topology_unlock(); 906 } 907 908 static void 909 g_raid_orphan(struct g_consumer *cp) 910 { 911 struct g_raid_disk *disk; 912 913 g_topology_assert(); 914 915 disk = cp->private; 916 if (disk == NULL) 917 return; 918 g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED, 919 G_RAID_EVENT_DISK); 920 } 921 922 static void 923 g_raid_clean(struct g_raid_volume *vol, int acw) 924 { 925 struct g_raid_softc *sc; 926 int timeout; 927 928 sc = vol->v_softc; 929 g_topology_assert_not(); 930 sx_assert(&sc->sc_lock, SX_XLOCKED); 931 932 // if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0) 933 // return; 934 if (!vol->v_dirty) 935 return; 936 if (vol->v_writes > 0) 937 return; 938 if (acw > 0 || (acw == -1 && 939 vol->v_provider != NULL && vol->v_provider->acw > 0)) { 940 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write); 941 if (!g_raid_shutdown && timeout > 0) 942 return; 943 } 944 vol->v_dirty = 0; 945 G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.", 946 vol->v_name); 947 g_raid_write_metadata(sc, vol, NULL, NULL); 948 } 949 950 static void 951 g_raid_dirty(struct g_raid_volume *vol) 952 { 953 struct g_raid_softc *sc; 954 955 sc = vol->v_softc; 956 g_topology_assert_not(); 957 sx_assert(&sc->sc_lock, SX_XLOCKED); 958 959 // if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0) 960 // return; 961 vol->v_dirty = 1; 962 G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.", 963 vol->v_name); 964 g_raid_write_metadata(sc, vol, NULL, NULL); 965 } 966 967 void 968 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp) 969 { 970 struct g_raid_softc *sc; 971 struct g_raid_volume *vol; 972 struct g_raid_subdisk *sd; 973 struct bio_queue_head queue; 974 struct bio *cbp; 975 int i; 976 977 vol = tr->tro_volume; 978 sc = vol->v_softc; 979 980 /* 981 * Allocate all bios before sending any request, so we can return 982 * ENOMEM in nice and clean way. 983 */ 984 bioq_init(&queue); 985 for (i = 0; i < vol->v_disks_count; i++) { 986 sd = &vol->v_subdisks[i]; 987 if (sd->sd_state == G_RAID_SUBDISK_S_NONE || 988 sd->sd_state == G_RAID_SUBDISK_S_FAILED) 989 continue; 990 cbp = g_clone_bio(bp); 991 if (cbp == NULL) 992 goto failure; 993 cbp->bio_caller1 = sd; 994 bioq_insert_tail(&queue, cbp); 995 } 996 for (cbp = bioq_first(&queue); cbp != NULL; 997 cbp = bioq_first(&queue)) { 998 bioq_remove(&queue, cbp); 999 sd = cbp->bio_caller1; 1000 cbp->bio_caller1 = NULL; 1001 g_raid_subdisk_iostart(sd, cbp); 1002 } 1003 return; 1004 failure: 1005 for (cbp = bioq_first(&queue); cbp != NULL; 1006 cbp = bioq_first(&queue)) { 1007 bioq_remove(&queue, cbp); 1008 g_destroy_bio(cbp); 1009 } 1010 if (bp->bio_error == 0) 1011 bp->bio_error = ENOMEM; 1012 g_raid_iodone(bp, bp->bio_error); 1013 } 1014 1015 static void 1016 g_raid_tr_kerneldump_common_done(struct bio *bp) 1017 { 1018 1019 bp->bio_flags |= BIO_DONE; 1020 } 1021 1022 int 1023 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr, 1024 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1025 { 1026 struct g_raid_softc *sc; 1027 struct g_raid_volume *vol; 1028 struct bio bp; 1029 1030 vol = tr->tro_volume; 1031 sc = vol->v_softc; 1032 1033 bzero(&bp, sizeof(bp)); 1034 bp.bio_cmd = BIO_WRITE; 1035 bp.bio_done = g_raid_tr_kerneldump_common_done; 1036 bp.bio_attribute = NULL; 1037 bp.bio_offset = offset; 1038 bp.bio_length = length; 1039 bp.bio_data = virtual; 1040 bp.bio_to = vol->v_provider; 1041 1042 g_raid_start(&bp); 1043 while (!(bp.bio_flags & BIO_DONE)) { 1044 G_RAID_DEBUG1(4, sc, "Poll..."); 1045 g_raid_poll(sc); 1046 DELAY(10); 1047 } 1048 1049 return (bp.bio_error != 0 ? EIO : 0); 1050 } 1051 1052 static int 1053 g_raid_dump(void *arg, 1054 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1055 { 1056 struct g_raid_volume *vol; 1057 int error; 1058 1059 vol = (struct g_raid_volume *)arg; 1060 G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.", 1061 (long long unsigned)offset, (long long unsigned)length); 1062 1063 error = G_RAID_TR_KERNELDUMP(vol->v_tr, 1064 virtual, physical, offset, length); 1065 return (error); 1066 } 1067 1068 static void 1069 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp) 1070 { 1071 struct g_kerneldump *gkd; 1072 struct g_provider *pp; 1073 struct g_raid_volume *vol; 1074 1075 gkd = (struct g_kerneldump*)bp->bio_data; 1076 pp = bp->bio_to; 1077 vol = pp->private; 1078 g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)", 1079 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length); 1080 gkd->di.dumper = g_raid_dump; 1081 gkd->di.priv = vol; 1082 gkd->di.blocksize = vol->v_sectorsize; 1083 gkd->di.maxiosize = DFLTPHYS; 1084 gkd->di.mediaoffset = gkd->offset; 1085 if ((gkd->offset + gkd->length) > vol->v_mediasize) 1086 gkd->length = vol->v_mediasize - gkd->offset; 1087 gkd->di.mediasize = gkd->length; 1088 g_io_deliver(bp, 0); 1089 } 1090 1091 static void 1092 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp) 1093 { 1094 struct g_provider *pp; 1095 struct g_raid_volume *vol; 1096 struct g_raid_subdisk *sd; 1097 int *val; 1098 int i; 1099 1100 val = (int *)bp->bio_data; 1101 pp = bp->bio_to; 1102 vol = pp->private; 1103 *val = 0; 1104 for (i = 0; i < vol->v_disks_count; i++) { 1105 sd = &vol->v_subdisks[i]; 1106 if (sd->sd_state == G_RAID_SUBDISK_S_NONE) 1107 continue; 1108 if (sd->sd_disk->d_candelete) { 1109 *val = 1; 1110 break; 1111 } 1112 } 1113 g_io_deliver(bp, 0); 1114 } 1115 1116 static void 1117 g_raid_start(struct bio *bp) 1118 { 1119 struct g_raid_softc *sc; 1120 1121 sc = bp->bio_to->geom->softc; 1122 /* 1123 * If sc == NULL or there are no valid disks, provider's error 1124 * should be set and g_raid_start() should not be called at all. 1125 */ 1126 // KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING, 1127 // ("Provider's error should be set (error=%d)(mirror=%s).", 1128 // bp->bio_to->error, bp->bio_to->name)); 1129 G_RAID_LOGREQ(3, bp, "Request received."); 1130 1131 switch (bp->bio_cmd) { 1132 case BIO_READ: 1133 case BIO_WRITE: 1134 case BIO_DELETE: 1135 case BIO_FLUSH: 1136 break; 1137 case BIO_GETATTR: 1138 if (!strcmp(bp->bio_attribute, "GEOM::candelete")) 1139 g_raid_candelete(sc, bp); 1140 else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump")) 1141 g_raid_kerneldump(sc, bp); 1142 else 1143 g_io_deliver(bp, EOPNOTSUPP); 1144 return; 1145 default: 1146 g_io_deliver(bp, EOPNOTSUPP); 1147 return; 1148 } 1149 mtx_lock(&sc->sc_queue_mtx); 1150 bioq_disksort(&sc->sc_queue, bp); 1151 mtx_unlock(&sc->sc_queue_mtx); 1152 if (!dumping) { 1153 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc); 1154 wakeup(sc); 1155 } 1156 } 1157 1158 static int 1159 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len) 1160 { 1161 /* 1162 * 5 cases: 1163 * (1) bp entirely below NO 1164 * (2) bp entirely above NO 1165 * (3) bp start below, but end in range YES 1166 * (4) bp entirely within YES 1167 * (5) bp starts within, ends above YES 1168 * 1169 * lock range 10-19 (offset 10 length 10) 1170 * (1) 1-5: first if kicks it out 1171 * (2) 30-35: second if kicks it out 1172 * (3) 5-15: passes both ifs 1173 * (4) 12-14: passes both ifs 1174 * (5) 19-20: passes both 1175 */ 1176 off_t lend = lstart + len - 1; 1177 off_t bstart = bp->bio_offset; 1178 off_t bend = bp->bio_offset + bp->bio_length - 1; 1179 1180 if (bend < lstart) 1181 return (0); 1182 if (lend < bstart) 1183 return (0); 1184 return (1); 1185 } 1186 1187 static int 1188 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp) 1189 { 1190 struct g_raid_lock *lp; 1191 1192 sx_assert(&vol->v_softc->sc_lock, SX_LOCKED); 1193 1194 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1195 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length)) 1196 return (1); 1197 } 1198 return (0); 1199 } 1200 1201 static void 1202 g_raid_start_request(struct bio *bp) 1203 { 1204 struct g_raid_softc *sc; 1205 struct g_raid_volume *vol; 1206 1207 sc = bp->bio_to->geom->softc; 1208 sx_assert(&sc->sc_lock, SX_LOCKED); 1209 vol = bp->bio_to->private; 1210 1211 /* 1212 * Check to see if this item is in a locked range. If so, 1213 * queue it to our locked queue and return. We'll requeue 1214 * it when the range is unlocked. Internal I/O for the 1215 * rebuild/rescan/recovery process is excluded from this 1216 * check so we can actually do the recovery. 1217 */ 1218 if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) && 1219 g_raid_is_in_locked_range(vol, bp)) { 1220 G_RAID_LOGREQ(3, bp, "Defer request."); 1221 bioq_insert_tail(&vol->v_locked, bp); 1222 return; 1223 } 1224 1225 /* 1226 * If we're actually going to do the write/delete, then 1227 * update the idle stats for the volume. 1228 */ 1229 if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) { 1230 if (!vol->v_dirty) 1231 g_raid_dirty(vol); 1232 vol->v_writes++; 1233 } 1234 1235 /* 1236 * Put request onto inflight queue, so we can check if new 1237 * synchronization requests don't collide with it. Then tell 1238 * the transformation layer to start the I/O. 1239 */ 1240 bioq_insert_tail(&vol->v_inflight, bp); 1241 G_RAID_LOGREQ(4, bp, "Request started"); 1242 G_RAID_TR_IOSTART(vol->v_tr, bp); 1243 } 1244 1245 static void 1246 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp) 1247 { 1248 off_t off, len; 1249 struct bio *nbp; 1250 struct g_raid_lock *lp; 1251 1252 vol->v_pending_lock = 0; 1253 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1254 if (lp->l_pending) { 1255 off = lp->l_offset; 1256 len = lp->l_length; 1257 lp->l_pending = 0; 1258 TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) { 1259 if (g_raid_bio_overlaps(nbp, off, len)) 1260 lp->l_pending++; 1261 } 1262 if (lp->l_pending) { 1263 vol->v_pending_lock = 1; 1264 G_RAID_DEBUG1(4, vol->v_softc, 1265 "Deferred lock(%jd, %jd) has %d pending", 1266 (intmax_t)off, (intmax_t)(off + len), 1267 lp->l_pending); 1268 continue; 1269 } 1270 G_RAID_DEBUG1(4, vol->v_softc, 1271 "Deferred lock of %jd to %jd completed", 1272 (intmax_t)off, (intmax_t)(off + len)); 1273 G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg); 1274 } 1275 } 1276 } 1277 1278 void 1279 g_raid_iodone(struct bio *bp, int error) 1280 { 1281 struct g_raid_softc *sc; 1282 struct g_raid_volume *vol; 1283 1284 sc = bp->bio_to->geom->softc; 1285 sx_assert(&sc->sc_lock, SX_LOCKED); 1286 vol = bp->bio_to->private; 1287 G_RAID_LOGREQ(3, bp, "Request done: %d.", error); 1288 1289 /* Update stats if we done write/delete. */ 1290 if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) { 1291 vol->v_writes--; 1292 vol->v_last_write = time_uptime; 1293 } 1294 1295 bioq_remove(&vol->v_inflight, bp); 1296 if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp)) 1297 g_raid_finish_with_locked_ranges(vol, bp); 1298 getmicrouptime(&vol->v_last_done); 1299 g_io_deliver(bp, error); 1300 } 1301 1302 int 1303 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len, 1304 struct bio *ignore, void *argp) 1305 { 1306 struct g_raid_softc *sc; 1307 struct g_raid_lock *lp; 1308 struct bio *bp; 1309 1310 sc = vol->v_softc; 1311 lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO); 1312 LIST_INSERT_HEAD(&vol->v_locks, lp, l_next); 1313 lp->l_offset = off; 1314 lp->l_length = len; 1315 lp->l_callback_arg = argp; 1316 1317 lp->l_pending = 0; 1318 TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) { 1319 if (bp != ignore && g_raid_bio_overlaps(bp, off, len)) 1320 lp->l_pending++; 1321 } 1322 1323 /* 1324 * If there are any writes that are pending, we return EBUSY. All 1325 * callers will have to wait until all pending writes clear. 1326 */ 1327 if (lp->l_pending > 0) { 1328 vol->v_pending_lock = 1; 1329 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend", 1330 (intmax_t)off, (intmax_t)(off+len), lp->l_pending); 1331 return (EBUSY); 1332 } 1333 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd", 1334 (intmax_t)off, (intmax_t)(off+len)); 1335 G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg); 1336 return (0); 1337 } 1338 1339 int 1340 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len) 1341 { 1342 struct g_raid_lock *lp; 1343 struct g_raid_softc *sc; 1344 struct bio *bp; 1345 1346 sc = vol->v_softc; 1347 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1348 if (lp->l_offset == off && lp->l_length == len) { 1349 LIST_REMOVE(lp, l_next); 1350 /* XXX 1351 * Right now we just put them all back on the queue 1352 * and hope for the best. We hope this because any 1353 * locked ranges will go right back on this list 1354 * when the worker thread runs. 1355 * XXX 1356 */ 1357 G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd", 1358 (intmax_t)lp->l_offset, 1359 (intmax_t)(lp->l_offset+lp->l_length)); 1360 mtx_lock(&sc->sc_queue_mtx); 1361 while ((bp = bioq_takefirst(&vol->v_locked)) != NULL) 1362 bioq_disksort(&sc->sc_queue, bp); 1363 mtx_unlock(&sc->sc_queue_mtx); 1364 free(lp, M_RAID); 1365 return (0); 1366 } 1367 } 1368 return (EINVAL); 1369 } 1370 1371 void 1372 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp) 1373 { 1374 struct g_consumer *cp; 1375 struct g_raid_disk *disk, *tdisk; 1376 1377 bp->bio_caller1 = sd; 1378 1379 /* 1380 * Make sure that the disk is present. Generally it is a task of 1381 * transformation layers to not send requests to absent disks, but 1382 * it is better to be safe and report situation then sorry. 1383 */ 1384 if (sd->sd_disk == NULL) { 1385 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!"); 1386 nodisk: 1387 bp->bio_from = NULL; 1388 bp->bio_to = NULL; 1389 bp->bio_error = ENXIO; 1390 g_raid_disk_done(bp); 1391 return; 1392 } 1393 disk = sd->sd_disk; 1394 if (disk->d_state != G_RAID_DISK_S_ACTIVE && 1395 disk->d_state != G_RAID_DISK_S_FAILED) { 1396 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a " 1397 "wrong state (%s)!", g_raid_disk_state2str(disk->d_state)); 1398 goto nodisk; 1399 } 1400 1401 cp = disk->d_consumer; 1402 bp->bio_from = cp; 1403 bp->bio_to = cp->provider; 1404 cp->index++; 1405 1406 /* Update average disks load. */ 1407 TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) { 1408 if (tdisk->d_consumer == NULL) 1409 tdisk->d_load = 0; 1410 else 1411 tdisk->d_load = (tdisk->d_consumer->index * 1412 G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8; 1413 } 1414 1415 disk->d_last_offset = bp->bio_offset + bp->bio_length; 1416 if (dumping) { 1417 G_RAID_LOGREQ(3, bp, "Sending dumping request."); 1418 if (bp->bio_cmd == BIO_WRITE) { 1419 bp->bio_error = g_raid_subdisk_kerneldump(sd, 1420 bp->bio_data, 0, bp->bio_offset, bp->bio_length); 1421 } else 1422 bp->bio_error = EOPNOTSUPP; 1423 g_raid_disk_done(bp); 1424 } else { 1425 bp->bio_done = g_raid_disk_done; 1426 bp->bio_offset += sd->sd_offset; 1427 G_RAID_LOGREQ(3, bp, "Sending request."); 1428 g_io_request(bp, cp); 1429 } 1430 } 1431 1432 int 1433 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd, 1434 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1435 { 1436 1437 if (sd->sd_disk == NULL) 1438 return (ENXIO); 1439 if (sd->sd_disk->d_kd.di.dumper == NULL) 1440 return (EOPNOTSUPP); 1441 return (dump_write(&sd->sd_disk->d_kd.di, 1442 virtual, physical, 1443 sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset, 1444 length)); 1445 } 1446 1447 static void 1448 g_raid_disk_done(struct bio *bp) 1449 { 1450 struct g_raid_softc *sc; 1451 struct g_raid_subdisk *sd; 1452 1453 sd = bp->bio_caller1; 1454 sc = sd->sd_softc; 1455 mtx_lock(&sc->sc_queue_mtx); 1456 bioq_disksort(&sc->sc_queue, bp); 1457 mtx_unlock(&sc->sc_queue_mtx); 1458 if (!dumping) 1459 wakeup(sc); 1460 } 1461 1462 static void 1463 g_raid_disk_done_request(struct bio *bp) 1464 { 1465 struct g_raid_softc *sc; 1466 struct g_raid_disk *disk; 1467 struct g_raid_subdisk *sd; 1468 struct g_raid_volume *vol; 1469 1470 g_topology_assert_not(); 1471 1472 G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error); 1473 sd = bp->bio_caller1; 1474 sc = sd->sd_softc; 1475 vol = sd->sd_volume; 1476 if (bp->bio_from != NULL) { 1477 bp->bio_from->index--; 1478 disk = bp->bio_from->private; 1479 if (disk == NULL) 1480 g_raid_kill_consumer(sc, bp->bio_from); 1481 } 1482 bp->bio_offset -= sd->sd_offset; 1483 1484 G_RAID_TR_IODONE(vol->v_tr, sd, bp); 1485 } 1486 1487 static void 1488 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep) 1489 { 1490 1491 if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0) 1492 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event); 1493 else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0) 1494 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event); 1495 else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0) 1496 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event); 1497 else 1498 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event); 1499 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) { 1500 KASSERT(ep->e_error == 0, 1501 ("Error cannot be handled.")); 1502 g_raid_event_free(ep); 1503 } else { 1504 ep->e_flags |= G_RAID_EVENT_DONE; 1505 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep); 1506 mtx_lock(&sc->sc_queue_mtx); 1507 wakeup(ep); 1508 mtx_unlock(&sc->sc_queue_mtx); 1509 } 1510 } 1511 1512 /* 1513 * Worker thread. 1514 */ 1515 static void 1516 g_raid_worker(void *arg) 1517 { 1518 struct g_raid_softc *sc; 1519 struct g_raid_event *ep; 1520 struct g_raid_volume *vol; 1521 struct bio *bp; 1522 struct timeval now, t; 1523 int timeout, rv; 1524 1525 sc = arg; 1526 thread_lock(curthread); 1527 sched_prio(curthread, PRIBIO); 1528 thread_unlock(curthread); 1529 1530 sx_xlock(&sc->sc_lock); 1531 for (;;) { 1532 mtx_lock(&sc->sc_queue_mtx); 1533 /* 1534 * First take a look at events. 1535 * This is important to handle events before any I/O requests. 1536 */ 1537 bp = NULL; 1538 vol = NULL; 1539 rv = 0; 1540 ep = TAILQ_FIRST(&sc->sc_events); 1541 if (ep != NULL) 1542 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 1543 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL) 1544 ; 1545 else { 1546 getmicrouptime(&now); 1547 t = now; 1548 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1549 if (bioq_first(&vol->v_inflight) == NULL && 1550 vol->v_tr && 1551 timevalcmp(&vol->v_last_done, &t, < )) 1552 t = vol->v_last_done; 1553 } 1554 timevalsub(&t, &now); 1555 timeout = g_raid_idle_threshold + 1556 t.tv_sec * 1000000 + t.tv_usec; 1557 if (timeout > 0) { 1558 /* 1559 * Two steps to avoid overflows at HZ=1000 1560 * and idle timeouts > 2.1s. Some rounding 1561 * errors can occur, but they are < 1tick, 1562 * which is deemed to be close enough for 1563 * this purpose. 1564 */ 1565 int micpertic = 1000000 / hz; 1566 timeout = (timeout + micpertic - 1) / micpertic; 1567 sx_xunlock(&sc->sc_lock); 1568 MSLEEP(rv, sc, &sc->sc_queue_mtx, 1569 PRIBIO | PDROP, "-", timeout); 1570 sx_xlock(&sc->sc_lock); 1571 goto process; 1572 } else 1573 rv = EWOULDBLOCK; 1574 } 1575 mtx_unlock(&sc->sc_queue_mtx); 1576 process: 1577 if (ep != NULL) { 1578 g_raid_handle_event(sc, ep); 1579 } else if (bp != NULL) { 1580 if (bp->bio_to != NULL && 1581 bp->bio_to->geom == sc->sc_geom) 1582 g_raid_start_request(bp); 1583 else 1584 g_raid_disk_done_request(bp); 1585 } else if (rv == EWOULDBLOCK) { 1586 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1587 g_raid_clean(vol, -1); 1588 if (bioq_first(&vol->v_inflight) == NULL && 1589 vol->v_tr) { 1590 t.tv_sec = g_raid_idle_threshold / 1000000; 1591 t.tv_usec = g_raid_idle_threshold % 1000000; 1592 timevaladd(&t, &vol->v_last_done); 1593 getmicrouptime(&now); 1594 if (timevalcmp(&t, &now, <= )) { 1595 G_RAID_TR_IDLE(vol->v_tr); 1596 vol->v_last_done = now; 1597 } 1598 } 1599 } 1600 } 1601 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 1602 g_raid_destroy_node(sc, 1); /* May not return. */ 1603 } 1604 } 1605 1606 static void 1607 g_raid_poll(struct g_raid_softc *sc) 1608 { 1609 struct g_raid_event *ep; 1610 struct bio *bp; 1611 1612 sx_xlock(&sc->sc_lock); 1613 mtx_lock(&sc->sc_queue_mtx); 1614 /* 1615 * First take a look at events. 1616 * This is important to handle events before any I/O requests. 1617 */ 1618 ep = TAILQ_FIRST(&sc->sc_events); 1619 if (ep != NULL) { 1620 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 1621 mtx_unlock(&sc->sc_queue_mtx); 1622 g_raid_handle_event(sc, ep); 1623 goto out; 1624 } 1625 bp = bioq_takefirst(&sc->sc_queue); 1626 if (bp != NULL) { 1627 mtx_unlock(&sc->sc_queue_mtx); 1628 if (bp->bio_from == NULL || 1629 bp->bio_from->geom != sc->sc_geom) 1630 g_raid_start_request(bp); 1631 else 1632 g_raid_disk_done_request(bp); 1633 } 1634 out: 1635 sx_xunlock(&sc->sc_lock); 1636 } 1637 1638 static void 1639 g_raid_launch_provider(struct g_raid_volume *vol) 1640 { 1641 struct g_raid_disk *disk; 1642 struct g_raid_softc *sc; 1643 struct g_provider *pp; 1644 char name[G_RAID_MAX_VOLUMENAME]; 1645 char announce_buf[80], buf1[32]; 1646 off_t off; 1647 1648 sc = vol->v_softc; 1649 sx_assert(&sc->sc_lock, SX_LOCKED); 1650 1651 g_topology_lock(); 1652 /* Try to name provider with volume name. */ 1653 snprintf(name, sizeof(name), "raid/%s", vol->v_name); 1654 if (g_raid_name_format == 0 || vol->v_name[0] == 0 || 1655 g_provider_by_name(name) != NULL) { 1656 /* Otherwise use sequential volume number. */ 1657 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id); 1658 } 1659 1660 /* 1661 * Create a /dev/ar%d that the old ataraid(4) stack once 1662 * created as an alias for /dev/raid/r%d if requested. 1663 * This helps going from stable/7 ataraid devices to newer 1664 * FreeBSD releases. sbruno 07 MAY 2013 1665 */ 1666 1667 if (ar_legacy_aliases) { 1668 snprintf(announce_buf, sizeof(announce_buf), 1669 "kern.devalias.%s", name); 1670 snprintf(buf1, sizeof(buf1), 1671 "ar%d", vol->v_global_id); 1672 setenv(announce_buf, buf1); 1673 } 1674 1675 pp = g_new_providerf(sc->sc_geom, "%s", name); 1676 pp->private = vol; 1677 pp->mediasize = vol->v_mediasize; 1678 pp->sectorsize = vol->v_sectorsize; 1679 pp->stripesize = 0; 1680 pp->stripeoffset = 0; 1681 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 || 1682 vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 || 1683 vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE || 1684 vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) { 1685 if ((disk = vol->v_subdisks[0].sd_disk) != NULL && 1686 disk->d_consumer != NULL && 1687 disk->d_consumer->provider != NULL) { 1688 pp->stripesize = disk->d_consumer->provider->stripesize; 1689 off = disk->d_consumer->provider->stripeoffset; 1690 pp->stripeoffset = off + vol->v_subdisks[0].sd_offset; 1691 if (off > 0) 1692 pp->stripeoffset %= off; 1693 } 1694 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) { 1695 pp->stripesize *= (vol->v_disks_count - 1); 1696 pp->stripeoffset *= (vol->v_disks_count - 1); 1697 } 1698 } else 1699 pp->stripesize = vol->v_strip_size; 1700 vol->v_provider = pp; 1701 g_error_provider(pp, 0); 1702 g_topology_unlock(); 1703 G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.", 1704 pp->name, vol->v_name); 1705 } 1706 1707 static void 1708 g_raid_destroy_provider(struct g_raid_volume *vol) 1709 { 1710 struct g_raid_softc *sc; 1711 struct g_provider *pp; 1712 struct bio *bp, *tmp; 1713 1714 g_topology_assert_not(); 1715 sc = vol->v_softc; 1716 pp = vol->v_provider; 1717 KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name)); 1718 1719 g_topology_lock(); 1720 g_error_provider(pp, ENXIO); 1721 mtx_lock(&sc->sc_queue_mtx); 1722 TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) { 1723 if (bp->bio_to != pp) 1724 continue; 1725 bioq_remove(&sc->sc_queue, bp); 1726 g_io_deliver(bp, ENXIO); 1727 } 1728 mtx_unlock(&sc->sc_queue_mtx); 1729 G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.", 1730 pp->name, vol->v_name); 1731 g_wither_provider(pp, ENXIO); 1732 g_topology_unlock(); 1733 vol->v_provider = NULL; 1734 } 1735 1736 /* 1737 * Update device state. 1738 */ 1739 static int 1740 g_raid_update_volume(struct g_raid_volume *vol, u_int event) 1741 { 1742 struct g_raid_softc *sc; 1743 1744 sc = vol->v_softc; 1745 sx_assert(&sc->sc_lock, SX_XLOCKED); 1746 1747 G_RAID_DEBUG1(2, sc, "Event %s for volume %s.", 1748 g_raid_volume_event2str(event), 1749 vol->v_name); 1750 switch (event) { 1751 case G_RAID_VOLUME_E_DOWN: 1752 if (vol->v_provider != NULL) 1753 g_raid_destroy_provider(vol); 1754 break; 1755 case G_RAID_VOLUME_E_UP: 1756 if (vol->v_provider == NULL) 1757 g_raid_launch_provider(vol); 1758 break; 1759 case G_RAID_VOLUME_E_START: 1760 if (vol->v_tr) 1761 G_RAID_TR_START(vol->v_tr); 1762 return (0); 1763 default: 1764 if (sc->sc_md) 1765 G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event); 1766 return (0); 1767 } 1768 1769 /* Manage root mount release. */ 1770 if (vol->v_starting) { 1771 vol->v_starting = 0; 1772 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount); 1773 root_mount_rel(vol->v_rootmount); 1774 vol->v_rootmount = NULL; 1775 } 1776 if (vol->v_stopping && vol->v_provider_open == 0) 1777 g_raid_destroy_volume(vol); 1778 return (0); 1779 } 1780 1781 /* 1782 * Update subdisk state. 1783 */ 1784 static int 1785 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event) 1786 { 1787 struct g_raid_softc *sc; 1788 struct g_raid_volume *vol; 1789 1790 sc = sd->sd_softc; 1791 vol = sd->sd_volume; 1792 sx_assert(&sc->sc_lock, SX_XLOCKED); 1793 1794 G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.", 1795 g_raid_subdisk_event2str(event), 1796 vol->v_name, sd->sd_pos, 1797 sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]"); 1798 if (vol->v_tr) 1799 G_RAID_TR_EVENT(vol->v_tr, sd, event); 1800 1801 return (0); 1802 } 1803 1804 /* 1805 * Update disk state. 1806 */ 1807 static int 1808 g_raid_update_disk(struct g_raid_disk *disk, u_int event) 1809 { 1810 struct g_raid_softc *sc; 1811 1812 sc = disk->d_softc; 1813 sx_assert(&sc->sc_lock, SX_XLOCKED); 1814 1815 G_RAID_DEBUG1(2, sc, "Event %s for disk %s.", 1816 g_raid_disk_event2str(event), 1817 g_raid_get_diskname(disk)); 1818 1819 if (sc->sc_md) 1820 G_RAID_MD_EVENT(sc->sc_md, disk, event); 1821 return (0); 1822 } 1823 1824 /* 1825 * Node event. 1826 */ 1827 static int 1828 g_raid_update_node(struct g_raid_softc *sc, u_int event) 1829 { 1830 sx_assert(&sc->sc_lock, SX_XLOCKED); 1831 1832 G_RAID_DEBUG1(2, sc, "Event %s for the array.", 1833 g_raid_node_event2str(event)); 1834 1835 if (event == G_RAID_NODE_E_WAKE) 1836 return (0); 1837 if (sc->sc_md) 1838 G_RAID_MD_EVENT(sc->sc_md, NULL, event); 1839 return (0); 1840 } 1841 1842 static int 1843 g_raid_access(struct g_provider *pp, int acr, int acw, int ace) 1844 { 1845 struct g_raid_volume *vol; 1846 struct g_raid_softc *sc; 1847 int dcw, opens, error = 0; 1848 1849 g_topology_assert(); 1850 sc = pp->geom->softc; 1851 vol = pp->private; 1852 KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name)); 1853 KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name)); 1854 1855 G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name, 1856 acr, acw, ace); 1857 dcw = pp->acw + acw; 1858 1859 g_topology_unlock(); 1860 sx_xlock(&sc->sc_lock); 1861 /* Deny new opens while dying. */ 1862 if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) { 1863 error = ENXIO; 1864 goto out; 1865 } 1866 /* Deny write opens for read-only volumes. */ 1867 if (vol->v_read_only && acw > 0) { 1868 error = EROFS; 1869 goto out; 1870 } 1871 if (dcw == 0) 1872 g_raid_clean(vol, dcw); 1873 vol->v_provider_open += acr + acw + ace; 1874 /* Handle delayed node destruction. */ 1875 if (sc->sc_stopping == G_RAID_DESTROY_DELAYED && 1876 vol->v_provider_open == 0) { 1877 /* Count open volumes. */ 1878 opens = g_raid_nopens(sc); 1879 if (opens == 0) { 1880 sc->sc_stopping = G_RAID_DESTROY_HARD; 1881 /* Wake up worker to make it selfdestruct. */ 1882 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 1883 } 1884 } 1885 /* Handle open volume destruction. */ 1886 if (vol->v_stopping && vol->v_provider_open == 0) 1887 g_raid_destroy_volume(vol); 1888 out: 1889 sx_xunlock(&sc->sc_lock); 1890 g_topology_lock(); 1891 return (error); 1892 } 1893 1894 struct g_raid_softc * 1895 g_raid_create_node(struct g_class *mp, 1896 const char *name, struct g_raid_md_object *md) 1897 { 1898 struct g_raid_softc *sc; 1899 struct g_geom *gp; 1900 int error; 1901 1902 g_topology_assert(); 1903 G_RAID_DEBUG(1, "Creating array %s.", name); 1904 1905 gp = g_new_geomf(mp, "%s", name); 1906 sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO); 1907 gp->start = g_raid_start; 1908 gp->orphan = g_raid_orphan; 1909 gp->access = g_raid_access; 1910 gp->dumpconf = g_raid_dumpconf; 1911 1912 sc->sc_md = md; 1913 sc->sc_geom = gp; 1914 sc->sc_flags = 0; 1915 TAILQ_INIT(&sc->sc_volumes); 1916 TAILQ_INIT(&sc->sc_disks); 1917 sx_init(&sc->sc_lock, "graid:lock"); 1918 mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF); 1919 TAILQ_INIT(&sc->sc_events); 1920 bioq_init(&sc->sc_queue); 1921 gp->softc = sc; 1922 error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0, 1923 "g_raid %s", name); 1924 if (error != 0) { 1925 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name); 1926 mtx_destroy(&sc->sc_queue_mtx); 1927 sx_destroy(&sc->sc_lock); 1928 g_destroy_geom(sc->sc_geom); 1929 free(sc, M_RAID); 1930 return (NULL); 1931 } 1932 1933 G_RAID_DEBUG1(0, sc, "Array %s created.", name); 1934 return (sc); 1935 } 1936 1937 struct g_raid_volume * 1938 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id) 1939 { 1940 struct g_raid_volume *vol, *vol1; 1941 int i; 1942 1943 G_RAID_DEBUG1(1, sc, "Creating volume %s.", name); 1944 vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO); 1945 vol->v_softc = sc; 1946 strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME); 1947 vol->v_state = G_RAID_VOLUME_S_STARTING; 1948 vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN; 1949 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN; 1950 vol->v_rotate_parity = 1; 1951 bioq_init(&vol->v_inflight); 1952 bioq_init(&vol->v_locked); 1953 LIST_INIT(&vol->v_locks); 1954 for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) { 1955 vol->v_subdisks[i].sd_softc = sc; 1956 vol->v_subdisks[i].sd_volume = vol; 1957 vol->v_subdisks[i].sd_pos = i; 1958 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE; 1959 } 1960 1961 /* Find free ID for this volume. */ 1962 g_topology_lock(); 1963 vol1 = vol; 1964 if (id >= 0) { 1965 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) { 1966 if (vol1->v_global_id == id) 1967 break; 1968 } 1969 } 1970 if (vol1 != NULL) { 1971 for (id = 0; ; id++) { 1972 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) { 1973 if (vol1->v_global_id == id) 1974 break; 1975 } 1976 if (vol1 == NULL) 1977 break; 1978 } 1979 } 1980 vol->v_global_id = id; 1981 LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next); 1982 g_topology_unlock(); 1983 1984 /* Delay root mounting. */ 1985 vol->v_rootmount = root_mount_hold("GRAID"); 1986 G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount); 1987 vol->v_starting = 1; 1988 TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next); 1989 return (vol); 1990 } 1991 1992 struct g_raid_disk * 1993 g_raid_create_disk(struct g_raid_softc *sc) 1994 { 1995 struct g_raid_disk *disk; 1996 1997 G_RAID_DEBUG1(1, sc, "Creating disk."); 1998 disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO); 1999 disk->d_softc = sc; 2000 disk->d_state = G_RAID_DISK_S_NONE; 2001 TAILQ_INIT(&disk->d_subdisks); 2002 TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next); 2003 return (disk); 2004 } 2005 2006 int g_raid_start_volume(struct g_raid_volume *vol) 2007 { 2008 struct g_raid_tr_class *class; 2009 struct g_raid_tr_object *obj; 2010 int status; 2011 2012 G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name); 2013 LIST_FOREACH(class, &g_raid_tr_classes, trc_list) { 2014 if (!class->trc_enable) 2015 continue; 2016 G_RAID_DEBUG1(2, vol->v_softc, 2017 "Tasting volume %s for %s transformation.", 2018 vol->v_name, class->name); 2019 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2020 M_WAITOK); 2021 obj->tro_class = class; 2022 obj->tro_volume = vol; 2023 status = G_RAID_TR_TASTE(obj, vol); 2024 if (status != G_RAID_TR_TASTE_FAIL) 2025 break; 2026 kobj_delete((kobj_t)obj, M_RAID); 2027 } 2028 if (class == NULL) { 2029 G_RAID_DEBUG1(0, vol->v_softc, 2030 "No transformation module found for %s.", 2031 vol->v_name); 2032 vol->v_tr = NULL; 2033 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED); 2034 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN, 2035 G_RAID_EVENT_VOLUME); 2036 return (-1); 2037 } 2038 G_RAID_DEBUG1(2, vol->v_softc, 2039 "Transformation module %s chosen for %s.", 2040 class->name, vol->v_name); 2041 vol->v_tr = obj; 2042 return (0); 2043 } 2044 2045 int 2046 g_raid_destroy_node(struct g_raid_softc *sc, int worker) 2047 { 2048 struct g_raid_volume *vol, *tmpv; 2049 struct g_raid_disk *disk, *tmpd; 2050 int error = 0; 2051 2052 sc->sc_stopping = G_RAID_DESTROY_HARD; 2053 TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) { 2054 if (g_raid_destroy_volume(vol)) 2055 error = EBUSY; 2056 } 2057 if (error) 2058 return (error); 2059 TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) { 2060 if (g_raid_destroy_disk(disk)) 2061 error = EBUSY; 2062 } 2063 if (error) 2064 return (error); 2065 if (sc->sc_md) { 2066 G_RAID_MD_FREE(sc->sc_md); 2067 kobj_delete((kobj_t)sc->sc_md, M_RAID); 2068 sc->sc_md = NULL; 2069 } 2070 if (sc->sc_geom != NULL) { 2071 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name); 2072 g_topology_lock(); 2073 sc->sc_geom->softc = NULL; 2074 g_wither_geom(sc->sc_geom, ENXIO); 2075 g_topology_unlock(); 2076 sc->sc_geom = NULL; 2077 } else 2078 G_RAID_DEBUG(1, "Array destroyed."); 2079 if (worker) { 2080 g_raid_event_cancel(sc, sc); 2081 mtx_destroy(&sc->sc_queue_mtx); 2082 sx_xunlock(&sc->sc_lock); 2083 sx_destroy(&sc->sc_lock); 2084 wakeup(&sc->sc_stopping); 2085 free(sc, M_RAID); 2086 curthread->td_pflags &= ~TDP_GEOM; 2087 G_RAID_DEBUG(1, "Thread exiting."); 2088 kproc_exit(0); 2089 } else { 2090 /* Wake up worker to make it selfdestruct. */ 2091 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2092 } 2093 return (0); 2094 } 2095 2096 int 2097 g_raid_destroy_volume(struct g_raid_volume *vol) 2098 { 2099 struct g_raid_softc *sc; 2100 struct g_raid_disk *disk; 2101 int i; 2102 2103 sc = vol->v_softc; 2104 G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name); 2105 vol->v_stopping = 1; 2106 if (vol->v_state != G_RAID_VOLUME_S_STOPPED) { 2107 if (vol->v_tr) { 2108 G_RAID_TR_STOP(vol->v_tr); 2109 return (EBUSY); 2110 } else 2111 vol->v_state = G_RAID_VOLUME_S_STOPPED; 2112 } 2113 if (g_raid_event_check(sc, vol) != 0) 2114 return (EBUSY); 2115 if (vol->v_provider != NULL) 2116 return (EBUSY); 2117 if (vol->v_provider_open != 0) 2118 return (EBUSY); 2119 if (vol->v_tr) { 2120 G_RAID_TR_FREE(vol->v_tr); 2121 kobj_delete((kobj_t)vol->v_tr, M_RAID); 2122 vol->v_tr = NULL; 2123 } 2124 if (vol->v_rootmount) 2125 root_mount_rel(vol->v_rootmount); 2126 g_topology_lock(); 2127 LIST_REMOVE(vol, v_global_next); 2128 g_topology_unlock(); 2129 TAILQ_REMOVE(&sc->sc_volumes, vol, v_next); 2130 for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) { 2131 g_raid_event_cancel(sc, &vol->v_subdisks[i]); 2132 disk = vol->v_subdisks[i].sd_disk; 2133 if (disk == NULL) 2134 continue; 2135 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next); 2136 } 2137 G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name); 2138 if (sc->sc_md) 2139 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol); 2140 g_raid_event_cancel(sc, vol); 2141 free(vol, M_RAID); 2142 if (sc->sc_stopping == G_RAID_DESTROY_HARD) { 2143 /* Wake up worker to let it selfdestruct. */ 2144 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2145 } 2146 return (0); 2147 } 2148 2149 int 2150 g_raid_destroy_disk(struct g_raid_disk *disk) 2151 { 2152 struct g_raid_softc *sc; 2153 struct g_raid_subdisk *sd, *tmp; 2154 2155 sc = disk->d_softc; 2156 G_RAID_DEBUG1(2, sc, "Destroying disk."); 2157 if (disk->d_consumer) { 2158 g_raid_kill_consumer(sc, disk->d_consumer); 2159 disk->d_consumer = NULL; 2160 } 2161 TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) { 2162 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE); 2163 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED, 2164 G_RAID_EVENT_SUBDISK); 2165 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next); 2166 sd->sd_disk = NULL; 2167 } 2168 TAILQ_REMOVE(&sc->sc_disks, disk, d_next); 2169 if (sc->sc_md) 2170 G_RAID_MD_FREE_DISK(sc->sc_md, disk); 2171 g_raid_event_cancel(sc, disk); 2172 free(disk, M_RAID); 2173 return (0); 2174 } 2175 2176 int 2177 g_raid_destroy(struct g_raid_softc *sc, int how) 2178 { 2179 int error, opens; 2180 2181 g_topology_assert_not(); 2182 if (sc == NULL) 2183 return (ENXIO); 2184 sx_assert(&sc->sc_lock, SX_XLOCKED); 2185 2186 /* Count open volumes. */ 2187 opens = g_raid_nopens(sc); 2188 2189 /* React on some opened volumes. */ 2190 if (opens > 0) { 2191 switch (how) { 2192 case G_RAID_DESTROY_SOFT: 2193 G_RAID_DEBUG1(1, sc, 2194 "%d volumes are still open.", 2195 opens); 2196 sx_xunlock(&sc->sc_lock); 2197 return (EBUSY); 2198 case G_RAID_DESTROY_DELAYED: 2199 G_RAID_DEBUG1(1, sc, 2200 "Array will be destroyed on last close."); 2201 sc->sc_stopping = G_RAID_DESTROY_DELAYED; 2202 sx_xunlock(&sc->sc_lock); 2203 return (EBUSY); 2204 case G_RAID_DESTROY_HARD: 2205 G_RAID_DEBUG1(1, sc, 2206 "%d volumes are still open.", 2207 opens); 2208 } 2209 } 2210 2211 /* Mark node for destruction. */ 2212 sc->sc_stopping = G_RAID_DESTROY_HARD; 2213 /* Wake up worker to let it selfdestruct. */ 2214 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2215 /* Sleep until node destroyed. */ 2216 error = sx_sleep(&sc->sc_stopping, &sc->sc_lock, 2217 PRIBIO | PDROP, "r:destroy", hz * 3); 2218 return (error == EWOULDBLOCK ? EBUSY : 0); 2219 } 2220 2221 static void 2222 g_raid_taste_orphan(struct g_consumer *cp) 2223 { 2224 2225 KASSERT(1 == 0, ("%s called while tasting %s.", __func__, 2226 cp->provider->name)); 2227 } 2228 2229 static struct g_geom * 2230 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) 2231 { 2232 struct g_consumer *cp; 2233 struct g_geom *gp, *geom; 2234 struct g_raid_md_class *class; 2235 struct g_raid_md_object *obj; 2236 int status; 2237 2238 g_topology_assert(); 2239 g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); 2240 if (!g_raid_enable) 2241 return (NULL); 2242 G_RAID_DEBUG(2, "Tasting provider %s.", pp->name); 2243 2244 gp = g_new_geomf(mp, "raid:taste"); 2245 /* 2246 * This orphan function should be never called. 2247 */ 2248 gp->orphan = g_raid_taste_orphan; 2249 cp = g_new_consumer(gp); 2250 g_attach(cp, pp); 2251 2252 geom = NULL; 2253 LIST_FOREACH(class, &g_raid_md_classes, mdc_list) { 2254 if (!class->mdc_enable) 2255 continue; 2256 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.", 2257 pp->name, class->name); 2258 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2259 M_WAITOK); 2260 obj->mdo_class = class; 2261 status = G_RAID_MD_TASTE(obj, mp, cp, &geom); 2262 if (status != G_RAID_MD_TASTE_NEW) 2263 kobj_delete((kobj_t)obj, M_RAID); 2264 if (status != G_RAID_MD_TASTE_FAIL) 2265 break; 2266 } 2267 2268 g_detach(cp); 2269 g_destroy_consumer(cp); 2270 g_destroy_geom(gp); 2271 G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name); 2272 return (geom); 2273 } 2274 2275 int 2276 g_raid_create_node_format(const char *format, struct gctl_req *req, 2277 struct g_geom **gp) 2278 { 2279 struct g_raid_md_class *class; 2280 struct g_raid_md_object *obj; 2281 int status; 2282 2283 G_RAID_DEBUG(2, "Creating array for %s metadata.", format); 2284 LIST_FOREACH(class, &g_raid_md_classes, mdc_list) { 2285 if (strcasecmp(class->name, format) == 0) 2286 break; 2287 } 2288 if (class == NULL) { 2289 G_RAID_DEBUG(1, "No support for %s metadata.", format); 2290 return (G_RAID_MD_TASTE_FAIL); 2291 } 2292 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2293 M_WAITOK); 2294 obj->mdo_class = class; 2295 status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp); 2296 if (status != G_RAID_MD_TASTE_NEW) 2297 kobj_delete((kobj_t)obj, M_RAID); 2298 return (status); 2299 } 2300 2301 static int 2302 g_raid_destroy_geom(struct gctl_req *req __unused, 2303 struct g_class *mp __unused, struct g_geom *gp) 2304 { 2305 struct g_raid_softc *sc; 2306 int error; 2307 2308 g_topology_unlock(); 2309 sc = gp->softc; 2310 sx_xlock(&sc->sc_lock); 2311 g_cancel_event(sc); 2312 error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT); 2313 g_topology_lock(); 2314 return (error); 2315 } 2316 2317 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol, 2318 struct g_raid_subdisk *sd, struct g_raid_disk *disk) 2319 { 2320 2321 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 2322 return; 2323 if (sc->sc_md) 2324 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk); 2325 } 2326 2327 void g_raid_fail_disk(struct g_raid_softc *sc, 2328 struct g_raid_subdisk *sd, struct g_raid_disk *disk) 2329 { 2330 2331 if (disk == NULL) 2332 disk = sd->sd_disk; 2333 if (disk == NULL) { 2334 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!"); 2335 return; 2336 } 2337 if (disk->d_state != G_RAID_DISK_S_ACTIVE) { 2338 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a " 2339 "wrong state (%s)!", g_raid_disk_state2str(disk->d_state)); 2340 return; 2341 } 2342 if (sc->sc_md) 2343 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk); 2344 } 2345 2346 static void 2347 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, 2348 struct g_consumer *cp, struct g_provider *pp) 2349 { 2350 struct g_raid_softc *sc; 2351 struct g_raid_volume *vol; 2352 struct g_raid_subdisk *sd; 2353 struct g_raid_disk *disk; 2354 int i, s; 2355 2356 g_topology_assert(); 2357 2358 sc = gp->softc; 2359 if (sc == NULL) 2360 return; 2361 if (pp != NULL) { 2362 vol = pp->private; 2363 g_topology_unlock(); 2364 sx_xlock(&sc->sc_lock); 2365 sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent, 2366 sc->sc_md->mdo_class->name, 2367 g_raid_volume_level2str(vol->v_raid_level, 2368 vol->v_raid_level_qualifier)); 2369 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent, 2370 vol->v_name); 2371 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent, 2372 g_raid_volume_level2str(vol->v_raid_level, 2373 vol->v_raid_level_qualifier)); 2374 sbuf_printf(sb, 2375 "%s<Transformation>%s</Transformation>\n", indent, 2376 vol->v_tr ? vol->v_tr->tro_class->name : "NONE"); 2377 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent, 2378 vol->v_disks_count); 2379 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent, 2380 vol->v_strip_size); 2381 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2382 g_raid_volume_state2str(vol->v_state)); 2383 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent, 2384 vol->v_dirty ? "Yes" : "No"); 2385 sbuf_printf(sb, "%s<Subdisks>", indent); 2386 for (i = 0; i < vol->v_disks_count; i++) { 2387 sd = &vol->v_subdisks[i]; 2388 if (sd->sd_disk != NULL && 2389 sd->sd_disk->d_consumer != NULL) { 2390 sbuf_printf(sb, "%s ", 2391 g_raid_get_diskname(sd->sd_disk)); 2392 } else { 2393 sbuf_printf(sb, "NONE "); 2394 } 2395 sbuf_printf(sb, "(%s", 2396 g_raid_subdisk_state2str(sd->sd_state)); 2397 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2398 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2399 sbuf_printf(sb, " %d%%", 2400 (int)(sd->sd_rebuild_pos * 100 / 2401 sd->sd_size)); 2402 } 2403 sbuf_printf(sb, ")"); 2404 if (i + 1 < vol->v_disks_count) 2405 sbuf_printf(sb, ", "); 2406 } 2407 sbuf_printf(sb, "</Subdisks>\n"); 2408 sx_xunlock(&sc->sc_lock); 2409 g_topology_lock(); 2410 } else if (cp != NULL) { 2411 disk = cp->private; 2412 if (disk == NULL) 2413 return; 2414 g_topology_unlock(); 2415 sx_xlock(&sc->sc_lock); 2416 sbuf_printf(sb, "%s<State>%s", indent, 2417 g_raid_disk_state2str(disk->d_state)); 2418 if (!TAILQ_EMPTY(&disk->d_subdisks)) { 2419 sbuf_printf(sb, " ("); 2420 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 2421 sbuf_printf(sb, "%s", 2422 g_raid_subdisk_state2str(sd->sd_state)); 2423 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2424 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2425 sbuf_printf(sb, " %d%%", 2426 (int)(sd->sd_rebuild_pos * 100 / 2427 sd->sd_size)); 2428 } 2429 if (TAILQ_NEXT(sd, sd_next)) 2430 sbuf_printf(sb, ", "); 2431 } 2432 sbuf_printf(sb, ")"); 2433 } 2434 sbuf_printf(sb, "</State>\n"); 2435 sbuf_printf(sb, "%s<Subdisks>", indent); 2436 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 2437 sbuf_printf(sb, "r%d(%s):%d@%ju", 2438 sd->sd_volume->v_global_id, 2439 sd->sd_volume->v_name, 2440 sd->sd_pos, sd->sd_offset); 2441 if (TAILQ_NEXT(sd, sd_next)) 2442 sbuf_printf(sb, ", "); 2443 } 2444 sbuf_printf(sb, "</Subdisks>\n"); 2445 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent, 2446 disk->d_read_errs); 2447 sx_xunlock(&sc->sc_lock); 2448 g_topology_lock(); 2449 } else { 2450 g_topology_unlock(); 2451 sx_xlock(&sc->sc_lock); 2452 if (sc->sc_md) { 2453 sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent, 2454 sc->sc_md->mdo_class->name); 2455 } 2456 if (!TAILQ_EMPTY(&sc->sc_volumes)) { 2457 s = 0xff; 2458 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 2459 if (vol->v_state < s) 2460 s = vol->v_state; 2461 } 2462 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2463 g_raid_volume_state2str(s)); 2464 } 2465 sx_xunlock(&sc->sc_lock); 2466 g_topology_lock(); 2467 } 2468 } 2469 2470 static void 2471 g_raid_shutdown_post_sync(void *arg, int howto) 2472 { 2473 struct g_class *mp; 2474 struct g_geom *gp, *gp2; 2475 struct g_raid_softc *sc; 2476 struct g_raid_volume *vol; 2477 2478 mp = arg; 2479 DROP_GIANT(); 2480 g_topology_lock(); 2481 g_raid_shutdown = 1; 2482 LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) { 2483 if ((sc = gp->softc) == NULL) 2484 continue; 2485 g_topology_unlock(); 2486 sx_xlock(&sc->sc_lock); 2487 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) 2488 g_raid_clean(vol, -1); 2489 g_cancel_event(sc); 2490 g_raid_destroy(sc, G_RAID_DESTROY_DELAYED); 2491 g_topology_lock(); 2492 } 2493 g_topology_unlock(); 2494 PICKUP_GIANT(); 2495 } 2496 2497 static void 2498 g_raid_init(struct g_class *mp) 2499 { 2500 2501 g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync, 2502 g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST); 2503 if (g_raid_post_sync == NULL) 2504 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event."); 2505 g_raid_started = 1; 2506 } 2507 2508 static void 2509 g_raid_fini(struct g_class *mp) 2510 { 2511 2512 if (g_raid_post_sync != NULL) 2513 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync); 2514 g_raid_started = 0; 2515 } 2516 2517 int 2518 g_raid_md_modevent(module_t mod, int type, void *arg) 2519 { 2520 struct g_raid_md_class *class, *c, *nc; 2521 int error; 2522 2523 error = 0; 2524 class = arg; 2525 switch (type) { 2526 case MOD_LOAD: 2527 c = LIST_FIRST(&g_raid_md_classes); 2528 if (c == NULL || c->mdc_priority > class->mdc_priority) 2529 LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list); 2530 else { 2531 while ((nc = LIST_NEXT(c, mdc_list)) != NULL && 2532 nc->mdc_priority < class->mdc_priority) 2533 c = nc; 2534 LIST_INSERT_AFTER(c, class, mdc_list); 2535 } 2536 if (g_raid_started) 2537 g_retaste(&g_raid_class); 2538 break; 2539 case MOD_UNLOAD: 2540 LIST_REMOVE(class, mdc_list); 2541 break; 2542 default: 2543 error = EOPNOTSUPP; 2544 break; 2545 } 2546 2547 return (error); 2548 } 2549 2550 int 2551 g_raid_tr_modevent(module_t mod, int type, void *arg) 2552 { 2553 struct g_raid_tr_class *class, *c, *nc; 2554 int error; 2555 2556 error = 0; 2557 class = arg; 2558 switch (type) { 2559 case MOD_LOAD: 2560 c = LIST_FIRST(&g_raid_tr_classes); 2561 if (c == NULL || c->trc_priority > class->trc_priority) 2562 LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list); 2563 else { 2564 while ((nc = LIST_NEXT(c, trc_list)) != NULL && 2565 nc->trc_priority < class->trc_priority) 2566 c = nc; 2567 LIST_INSERT_AFTER(c, class, trc_list); 2568 } 2569 break; 2570 case MOD_UNLOAD: 2571 LIST_REMOVE(class, trc_list); 2572 break; 2573 default: 2574 error = EOPNOTSUPP; 2575 break; 2576 } 2577 2578 return (error); 2579 } 2580 2581 /* 2582 * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid) 2583 * to reduce module priority, allowing submodules to register them first. 2584 */ 2585 static moduledata_t g_raid_mod = { 2586 "g_raid", 2587 g_modevent, 2588 &g_raid_class 2589 }; 2590 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD); 2591 MODULE_VERSION(geom_raid, 0); 2592