1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/limits.h> 37 #include <sys/lock.h> 38 #include <sys/mutex.h> 39 #include <sys/bio.h> 40 #include <sys/sbuf.h> 41 #include <sys/sysctl.h> 42 #include <sys/malloc.h> 43 #include <sys/eventhandler.h> 44 #include <vm/uma.h> 45 #include <geom/geom.h> 46 #include <sys/proc.h> 47 #include <sys/kthread.h> 48 #include <sys/sched.h> 49 #include <geom/raid/g_raid.h> 50 #include "g_raid_md_if.h" 51 #include "g_raid_tr_if.h" 52 53 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data"); 54 55 SYSCTL_DECL(_kern_geom); 56 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW, 0, "GEOM_RAID stuff"); 57 int g_raid_enable = 1; 58 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RWTUN, 59 &g_raid_enable, 0, "Enable on-disk metadata taste"); 60 u_int g_raid_aggressive_spare = 0; 61 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RWTUN, 62 &g_raid_aggressive_spare, 0, "Use disks without metadata as spare"); 63 u_int g_raid_debug = 0; 64 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid_debug, 0, 65 "Debug level"); 66 int g_raid_read_err_thresh = 10; 67 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RWTUN, 68 &g_raid_read_err_thresh, 0, 69 "Number of read errors equated to disk failure"); 70 u_int g_raid_start_timeout = 30; 71 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RWTUN, 72 &g_raid_start_timeout, 0, 73 "Time to wait for all array components"); 74 static u_int g_raid_clean_time = 5; 75 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RWTUN, 76 &g_raid_clean_time, 0, "Mark volume as clean when idling"); 77 static u_int g_raid_disconnect_on_failure = 1; 78 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN, 79 &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure."); 80 static u_int g_raid_name_format = 0; 81 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RWTUN, 82 &g_raid_name_format, 0, "Providers name format."); 83 static u_int g_raid_idle_threshold = 1000000; 84 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RWTUN, 85 &g_raid_idle_threshold, 1000000, 86 "Time in microseconds to consider a volume idle."); 87 88 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout) do { \ 89 G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \ 90 rv = msleep((ident), (mtx), (priority), (wmesg), (timeout)); \ 91 G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \ 92 } while (0) 93 94 LIST_HEAD(, g_raid_md_class) g_raid_md_classes = 95 LIST_HEAD_INITIALIZER(g_raid_md_classes); 96 97 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes = 98 LIST_HEAD_INITIALIZER(g_raid_tr_classes); 99 100 LIST_HEAD(, g_raid_volume) g_raid_volumes = 101 LIST_HEAD_INITIALIZER(g_raid_volumes); 102 103 static eventhandler_tag g_raid_post_sync = NULL; 104 static int g_raid_started = 0; 105 static int g_raid_shutdown = 0; 106 107 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp, 108 struct g_geom *gp); 109 static g_taste_t g_raid_taste; 110 static void g_raid_init(struct g_class *mp); 111 static void g_raid_fini(struct g_class *mp); 112 113 struct g_class g_raid_class = { 114 .name = G_RAID_CLASS_NAME, 115 .version = G_VERSION, 116 .ctlreq = g_raid_ctl, 117 .taste = g_raid_taste, 118 .destroy_geom = g_raid_destroy_geom, 119 .init = g_raid_init, 120 .fini = g_raid_fini 121 }; 122 123 static void g_raid_destroy_provider(struct g_raid_volume *vol); 124 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event); 125 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event); 126 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event); 127 static int g_raid_update_node(struct g_raid_softc *sc, u_int event); 128 static void g_raid_dumpconf(struct sbuf *sb, const char *indent, 129 struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); 130 static void g_raid_start(struct bio *bp); 131 static void g_raid_start_request(struct bio *bp); 132 static void g_raid_disk_done(struct bio *bp); 133 static void g_raid_poll(struct g_raid_softc *sc); 134 135 static const char * 136 g_raid_node_event2str(int event) 137 { 138 139 switch (event) { 140 case G_RAID_NODE_E_WAKE: 141 return ("WAKE"); 142 case G_RAID_NODE_E_START: 143 return ("START"); 144 default: 145 return ("INVALID"); 146 } 147 } 148 149 const char * 150 g_raid_disk_state2str(int state) 151 { 152 153 switch (state) { 154 case G_RAID_DISK_S_NONE: 155 return ("NONE"); 156 case G_RAID_DISK_S_OFFLINE: 157 return ("OFFLINE"); 158 case G_RAID_DISK_S_DISABLED: 159 return ("DISABLED"); 160 case G_RAID_DISK_S_FAILED: 161 return ("FAILED"); 162 case G_RAID_DISK_S_STALE_FAILED: 163 return ("STALE_FAILED"); 164 case G_RAID_DISK_S_SPARE: 165 return ("SPARE"); 166 case G_RAID_DISK_S_STALE: 167 return ("STALE"); 168 case G_RAID_DISK_S_ACTIVE: 169 return ("ACTIVE"); 170 default: 171 return ("INVALID"); 172 } 173 } 174 175 static const char * 176 g_raid_disk_event2str(int event) 177 { 178 179 switch (event) { 180 case G_RAID_DISK_E_DISCONNECTED: 181 return ("DISCONNECTED"); 182 default: 183 return ("INVALID"); 184 } 185 } 186 187 const char * 188 g_raid_subdisk_state2str(int state) 189 { 190 191 switch (state) { 192 case G_RAID_SUBDISK_S_NONE: 193 return ("NONE"); 194 case G_RAID_SUBDISK_S_FAILED: 195 return ("FAILED"); 196 case G_RAID_SUBDISK_S_NEW: 197 return ("NEW"); 198 case G_RAID_SUBDISK_S_REBUILD: 199 return ("REBUILD"); 200 case G_RAID_SUBDISK_S_UNINITIALIZED: 201 return ("UNINITIALIZED"); 202 case G_RAID_SUBDISK_S_STALE: 203 return ("STALE"); 204 case G_RAID_SUBDISK_S_RESYNC: 205 return ("RESYNC"); 206 case G_RAID_SUBDISK_S_ACTIVE: 207 return ("ACTIVE"); 208 default: 209 return ("INVALID"); 210 } 211 } 212 213 static const char * 214 g_raid_subdisk_event2str(int event) 215 { 216 217 switch (event) { 218 case G_RAID_SUBDISK_E_NEW: 219 return ("NEW"); 220 case G_RAID_SUBDISK_E_FAILED: 221 return ("FAILED"); 222 case G_RAID_SUBDISK_E_DISCONNECTED: 223 return ("DISCONNECTED"); 224 default: 225 return ("INVALID"); 226 } 227 } 228 229 const char * 230 g_raid_volume_state2str(int state) 231 { 232 233 switch (state) { 234 case G_RAID_VOLUME_S_STARTING: 235 return ("STARTING"); 236 case G_RAID_VOLUME_S_BROKEN: 237 return ("BROKEN"); 238 case G_RAID_VOLUME_S_DEGRADED: 239 return ("DEGRADED"); 240 case G_RAID_VOLUME_S_SUBOPTIMAL: 241 return ("SUBOPTIMAL"); 242 case G_RAID_VOLUME_S_OPTIMAL: 243 return ("OPTIMAL"); 244 case G_RAID_VOLUME_S_UNSUPPORTED: 245 return ("UNSUPPORTED"); 246 case G_RAID_VOLUME_S_STOPPED: 247 return ("STOPPED"); 248 default: 249 return ("INVALID"); 250 } 251 } 252 253 static const char * 254 g_raid_volume_event2str(int event) 255 { 256 257 switch (event) { 258 case G_RAID_VOLUME_E_UP: 259 return ("UP"); 260 case G_RAID_VOLUME_E_DOWN: 261 return ("DOWN"); 262 case G_RAID_VOLUME_E_START: 263 return ("START"); 264 case G_RAID_VOLUME_E_STARTMD: 265 return ("STARTMD"); 266 default: 267 return ("INVALID"); 268 } 269 } 270 271 const char * 272 g_raid_volume_level2str(int level, int qual) 273 { 274 275 switch (level) { 276 case G_RAID_VOLUME_RL_RAID0: 277 return ("RAID0"); 278 case G_RAID_VOLUME_RL_RAID1: 279 return ("RAID1"); 280 case G_RAID_VOLUME_RL_RAID3: 281 if (qual == G_RAID_VOLUME_RLQ_R3P0) 282 return ("RAID3-P0"); 283 if (qual == G_RAID_VOLUME_RLQ_R3PN) 284 return ("RAID3-PN"); 285 return ("RAID3"); 286 case G_RAID_VOLUME_RL_RAID4: 287 if (qual == G_RAID_VOLUME_RLQ_R4P0) 288 return ("RAID4-P0"); 289 if (qual == G_RAID_VOLUME_RLQ_R4PN) 290 return ("RAID4-PN"); 291 return ("RAID4"); 292 case G_RAID_VOLUME_RL_RAID5: 293 if (qual == G_RAID_VOLUME_RLQ_R5RA) 294 return ("RAID5-RA"); 295 if (qual == G_RAID_VOLUME_RLQ_R5RS) 296 return ("RAID5-RS"); 297 if (qual == G_RAID_VOLUME_RLQ_R5LA) 298 return ("RAID5-LA"); 299 if (qual == G_RAID_VOLUME_RLQ_R5LS) 300 return ("RAID5-LS"); 301 return ("RAID5"); 302 case G_RAID_VOLUME_RL_RAID6: 303 if (qual == G_RAID_VOLUME_RLQ_R6RA) 304 return ("RAID6-RA"); 305 if (qual == G_RAID_VOLUME_RLQ_R6RS) 306 return ("RAID6-RS"); 307 if (qual == G_RAID_VOLUME_RLQ_R6LA) 308 return ("RAID6-LA"); 309 if (qual == G_RAID_VOLUME_RLQ_R6LS) 310 return ("RAID6-LS"); 311 return ("RAID6"); 312 case G_RAID_VOLUME_RL_RAIDMDF: 313 if (qual == G_RAID_VOLUME_RLQ_RMDFRA) 314 return ("RAIDMDF-RA"); 315 if (qual == G_RAID_VOLUME_RLQ_RMDFRS) 316 return ("RAIDMDF-RS"); 317 if (qual == G_RAID_VOLUME_RLQ_RMDFLA) 318 return ("RAIDMDF-LA"); 319 if (qual == G_RAID_VOLUME_RLQ_RMDFLS) 320 return ("RAIDMDF-LS"); 321 return ("RAIDMDF"); 322 case G_RAID_VOLUME_RL_RAID1E: 323 if (qual == G_RAID_VOLUME_RLQ_R1EA) 324 return ("RAID1E-A"); 325 if (qual == G_RAID_VOLUME_RLQ_R1EO) 326 return ("RAID1E-O"); 327 return ("RAID1E"); 328 case G_RAID_VOLUME_RL_SINGLE: 329 return ("SINGLE"); 330 case G_RAID_VOLUME_RL_CONCAT: 331 return ("CONCAT"); 332 case G_RAID_VOLUME_RL_RAID5E: 333 if (qual == G_RAID_VOLUME_RLQ_R5ERA) 334 return ("RAID5E-RA"); 335 if (qual == G_RAID_VOLUME_RLQ_R5ERS) 336 return ("RAID5E-RS"); 337 if (qual == G_RAID_VOLUME_RLQ_R5ELA) 338 return ("RAID5E-LA"); 339 if (qual == G_RAID_VOLUME_RLQ_R5ELS) 340 return ("RAID5E-LS"); 341 return ("RAID5E"); 342 case G_RAID_VOLUME_RL_RAID5EE: 343 if (qual == G_RAID_VOLUME_RLQ_R5EERA) 344 return ("RAID5EE-RA"); 345 if (qual == G_RAID_VOLUME_RLQ_R5EERS) 346 return ("RAID5EE-RS"); 347 if (qual == G_RAID_VOLUME_RLQ_R5EELA) 348 return ("RAID5EE-LA"); 349 if (qual == G_RAID_VOLUME_RLQ_R5EELS) 350 return ("RAID5EE-LS"); 351 return ("RAID5EE"); 352 case G_RAID_VOLUME_RL_RAID5R: 353 if (qual == G_RAID_VOLUME_RLQ_R5RRA) 354 return ("RAID5R-RA"); 355 if (qual == G_RAID_VOLUME_RLQ_R5RRS) 356 return ("RAID5R-RS"); 357 if (qual == G_RAID_VOLUME_RLQ_R5RLA) 358 return ("RAID5R-LA"); 359 if (qual == G_RAID_VOLUME_RLQ_R5RLS) 360 return ("RAID5R-LS"); 361 return ("RAID5E"); 362 default: 363 return ("UNKNOWN"); 364 } 365 } 366 367 int 368 g_raid_volume_str2level(const char *str, int *level, int *qual) 369 { 370 371 *level = G_RAID_VOLUME_RL_UNKNOWN; 372 *qual = G_RAID_VOLUME_RLQ_NONE; 373 if (strcasecmp(str, "RAID0") == 0) 374 *level = G_RAID_VOLUME_RL_RAID0; 375 else if (strcasecmp(str, "RAID1") == 0) 376 *level = G_RAID_VOLUME_RL_RAID1; 377 else if (strcasecmp(str, "RAID3-P0") == 0) { 378 *level = G_RAID_VOLUME_RL_RAID3; 379 *qual = G_RAID_VOLUME_RLQ_R3P0; 380 } else if (strcasecmp(str, "RAID3-PN") == 0 || 381 strcasecmp(str, "RAID3") == 0) { 382 *level = G_RAID_VOLUME_RL_RAID3; 383 *qual = G_RAID_VOLUME_RLQ_R3PN; 384 } else if (strcasecmp(str, "RAID4-P0") == 0) { 385 *level = G_RAID_VOLUME_RL_RAID4; 386 *qual = G_RAID_VOLUME_RLQ_R4P0; 387 } else if (strcasecmp(str, "RAID4-PN") == 0 || 388 strcasecmp(str, "RAID4") == 0) { 389 *level = G_RAID_VOLUME_RL_RAID4; 390 *qual = G_RAID_VOLUME_RLQ_R4PN; 391 } else if (strcasecmp(str, "RAID5-RA") == 0) { 392 *level = G_RAID_VOLUME_RL_RAID5; 393 *qual = G_RAID_VOLUME_RLQ_R5RA; 394 } else if (strcasecmp(str, "RAID5-RS") == 0) { 395 *level = G_RAID_VOLUME_RL_RAID5; 396 *qual = G_RAID_VOLUME_RLQ_R5RS; 397 } else if (strcasecmp(str, "RAID5") == 0 || 398 strcasecmp(str, "RAID5-LA") == 0) { 399 *level = G_RAID_VOLUME_RL_RAID5; 400 *qual = G_RAID_VOLUME_RLQ_R5LA; 401 } else if (strcasecmp(str, "RAID5-LS") == 0) { 402 *level = G_RAID_VOLUME_RL_RAID5; 403 *qual = G_RAID_VOLUME_RLQ_R5LS; 404 } else if (strcasecmp(str, "RAID6-RA") == 0) { 405 *level = G_RAID_VOLUME_RL_RAID6; 406 *qual = G_RAID_VOLUME_RLQ_R6RA; 407 } else if (strcasecmp(str, "RAID6-RS") == 0) { 408 *level = G_RAID_VOLUME_RL_RAID6; 409 *qual = G_RAID_VOLUME_RLQ_R6RS; 410 } else if (strcasecmp(str, "RAID6") == 0 || 411 strcasecmp(str, "RAID6-LA") == 0) { 412 *level = G_RAID_VOLUME_RL_RAID6; 413 *qual = G_RAID_VOLUME_RLQ_R6LA; 414 } else if (strcasecmp(str, "RAID6-LS") == 0) { 415 *level = G_RAID_VOLUME_RL_RAID6; 416 *qual = G_RAID_VOLUME_RLQ_R6LS; 417 } else if (strcasecmp(str, "RAIDMDF-RA") == 0) { 418 *level = G_RAID_VOLUME_RL_RAIDMDF; 419 *qual = G_RAID_VOLUME_RLQ_RMDFRA; 420 } else if (strcasecmp(str, "RAIDMDF-RS") == 0) { 421 *level = G_RAID_VOLUME_RL_RAIDMDF; 422 *qual = G_RAID_VOLUME_RLQ_RMDFRS; 423 } else if (strcasecmp(str, "RAIDMDF") == 0 || 424 strcasecmp(str, "RAIDMDF-LA") == 0) { 425 *level = G_RAID_VOLUME_RL_RAIDMDF; 426 *qual = G_RAID_VOLUME_RLQ_RMDFLA; 427 } else if (strcasecmp(str, "RAIDMDF-LS") == 0) { 428 *level = G_RAID_VOLUME_RL_RAIDMDF; 429 *qual = G_RAID_VOLUME_RLQ_RMDFLS; 430 } else if (strcasecmp(str, "RAID10") == 0 || 431 strcasecmp(str, "RAID1E") == 0 || 432 strcasecmp(str, "RAID1E-A") == 0) { 433 *level = G_RAID_VOLUME_RL_RAID1E; 434 *qual = G_RAID_VOLUME_RLQ_R1EA; 435 } else if (strcasecmp(str, "RAID1E-O") == 0) { 436 *level = G_RAID_VOLUME_RL_RAID1E; 437 *qual = G_RAID_VOLUME_RLQ_R1EO; 438 } else if (strcasecmp(str, "SINGLE") == 0) 439 *level = G_RAID_VOLUME_RL_SINGLE; 440 else if (strcasecmp(str, "CONCAT") == 0) 441 *level = G_RAID_VOLUME_RL_CONCAT; 442 else if (strcasecmp(str, "RAID5E-RA") == 0) { 443 *level = G_RAID_VOLUME_RL_RAID5E; 444 *qual = G_RAID_VOLUME_RLQ_R5ERA; 445 } else if (strcasecmp(str, "RAID5E-RS") == 0) { 446 *level = G_RAID_VOLUME_RL_RAID5E; 447 *qual = G_RAID_VOLUME_RLQ_R5ERS; 448 } else if (strcasecmp(str, "RAID5E") == 0 || 449 strcasecmp(str, "RAID5E-LA") == 0) { 450 *level = G_RAID_VOLUME_RL_RAID5E; 451 *qual = G_RAID_VOLUME_RLQ_R5ELA; 452 } else if (strcasecmp(str, "RAID5E-LS") == 0) { 453 *level = G_RAID_VOLUME_RL_RAID5E; 454 *qual = G_RAID_VOLUME_RLQ_R5ELS; 455 } else if (strcasecmp(str, "RAID5EE-RA") == 0) { 456 *level = G_RAID_VOLUME_RL_RAID5EE; 457 *qual = G_RAID_VOLUME_RLQ_R5EERA; 458 } else if (strcasecmp(str, "RAID5EE-RS") == 0) { 459 *level = G_RAID_VOLUME_RL_RAID5EE; 460 *qual = G_RAID_VOLUME_RLQ_R5EERS; 461 } else if (strcasecmp(str, "RAID5EE") == 0 || 462 strcasecmp(str, "RAID5EE-LA") == 0) { 463 *level = G_RAID_VOLUME_RL_RAID5EE; 464 *qual = G_RAID_VOLUME_RLQ_R5EELA; 465 } else if (strcasecmp(str, "RAID5EE-LS") == 0) { 466 *level = G_RAID_VOLUME_RL_RAID5EE; 467 *qual = G_RAID_VOLUME_RLQ_R5EELS; 468 } else if (strcasecmp(str, "RAID5R-RA") == 0) { 469 *level = G_RAID_VOLUME_RL_RAID5R; 470 *qual = G_RAID_VOLUME_RLQ_R5RRA; 471 } else if (strcasecmp(str, "RAID5R-RS") == 0) { 472 *level = G_RAID_VOLUME_RL_RAID5R; 473 *qual = G_RAID_VOLUME_RLQ_R5RRS; 474 } else if (strcasecmp(str, "RAID5R") == 0 || 475 strcasecmp(str, "RAID5R-LA") == 0) { 476 *level = G_RAID_VOLUME_RL_RAID5R; 477 *qual = G_RAID_VOLUME_RLQ_R5RLA; 478 } else if (strcasecmp(str, "RAID5R-LS") == 0) { 479 *level = G_RAID_VOLUME_RL_RAID5R; 480 *qual = G_RAID_VOLUME_RLQ_R5RLS; 481 } else 482 return (-1); 483 return (0); 484 } 485 486 const char * 487 g_raid_get_diskname(struct g_raid_disk *disk) 488 { 489 490 if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL) 491 return ("[unknown]"); 492 return (disk->d_consumer->provider->name); 493 } 494 495 void 496 g_raid_get_disk_info(struct g_raid_disk *disk) 497 { 498 struct g_consumer *cp = disk->d_consumer; 499 int error, len; 500 501 /* Read kernel dumping information. */ 502 disk->d_kd.offset = 0; 503 disk->d_kd.length = OFF_MAX; 504 len = sizeof(disk->d_kd); 505 error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd); 506 if (error) 507 disk->d_kd.di.dumper = NULL; 508 if (disk->d_kd.di.dumper == NULL) 509 G_RAID_DEBUG1(2, disk->d_softc, 510 "Dumping not supported by %s: %d.", 511 cp->provider->name, error); 512 513 /* Read BIO_DELETE support. */ 514 error = g_getattr("GEOM::candelete", cp, &disk->d_candelete); 515 if (error) 516 disk->d_candelete = 0; 517 if (!disk->d_candelete) 518 G_RAID_DEBUG1(2, disk->d_softc, 519 "BIO_DELETE not supported by %s: %d.", 520 cp->provider->name, error); 521 } 522 523 void 524 g_raid_report_disk_state(struct g_raid_disk *disk) 525 { 526 struct g_raid_subdisk *sd; 527 int len, state; 528 uint32_t s; 529 530 if (disk->d_consumer == NULL) 531 return; 532 if (disk->d_state == G_RAID_DISK_S_DISABLED) { 533 s = G_STATE_ACTIVE; /* XXX */ 534 } else if (disk->d_state == G_RAID_DISK_S_FAILED || 535 disk->d_state == G_RAID_DISK_S_STALE_FAILED) { 536 s = G_STATE_FAILED; 537 } else { 538 state = G_RAID_SUBDISK_S_ACTIVE; 539 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 540 if (sd->sd_state < state) 541 state = sd->sd_state; 542 } 543 if (state == G_RAID_SUBDISK_S_FAILED) 544 s = G_STATE_FAILED; 545 else if (state == G_RAID_SUBDISK_S_NEW || 546 state == G_RAID_SUBDISK_S_REBUILD) 547 s = G_STATE_REBUILD; 548 else if (state == G_RAID_SUBDISK_S_STALE || 549 state == G_RAID_SUBDISK_S_RESYNC) 550 s = G_STATE_RESYNC; 551 else 552 s = G_STATE_ACTIVE; 553 } 554 len = sizeof(s); 555 g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s); 556 G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.", 557 g_raid_get_diskname(disk), s); 558 } 559 560 void 561 g_raid_change_disk_state(struct g_raid_disk *disk, int state) 562 { 563 564 G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.", 565 g_raid_get_diskname(disk), 566 g_raid_disk_state2str(disk->d_state), 567 g_raid_disk_state2str(state)); 568 disk->d_state = state; 569 g_raid_report_disk_state(disk); 570 } 571 572 void 573 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state) 574 { 575 576 G_RAID_DEBUG1(0, sd->sd_softc, 577 "Subdisk %s:%d-%s state changed from %s to %s.", 578 sd->sd_volume->v_name, sd->sd_pos, 579 sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]", 580 g_raid_subdisk_state2str(sd->sd_state), 581 g_raid_subdisk_state2str(state)); 582 sd->sd_state = state; 583 if (sd->sd_disk) 584 g_raid_report_disk_state(sd->sd_disk); 585 } 586 587 void 588 g_raid_change_volume_state(struct g_raid_volume *vol, int state) 589 { 590 591 G_RAID_DEBUG1(0, vol->v_softc, 592 "Volume %s state changed from %s to %s.", 593 vol->v_name, 594 g_raid_volume_state2str(vol->v_state), 595 g_raid_volume_state2str(state)); 596 vol->v_state = state; 597 } 598 599 /* 600 * --- Events handling functions --- 601 * Events in geom_raid are used to maintain subdisks and volumes status 602 * from one thread to simplify locking. 603 */ 604 static void 605 g_raid_event_free(struct g_raid_event *ep) 606 { 607 608 free(ep, M_RAID); 609 } 610 611 int 612 g_raid_event_send(void *arg, int event, int flags) 613 { 614 struct g_raid_softc *sc; 615 struct g_raid_event *ep; 616 int error; 617 618 if ((flags & G_RAID_EVENT_VOLUME) != 0) { 619 sc = ((struct g_raid_volume *)arg)->v_softc; 620 } else if ((flags & G_RAID_EVENT_DISK) != 0) { 621 sc = ((struct g_raid_disk *)arg)->d_softc; 622 } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) { 623 sc = ((struct g_raid_subdisk *)arg)->sd_softc; 624 } else { 625 sc = arg; 626 } 627 ep = malloc(sizeof(*ep), M_RAID, 628 sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT); 629 if (ep == NULL) 630 return (ENOMEM); 631 ep->e_tgt = arg; 632 ep->e_event = event; 633 ep->e_flags = flags; 634 ep->e_error = 0; 635 G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc); 636 mtx_lock(&sc->sc_queue_mtx); 637 TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next); 638 mtx_unlock(&sc->sc_queue_mtx); 639 wakeup(sc); 640 641 if ((flags & G_RAID_EVENT_WAIT) == 0) 642 return (0); 643 644 sx_assert(&sc->sc_lock, SX_XLOCKED); 645 G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep); 646 sx_xunlock(&sc->sc_lock); 647 while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) { 648 mtx_lock(&sc->sc_queue_mtx); 649 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event", 650 hz * 5); 651 } 652 error = ep->e_error; 653 g_raid_event_free(ep); 654 sx_xlock(&sc->sc_lock); 655 return (error); 656 } 657 658 static void 659 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt) 660 { 661 struct g_raid_event *ep, *tmpep; 662 663 sx_assert(&sc->sc_lock, SX_XLOCKED); 664 665 mtx_lock(&sc->sc_queue_mtx); 666 TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) { 667 if (ep->e_tgt != tgt) 668 continue; 669 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 670 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) 671 g_raid_event_free(ep); 672 else { 673 ep->e_error = ECANCELED; 674 wakeup(ep); 675 } 676 } 677 mtx_unlock(&sc->sc_queue_mtx); 678 } 679 680 static int 681 g_raid_event_check(struct g_raid_softc *sc, void *tgt) 682 { 683 struct g_raid_event *ep; 684 int res = 0; 685 686 sx_assert(&sc->sc_lock, SX_XLOCKED); 687 688 mtx_lock(&sc->sc_queue_mtx); 689 TAILQ_FOREACH(ep, &sc->sc_events, e_next) { 690 if (ep->e_tgt != tgt) 691 continue; 692 res = 1; 693 break; 694 } 695 mtx_unlock(&sc->sc_queue_mtx); 696 return (res); 697 } 698 699 /* 700 * Return the number of disks in given state. 701 * If state is equal to -1, count all connected disks. 702 */ 703 u_int 704 g_raid_ndisks(struct g_raid_softc *sc, int state) 705 { 706 struct g_raid_disk *disk; 707 u_int n; 708 709 sx_assert(&sc->sc_lock, SX_LOCKED); 710 711 n = 0; 712 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 713 if (disk->d_state == state || state == -1) 714 n++; 715 } 716 return (n); 717 } 718 719 /* 720 * Return the number of subdisks in given state. 721 * If state is equal to -1, count all connected disks. 722 */ 723 u_int 724 g_raid_nsubdisks(struct g_raid_volume *vol, int state) 725 { 726 struct g_raid_subdisk *subdisk; 727 struct g_raid_softc *sc; 728 u_int i, n ; 729 730 sc = vol->v_softc; 731 sx_assert(&sc->sc_lock, SX_LOCKED); 732 733 n = 0; 734 for (i = 0; i < vol->v_disks_count; i++) { 735 subdisk = &vol->v_subdisks[i]; 736 if ((state == -1 && 737 subdisk->sd_state != G_RAID_SUBDISK_S_NONE) || 738 subdisk->sd_state == state) 739 n++; 740 } 741 return (n); 742 } 743 744 /* 745 * Return the first subdisk in given state. 746 * If state is equal to -1, then the first connected disks. 747 */ 748 struct g_raid_subdisk * 749 g_raid_get_subdisk(struct g_raid_volume *vol, int state) 750 { 751 struct g_raid_subdisk *sd; 752 struct g_raid_softc *sc; 753 u_int i; 754 755 sc = vol->v_softc; 756 sx_assert(&sc->sc_lock, SX_LOCKED); 757 758 for (i = 0; i < vol->v_disks_count; i++) { 759 sd = &vol->v_subdisks[i]; 760 if ((state == -1 && 761 sd->sd_state != G_RAID_SUBDISK_S_NONE) || 762 sd->sd_state == state) 763 return (sd); 764 } 765 return (NULL); 766 } 767 768 struct g_consumer * 769 g_raid_open_consumer(struct g_raid_softc *sc, const char *name) 770 { 771 struct g_consumer *cp; 772 struct g_provider *pp; 773 774 g_topology_assert(); 775 776 if (strncmp(name, "/dev/", 5) == 0) 777 name += 5; 778 pp = g_provider_by_name(name); 779 if (pp == NULL) 780 return (NULL); 781 cp = g_new_consumer(sc->sc_geom); 782 cp->flags |= G_CF_DIRECT_RECEIVE; 783 if (g_attach(cp, pp) != 0) { 784 g_destroy_consumer(cp); 785 return (NULL); 786 } 787 if (g_access(cp, 1, 1, 1) != 0) { 788 g_detach(cp); 789 g_destroy_consumer(cp); 790 return (NULL); 791 } 792 return (cp); 793 } 794 795 static u_int 796 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp) 797 { 798 struct bio *bp; 799 u_int nreqs = 0; 800 801 mtx_lock(&sc->sc_queue_mtx); 802 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 803 if (bp->bio_from == cp) 804 nreqs++; 805 } 806 mtx_unlock(&sc->sc_queue_mtx); 807 return (nreqs); 808 } 809 810 u_int 811 g_raid_nopens(struct g_raid_softc *sc) 812 { 813 struct g_raid_volume *vol; 814 u_int opens; 815 816 opens = 0; 817 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 818 if (vol->v_provider_open != 0) 819 opens++; 820 } 821 return (opens); 822 } 823 824 static int 825 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp) 826 { 827 828 if (cp->index > 0) { 829 G_RAID_DEBUG1(2, sc, 830 "I/O requests for %s exist, can't destroy it now.", 831 cp->provider->name); 832 return (1); 833 } 834 if (g_raid_nrequests(sc, cp) > 0) { 835 G_RAID_DEBUG1(2, sc, 836 "I/O requests for %s in queue, can't destroy it now.", 837 cp->provider->name); 838 return (1); 839 } 840 return (0); 841 } 842 843 static void 844 g_raid_destroy_consumer(void *arg, int flags __unused) 845 { 846 struct g_consumer *cp; 847 848 g_topology_assert(); 849 850 cp = arg; 851 G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name); 852 g_detach(cp); 853 g_destroy_consumer(cp); 854 } 855 856 void 857 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp) 858 { 859 struct g_provider *pp; 860 int retaste_wait; 861 862 g_topology_assert_not(); 863 864 g_topology_lock(); 865 cp->private = NULL; 866 if (g_raid_consumer_is_busy(sc, cp)) 867 goto out; 868 pp = cp->provider; 869 retaste_wait = 0; 870 if (cp->acw == 1) { 871 if ((pp->geom->flags & G_GEOM_WITHER) == 0) 872 retaste_wait = 1; 873 } 874 if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) 875 g_access(cp, -cp->acr, -cp->acw, -cp->ace); 876 if (retaste_wait) { 877 /* 878 * After retaste event was send (inside g_access()), we can send 879 * event to detach and destroy consumer. 880 * A class, which has consumer to the given provider connected 881 * will not receive retaste event for the provider. 882 * This is the way how I ignore retaste events when I close 883 * consumers opened for write: I detach and destroy consumer 884 * after retaste event is sent. 885 */ 886 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL); 887 goto out; 888 } 889 G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name); 890 g_detach(cp); 891 g_destroy_consumer(cp); 892 out: 893 g_topology_unlock(); 894 } 895 896 static void 897 g_raid_orphan(struct g_consumer *cp) 898 { 899 struct g_raid_disk *disk; 900 901 g_topology_assert(); 902 903 disk = cp->private; 904 if (disk == NULL) 905 return; 906 g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED, 907 G_RAID_EVENT_DISK); 908 } 909 910 static void 911 g_raid_clean(struct g_raid_volume *vol, int acw) 912 { 913 struct g_raid_softc *sc; 914 int timeout; 915 916 sc = vol->v_softc; 917 g_topology_assert_not(); 918 sx_assert(&sc->sc_lock, SX_XLOCKED); 919 920 // if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0) 921 // return; 922 if (!vol->v_dirty) 923 return; 924 if (vol->v_writes > 0) 925 return; 926 if (acw > 0 || (acw == -1 && 927 vol->v_provider != NULL && vol->v_provider->acw > 0)) { 928 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write); 929 if (!g_raid_shutdown && timeout > 0) 930 return; 931 } 932 vol->v_dirty = 0; 933 G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.", 934 vol->v_name); 935 g_raid_write_metadata(sc, vol, NULL, NULL); 936 } 937 938 static void 939 g_raid_dirty(struct g_raid_volume *vol) 940 { 941 struct g_raid_softc *sc; 942 943 sc = vol->v_softc; 944 g_topology_assert_not(); 945 sx_assert(&sc->sc_lock, SX_XLOCKED); 946 947 // if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0) 948 // return; 949 vol->v_dirty = 1; 950 G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.", 951 vol->v_name); 952 g_raid_write_metadata(sc, vol, NULL, NULL); 953 } 954 955 void 956 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp) 957 { 958 struct g_raid_volume *vol; 959 struct g_raid_subdisk *sd; 960 struct bio_queue_head queue; 961 struct bio *cbp; 962 int i; 963 964 vol = tr->tro_volume; 965 966 /* 967 * Allocate all bios before sending any request, so we can return 968 * ENOMEM in nice and clean way. 969 */ 970 bioq_init(&queue); 971 for (i = 0; i < vol->v_disks_count; i++) { 972 sd = &vol->v_subdisks[i]; 973 if (sd->sd_state == G_RAID_SUBDISK_S_NONE || 974 sd->sd_state == G_RAID_SUBDISK_S_FAILED) 975 continue; 976 cbp = g_clone_bio(bp); 977 if (cbp == NULL) 978 goto failure; 979 cbp->bio_caller1 = sd; 980 bioq_insert_tail(&queue, cbp); 981 } 982 while ((cbp = bioq_takefirst(&queue)) != NULL) { 983 sd = cbp->bio_caller1; 984 cbp->bio_caller1 = NULL; 985 g_raid_subdisk_iostart(sd, cbp); 986 } 987 return; 988 failure: 989 while ((cbp = bioq_takefirst(&queue)) != NULL) 990 g_destroy_bio(cbp); 991 if (bp->bio_error == 0) 992 bp->bio_error = ENOMEM; 993 g_raid_iodone(bp, bp->bio_error); 994 } 995 996 static void 997 g_raid_tr_kerneldump_common_done(struct bio *bp) 998 { 999 1000 bp->bio_flags |= BIO_DONE; 1001 } 1002 1003 int 1004 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr, 1005 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1006 { 1007 struct g_raid_softc *sc; 1008 struct g_raid_volume *vol; 1009 struct bio bp; 1010 1011 vol = tr->tro_volume; 1012 sc = vol->v_softc; 1013 1014 g_reset_bio(&bp); 1015 bp.bio_cmd = BIO_WRITE; 1016 bp.bio_done = g_raid_tr_kerneldump_common_done; 1017 bp.bio_attribute = NULL; 1018 bp.bio_offset = offset; 1019 bp.bio_length = length; 1020 bp.bio_data = virtual; 1021 bp.bio_to = vol->v_provider; 1022 1023 g_raid_start(&bp); 1024 while (!(bp.bio_flags & BIO_DONE)) { 1025 G_RAID_DEBUG1(4, sc, "Poll..."); 1026 g_raid_poll(sc); 1027 DELAY(10); 1028 } 1029 1030 return (bp.bio_error != 0 ? EIO : 0); 1031 } 1032 1033 static int 1034 g_raid_dump(void *arg, 1035 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1036 { 1037 struct g_raid_volume *vol; 1038 int error; 1039 1040 vol = (struct g_raid_volume *)arg; 1041 G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.", 1042 (long long unsigned)offset, (long long unsigned)length); 1043 1044 error = G_RAID_TR_KERNELDUMP(vol->v_tr, 1045 virtual, physical, offset, length); 1046 return (error); 1047 } 1048 1049 static void 1050 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp) 1051 { 1052 struct g_kerneldump *gkd; 1053 struct g_provider *pp; 1054 struct g_raid_volume *vol; 1055 1056 gkd = (struct g_kerneldump*)bp->bio_data; 1057 pp = bp->bio_to; 1058 vol = pp->private; 1059 g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)", 1060 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length); 1061 gkd->di.dumper = g_raid_dump; 1062 gkd->di.priv = vol; 1063 gkd->di.blocksize = vol->v_sectorsize; 1064 gkd->di.maxiosize = DFLTPHYS; 1065 gkd->di.mediaoffset = gkd->offset; 1066 if ((gkd->offset + gkd->length) > vol->v_mediasize) 1067 gkd->length = vol->v_mediasize - gkd->offset; 1068 gkd->di.mediasize = gkd->length; 1069 g_io_deliver(bp, 0); 1070 } 1071 1072 static void 1073 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp) 1074 { 1075 struct g_provider *pp; 1076 struct g_raid_volume *vol; 1077 struct g_raid_subdisk *sd; 1078 int *val; 1079 int i; 1080 1081 val = (int *)bp->bio_data; 1082 pp = bp->bio_to; 1083 vol = pp->private; 1084 *val = 0; 1085 for (i = 0; i < vol->v_disks_count; i++) { 1086 sd = &vol->v_subdisks[i]; 1087 if (sd->sd_state == G_RAID_SUBDISK_S_NONE) 1088 continue; 1089 if (sd->sd_disk->d_candelete) { 1090 *val = 1; 1091 break; 1092 } 1093 } 1094 g_io_deliver(bp, 0); 1095 } 1096 1097 static void 1098 g_raid_start(struct bio *bp) 1099 { 1100 struct g_raid_softc *sc; 1101 1102 sc = bp->bio_to->geom->softc; 1103 /* 1104 * If sc == NULL or there are no valid disks, provider's error 1105 * should be set and g_raid_start() should not be called at all. 1106 */ 1107 // KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING, 1108 // ("Provider's error should be set (error=%d)(mirror=%s).", 1109 // bp->bio_to->error, bp->bio_to->name)); 1110 G_RAID_LOGREQ(3, bp, "Request received."); 1111 1112 switch (bp->bio_cmd) { 1113 case BIO_READ: 1114 case BIO_WRITE: 1115 case BIO_DELETE: 1116 case BIO_FLUSH: 1117 break; 1118 case BIO_GETATTR: 1119 if (!strcmp(bp->bio_attribute, "GEOM::candelete")) 1120 g_raid_candelete(sc, bp); 1121 else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump")) 1122 g_raid_kerneldump(sc, bp); 1123 else 1124 g_io_deliver(bp, EOPNOTSUPP); 1125 return; 1126 default: 1127 g_io_deliver(bp, EOPNOTSUPP); 1128 return; 1129 } 1130 mtx_lock(&sc->sc_queue_mtx); 1131 bioq_insert_tail(&sc->sc_queue, bp); 1132 mtx_unlock(&sc->sc_queue_mtx); 1133 if (!dumping) { 1134 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc); 1135 wakeup(sc); 1136 } 1137 } 1138 1139 static int 1140 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len) 1141 { 1142 /* 1143 * 5 cases: 1144 * (1) bp entirely below NO 1145 * (2) bp entirely above NO 1146 * (3) bp start below, but end in range YES 1147 * (4) bp entirely within YES 1148 * (5) bp starts within, ends above YES 1149 * 1150 * lock range 10-19 (offset 10 length 10) 1151 * (1) 1-5: first if kicks it out 1152 * (2) 30-35: second if kicks it out 1153 * (3) 5-15: passes both ifs 1154 * (4) 12-14: passes both ifs 1155 * (5) 19-20: passes both 1156 */ 1157 off_t lend = lstart + len - 1; 1158 off_t bstart = bp->bio_offset; 1159 off_t bend = bp->bio_offset + bp->bio_length - 1; 1160 1161 if (bend < lstart) 1162 return (0); 1163 if (lend < bstart) 1164 return (0); 1165 return (1); 1166 } 1167 1168 static int 1169 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp) 1170 { 1171 struct g_raid_lock *lp; 1172 1173 sx_assert(&vol->v_softc->sc_lock, SX_LOCKED); 1174 1175 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1176 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length)) 1177 return (1); 1178 } 1179 return (0); 1180 } 1181 1182 static void 1183 g_raid_start_request(struct bio *bp) 1184 { 1185 struct g_raid_softc *sc; 1186 struct g_raid_volume *vol; 1187 1188 sc = bp->bio_to->geom->softc; 1189 sx_assert(&sc->sc_lock, SX_LOCKED); 1190 vol = bp->bio_to->private; 1191 1192 /* 1193 * Check to see if this item is in a locked range. If so, 1194 * queue it to our locked queue and return. We'll requeue 1195 * it when the range is unlocked. Internal I/O for the 1196 * rebuild/rescan/recovery process is excluded from this 1197 * check so we can actually do the recovery. 1198 */ 1199 if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) && 1200 g_raid_is_in_locked_range(vol, bp)) { 1201 G_RAID_LOGREQ(3, bp, "Defer request."); 1202 bioq_insert_tail(&vol->v_locked, bp); 1203 return; 1204 } 1205 1206 /* 1207 * If we're actually going to do the write/delete, then 1208 * update the idle stats for the volume. 1209 */ 1210 if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) { 1211 if (!vol->v_dirty) 1212 g_raid_dirty(vol); 1213 vol->v_writes++; 1214 } 1215 1216 /* 1217 * Put request onto inflight queue, so we can check if new 1218 * synchronization requests don't collide with it. Then tell 1219 * the transformation layer to start the I/O. 1220 */ 1221 bioq_insert_tail(&vol->v_inflight, bp); 1222 G_RAID_LOGREQ(4, bp, "Request started"); 1223 G_RAID_TR_IOSTART(vol->v_tr, bp); 1224 } 1225 1226 static void 1227 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp) 1228 { 1229 off_t off, len; 1230 struct bio *nbp; 1231 struct g_raid_lock *lp; 1232 1233 vol->v_pending_lock = 0; 1234 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1235 if (lp->l_pending) { 1236 off = lp->l_offset; 1237 len = lp->l_length; 1238 lp->l_pending = 0; 1239 TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) { 1240 if (g_raid_bio_overlaps(nbp, off, len)) 1241 lp->l_pending++; 1242 } 1243 if (lp->l_pending) { 1244 vol->v_pending_lock = 1; 1245 G_RAID_DEBUG1(4, vol->v_softc, 1246 "Deferred lock(%jd, %jd) has %d pending", 1247 (intmax_t)off, (intmax_t)(off + len), 1248 lp->l_pending); 1249 continue; 1250 } 1251 G_RAID_DEBUG1(4, vol->v_softc, 1252 "Deferred lock of %jd to %jd completed", 1253 (intmax_t)off, (intmax_t)(off + len)); 1254 G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg); 1255 } 1256 } 1257 } 1258 1259 void 1260 g_raid_iodone(struct bio *bp, int error) 1261 { 1262 struct g_raid_softc *sc; 1263 struct g_raid_volume *vol; 1264 1265 sc = bp->bio_to->geom->softc; 1266 sx_assert(&sc->sc_lock, SX_LOCKED); 1267 vol = bp->bio_to->private; 1268 G_RAID_LOGREQ(3, bp, "Request done: %d.", error); 1269 1270 /* Update stats if we done write/delete. */ 1271 if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) { 1272 vol->v_writes--; 1273 vol->v_last_write = time_uptime; 1274 } 1275 1276 bioq_remove(&vol->v_inflight, bp); 1277 if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp)) 1278 g_raid_finish_with_locked_ranges(vol, bp); 1279 getmicrouptime(&vol->v_last_done); 1280 g_io_deliver(bp, error); 1281 } 1282 1283 int 1284 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len, 1285 struct bio *ignore, void *argp) 1286 { 1287 struct g_raid_softc *sc; 1288 struct g_raid_lock *lp; 1289 struct bio *bp; 1290 1291 sc = vol->v_softc; 1292 lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO); 1293 LIST_INSERT_HEAD(&vol->v_locks, lp, l_next); 1294 lp->l_offset = off; 1295 lp->l_length = len; 1296 lp->l_callback_arg = argp; 1297 1298 lp->l_pending = 0; 1299 TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) { 1300 if (bp != ignore && g_raid_bio_overlaps(bp, off, len)) 1301 lp->l_pending++; 1302 } 1303 1304 /* 1305 * If there are any writes that are pending, we return EBUSY. All 1306 * callers will have to wait until all pending writes clear. 1307 */ 1308 if (lp->l_pending > 0) { 1309 vol->v_pending_lock = 1; 1310 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend", 1311 (intmax_t)off, (intmax_t)(off+len), lp->l_pending); 1312 return (EBUSY); 1313 } 1314 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd", 1315 (intmax_t)off, (intmax_t)(off+len)); 1316 G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg); 1317 return (0); 1318 } 1319 1320 int 1321 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len) 1322 { 1323 struct g_raid_lock *lp; 1324 struct g_raid_softc *sc; 1325 struct bio *bp; 1326 1327 sc = vol->v_softc; 1328 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1329 if (lp->l_offset == off && lp->l_length == len) { 1330 LIST_REMOVE(lp, l_next); 1331 /* XXX 1332 * Right now we just put them all back on the queue 1333 * and hope for the best. We hope this because any 1334 * locked ranges will go right back on this list 1335 * when the worker thread runs. 1336 * XXX 1337 */ 1338 G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd", 1339 (intmax_t)lp->l_offset, 1340 (intmax_t)(lp->l_offset+lp->l_length)); 1341 mtx_lock(&sc->sc_queue_mtx); 1342 while ((bp = bioq_takefirst(&vol->v_locked)) != NULL) 1343 bioq_insert_tail(&sc->sc_queue, bp); 1344 mtx_unlock(&sc->sc_queue_mtx); 1345 free(lp, M_RAID); 1346 return (0); 1347 } 1348 } 1349 return (EINVAL); 1350 } 1351 1352 void 1353 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp) 1354 { 1355 struct g_consumer *cp; 1356 struct g_raid_disk *disk, *tdisk; 1357 1358 bp->bio_caller1 = sd; 1359 1360 /* 1361 * Make sure that the disk is present. Generally it is a task of 1362 * transformation layers to not send requests to absent disks, but 1363 * it is better to be safe and report situation then sorry. 1364 */ 1365 if (sd->sd_disk == NULL) { 1366 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!"); 1367 nodisk: 1368 bp->bio_from = NULL; 1369 bp->bio_to = NULL; 1370 bp->bio_error = ENXIO; 1371 g_raid_disk_done(bp); 1372 return; 1373 } 1374 disk = sd->sd_disk; 1375 if (disk->d_state != G_RAID_DISK_S_ACTIVE && 1376 disk->d_state != G_RAID_DISK_S_FAILED) { 1377 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a " 1378 "wrong state (%s)!", g_raid_disk_state2str(disk->d_state)); 1379 goto nodisk; 1380 } 1381 1382 cp = disk->d_consumer; 1383 bp->bio_from = cp; 1384 bp->bio_to = cp->provider; 1385 cp->index++; 1386 1387 /* Update average disks load. */ 1388 TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) { 1389 if (tdisk->d_consumer == NULL) 1390 tdisk->d_load = 0; 1391 else 1392 tdisk->d_load = (tdisk->d_consumer->index * 1393 G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8; 1394 } 1395 1396 disk->d_last_offset = bp->bio_offset + bp->bio_length; 1397 if (dumping) { 1398 G_RAID_LOGREQ(3, bp, "Sending dumping request."); 1399 if (bp->bio_cmd == BIO_WRITE) { 1400 bp->bio_error = g_raid_subdisk_kerneldump(sd, 1401 bp->bio_data, 0, bp->bio_offset, bp->bio_length); 1402 } else 1403 bp->bio_error = EOPNOTSUPP; 1404 g_raid_disk_done(bp); 1405 } else { 1406 bp->bio_done = g_raid_disk_done; 1407 bp->bio_offset += sd->sd_offset; 1408 G_RAID_LOGREQ(3, bp, "Sending request."); 1409 g_io_request(bp, cp); 1410 } 1411 } 1412 1413 int 1414 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd, 1415 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1416 { 1417 1418 if (sd->sd_disk == NULL) 1419 return (ENXIO); 1420 if (sd->sd_disk->d_kd.di.dumper == NULL) 1421 return (EOPNOTSUPP); 1422 return (dump_write(&sd->sd_disk->d_kd.di, 1423 virtual, physical, 1424 sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset, 1425 length)); 1426 } 1427 1428 static void 1429 g_raid_disk_done(struct bio *bp) 1430 { 1431 struct g_raid_softc *sc; 1432 struct g_raid_subdisk *sd; 1433 1434 sd = bp->bio_caller1; 1435 sc = sd->sd_softc; 1436 mtx_lock(&sc->sc_queue_mtx); 1437 bioq_insert_tail(&sc->sc_queue, bp); 1438 mtx_unlock(&sc->sc_queue_mtx); 1439 if (!dumping) 1440 wakeup(sc); 1441 } 1442 1443 static void 1444 g_raid_disk_done_request(struct bio *bp) 1445 { 1446 struct g_raid_softc *sc; 1447 struct g_raid_disk *disk; 1448 struct g_raid_subdisk *sd; 1449 struct g_raid_volume *vol; 1450 1451 g_topology_assert_not(); 1452 1453 G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error); 1454 sd = bp->bio_caller1; 1455 sc = sd->sd_softc; 1456 vol = sd->sd_volume; 1457 if (bp->bio_from != NULL) { 1458 bp->bio_from->index--; 1459 disk = bp->bio_from->private; 1460 if (disk == NULL) 1461 g_raid_kill_consumer(sc, bp->bio_from); 1462 } 1463 bp->bio_offset -= sd->sd_offset; 1464 1465 G_RAID_TR_IODONE(vol->v_tr, sd, bp); 1466 } 1467 1468 static void 1469 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep) 1470 { 1471 1472 if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0) 1473 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event); 1474 else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0) 1475 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event); 1476 else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0) 1477 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event); 1478 else 1479 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event); 1480 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) { 1481 KASSERT(ep->e_error == 0, 1482 ("Error cannot be handled.")); 1483 g_raid_event_free(ep); 1484 } else { 1485 ep->e_flags |= G_RAID_EVENT_DONE; 1486 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep); 1487 mtx_lock(&sc->sc_queue_mtx); 1488 wakeup(ep); 1489 mtx_unlock(&sc->sc_queue_mtx); 1490 } 1491 } 1492 1493 /* 1494 * Worker thread. 1495 */ 1496 static void 1497 g_raid_worker(void *arg) 1498 { 1499 struct g_raid_softc *sc; 1500 struct g_raid_event *ep; 1501 struct g_raid_volume *vol; 1502 struct bio *bp; 1503 struct timeval now, t; 1504 int timeout, rv; 1505 1506 sc = arg; 1507 thread_lock(curthread); 1508 sched_prio(curthread, PRIBIO); 1509 thread_unlock(curthread); 1510 1511 sx_xlock(&sc->sc_lock); 1512 for (;;) { 1513 mtx_lock(&sc->sc_queue_mtx); 1514 /* 1515 * First take a look at events. 1516 * This is important to handle events before any I/O requests. 1517 */ 1518 bp = NULL; 1519 vol = NULL; 1520 rv = 0; 1521 ep = TAILQ_FIRST(&sc->sc_events); 1522 if (ep != NULL) 1523 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 1524 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL) 1525 ; 1526 else { 1527 getmicrouptime(&now); 1528 t = now; 1529 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1530 if (bioq_first(&vol->v_inflight) == NULL && 1531 vol->v_tr && 1532 timevalcmp(&vol->v_last_done, &t, < )) 1533 t = vol->v_last_done; 1534 } 1535 timevalsub(&t, &now); 1536 timeout = g_raid_idle_threshold + 1537 t.tv_sec * 1000000 + t.tv_usec; 1538 if (timeout > 0) { 1539 /* 1540 * Two steps to avoid overflows at HZ=1000 1541 * and idle timeouts > 2.1s. Some rounding 1542 * errors can occur, but they are < 1tick, 1543 * which is deemed to be close enough for 1544 * this purpose. 1545 */ 1546 int micpertic = 1000000 / hz; 1547 timeout = (timeout + micpertic - 1) / micpertic; 1548 sx_xunlock(&sc->sc_lock); 1549 MSLEEP(rv, sc, &sc->sc_queue_mtx, 1550 PRIBIO | PDROP, "-", timeout); 1551 sx_xlock(&sc->sc_lock); 1552 goto process; 1553 } else 1554 rv = EWOULDBLOCK; 1555 } 1556 mtx_unlock(&sc->sc_queue_mtx); 1557 process: 1558 if (ep != NULL) { 1559 g_raid_handle_event(sc, ep); 1560 } else if (bp != NULL) { 1561 if (bp->bio_to != NULL && 1562 bp->bio_to->geom == sc->sc_geom) 1563 g_raid_start_request(bp); 1564 else 1565 g_raid_disk_done_request(bp); 1566 } else if (rv == EWOULDBLOCK) { 1567 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1568 g_raid_clean(vol, -1); 1569 if (bioq_first(&vol->v_inflight) == NULL && 1570 vol->v_tr) { 1571 t.tv_sec = g_raid_idle_threshold / 1000000; 1572 t.tv_usec = g_raid_idle_threshold % 1000000; 1573 timevaladd(&t, &vol->v_last_done); 1574 getmicrouptime(&now); 1575 if (timevalcmp(&t, &now, <= )) { 1576 G_RAID_TR_IDLE(vol->v_tr); 1577 vol->v_last_done = now; 1578 } 1579 } 1580 } 1581 } 1582 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 1583 g_raid_destroy_node(sc, 1); /* May not return. */ 1584 } 1585 } 1586 1587 static void 1588 g_raid_poll(struct g_raid_softc *sc) 1589 { 1590 struct g_raid_event *ep; 1591 struct bio *bp; 1592 1593 sx_xlock(&sc->sc_lock); 1594 mtx_lock(&sc->sc_queue_mtx); 1595 /* 1596 * First take a look at events. 1597 * This is important to handle events before any I/O requests. 1598 */ 1599 ep = TAILQ_FIRST(&sc->sc_events); 1600 if (ep != NULL) { 1601 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 1602 mtx_unlock(&sc->sc_queue_mtx); 1603 g_raid_handle_event(sc, ep); 1604 goto out; 1605 } 1606 bp = bioq_takefirst(&sc->sc_queue); 1607 if (bp != NULL) { 1608 mtx_unlock(&sc->sc_queue_mtx); 1609 if (bp->bio_from == NULL || 1610 bp->bio_from->geom != sc->sc_geom) 1611 g_raid_start_request(bp); 1612 else 1613 g_raid_disk_done_request(bp); 1614 } 1615 out: 1616 sx_xunlock(&sc->sc_lock); 1617 } 1618 1619 static void 1620 g_raid_launch_provider(struct g_raid_volume *vol) 1621 { 1622 struct g_raid_disk *disk; 1623 struct g_raid_subdisk *sd; 1624 struct g_raid_softc *sc; 1625 struct g_provider *pp; 1626 char name[G_RAID_MAX_VOLUMENAME]; 1627 off_t off; 1628 int i; 1629 1630 sc = vol->v_softc; 1631 sx_assert(&sc->sc_lock, SX_LOCKED); 1632 1633 g_topology_lock(); 1634 /* Try to name provider with volume name. */ 1635 snprintf(name, sizeof(name), "raid/%s", vol->v_name); 1636 if (g_raid_name_format == 0 || vol->v_name[0] == 0 || 1637 g_provider_by_name(name) != NULL) { 1638 /* Otherwise use sequential volume number. */ 1639 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id); 1640 } 1641 1642 pp = g_new_providerf(sc->sc_geom, "%s", name); 1643 pp->flags |= G_PF_DIRECT_RECEIVE; 1644 if (vol->v_tr->tro_class->trc_accept_unmapped) { 1645 pp->flags |= G_PF_ACCEPT_UNMAPPED; 1646 for (i = 0; i < vol->v_disks_count; i++) { 1647 sd = &vol->v_subdisks[i]; 1648 if (sd->sd_state == G_RAID_SUBDISK_S_NONE) 1649 continue; 1650 if ((sd->sd_disk->d_consumer->provider->flags & 1651 G_PF_ACCEPT_UNMAPPED) == 0) 1652 pp->flags &= ~G_PF_ACCEPT_UNMAPPED; 1653 } 1654 } 1655 pp->private = vol; 1656 pp->mediasize = vol->v_mediasize; 1657 pp->sectorsize = vol->v_sectorsize; 1658 pp->stripesize = 0; 1659 pp->stripeoffset = 0; 1660 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 || 1661 vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 || 1662 vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE || 1663 vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) { 1664 if ((disk = vol->v_subdisks[0].sd_disk) != NULL && 1665 disk->d_consumer != NULL && 1666 disk->d_consumer->provider != NULL) { 1667 pp->stripesize = disk->d_consumer->provider->stripesize; 1668 off = disk->d_consumer->provider->stripeoffset; 1669 pp->stripeoffset = off + vol->v_subdisks[0].sd_offset; 1670 if (off > 0) 1671 pp->stripeoffset %= off; 1672 } 1673 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) { 1674 pp->stripesize *= (vol->v_disks_count - 1); 1675 pp->stripeoffset *= (vol->v_disks_count - 1); 1676 } 1677 } else 1678 pp->stripesize = vol->v_strip_size; 1679 vol->v_provider = pp; 1680 g_error_provider(pp, 0); 1681 g_topology_unlock(); 1682 G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.", 1683 pp->name, vol->v_name); 1684 } 1685 1686 static void 1687 g_raid_destroy_provider(struct g_raid_volume *vol) 1688 { 1689 struct g_raid_softc *sc; 1690 struct g_provider *pp; 1691 struct bio *bp, *tmp; 1692 1693 g_topology_assert_not(); 1694 sc = vol->v_softc; 1695 pp = vol->v_provider; 1696 KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name)); 1697 1698 g_topology_lock(); 1699 g_error_provider(pp, ENXIO); 1700 mtx_lock(&sc->sc_queue_mtx); 1701 TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) { 1702 if (bp->bio_to != pp) 1703 continue; 1704 bioq_remove(&sc->sc_queue, bp); 1705 g_io_deliver(bp, ENXIO); 1706 } 1707 mtx_unlock(&sc->sc_queue_mtx); 1708 G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.", 1709 pp->name, vol->v_name); 1710 g_wither_provider(pp, ENXIO); 1711 g_topology_unlock(); 1712 vol->v_provider = NULL; 1713 } 1714 1715 /* 1716 * Update device state. 1717 */ 1718 static int 1719 g_raid_update_volume(struct g_raid_volume *vol, u_int event) 1720 { 1721 struct g_raid_softc *sc; 1722 1723 sc = vol->v_softc; 1724 sx_assert(&sc->sc_lock, SX_XLOCKED); 1725 1726 G_RAID_DEBUG1(2, sc, "Event %s for volume %s.", 1727 g_raid_volume_event2str(event), 1728 vol->v_name); 1729 switch (event) { 1730 case G_RAID_VOLUME_E_DOWN: 1731 if (vol->v_provider != NULL) 1732 g_raid_destroy_provider(vol); 1733 break; 1734 case G_RAID_VOLUME_E_UP: 1735 if (vol->v_provider == NULL) 1736 g_raid_launch_provider(vol); 1737 break; 1738 case G_RAID_VOLUME_E_START: 1739 if (vol->v_tr) 1740 G_RAID_TR_START(vol->v_tr); 1741 return (0); 1742 default: 1743 if (sc->sc_md) 1744 G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event); 1745 return (0); 1746 } 1747 1748 /* Manage root mount release. */ 1749 if (vol->v_starting) { 1750 vol->v_starting = 0; 1751 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount); 1752 root_mount_rel(vol->v_rootmount); 1753 vol->v_rootmount = NULL; 1754 } 1755 if (vol->v_stopping && vol->v_provider_open == 0) 1756 g_raid_destroy_volume(vol); 1757 return (0); 1758 } 1759 1760 /* 1761 * Update subdisk state. 1762 */ 1763 static int 1764 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event) 1765 { 1766 struct g_raid_softc *sc; 1767 struct g_raid_volume *vol; 1768 1769 sc = sd->sd_softc; 1770 vol = sd->sd_volume; 1771 sx_assert(&sc->sc_lock, SX_XLOCKED); 1772 1773 G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.", 1774 g_raid_subdisk_event2str(event), 1775 vol->v_name, sd->sd_pos, 1776 sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]"); 1777 if (vol->v_tr) 1778 G_RAID_TR_EVENT(vol->v_tr, sd, event); 1779 1780 return (0); 1781 } 1782 1783 /* 1784 * Update disk state. 1785 */ 1786 static int 1787 g_raid_update_disk(struct g_raid_disk *disk, u_int event) 1788 { 1789 struct g_raid_softc *sc; 1790 1791 sc = disk->d_softc; 1792 sx_assert(&sc->sc_lock, SX_XLOCKED); 1793 1794 G_RAID_DEBUG1(2, sc, "Event %s for disk %s.", 1795 g_raid_disk_event2str(event), 1796 g_raid_get_diskname(disk)); 1797 1798 if (sc->sc_md) 1799 G_RAID_MD_EVENT(sc->sc_md, disk, event); 1800 return (0); 1801 } 1802 1803 /* 1804 * Node event. 1805 */ 1806 static int 1807 g_raid_update_node(struct g_raid_softc *sc, u_int event) 1808 { 1809 sx_assert(&sc->sc_lock, SX_XLOCKED); 1810 1811 G_RAID_DEBUG1(2, sc, "Event %s for the array.", 1812 g_raid_node_event2str(event)); 1813 1814 if (event == G_RAID_NODE_E_WAKE) 1815 return (0); 1816 if (sc->sc_md) 1817 G_RAID_MD_EVENT(sc->sc_md, NULL, event); 1818 return (0); 1819 } 1820 1821 static int 1822 g_raid_access(struct g_provider *pp, int acr, int acw, int ace) 1823 { 1824 struct g_raid_volume *vol; 1825 struct g_raid_softc *sc; 1826 int dcw, opens, error = 0; 1827 1828 g_topology_assert(); 1829 sc = pp->geom->softc; 1830 vol = pp->private; 1831 KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name)); 1832 KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name)); 1833 1834 G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name, 1835 acr, acw, ace); 1836 dcw = pp->acw + acw; 1837 1838 g_topology_unlock(); 1839 sx_xlock(&sc->sc_lock); 1840 /* Deny new opens while dying. */ 1841 if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) { 1842 error = ENXIO; 1843 goto out; 1844 } 1845 /* Deny write opens for read-only volumes. */ 1846 if (vol->v_read_only && acw > 0) { 1847 error = EROFS; 1848 goto out; 1849 } 1850 if (dcw == 0) 1851 g_raid_clean(vol, dcw); 1852 vol->v_provider_open += acr + acw + ace; 1853 /* Handle delayed node destruction. */ 1854 if (sc->sc_stopping == G_RAID_DESTROY_DELAYED && 1855 vol->v_provider_open == 0) { 1856 /* Count open volumes. */ 1857 opens = g_raid_nopens(sc); 1858 if (opens == 0) { 1859 sc->sc_stopping = G_RAID_DESTROY_HARD; 1860 /* Wake up worker to make it selfdestruct. */ 1861 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 1862 } 1863 } 1864 /* Handle open volume destruction. */ 1865 if (vol->v_stopping && vol->v_provider_open == 0) 1866 g_raid_destroy_volume(vol); 1867 out: 1868 sx_xunlock(&sc->sc_lock); 1869 g_topology_lock(); 1870 return (error); 1871 } 1872 1873 struct g_raid_softc * 1874 g_raid_create_node(struct g_class *mp, 1875 const char *name, struct g_raid_md_object *md) 1876 { 1877 struct g_raid_softc *sc; 1878 struct g_geom *gp; 1879 int error; 1880 1881 g_topology_assert(); 1882 G_RAID_DEBUG(1, "Creating array %s.", name); 1883 1884 gp = g_new_geomf(mp, "%s", name); 1885 sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO); 1886 gp->start = g_raid_start; 1887 gp->orphan = g_raid_orphan; 1888 gp->access = g_raid_access; 1889 gp->dumpconf = g_raid_dumpconf; 1890 1891 sc->sc_md = md; 1892 sc->sc_geom = gp; 1893 sc->sc_flags = 0; 1894 TAILQ_INIT(&sc->sc_volumes); 1895 TAILQ_INIT(&sc->sc_disks); 1896 sx_init(&sc->sc_lock, "graid:lock"); 1897 mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF); 1898 TAILQ_INIT(&sc->sc_events); 1899 bioq_init(&sc->sc_queue); 1900 gp->softc = sc; 1901 error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0, 1902 "g_raid %s", name); 1903 if (error != 0) { 1904 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name); 1905 mtx_destroy(&sc->sc_queue_mtx); 1906 sx_destroy(&sc->sc_lock); 1907 g_destroy_geom(sc->sc_geom); 1908 free(sc, M_RAID); 1909 return (NULL); 1910 } 1911 1912 G_RAID_DEBUG1(0, sc, "Array %s created.", name); 1913 return (sc); 1914 } 1915 1916 struct g_raid_volume * 1917 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id) 1918 { 1919 struct g_raid_volume *vol, *vol1; 1920 int i; 1921 1922 G_RAID_DEBUG1(1, sc, "Creating volume %s.", name); 1923 vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO); 1924 vol->v_softc = sc; 1925 strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME); 1926 vol->v_state = G_RAID_VOLUME_S_STARTING; 1927 vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN; 1928 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN; 1929 vol->v_rotate_parity = 1; 1930 bioq_init(&vol->v_inflight); 1931 bioq_init(&vol->v_locked); 1932 LIST_INIT(&vol->v_locks); 1933 for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) { 1934 vol->v_subdisks[i].sd_softc = sc; 1935 vol->v_subdisks[i].sd_volume = vol; 1936 vol->v_subdisks[i].sd_pos = i; 1937 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE; 1938 } 1939 1940 /* Find free ID for this volume. */ 1941 g_topology_lock(); 1942 vol1 = vol; 1943 if (id >= 0) { 1944 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) { 1945 if (vol1->v_global_id == id) 1946 break; 1947 } 1948 } 1949 if (vol1 != NULL) { 1950 for (id = 0; ; id++) { 1951 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) { 1952 if (vol1->v_global_id == id) 1953 break; 1954 } 1955 if (vol1 == NULL) 1956 break; 1957 } 1958 } 1959 vol->v_global_id = id; 1960 LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next); 1961 g_topology_unlock(); 1962 1963 /* Delay root mounting. */ 1964 vol->v_rootmount = root_mount_hold("GRAID"); 1965 G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount); 1966 vol->v_starting = 1; 1967 TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next); 1968 return (vol); 1969 } 1970 1971 struct g_raid_disk * 1972 g_raid_create_disk(struct g_raid_softc *sc) 1973 { 1974 struct g_raid_disk *disk; 1975 1976 G_RAID_DEBUG1(1, sc, "Creating disk."); 1977 disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO); 1978 disk->d_softc = sc; 1979 disk->d_state = G_RAID_DISK_S_NONE; 1980 TAILQ_INIT(&disk->d_subdisks); 1981 TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next); 1982 return (disk); 1983 } 1984 1985 int g_raid_start_volume(struct g_raid_volume *vol) 1986 { 1987 struct g_raid_tr_class *class; 1988 struct g_raid_tr_object *obj; 1989 int status; 1990 1991 G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name); 1992 LIST_FOREACH(class, &g_raid_tr_classes, trc_list) { 1993 if (!class->trc_enable) 1994 continue; 1995 G_RAID_DEBUG1(2, vol->v_softc, 1996 "Tasting volume %s for %s transformation.", 1997 vol->v_name, class->name); 1998 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 1999 M_WAITOK); 2000 obj->tro_class = class; 2001 obj->tro_volume = vol; 2002 status = G_RAID_TR_TASTE(obj, vol); 2003 if (status != G_RAID_TR_TASTE_FAIL) 2004 break; 2005 kobj_delete((kobj_t)obj, M_RAID); 2006 } 2007 if (class == NULL) { 2008 G_RAID_DEBUG1(0, vol->v_softc, 2009 "No transformation module found for %s.", 2010 vol->v_name); 2011 vol->v_tr = NULL; 2012 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED); 2013 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN, 2014 G_RAID_EVENT_VOLUME); 2015 return (-1); 2016 } 2017 G_RAID_DEBUG1(2, vol->v_softc, 2018 "Transformation module %s chosen for %s.", 2019 class->name, vol->v_name); 2020 vol->v_tr = obj; 2021 return (0); 2022 } 2023 2024 int 2025 g_raid_destroy_node(struct g_raid_softc *sc, int worker) 2026 { 2027 struct g_raid_volume *vol, *tmpv; 2028 struct g_raid_disk *disk, *tmpd; 2029 int error = 0; 2030 2031 sc->sc_stopping = G_RAID_DESTROY_HARD; 2032 TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) { 2033 if (g_raid_destroy_volume(vol)) 2034 error = EBUSY; 2035 } 2036 if (error) 2037 return (error); 2038 TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) { 2039 if (g_raid_destroy_disk(disk)) 2040 error = EBUSY; 2041 } 2042 if (error) 2043 return (error); 2044 if (sc->sc_md) { 2045 G_RAID_MD_FREE(sc->sc_md); 2046 kobj_delete((kobj_t)sc->sc_md, M_RAID); 2047 sc->sc_md = NULL; 2048 } 2049 if (sc->sc_geom != NULL) { 2050 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name); 2051 g_topology_lock(); 2052 sc->sc_geom->softc = NULL; 2053 g_wither_geom(sc->sc_geom, ENXIO); 2054 g_topology_unlock(); 2055 sc->sc_geom = NULL; 2056 } else 2057 G_RAID_DEBUG(1, "Array destroyed."); 2058 if (worker) { 2059 g_raid_event_cancel(sc, sc); 2060 mtx_destroy(&sc->sc_queue_mtx); 2061 sx_xunlock(&sc->sc_lock); 2062 sx_destroy(&sc->sc_lock); 2063 wakeup(&sc->sc_stopping); 2064 free(sc, M_RAID); 2065 curthread->td_pflags &= ~TDP_GEOM; 2066 G_RAID_DEBUG(1, "Thread exiting."); 2067 kproc_exit(0); 2068 } else { 2069 /* Wake up worker to make it selfdestruct. */ 2070 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2071 } 2072 return (0); 2073 } 2074 2075 int 2076 g_raid_destroy_volume(struct g_raid_volume *vol) 2077 { 2078 struct g_raid_softc *sc; 2079 struct g_raid_disk *disk; 2080 int i; 2081 2082 sc = vol->v_softc; 2083 G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name); 2084 vol->v_stopping = 1; 2085 if (vol->v_state != G_RAID_VOLUME_S_STOPPED) { 2086 if (vol->v_tr) { 2087 G_RAID_TR_STOP(vol->v_tr); 2088 return (EBUSY); 2089 } else 2090 vol->v_state = G_RAID_VOLUME_S_STOPPED; 2091 } 2092 if (g_raid_event_check(sc, vol) != 0) 2093 return (EBUSY); 2094 if (vol->v_provider != NULL) 2095 return (EBUSY); 2096 if (vol->v_provider_open != 0) 2097 return (EBUSY); 2098 if (vol->v_tr) { 2099 G_RAID_TR_FREE(vol->v_tr); 2100 kobj_delete((kobj_t)vol->v_tr, M_RAID); 2101 vol->v_tr = NULL; 2102 } 2103 if (vol->v_rootmount) 2104 root_mount_rel(vol->v_rootmount); 2105 g_topology_lock(); 2106 LIST_REMOVE(vol, v_global_next); 2107 g_topology_unlock(); 2108 TAILQ_REMOVE(&sc->sc_volumes, vol, v_next); 2109 for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) { 2110 g_raid_event_cancel(sc, &vol->v_subdisks[i]); 2111 disk = vol->v_subdisks[i].sd_disk; 2112 if (disk == NULL) 2113 continue; 2114 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next); 2115 } 2116 G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name); 2117 if (sc->sc_md) 2118 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol); 2119 g_raid_event_cancel(sc, vol); 2120 free(vol, M_RAID); 2121 if (sc->sc_stopping == G_RAID_DESTROY_HARD) { 2122 /* Wake up worker to let it selfdestruct. */ 2123 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2124 } 2125 return (0); 2126 } 2127 2128 int 2129 g_raid_destroy_disk(struct g_raid_disk *disk) 2130 { 2131 struct g_raid_softc *sc; 2132 struct g_raid_subdisk *sd, *tmp; 2133 2134 sc = disk->d_softc; 2135 G_RAID_DEBUG1(2, sc, "Destroying disk."); 2136 if (disk->d_consumer) { 2137 g_raid_kill_consumer(sc, disk->d_consumer); 2138 disk->d_consumer = NULL; 2139 } 2140 TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) { 2141 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE); 2142 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED, 2143 G_RAID_EVENT_SUBDISK); 2144 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next); 2145 sd->sd_disk = NULL; 2146 } 2147 TAILQ_REMOVE(&sc->sc_disks, disk, d_next); 2148 if (sc->sc_md) 2149 G_RAID_MD_FREE_DISK(sc->sc_md, disk); 2150 g_raid_event_cancel(sc, disk); 2151 free(disk, M_RAID); 2152 return (0); 2153 } 2154 2155 int 2156 g_raid_destroy(struct g_raid_softc *sc, int how) 2157 { 2158 int error, opens; 2159 2160 g_topology_assert_not(); 2161 if (sc == NULL) 2162 return (ENXIO); 2163 sx_assert(&sc->sc_lock, SX_XLOCKED); 2164 2165 /* Count open volumes. */ 2166 opens = g_raid_nopens(sc); 2167 2168 /* React on some opened volumes. */ 2169 if (opens > 0) { 2170 switch (how) { 2171 case G_RAID_DESTROY_SOFT: 2172 G_RAID_DEBUG1(1, sc, 2173 "%d volumes are still open.", 2174 opens); 2175 sx_xunlock(&sc->sc_lock); 2176 return (EBUSY); 2177 case G_RAID_DESTROY_DELAYED: 2178 G_RAID_DEBUG1(1, sc, 2179 "Array will be destroyed on last close."); 2180 sc->sc_stopping = G_RAID_DESTROY_DELAYED; 2181 sx_xunlock(&sc->sc_lock); 2182 return (EBUSY); 2183 case G_RAID_DESTROY_HARD: 2184 G_RAID_DEBUG1(1, sc, 2185 "%d volumes are still open.", 2186 opens); 2187 } 2188 } 2189 2190 /* Mark node for destruction. */ 2191 sc->sc_stopping = G_RAID_DESTROY_HARD; 2192 /* Wake up worker to let it selfdestruct. */ 2193 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2194 /* Sleep until node destroyed. */ 2195 error = sx_sleep(&sc->sc_stopping, &sc->sc_lock, 2196 PRIBIO | PDROP, "r:destroy", hz * 3); 2197 return (error == EWOULDBLOCK ? EBUSY : 0); 2198 } 2199 2200 static void 2201 g_raid_taste_orphan(struct g_consumer *cp) 2202 { 2203 2204 KASSERT(1 == 0, ("%s called while tasting %s.", __func__, 2205 cp->provider->name)); 2206 } 2207 2208 static struct g_geom * 2209 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) 2210 { 2211 struct g_consumer *cp; 2212 struct g_geom *gp, *geom; 2213 struct g_raid_md_class *class; 2214 struct g_raid_md_object *obj; 2215 int status; 2216 2217 g_topology_assert(); 2218 g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); 2219 if (!g_raid_enable) 2220 return (NULL); 2221 G_RAID_DEBUG(2, "Tasting provider %s.", pp->name); 2222 2223 geom = NULL; 2224 status = G_RAID_MD_TASTE_FAIL; 2225 gp = g_new_geomf(mp, "raid:taste"); 2226 /* 2227 * This orphan function should be never called. 2228 */ 2229 gp->orphan = g_raid_taste_orphan; 2230 cp = g_new_consumer(gp); 2231 cp->flags |= G_CF_DIRECT_RECEIVE; 2232 g_attach(cp, pp); 2233 if (g_access(cp, 1, 0, 0) != 0) 2234 goto ofail; 2235 2236 LIST_FOREACH(class, &g_raid_md_classes, mdc_list) { 2237 if (!class->mdc_enable) 2238 continue; 2239 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.", 2240 pp->name, class->name); 2241 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2242 M_WAITOK); 2243 obj->mdo_class = class; 2244 status = G_RAID_MD_TASTE(obj, mp, cp, &geom); 2245 if (status != G_RAID_MD_TASTE_NEW) 2246 kobj_delete((kobj_t)obj, M_RAID); 2247 if (status != G_RAID_MD_TASTE_FAIL) 2248 break; 2249 } 2250 2251 if (status == G_RAID_MD_TASTE_FAIL) 2252 (void)g_access(cp, -1, 0, 0); 2253 ofail: 2254 g_detach(cp); 2255 g_destroy_consumer(cp); 2256 g_destroy_geom(gp); 2257 G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name); 2258 return (geom); 2259 } 2260 2261 int 2262 g_raid_create_node_format(const char *format, struct gctl_req *req, 2263 struct g_geom **gp) 2264 { 2265 struct g_raid_md_class *class; 2266 struct g_raid_md_object *obj; 2267 int status; 2268 2269 G_RAID_DEBUG(2, "Creating array for %s metadata.", format); 2270 LIST_FOREACH(class, &g_raid_md_classes, mdc_list) { 2271 if (strcasecmp(class->name, format) == 0) 2272 break; 2273 } 2274 if (class == NULL) { 2275 G_RAID_DEBUG(1, "No support for %s metadata.", format); 2276 return (G_RAID_MD_TASTE_FAIL); 2277 } 2278 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2279 M_WAITOK); 2280 obj->mdo_class = class; 2281 status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp); 2282 if (status != G_RAID_MD_TASTE_NEW) 2283 kobj_delete((kobj_t)obj, M_RAID); 2284 return (status); 2285 } 2286 2287 static int 2288 g_raid_destroy_geom(struct gctl_req *req __unused, 2289 struct g_class *mp __unused, struct g_geom *gp) 2290 { 2291 struct g_raid_softc *sc; 2292 int error; 2293 2294 g_topology_unlock(); 2295 sc = gp->softc; 2296 sx_xlock(&sc->sc_lock); 2297 g_cancel_event(sc); 2298 error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT); 2299 g_topology_lock(); 2300 return (error); 2301 } 2302 2303 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol, 2304 struct g_raid_subdisk *sd, struct g_raid_disk *disk) 2305 { 2306 2307 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 2308 return; 2309 if (sc->sc_md) 2310 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk); 2311 } 2312 2313 void g_raid_fail_disk(struct g_raid_softc *sc, 2314 struct g_raid_subdisk *sd, struct g_raid_disk *disk) 2315 { 2316 2317 if (disk == NULL) 2318 disk = sd->sd_disk; 2319 if (disk == NULL) { 2320 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!"); 2321 return; 2322 } 2323 if (disk->d_state != G_RAID_DISK_S_ACTIVE) { 2324 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a " 2325 "wrong state (%s)!", g_raid_disk_state2str(disk->d_state)); 2326 return; 2327 } 2328 if (sc->sc_md) 2329 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk); 2330 } 2331 2332 static void 2333 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, 2334 struct g_consumer *cp, struct g_provider *pp) 2335 { 2336 struct g_raid_softc *sc; 2337 struct g_raid_volume *vol; 2338 struct g_raid_subdisk *sd; 2339 struct g_raid_disk *disk; 2340 int i, s; 2341 2342 g_topology_assert(); 2343 2344 sc = gp->softc; 2345 if (sc == NULL) 2346 return; 2347 if (pp != NULL) { 2348 vol = pp->private; 2349 g_topology_unlock(); 2350 sx_xlock(&sc->sc_lock); 2351 sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent, 2352 sc->sc_md->mdo_class->name, 2353 g_raid_volume_level2str(vol->v_raid_level, 2354 vol->v_raid_level_qualifier)); 2355 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent, 2356 vol->v_name); 2357 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent, 2358 g_raid_volume_level2str(vol->v_raid_level, 2359 vol->v_raid_level_qualifier)); 2360 sbuf_printf(sb, 2361 "%s<Transformation>%s</Transformation>\n", indent, 2362 vol->v_tr ? vol->v_tr->tro_class->name : "NONE"); 2363 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent, 2364 vol->v_disks_count); 2365 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent, 2366 vol->v_strip_size); 2367 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2368 g_raid_volume_state2str(vol->v_state)); 2369 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent, 2370 vol->v_dirty ? "Yes" : "No"); 2371 sbuf_printf(sb, "%s<Subdisks>", indent); 2372 for (i = 0; i < vol->v_disks_count; i++) { 2373 sd = &vol->v_subdisks[i]; 2374 if (sd->sd_disk != NULL && 2375 sd->sd_disk->d_consumer != NULL) { 2376 sbuf_printf(sb, "%s ", 2377 g_raid_get_diskname(sd->sd_disk)); 2378 } else { 2379 sbuf_printf(sb, "NONE "); 2380 } 2381 sbuf_printf(sb, "(%s", 2382 g_raid_subdisk_state2str(sd->sd_state)); 2383 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2384 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2385 sbuf_printf(sb, " %d%%", 2386 (int)(sd->sd_rebuild_pos * 100 / 2387 sd->sd_size)); 2388 } 2389 sbuf_printf(sb, ")"); 2390 if (i + 1 < vol->v_disks_count) 2391 sbuf_printf(sb, ", "); 2392 } 2393 sbuf_printf(sb, "</Subdisks>\n"); 2394 sx_xunlock(&sc->sc_lock); 2395 g_topology_lock(); 2396 } else if (cp != NULL) { 2397 disk = cp->private; 2398 if (disk == NULL) 2399 return; 2400 g_topology_unlock(); 2401 sx_xlock(&sc->sc_lock); 2402 sbuf_printf(sb, "%s<State>%s", indent, 2403 g_raid_disk_state2str(disk->d_state)); 2404 if (!TAILQ_EMPTY(&disk->d_subdisks)) { 2405 sbuf_printf(sb, " ("); 2406 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 2407 sbuf_printf(sb, "%s", 2408 g_raid_subdisk_state2str(sd->sd_state)); 2409 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2410 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2411 sbuf_printf(sb, " %d%%", 2412 (int)(sd->sd_rebuild_pos * 100 / 2413 sd->sd_size)); 2414 } 2415 if (TAILQ_NEXT(sd, sd_next)) 2416 sbuf_printf(sb, ", "); 2417 } 2418 sbuf_printf(sb, ")"); 2419 } 2420 sbuf_printf(sb, "</State>\n"); 2421 sbuf_printf(sb, "%s<Subdisks>", indent); 2422 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 2423 sbuf_printf(sb, "r%d(%s):%d@%ju", 2424 sd->sd_volume->v_global_id, 2425 sd->sd_volume->v_name, 2426 sd->sd_pos, (uintmax_t)sd->sd_offset); 2427 if (TAILQ_NEXT(sd, sd_next)) 2428 sbuf_printf(sb, ", "); 2429 } 2430 sbuf_printf(sb, "</Subdisks>\n"); 2431 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent, 2432 disk->d_read_errs); 2433 sx_xunlock(&sc->sc_lock); 2434 g_topology_lock(); 2435 } else { 2436 g_topology_unlock(); 2437 sx_xlock(&sc->sc_lock); 2438 if (sc->sc_md) { 2439 sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent, 2440 sc->sc_md->mdo_class->name); 2441 } 2442 if (!TAILQ_EMPTY(&sc->sc_volumes)) { 2443 s = 0xff; 2444 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 2445 if (vol->v_state < s) 2446 s = vol->v_state; 2447 } 2448 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2449 g_raid_volume_state2str(s)); 2450 } 2451 sx_xunlock(&sc->sc_lock); 2452 g_topology_lock(); 2453 } 2454 } 2455 2456 static void 2457 g_raid_shutdown_post_sync(void *arg, int howto) 2458 { 2459 struct g_class *mp; 2460 struct g_geom *gp, *gp2; 2461 struct g_raid_softc *sc; 2462 struct g_raid_volume *vol; 2463 2464 mp = arg; 2465 g_topology_lock(); 2466 g_raid_shutdown = 1; 2467 LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) { 2468 if ((sc = gp->softc) == NULL) 2469 continue; 2470 g_topology_unlock(); 2471 sx_xlock(&sc->sc_lock); 2472 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) 2473 g_raid_clean(vol, -1); 2474 g_cancel_event(sc); 2475 g_raid_destroy(sc, G_RAID_DESTROY_DELAYED); 2476 g_topology_lock(); 2477 } 2478 g_topology_unlock(); 2479 } 2480 2481 static void 2482 g_raid_init(struct g_class *mp) 2483 { 2484 2485 g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync, 2486 g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST); 2487 if (g_raid_post_sync == NULL) 2488 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event."); 2489 g_raid_started = 1; 2490 } 2491 2492 static void 2493 g_raid_fini(struct g_class *mp) 2494 { 2495 2496 if (g_raid_post_sync != NULL) 2497 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync); 2498 g_raid_started = 0; 2499 } 2500 2501 int 2502 g_raid_md_modevent(module_t mod, int type, void *arg) 2503 { 2504 struct g_raid_md_class *class, *c, *nc; 2505 int error; 2506 2507 error = 0; 2508 class = arg; 2509 switch (type) { 2510 case MOD_LOAD: 2511 c = LIST_FIRST(&g_raid_md_classes); 2512 if (c == NULL || c->mdc_priority > class->mdc_priority) 2513 LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list); 2514 else { 2515 while ((nc = LIST_NEXT(c, mdc_list)) != NULL && 2516 nc->mdc_priority < class->mdc_priority) 2517 c = nc; 2518 LIST_INSERT_AFTER(c, class, mdc_list); 2519 } 2520 if (g_raid_started) 2521 g_retaste(&g_raid_class); 2522 break; 2523 case MOD_UNLOAD: 2524 LIST_REMOVE(class, mdc_list); 2525 break; 2526 default: 2527 error = EOPNOTSUPP; 2528 break; 2529 } 2530 2531 return (error); 2532 } 2533 2534 int 2535 g_raid_tr_modevent(module_t mod, int type, void *arg) 2536 { 2537 struct g_raid_tr_class *class, *c, *nc; 2538 int error; 2539 2540 error = 0; 2541 class = arg; 2542 switch (type) { 2543 case MOD_LOAD: 2544 c = LIST_FIRST(&g_raid_tr_classes); 2545 if (c == NULL || c->trc_priority > class->trc_priority) 2546 LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list); 2547 else { 2548 while ((nc = LIST_NEXT(c, trc_list)) != NULL && 2549 nc->trc_priority < class->trc_priority) 2550 c = nc; 2551 LIST_INSERT_AFTER(c, class, trc_list); 2552 } 2553 break; 2554 case MOD_UNLOAD: 2555 LIST_REMOVE(class, trc_list); 2556 break; 2557 default: 2558 error = EOPNOTSUPP; 2559 break; 2560 } 2561 2562 return (error); 2563 } 2564 2565 /* 2566 * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid) 2567 * to reduce module priority, allowing submodules to register them first. 2568 */ 2569 static moduledata_t g_raid_mod = { 2570 "g_raid", 2571 g_modevent, 2572 &g_raid_class 2573 }; 2574 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD); 2575 MODULE_VERSION(geom_raid, 0); 2576