1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/limits.h> 37 #include <sys/lock.h> 38 #include <sys/mutex.h> 39 #include <sys/bio.h> 40 #include <sys/sbuf.h> 41 #include <sys/sysctl.h> 42 #include <sys/malloc.h> 43 #include <sys/eventhandler.h> 44 #include <vm/uma.h> 45 #include <geom/geom.h> 46 #include <geom/geom_dbg.h> 47 #include <sys/proc.h> 48 #include <sys/kthread.h> 49 #include <sys/sched.h> 50 #include <geom/raid/g_raid.h> 51 #include "g_raid_md_if.h" 52 #include "g_raid_tr_if.h" 53 54 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data"); 55 56 SYSCTL_DECL(_kern_geom); 57 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW, 0, "GEOM_RAID stuff"); 58 int g_raid_enable = 1; 59 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RWTUN, 60 &g_raid_enable, 0, "Enable on-disk metadata taste"); 61 u_int g_raid_aggressive_spare = 0; 62 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RWTUN, 63 &g_raid_aggressive_spare, 0, "Use disks without metadata as spare"); 64 u_int g_raid_debug = 0; 65 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid_debug, 0, 66 "Debug level"); 67 int g_raid_read_err_thresh = 10; 68 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RWTUN, 69 &g_raid_read_err_thresh, 0, 70 "Number of read errors equated to disk failure"); 71 u_int g_raid_start_timeout = 30; 72 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RWTUN, 73 &g_raid_start_timeout, 0, 74 "Time to wait for all array components"); 75 static u_int g_raid_clean_time = 5; 76 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RWTUN, 77 &g_raid_clean_time, 0, "Mark volume as clean when idling"); 78 static u_int g_raid_disconnect_on_failure = 1; 79 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN, 80 &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure."); 81 static u_int g_raid_name_format = 0; 82 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RWTUN, 83 &g_raid_name_format, 0, "Providers name format."); 84 static u_int g_raid_idle_threshold = 1000000; 85 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RWTUN, 86 &g_raid_idle_threshold, 1000000, 87 "Time in microseconds to consider a volume idle."); 88 89 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout) do { \ 90 G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \ 91 rv = msleep((ident), (mtx), (priority), (wmesg), (timeout)); \ 92 G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \ 93 } while (0) 94 95 LIST_HEAD(, g_raid_md_class) g_raid_md_classes = 96 LIST_HEAD_INITIALIZER(g_raid_md_classes); 97 98 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes = 99 LIST_HEAD_INITIALIZER(g_raid_tr_classes); 100 101 LIST_HEAD(, g_raid_volume) g_raid_volumes = 102 LIST_HEAD_INITIALIZER(g_raid_volumes); 103 104 static eventhandler_tag g_raid_post_sync = NULL; 105 static int g_raid_started = 0; 106 static int g_raid_shutdown = 0; 107 108 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp, 109 struct g_geom *gp); 110 static g_taste_t g_raid_taste; 111 static void g_raid_init(struct g_class *mp); 112 static void g_raid_fini(struct g_class *mp); 113 114 struct g_class g_raid_class = { 115 .name = G_RAID_CLASS_NAME, 116 .version = G_VERSION, 117 .ctlreq = g_raid_ctl, 118 .taste = g_raid_taste, 119 .destroy_geom = g_raid_destroy_geom, 120 .init = g_raid_init, 121 .fini = g_raid_fini 122 }; 123 124 static void g_raid_destroy_provider(struct g_raid_volume *vol); 125 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event); 126 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event); 127 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event); 128 static int g_raid_update_node(struct g_raid_softc *sc, u_int event); 129 static void g_raid_dumpconf(struct sbuf *sb, const char *indent, 130 struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); 131 static void g_raid_start(struct bio *bp); 132 static void g_raid_start_request(struct bio *bp); 133 static void g_raid_disk_done(struct bio *bp); 134 static void g_raid_poll(struct g_raid_softc *sc); 135 136 static const char * 137 g_raid_node_event2str(int event) 138 { 139 140 switch (event) { 141 case G_RAID_NODE_E_WAKE: 142 return ("WAKE"); 143 case G_RAID_NODE_E_START: 144 return ("START"); 145 default: 146 return ("INVALID"); 147 } 148 } 149 150 const char * 151 g_raid_disk_state2str(int state) 152 { 153 154 switch (state) { 155 case G_RAID_DISK_S_NONE: 156 return ("NONE"); 157 case G_RAID_DISK_S_OFFLINE: 158 return ("OFFLINE"); 159 case G_RAID_DISK_S_DISABLED: 160 return ("DISABLED"); 161 case G_RAID_DISK_S_FAILED: 162 return ("FAILED"); 163 case G_RAID_DISK_S_STALE_FAILED: 164 return ("STALE_FAILED"); 165 case G_RAID_DISK_S_SPARE: 166 return ("SPARE"); 167 case G_RAID_DISK_S_STALE: 168 return ("STALE"); 169 case G_RAID_DISK_S_ACTIVE: 170 return ("ACTIVE"); 171 default: 172 return ("INVALID"); 173 } 174 } 175 176 static const char * 177 g_raid_disk_event2str(int event) 178 { 179 180 switch (event) { 181 case G_RAID_DISK_E_DISCONNECTED: 182 return ("DISCONNECTED"); 183 default: 184 return ("INVALID"); 185 } 186 } 187 188 const char * 189 g_raid_subdisk_state2str(int state) 190 { 191 192 switch (state) { 193 case G_RAID_SUBDISK_S_NONE: 194 return ("NONE"); 195 case G_RAID_SUBDISK_S_FAILED: 196 return ("FAILED"); 197 case G_RAID_SUBDISK_S_NEW: 198 return ("NEW"); 199 case G_RAID_SUBDISK_S_REBUILD: 200 return ("REBUILD"); 201 case G_RAID_SUBDISK_S_UNINITIALIZED: 202 return ("UNINITIALIZED"); 203 case G_RAID_SUBDISK_S_STALE: 204 return ("STALE"); 205 case G_RAID_SUBDISK_S_RESYNC: 206 return ("RESYNC"); 207 case G_RAID_SUBDISK_S_ACTIVE: 208 return ("ACTIVE"); 209 default: 210 return ("INVALID"); 211 } 212 } 213 214 static const char * 215 g_raid_subdisk_event2str(int event) 216 { 217 218 switch (event) { 219 case G_RAID_SUBDISK_E_NEW: 220 return ("NEW"); 221 case G_RAID_SUBDISK_E_FAILED: 222 return ("FAILED"); 223 case G_RAID_SUBDISK_E_DISCONNECTED: 224 return ("DISCONNECTED"); 225 default: 226 return ("INVALID"); 227 } 228 } 229 230 const char * 231 g_raid_volume_state2str(int state) 232 { 233 234 switch (state) { 235 case G_RAID_VOLUME_S_STARTING: 236 return ("STARTING"); 237 case G_RAID_VOLUME_S_BROKEN: 238 return ("BROKEN"); 239 case G_RAID_VOLUME_S_DEGRADED: 240 return ("DEGRADED"); 241 case G_RAID_VOLUME_S_SUBOPTIMAL: 242 return ("SUBOPTIMAL"); 243 case G_RAID_VOLUME_S_OPTIMAL: 244 return ("OPTIMAL"); 245 case G_RAID_VOLUME_S_UNSUPPORTED: 246 return ("UNSUPPORTED"); 247 case G_RAID_VOLUME_S_STOPPED: 248 return ("STOPPED"); 249 default: 250 return ("INVALID"); 251 } 252 } 253 254 static const char * 255 g_raid_volume_event2str(int event) 256 { 257 258 switch (event) { 259 case G_RAID_VOLUME_E_UP: 260 return ("UP"); 261 case G_RAID_VOLUME_E_DOWN: 262 return ("DOWN"); 263 case G_RAID_VOLUME_E_START: 264 return ("START"); 265 case G_RAID_VOLUME_E_STARTMD: 266 return ("STARTMD"); 267 default: 268 return ("INVALID"); 269 } 270 } 271 272 const char * 273 g_raid_volume_level2str(int level, int qual) 274 { 275 276 switch (level) { 277 case G_RAID_VOLUME_RL_RAID0: 278 return ("RAID0"); 279 case G_RAID_VOLUME_RL_RAID1: 280 return ("RAID1"); 281 case G_RAID_VOLUME_RL_RAID3: 282 if (qual == G_RAID_VOLUME_RLQ_R3P0) 283 return ("RAID3-P0"); 284 if (qual == G_RAID_VOLUME_RLQ_R3PN) 285 return ("RAID3-PN"); 286 return ("RAID3"); 287 case G_RAID_VOLUME_RL_RAID4: 288 if (qual == G_RAID_VOLUME_RLQ_R4P0) 289 return ("RAID4-P0"); 290 if (qual == G_RAID_VOLUME_RLQ_R4PN) 291 return ("RAID4-PN"); 292 return ("RAID4"); 293 case G_RAID_VOLUME_RL_RAID5: 294 if (qual == G_RAID_VOLUME_RLQ_R5RA) 295 return ("RAID5-RA"); 296 if (qual == G_RAID_VOLUME_RLQ_R5RS) 297 return ("RAID5-RS"); 298 if (qual == G_RAID_VOLUME_RLQ_R5LA) 299 return ("RAID5-LA"); 300 if (qual == G_RAID_VOLUME_RLQ_R5LS) 301 return ("RAID5-LS"); 302 return ("RAID5"); 303 case G_RAID_VOLUME_RL_RAID6: 304 if (qual == G_RAID_VOLUME_RLQ_R6RA) 305 return ("RAID6-RA"); 306 if (qual == G_RAID_VOLUME_RLQ_R6RS) 307 return ("RAID6-RS"); 308 if (qual == G_RAID_VOLUME_RLQ_R6LA) 309 return ("RAID6-LA"); 310 if (qual == G_RAID_VOLUME_RLQ_R6LS) 311 return ("RAID6-LS"); 312 return ("RAID6"); 313 case G_RAID_VOLUME_RL_RAIDMDF: 314 if (qual == G_RAID_VOLUME_RLQ_RMDFRA) 315 return ("RAIDMDF-RA"); 316 if (qual == G_RAID_VOLUME_RLQ_RMDFRS) 317 return ("RAIDMDF-RS"); 318 if (qual == G_RAID_VOLUME_RLQ_RMDFLA) 319 return ("RAIDMDF-LA"); 320 if (qual == G_RAID_VOLUME_RLQ_RMDFLS) 321 return ("RAIDMDF-LS"); 322 return ("RAIDMDF"); 323 case G_RAID_VOLUME_RL_RAID1E: 324 if (qual == G_RAID_VOLUME_RLQ_R1EA) 325 return ("RAID1E-A"); 326 if (qual == G_RAID_VOLUME_RLQ_R1EO) 327 return ("RAID1E-O"); 328 return ("RAID1E"); 329 case G_RAID_VOLUME_RL_SINGLE: 330 return ("SINGLE"); 331 case G_RAID_VOLUME_RL_CONCAT: 332 return ("CONCAT"); 333 case G_RAID_VOLUME_RL_RAID5E: 334 if (qual == G_RAID_VOLUME_RLQ_R5ERA) 335 return ("RAID5E-RA"); 336 if (qual == G_RAID_VOLUME_RLQ_R5ERS) 337 return ("RAID5E-RS"); 338 if (qual == G_RAID_VOLUME_RLQ_R5ELA) 339 return ("RAID5E-LA"); 340 if (qual == G_RAID_VOLUME_RLQ_R5ELS) 341 return ("RAID5E-LS"); 342 return ("RAID5E"); 343 case G_RAID_VOLUME_RL_RAID5EE: 344 if (qual == G_RAID_VOLUME_RLQ_R5EERA) 345 return ("RAID5EE-RA"); 346 if (qual == G_RAID_VOLUME_RLQ_R5EERS) 347 return ("RAID5EE-RS"); 348 if (qual == G_RAID_VOLUME_RLQ_R5EELA) 349 return ("RAID5EE-LA"); 350 if (qual == G_RAID_VOLUME_RLQ_R5EELS) 351 return ("RAID5EE-LS"); 352 return ("RAID5EE"); 353 case G_RAID_VOLUME_RL_RAID5R: 354 if (qual == G_RAID_VOLUME_RLQ_R5RRA) 355 return ("RAID5R-RA"); 356 if (qual == G_RAID_VOLUME_RLQ_R5RRS) 357 return ("RAID5R-RS"); 358 if (qual == G_RAID_VOLUME_RLQ_R5RLA) 359 return ("RAID5R-LA"); 360 if (qual == G_RAID_VOLUME_RLQ_R5RLS) 361 return ("RAID5R-LS"); 362 return ("RAID5E"); 363 default: 364 return ("UNKNOWN"); 365 } 366 } 367 368 int 369 g_raid_volume_str2level(const char *str, int *level, int *qual) 370 { 371 372 *level = G_RAID_VOLUME_RL_UNKNOWN; 373 *qual = G_RAID_VOLUME_RLQ_NONE; 374 if (strcasecmp(str, "RAID0") == 0) 375 *level = G_RAID_VOLUME_RL_RAID0; 376 else if (strcasecmp(str, "RAID1") == 0) 377 *level = G_RAID_VOLUME_RL_RAID1; 378 else if (strcasecmp(str, "RAID3-P0") == 0) { 379 *level = G_RAID_VOLUME_RL_RAID3; 380 *qual = G_RAID_VOLUME_RLQ_R3P0; 381 } else if (strcasecmp(str, "RAID3-PN") == 0 || 382 strcasecmp(str, "RAID3") == 0) { 383 *level = G_RAID_VOLUME_RL_RAID3; 384 *qual = G_RAID_VOLUME_RLQ_R3PN; 385 } else if (strcasecmp(str, "RAID4-P0") == 0) { 386 *level = G_RAID_VOLUME_RL_RAID4; 387 *qual = G_RAID_VOLUME_RLQ_R4P0; 388 } else if (strcasecmp(str, "RAID4-PN") == 0 || 389 strcasecmp(str, "RAID4") == 0) { 390 *level = G_RAID_VOLUME_RL_RAID4; 391 *qual = G_RAID_VOLUME_RLQ_R4PN; 392 } else if (strcasecmp(str, "RAID5-RA") == 0) { 393 *level = G_RAID_VOLUME_RL_RAID5; 394 *qual = G_RAID_VOLUME_RLQ_R5RA; 395 } else if (strcasecmp(str, "RAID5-RS") == 0) { 396 *level = G_RAID_VOLUME_RL_RAID5; 397 *qual = G_RAID_VOLUME_RLQ_R5RS; 398 } else if (strcasecmp(str, "RAID5") == 0 || 399 strcasecmp(str, "RAID5-LA") == 0) { 400 *level = G_RAID_VOLUME_RL_RAID5; 401 *qual = G_RAID_VOLUME_RLQ_R5LA; 402 } else if (strcasecmp(str, "RAID5-LS") == 0) { 403 *level = G_RAID_VOLUME_RL_RAID5; 404 *qual = G_RAID_VOLUME_RLQ_R5LS; 405 } else if (strcasecmp(str, "RAID6-RA") == 0) { 406 *level = G_RAID_VOLUME_RL_RAID6; 407 *qual = G_RAID_VOLUME_RLQ_R6RA; 408 } else if (strcasecmp(str, "RAID6-RS") == 0) { 409 *level = G_RAID_VOLUME_RL_RAID6; 410 *qual = G_RAID_VOLUME_RLQ_R6RS; 411 } else if (strcasecmp(str, "RAID6") == 0 || 412 strcasecmp(str, "RAID6-LA") == 0) { 413 *level = G_RAID_VOLUME_RL_RAID6; 414 *qual = G_RAID_VOLUME_RLQ_R6LA; 415 } else if (strcasecmp(str, "RAID6-LS") == 0) { 416 *level = G_RAID_VOLUME_RL_RAID6; 417 *qual = G_RAID_VOLUME_RLQ_R6LS; 418 } else if (strcasecmp(str, "RAIDMDF-RA") == 0) { 419 *level = G_RAID_VOLUME_RL_RAIDMDF; 420 *qual = G_RAID_VOLUME_RLQ_RMDFRA; 421 } else if (strcasecmp(str, "RAIDMDF-RS") == 0) { 422 *level = G_RAID_VOLUME_RL_RAIDMDF; 423 *qual = G_RAID_VOLUME_RLQ_RMDFRS; 424 } else if (strcasecmp(str, "RAIDMDF") == 0 || 425 strcasecmp(str, "RAIDMDF-LA") == 0) { 426 *level = G_RAID_VOLUME_RL_RAIDMDF; 427 *qual = G_RAID_VOLUME_RLQ_RMDFLA; 428 } else if (strcasecmp(str, "RAIDMDF-LS") == 0) { 429 *level = G_RAID_VOLUME_RL_RAIDMDF; 430 *qual = G_RAID_VOLUME_RLQ_RMDFLS; 431 } else if (strcasecmp(str, "RAID10") == 0 || 432 strcasecmp(str, "RAID1E") == 0 || 433 strcasecmp(str, "RAID1E-A") == 0) { 434 *level = G_RAID_VOLUME_RL_RAID1E; 435 *qual = G_RAID_VOLUME_RLQ_R1EA; 436 } else if (strcasecmp(str, "RAID1E-O") == 0) { 437 *level = G_RAID_VOLUME_RL_RAID1E; 438 *qual = G_RAID_VOLUME_RLQ_R1EO; 439 } else if (strcasecmp(str, "SINGLE") == 0) 440 *level = G_RAID_VOLUME_RL_SINGLE; 441 else if (strcasecmp(str, "CONCAT") == 0) 442 *level = G_RAID_VOLUME_RL_CONCAT; 443 else if (strcasecmp(str, "RAID5E-RA") == 0) { 444 *level = G_RAID_VOLUME_RL_RAID5E; 445 *qual = G_RAID_VOLUME_RLQ_R5ERA; 446 } else if (strcasecmp(str, "RAID5E-RS") == 0) { 447 *level = G_RAID_VOLUME_RL_RAID5E; 448 *qual = G_RAID_VOLUME_RLQ_R5ERS; 449 } else if (strcasecmp(str, "RAID5E") == 0 || 450 strcasecmp(str, "RAID5E-LA") == 0) { 451 *level = G_RAID_VOLUME_RL_RAID5E; 452 *qual = G_RAID_VOLUME_RLQ_R5ELA; 453 } else if (strcasecmp(str, "RAID5E-LS") == 0) { 454 *level = G_RAID_VOLUME_RL_RAID5E; 455 *qual = G_RAID_VOLUME_RLQ_R5ELS; 456 } else if (strcasecmp(str, "RAID5EE-RA") == 0) { 457 *level = G_RAID_VOLUME_RL_RAID5EE; 458 *qual = G_RAID_VOLUME_RLQ_R5EERA; 459 } else if (strcasecmp(str, "RAID5EE-RS") == 0) { 460 *level = G_RAID_VOLUME_RL_RAID5EE; 461 *qual = G_RAID_VOLUME_RLQ_R5EERS; 462 } else if (strcasecmp(str, "RAID5EE") == 0 || 463 strcasecmp(str, "RAID5EE-LA") == 0) { 464 *level = G_RAID_VOLUME_RL_RAID5EE; 465 *qual = G_RAID_VOLUME_RLQ_R5EELA; 466 } else if (strcasecmp(str, "RAID5EE-LS") == 0) { 467 *level = G_RAID_VOLUME_RL_RAID5EE; 468 *qual = G_RAID_VOLUME_RLQ_R5EELS; 469 } else if (strcasecmp(str, "RAID5R-RA") == 0) { 470 *level = G_RAID_VOLUME_RL_RAID5R; 471 *qual = G_RAID_VOLUME_RLQ_R5RRA; 472 } else if (strcasecmp(str, "RAID5R-RS") == 0) { 473 *level = G_RAID_VOLUME_RL_RAID5R; 474 *qual = G_RAID_VOLUME_RLQ_R5RRS; 475 } else if (strcasecmp(str, "RAID5R") == 0 || 476 strcasecmp(str, "RAID5R-LA") == 0) { 477 *level = G_RAID_VOLUME_RL_RAID5R; 478 *qual = G_RAID_VOLUME_RLQ_R5RLA; 479 } else if (strcasecmp(str, "RAID5R-LS") == 0) { 480 *level = G_RAID_VOLUME_RL_RAID5R; 481 *qual = G_RAID_VOLUME_RLQ_R5RLS; 482 } else 483 return (-1); 484 return (0); 485 } 486 487 const char * 488 g_raid_get_diskname(struct g_raid_disk *disk) 489 { 490 491 if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL) 492 return ("[unknown]"); 493 return (disk->d_consumer->provider->name); 494 } 495 496 void 497 g_raid_get_disk_info(struct g_raid_disk *disk) 498 { 499 struct g_consumer *cp = disk->d_consumer; 500 int error, len; 501 502 /* Read kernel dumping information. */ 503 disk->d_kd.offset = 0; 504 disk->d_kd.length = OFF_MAX; 505 len = sizeof(disk->d_kd); 506 error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd); 507 if (error) 508 disk->d_kd.di.dumper = NULL; 509 if (disk->d_kd.di.dumper == NULL) 510 G_RAID_DEBUG1(2, disk->d_softc, 511 "Dumping not supported by %s: %d.", 512 cp->provider->name, error); 513 514 /* Read BIO_DELETE support. */ 515 error = g_getattr("GEOM::candelete", cp, &disk->d_candelete); 516 if (error) 517 disk->d_candelete = 0; 518 if (!disk->d_candelete) 519 G_RAID_DEBUG1(2, disk->d_softc, 520 "BIO_DELETE not supported by %s: %d.", 521 cp->provider->name, error); 522 } 523 524 void 525 g_raid_report_disk_state(struct g_raid_disk *disk) 526 { 527 struct g_raid_subdisk *sd; 528 int len, state; 529 uint32_t s; 530 531 if (disk->d_consumer == NULL) 532 return; 533 if (disk->d_state == G_RAID_DISK_S_DISABLED) { 534 s = G_STATE_ACTIVE; /* XXX */ 535 } else if (disk->d_state == G_RAID_DISK_S_FAILED || 536 disk->d_state == G_RAID_DISK_S_STALE_FAILED) { 537 s = G_STATE_FAILED; 538 } else { 539 state = G_RAID_SUBDISK_S_ACTIVE; 540 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 541 if (sd->sd_state < state) 542 state = sd->sd_state; 543 } 544 if (state == G_RAID_SUBDISK_S_FAILED) 545 s = G_STATE_FAILED; 546 else if (state == G_RAID_SUBDISK_S_NEW || 547 state == G_RAID_SUBDISK_S_REBUILD) 548 s = G_STATE_REBUILD; 549 else if (state == G_RAID_SUBDISK_S_STALE || 550 state == G_RAID_SUBDISK_S_RESYNC) 551 s = G_STATE_RESYNC; 552 else 553 s = G_STATE_ACTIVE; 554 } 555 len = sizeof(s); 556 g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s); 557 G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.", 558 g_raid_get_diskname(disk), s); 559 } 560 561 void 562 g_raid_change_disk_state(struct g_raid_disk *disk, int state) 563 { 564 565 G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.", 566 g_raid_get_diskname(disk), 567 g_raid_disk_state2str(disk->d_state), 568 g_raid_disk_state2str(state)); 569 disk->d_state = state; 570 g_raid_report_disk_state(disk); 571 } 572 573 void 574 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state) 575 { 576 577 G_RAID_DEBUG1(0, sd->sd_softc, 578 "Subdisk %s:%d-%s state changed from %s to %s.", 579 sd->sd_volume->v_name, sd->sd_pos, 580 sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]", 581 g_raid_subdisk_state2str(sd->sd_state), 582 g_raid_subdisk_state2str(state)); 583 sd->sd_state = state; 584 if (sd->sd_disk) 585 g_raid_report_disk_state(sd->sd_disk); 586 } 587 588 void 589 g_raid_change_volume_state(struct g_raid_volume *vol, int state) 590 { 591 592 G_RAID_DEBUG1(0, vol->v_softc, 593 "Volume %s state changed from %s to %s.", 594 vol->v_name, 595 g_raid_volume_state2str(vol->v_state), 596 g_raid_volume_state2str(state)); 597 vol->v_state = state; 598 } 599 600 /* 601 * --- Events handling functions --- 602 * Events in geom_raid are used to maintain subdisks and volumes status 603 * from one thread to simplify locking. 604 */ 605 static void 606 g_raid_event_free(struct g_raid_event *ep) 607 { 608 609 free(ep, M_RAID); 610 } 611 612 int 613 g_raid_event_send(void *arg, int event, int flags) 614 { 615 struct g_raid_softc *sc; 616 struct g_raid_event *ep; 617 int error; 618 619 if ((flags & G_RAID_EVENT_VOLUME) != 0) { 620 sc = ((struct g_raid_volume *)arg)->v_softc; 621 } else if ((flags & G_RAID_EVENT_DISK) != 0) { 622 sc = ((struct g_raid_disk *)arg)->d_softc; 623 } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) { 624 sc = ((struct g_raid_subdisk *)arg)->sd_softc; 625 } else { 626 sc = arg; 627 } 628 ep = malloc(sizeof(*ep), M_RAID, 629 sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT); 630 if (ep == NULL) 631 return (ENOMEM); 632 ep->e_tgt = arg; 633 ep->e_event = event; 634 ep->e_flags = flags; 635 ep->e_error = 0; 636 G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc); 637 mtx_lock(&sc->sc_queue_mtx); 638 TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next); 639 mtx_unlock(&sc->sc_queue_mtx); 640 wakeup(sc); 641 642 if ((flags & G_RAID_EVENT_WAIT) == 0) 643 return (0); 644 645 sx_assert(&sc->sc_lock, SX_XLOCKED); 646 G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep); 647 sx_xunlock(&sc->sc_lock); 648 while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) { 649 mtx_lock(&sc->sc_queue_mtx); 650 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event", 651 hz * 5); 652 } 653 error = ep->e_error; 654 g_raid_event_free(ep); 655 sx_xlock(&sc->sc_lock); 656 return (error); 657 } 658 659 static void 660 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt) 661 { 662 struct g_raid_event *ep, *tmpep; 663 664 sx_assert(&sc->sc_lock, SX_XLOCKED); 665 666 mtx_lock(&sc->sc_queue_mtx); 667 TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) { 668 if (ep->e_tgt != tgt) 669 continue; 670 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 671 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) 672 g_raid_event_free(ep); 673 else { 674 ep->e_error = ECANCELED; 675 wakeup(ep); 676 } 677 } 678 mtx_unlock(&sc->sc_queue_mtx); 679 } 680 681 static int 682 g_raid_event_check(struct g_raid_softc *sc, void *tgt) 683 { 684 struct g_raid_event *ep; 685 int res = 0; 686 687 sx_assert(&sc->sc_lock, SX_XLOCKED); 688 689 mtx_lock(&sc->sc_queue_mtx); 690 TAILQ_FOREACH(ep, &sc->sc_events, e_next) { 691 if (ep->e_tgt != tgt) 692 continue; 693 res = 1; 694 break; 695 } 696 mtx_unlock(&sc->sc_queue_mtx); 697 return (res); 698 } 699 700 /* 701 * Return the number of disks in given state. 702 * If state is equal to -1, count all connected disks. 703 */ 704 u_int 705 g_raid_ndisks(struct g_raid_softc *sc, int state) 706 { 707 struct g_raid_disk *disk; 708 u_int n; 709 710 sx_assert(&sc->sc_lock, SX_LOCKED); 711 712 n = 0; 713 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 714 if (disk->d_state == state || state == -1) 715 n++; 716 } 717 return (n); 718 } 719 720 /* 721 * Return the number of subdisks in given state. 722 * If state is equal to -1, count all connected disks. 723 */ 724 u_int 725 g_raid_nsubdisks(struct g_raid_volume *vol, int state) 726 { 727 struct g_raid_subdisk *subdisk; 728 struct g_raid_softc *sc; 729 u_int i, n ; 730 731 sc = vol->v_softc; 732 sx_assert(&sc->sc_lock, SX_LOCKED); 733 734 n = 0; 735 for (i = 0; i < vol->v_disks_count; i++) { 736 subdisk = &vol->v_subdisks[i]; 737 if ((state == -1 && 738 subdisk->sd_state != G_RAID_SUBDISK_S_NONE) || 739 subdisk->sd_state == state) 740 n++; 741 } 742 return (n); 743 } 744 745 /* 746 * Return the first subdisk in given state. 747 * If state is equal to -1, then the first connected disks. 748 */ 749 struct g_raid_subdisk * 750 g_raid_get_subdisk(struct g_raid_volume *vol, int state) 751 { 752 struct g_raid_subdisk *sd; 753 struct g_raid_softc *sc; 754 u_int i; 755 756 sc = vol->v_softc; 757 sx_assert(&sc->sc_lock, SX_LOCKED); 758 759 for (i = 0; i < vol->v_disks_count; i++) { 760 sd = &vol->v_subdisks[i]; 761 if ((state == -1 && 762 sd->sd_state != G_RAID_SUBDISK_S_NONE) || 763 sd->sd_state == state) 764 return (sd); 765 } 766 return (NULL); 767 } 768 769 struct g_consumer * 770 g_raid_open_consumer(struct g_raid_softc *sc, const char *name) 771 { 772 struct g_consumer *cp; 773 struct g_provider *pp; 774 775 g_topology_assert(); 776 777 if (strncmp(name, "/dev/", 5) == 0) 778 name += 5; 779 pp = g_provider_by_name(name); 780 if (pp == NULL) 781 return (NULL); 782 cp = g_new_consumer(sc->sc_geom); 783 cp->flags |= G_CF_DIRECT_RECEIVE; 784 if (g_attach(cp, pp) != 0) { 785 g_destroy_consumer(cp); 786 return (NULL); 787 } 788 if (g_access(cp, 1, 1, 1) != 0) { 789 g_detach(cp); 790 g_destroy_consumer(cp); 791 return (NULL); 792 } 793 return (cp); 794 } 795 796 static u_int 797 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp) 798 { 799 struct bio *bp; 800 u_int nreqs = 0; 801 802 mtx_lock(&sc->sc_queue_mtx); 803 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 804 if (bp->bio_from == cp) 805 nreqs++; 806 } 807 mtx_unlock(&sc->sc_queue_mtx); 808 return (nreqs); 809 } 810 811 u_int 812 g_raid_nopens(struct g_raid_softc *sc) 813 { 814 struct g_raid_volume *vol; 815 u_int opens; 816 817 opens = 0; 818 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 819 if (vol->v_provider_open != 0) 820 opens++; 821 } 822 return (opens); 823 } 824 825 static int 826 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp) 827 { 828 829 if (cp->index > 0) { 830 G_RAID_DEBUG1(2, sc, 831 "I/O requests for %s exist, can't destroy it now.", 832 cp->provider->name); 833 return (1); 834 } 835 if (g_raid_nrequests(sc, cp) > 0) { 836 G_RAID_DEBUG1(2, sc, 837 "I/O requests for %s in queue, can't destroy it now.", 838 cp->provider->name); 839 return (1); 840 } 841 return (0); 842 } 843 844 static void 845 g_raid_destroy_consumer(void *arg, int flags __unused) 846 { 847 struct g_consumer *cp; 848 849 g_topology_assert(); 850 851 cp = arg; 852 G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name); 853 g_detach(cp); 854 g_destroy_consumer(cp); 855 } 856 857 void 858 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp) 859 { 860 struct g_provider *pp; 861 int retaste_wait; 862 863 g_topology_assert_not(); 864 865 g_topology_lock(); 866 cp->private = NULL; 867 if (g_raid_consumer_is_busy(sc, cp)) 868 goto out; 869 pp = cp->provider; 870 retaste_wait = 0; 871 if (cp->acw == 1) { 872 if ((pp->geom->flags & G_GEOM_WITHER) == 0) 873 retaste_wait = 1; 874 } 875 if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) 876 g_access(cp, -cp->acr, -cp->acw, -cp->ace); 877 if (retaste_wait) { 878 /* 879 * After retaste event was send (inside g_access()), we can send 880 * event to detach and destroy consumer. 881 * A class, which has consumer to the given provider connected 882 * will not receive retaste event for the provider. 883 * This is the way how I ignore retaste events when I close 884 * consumers opened for write: I detach and destroy consumer 885 * after retaste event is sent. 886 */ 887 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL); 888 goto out; 889 } 890 G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name); 891 g_detach(cp); 892 g_destroy_consumer(cp); 893 out: 894 g_topology_unlock(); 895 } 896 897 static void 898 g_raid_orphan(struct g_consumer *cp) 899 { 900 struct g_raid_disk *disk; 901 902 g_topology_assert(); 903 904 disk = cp->private; 905 if (disk == NULL) 906 return; 907 g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED, 908 G_RAID_EVENT_DISK); 909 } 910 911 static void 912 g_raid_clean(struct g_raid_volume *vol, int acw) 913 { 914 struct g_raid_softc *sc; 915 int timeout; 916 917 sc = vol->v_softc; 918 g_topology_assert_not(); 919 sx_assert(&sc->sc_lock, SX_XLOCKED); 920 921 // if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0) 922 // return; 923 if (!vol->v_dirty) 924 return; 925 if (vol->v_writes > 0) 926 return; 927 if (acw > 0 || (acw == -1 && 928 vol->v_provider != NULL && vol->v_provider->acw > 0)) { 929 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write); 930 if (!g_raid_shutdown && timeout > 0) 931 return; 932 } 933 vol->v_dirty = 0; 934 G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.", 935 vol->v_name); 936 g_raid_write_metadata(sc, vol, NULL, NULL); 937 } 938 939 static void 940 g_raid_dirty(struct g_raid_volume *vol) 941 { 942 struct g_raid_softc *sc; 943 944 sc = vol->v_softc; 945 g_topology_assert_not(); 946 sx_assert(&sc->sc_lock, SX_XLOCKED); 947 948 // if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0) 949 // return; 950 vol->v_dirty = 1; 951 G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.", 952 vol->v_name); 953 g_raid_write_metadata(sc, vol, NULL, NULL); 954 } 955 956 void 957 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp) 958 { 959 struct g_raid_volume *vol; 960 struct g_raid_subdisk *sd; 961 struct bio_queue_head queue; 962 struct bio *cbp; 963 int i; 964 965 vol = tr->tro_volume; 966 967 /* 968 * Allocate all bios before sending any request, so we can return 969 * ENOMEM in nice and clean way. 970 */ 971 bioq_init(&queue); 972 for (i = 0; i < vol->v_disks_count; i++) { 973 sd = &vol->v_subdisks[i]; 974 if (sd->sd_state == G_RAID_SUBDISK_S_NONE || 975 sd->sd_state == G_RAID_SUBDISK_S_FAILED) 976 continue; 977 cbp = g_clone_bio(bp); 978 if (cbp == NULL) 979 goto failure; 980 cbp->bio_caller1 = sd; 981 bioq_insert_tail(&queue, cbp); 982 } 983 while ((cbp = bioq_takefirst(&queue)) != NULL) { 984 sd = cbp->bio_caller1; 985 cbp->bio_caller1 = NULL; 986 g_raid_subdisk_iostart(sd, cbp); 987 } 988 return; 989 failure: 990 while ((cbp = bioq_takefirst(&queue)) != NULL) 991 g_destroy_bio(cbp); 992 if (bp->bio_error == 0) 993 bp->bio_error = ENOMEM; 994 g_raid_iodone(bp, bp->bio_error); 995 } 996 997 static void 998 g_raid_tr_kerneldump_common_done(struct bio *bp) 999 { 1000 1001 bp->bio_flags |= BIO_DONE; 1002 } 1003 1004 int 1005 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr, 1006 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1007 { 1008 struct g_raid_softc *sc; 1009 struct g_raid_volume *vol; 1010 struct bio bp; 1011 1012 vol = tr->tro_volume; 1013 sc = vol->v_softc; 1014 1015 g_reset_bio(&bp); 1016 bp.bio_cmd = BIO_WRITE; 1017 bp.bio_done = g_raid_tr_kerneldump_common_done; 1018 bp.bio_attribute = NULL; 1019 bp.bio_offset = offset; 1020 bp.bio_length = length; 1021 bp.bio_data = virtual; 1022 bp.bio_to = vol->v_provider; 1023 1024 g_raid_start(&bp); 1025 while (!(bp.bio_flags & BIO_DONE)) { 1026 G_RAID_DEBUG1(4, sc, "Poll..."); 1027 g_raid_poll(sc); 1028 DELAY(10); 1029 } 1030 1031 return (bp.bio_error != 0 ? EIO : 0); 1032 } 1033 1034 static int 1035 g_raid_dump(void *arg, 1036 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1037 { 1038 struct g_raid_volume *vol; 1039 int error; 1040 1041 vol = (struct g_raid_volume *)arg; 1042 G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.", 1043 (long long unsigned)offset, (long long unsigned)length); 1044 1045 error = G_RAID_TR_KERNELDUMP(vol->v_tr, 1046 virtual, physical, offset, length); 1047 return (error); 1048 } 1049 1050 static void 1051 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp) 1052 { 1053 struct g_kerneldump *gkd; 1054 struct g_provider *pp; 1055 struct g_raid_volume *vol; 1056 1057 gkd = (struct g_kerneldump*)bp->bio_data; 1058 pp = bp->bio_to; 1059 vol = pp->private; 1060 g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)", 1061 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length); 1062 gkd->di.dumper = g_raid_dump; 1063 gkd->di.priv = vol; 1064 gkd->di.blocksize = vol->v_sectorsize; 1065 gkd->di.maxiosize = DFLTPHYS; 1066 gkd->di.mediaoffset = gkd->offset; 1067 if ((gkd->offset + gkd->length) > vol->v_mediasize) 1068 gkd->length = vol->v_mediasize - gkd->offset; 1069 gkd->di.mediasize = gkd->length; 1070 g_io_deliver(bp, 0); 1071 } 1072 1073 static void 1074 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp) 1075 { 1076 struct g_provider *pp; 1077 struct g_raid_volume *vol; 1078 struct g_raid_subdisk *sd; 1079 int i, val; 1080 1081 pp = bp->bio_to; 1082 vol = pp->private; 1083 for (i = 0; i < vol->v_disks_count; i++) { 1084 sd = &vol->v_subdisks[i]; 1085 if (sd->sd_state == G_RAID_SUBDISK_S_NONE) 1086 continue; 1087 if (sd->sd_disk->d_candelete) 1088 break; 1089 } 1090 val = i < vol->v_disks_count; 1091 g_handleattr(bp, "GEOM::candelete", &val, sizeof(val)); 1092 } 1093 1094 static void 1095 g_raid_start(struct bio *bp) 1096 { 1097 struct g_raid_softc *sc; 1098 1099 sc = bp->bio_to->geom->softc; 1100 /* 1101 * If sc == NULL or there are no valid disks, provider's error 1102 * should be set and g_raid_start() should not be called at all. 1103 */ 1104 // KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING, 1105 // ("Provider's error should be set (error=%d)(mirror=%s).", 1106 // bp->bio_to->error, bp->bio_to->name)); 1107 G_RAID_LOGREQ(3, bp, "Request received."); 1108 1109 switch (bp->bio_cmd) { 1110 case BIO_READ: 1111 case BIO_WRITE: 1112 case BIO_DELETE: 1113 case BIO_FLUSH: 1114 break; 1115 case BIO_GETATTR: 1116 if (!strcmp(bp->bio_attribute, "GEOM::candelete")) 1117 g_raid_candelete(sc, bp); 1118 else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump")) 1119 g_raid_kerneldump(sc, bp); 1120 else 1121 g_io_deliver(bp, EOPNOTSUPP); 1122 return; 1123 default: 1124 g_io_deliver(bp, EOPNOTSUPP); 1125 return; 1126 } 1127 mtx_lock(&sc->sc_queue_mtx); 1128 bioq_insert_tail(&sc->sc_queue, bp); 1129 mtx_unlock(&sc->sc_queue_mtx); 1130 if (!dumping) { 1131 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc); 1132 wakeup(sc); 1133 } 1134 } 1135 1136 static int 1137 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len) 1138 { 1139 /* 1140 * 5 cases: 1141 * (1) bp entirely below NO 1142 * (2) bp entirely above NO 1143 * (3) bp start below, but end in range YES 1144 * (4) bp entirely within YES 1145 * (5) bp starts within, ends above YES 1146 * 1147 * lock range 10-19 (offset 10 length 10) 1148 * (1) 1-5: first if kicks it out 1149 * (2) 30-35: second if kicks it out 1150 * (3) 5-15: passes both ifs 1151 * (4) 12-14: passes both ifs 1152 * (5) 19-20: passes both 1153 */ 1154 off_t lend = lstart + len - 1; 1155 off_t bstart = bp->bio_offset; 1156 off_t bend = bp->bio_offset + bp->bio_length - 1; 1157 1158 if (bend < lstart) 1159 return (0); 1160 if (lend < bstart) 1161 return (0); 1162 return (1); 1163 } 1164 1165 static int 1166 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp) 1167 { 1168 struct g_raid_lock *lp; 1169 1170 sx_assert(&vol->v_softc->sc_lock, SX_LOCKED); 1171 1172 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1173 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length)) 1174 return (1); 1175 } 1176 return (0); 1177 } 1178 1179 static void 1180 g_raid_start_request(struct bio *bp) 1181 { 1182 struct g_raid_softc *sc; 1183 struct g_raid_volume *vol; 1184 1185 sc = bp->bio_to->geom->softc; 1186 sx_assert(&sc->sc_lock, SX_LOCKED); 1187 vol = bp->bio_to->private; 1188 1189 /* 1190 * Check to see if this item is in a locked range. If so, 1191 * queue it to our locked queue and return. We'll requeue 1192 * it when the range is unlocked. Internal I/O for the 1193 * rebuild/rescan/recovery process is excluded from this 1194 * check so we can actually do the recovery. 1195 */ 1196 if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) && 1197 g_raid_is_in_locked_range(vol, bp)) { 1198 G_RAID_LOGREQ(3, bp, "Defer request."); 1199 bioq_insert_tail(&vol->v_locked, bp); 1200 return; 1201 } 1202 1203 /* 1204 * If we're actually going to do the write/delete, then 1205 * update the idle stats for the volume. 1206 */ 1207 if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) { 1208 if (!vol->v_dirty) 1209 g_raid_dirty(vol); 1210 vol->v_writes++; 1211 } 1212 1213 /* 1214 * Put request onto inflight queue, so we can check if new 1215 * synchronization requests don't collide with it. Then tell 1216 * the transformation layer to start the I/O. 1217 */ 1218 bioq_insert_tail(&vol->v_inflight, bp); 1219 G_RAID_LOGREQ(4, bp, "Request started"); 1220 G_RAID_TR_IOSTART(vol->v_tr, bp); 1221 } 1222 1223 static void 1224 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp) 1225 { 1226 off_t off, len; 1227 struct bio *nbp; 1228 struct g_raid_lock *lp; 1229 1230 vol->v_pending_lock = 0; 1231 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1232 if (lp->l_pending) { 1233 off = lp->l_offset; 1234 len = lp->l_length; 1235 lp->l_pending = 0; 1236 TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) { 1237 if (g_raid_bio_overlaps(nbp, off, len)) 1238 lp->l_pending++; 1239 } 1240 if (lp->l_pending) { 1241 vol->v_pending_lock = 1; 1242 G_RAID_DEBUG1(4, vol->v_softc, 1243 "Deferred lock(%jd, %jd) has %d pending", 1244 (intmax_t)off, (intmax_t)(off + len), 1245 lp->l_pending); 1246 continue; 1247 } 1248 G_RAID_DEBUG1(4, vol->v_softc, 1249 "Deferred lock of %jd to %jd completed", 1250 (intmax_t)off, (intmax_t)(off + len)); 1251 G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg); 1252 } 1253 } 1254 } 1255 1256 void 1257 g_raid_iodone(struct bio *bp, int error) 1258 { 1259 struct g_raid_softc *sc; 1260 struct g_raid_volume *vol; 1261 1262 sc = bp->bio_to->geom->softc; 1263 sx_assert(&sc->sc_lock, SX_LOCKED); 1264 vol = bp->bio_to->private; 1265 G_RAID_LOGREQ(3, bp, "Request done: %d.", error); 1266 1267 /* Update stats if we done write/delete. */ 1268 if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) { 1269 vol->v_writes--; 1270 vol->v_last_write = time_uptime; 1271 } 1272 1273 bioq_remove(&vol->v_inflight, bp); 1274 if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp)) 1275 g_raid_finish_with_locked_ranges(vol, bp); 1276 getmicrouptime(&vol->v_last_done); 1277 g_io_deliver(bp, error); 1278 } 1279 1280 int 1281 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len, 1282 struct bio *ignore, void *argp) 1283 { 1284 struct g_raid_softc *sc; 1285 struct g_raid_lock *lp; 1286 struct bio *bp; 1287 1288 sc = vol->v_softc; 1289 lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO); 1290 LIST_INSERT_HEAD(&vol->v_locks, lp, l_next); 1291 lp->l_offset = off; 1292 lp->l_length = len; 1293 lp->l_callback_arg = argp; 1294 1295 lp->l_pending = 0; 1296 TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) { 1297 if (bp != ignore && g_raid_bio_overlaps(bp, off, len)) 1298 lp->l_pending++; 1299 } 1300 1301 /* 1302 * If there are any writes that are pending, we return EBUSY. All 1303 * callers will have to wait until all pending writes clear. 1304 */ 1305 if (lp->l_pending > 0) { 1306 vol->v_pending_lock = 1; 1307 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend", 1308 (intmax_t)off, (intmax_t)(off+len), lp->l_pending); 1309 return (EBUSY); 1310 } 1311 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd", 1312 (intmax_t)off, (intmax_t)(off+len)); 1313 G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg); 1314 return (0); 1315 } 1316 1317 int 1318 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len) 1319 { 1320 struct g_raid_lock *lp; 1321 struct g_raid_softc *sc; 1322 struct bio *bp; 1323 1324 sc = vol->v_softc; 1325 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1326 if (lp->l_offset == off && lp->l_length == len) { 1327 LIST_REMOVE(lp, l_next); 1328 /* XXX 1329 * Right now we just put them all back on the queue 1330 * and hope for the best. We hope this because any 1331 * locked ranges will go right back on this list 1332 * when the worker thread runs. 1333 * XXX 1334 */ 1335 G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd", 1336 (intmax_t)lp->l_offset, 1337 (intmax_t)(lp->l_offset+lp->l_length)); 1338 mtx_lock(&sc->sc_queue_mtx); 1339 while ((bp = bioq_takefirst(&vol->v_locked)) != NULL) 1340 bioq_insert_tail(&sc->sc_queue, bp); 1341 mtx_unlock(&sc->sc_queue_mtx); 1342 free(lp, M_RAID); 1343 return (0); 1344 } 1345 } 1346 return (EINVAL); 1347 } 1348 1349 void 1350 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp) 1351 { 1352 struct g_consumer *cp; 1353 struct g_raid_disk *disk, *tdisk; 1354 1355 bp->bio_caller1 = sd; 1356 1357 /* 1358 * Make sure that the disk is present. Generally it is a task of 1359 * transformation layers to not send requests to absent disks, but 1360 * it is better to be safe and report situation then sorry. 1361 */ 1362 if (sd->sd_disk == NULL) { 1363 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!"); 1364 nodisk: 1365 bp->bio_from = NULL; 1366 bp->bio_to = NULL; 1367 bp->bio_error = ENXIO; 1368 g_raid_disk_done(bp); 1369 return; 1370 } 1371 disk = sd->sd_disk; 1372 if (disk->d_state != G_RAID_DISK_S_ACTIVE && 1373 disk->d_state != G_RAID_DISK_S_FAILED) { 1374 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a " 1375 "wrong state (%s)!", g_raid_disk_state2str(disk->d_state)); 1376 goto nodisk; 1377 } 1378 1379 cp = disk->d_consumer; 1380 bp->bio_from = cp; 1381 bp->bio_to = cp->provider; 1382 cp->index++; 1383 1384 /* Update average disks load. */ 1385 TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) { 1386 if (tdisk->d_consumer == NULL) 1387 tdisk->d_load = 0; 1388 else 1389 tdisk->d_load = (tdisk->d_consumer->index * 1390 G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8; 1391 } 1392 1393 disk->d_last_offset = bp->bio_offset + bp->bio_length; 1394 if (dumping) { 1395 G_RAID_LOGREQ(3, bp, "Sending dumping request."); 1396 if (bp->bio_cmd == BIO_WRITE) { 1397 bp->bio_error = g_raid_subdisk_kerneldump(sd, 1398 bp->bio_data, 0, bp->bio_offset, bp->bio_length); 1399 } else 1400 bp->bio_error = EOPNOTSUPP; 1401 g_raid_disk_done(bp); 1402 } else { 1403 bp->bio_done = g_raid_disk_done; 1404 bp->bio_offset += sd->sd_offset; 1405 G_RAID_LOGREQ(3, bp, "Sending request."); 1406 g_io_request(bp, cp); 1407 } 1408 } 1409 1410 int 1411 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd, 1412 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1413 { 1414 1415 if (sd->sd_disk == NULL) 1416 return (ENXIO); 1417 if (sd->sd_disk->d_kd.di.dumper == NULL) 1418 return (EOPNOTSUPP); 1419 return (dump_write(&sd->sd_disk->d_kd.di, 1420 virtual, physical, 1421 sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset, 1422 length)); 1423 } 1424 1425 static void 1426 g_raid_disk_done(struct bio *bp) 1427 { 1428 struct g_raid_softc *sc; 1429 struct g_raid_subdisk *sd; 1430 1431 sd = bp->bio_caller1; 1432 sc = sd->sd_softc; 1433 mtx_lock(&sc->sc_queue_mtx); 1434 bioq_insert_tail(&sc->sc_queue, bp); 1435 mtx_unlock(&sc->sc_queue_mtx); 1436 if (!dumping) 1437 wakeup(sc); 1438 } 1439 1440 static void 1441 g_raid_disk_done_request(struct bio *bp) 1442 { 1443 struct g_raid_softc *sc; 1444 struct g_raid_disk *disk; 1445 struct g_raid_subdisk *sd; 1446 struct g_raid_volume *vol; 1447 1448 g_topology_assert_not(); 1449 1450 G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error); 1451 sd = bp->bio_caller1; 1452 sc = sd->sd_softc; 1453 vol = sd->sd_volume; 1454 if (bp->bio_from != NULL) { 1455 bp->bio_from->index--; 1456 disk = bp->bio_from->private; 1457 if (disk == NULL) 1458 g_raid_kill_consumer(sc, bp->bio_from); 1459 } 1460 bp->bio_offset -= sd->sd_offset; 1461 1462 G_RAID_TR_IODONE(vol->v_tr, sd, bp); 1463 } 1464 1465 static void 1466 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep) 1467 { 1468 1469 if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0) 1470 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event); 1471 else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0) 1472 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event); 1473 else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0) 1474 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event); 1475 else 1476 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event); 1477 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) { 1478 KASSERT(ep->e_error == 0, 1479 ("Error cannot be handled.")); 1480 g_raid_event_free(ep); 1481 } else { 1482 ep->e_flags |= G_RAID_EVENT_DONE; 1483 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep); 1484 mtx_lock(&sc->sc_queue_mtx); 1485 wakeup(ep); 1486 mtx_unlock(&sc->sc_queue_mtx); 1487 } 1488 } 1489 1490 /* 1491 * Worker thread. 1492 */ 1493 static void 1494 g_raid_worker(void *arg) 1495 { 1496 struct g_raid_softc *sc; 1497 struct g_raid_event *ep; 1498 struct g_raid_volume *vol; 1499 struct bio *bp; 1500 struct timeval now, t; 1501 int timeout, rv; 1502 1503 sc = arg; 1504 thread_lock(curthread); 1505 sched_prio(curthread, PRIBIO); 1506 thread_unlock(curthread); 1507 1508 sx_xlock(&sc->sc_lock); 1509 for (;;) { 1510 mtx_lock(&sc->sc_queue_mtx); 1511 /* 1512 * First take a look at events. 1513 * This is important to handle events before any I/O requests. 1514 */ 1515 bp = NULL; 1516 vol = NULL; 1517 rv = 0; 1518 ep = TAILQ_FIRST(&sc->sc_events); 1519 if (ep != NULL) 1520 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 1521 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL) 1522 ; 1523 else { 1524 getmicrouptime(&now); 1525 t = now; 1526 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1527 if (bioq_first(&vol->v_inflight) == NULL && 1528 vol->v_tr && 1529 timevalcmp(&vol->v_last_done, &t, < )) 1530 t = vol->v_last_done; 1531 } 1532 timevalsub(&t, &now); 1533 timeout = g_raid_idle_threshold + 1534 t.tv_sec * 1000000 + t.tv_usec; 1535 if (timeout > 0) { 1536 /* 1537 * Two steps to avoid overflows at HZ=1000 1538 * and idle timeouts > 2.1s. Some rounding 1539 * errors can occur, but they are < 1tick, 1540 * which is deemed to be close enough for 1541 * this purpose. 1542 */ 1543 int micpertic = 1000000 / hz; 1544 timeout = (timeout + micpertic - 1) / micpertic; 1545 sx_xunlock(&sc->sc_lock); 1546 MSLEEP(rv, sc, &sc->sc_queue_mtx, 1547 PRIBIO | PDROP, "-", timeout); 1548 sx_xlock(&sc->sc_lock); 1549 goto process; 1550 } else 1551 rv = EWOULDBLOCK; 1552 } 1553 mtx_unlock(&sc->sc_queue_mtx); 1554 process: 1555 if (ep != NULL) { 1556 g_raid_handle_event(sc, ep); 1557 } else if (bp != NULL) { 1558 if (bp->bio_to != NULL && 1559 bp->bio_to->geom == sc->sc_geom) 1560 g_raid_start_request(bp); 1561 else 1562 g_raid_disk_done_request(bp); 1563 } else if (rv == EWOULDBLOCK) { 1564 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1565 g_raid_clean(vol, -1); 1566 if (bioq_first(&vol->v_inflight) == NULL && 1567 vol->v_tr) { 1568 t.tv_sec = g_raid_idle_threshold / 1000000; 1569 t.tv_usec = g_raid_idle_threshold % 1000000; 1570 timevaladd(&t, &vol->v_last_done); 1571 getmicrouptime(&now); 1572 if (timevalcmp(&t, &now, <= )) { 1573 G_RAID_TR_IDLE(vol->v_tr); 1574 vol->v_last_done = now; 1575 } 1576 } 1577 } 1578 } 1579 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 1580 g_raid_destroy_node(sc, 1); /* May not return. */ 1581 } 1582 } 1583 1584 static void 1585 g_raid_poll(struct g_raid_softc *sc) 1586 { 1587 struct g_raid_event *ep; 1588 struct bio *bp; 1589 1590 sx_xlock(&sc->sc_lock); 1591 mtx_lock(&sc->sc_queue_mtx); 1592 /* 1593 * First take a look at events. 1594 * This is important to handle events before any I/O requests. 1595 */ 1596 ep = TAILQ_FIRST(&sc->sc_events); 1597 if (ep != NULL) { 1598 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 1599 mtx_unlock(&sc->sc_queue_mtx); 1600 g_raid_handle_event(sc, ep); 1601 goto out; 1602 } 1603 bp = bioq_takefirst(&sc->sc_queue); 1604 if (bp != NULL) { 1605 mtx_unlock(&sc->sc_queue_mtx); 1606 if (bp->bio_from == NULL || 1607 bp->bio_from->geom != sc->sc_geom) 1608 g_raid_start_request(bp); 1609 else 1610 g_raid_disk_done_request(bp); 1611 } 1612 out: 1613 sx_xunlock(&sc->sc_lock); 1614 } 1615 1616 static void 1617 g_raid_launch_provider(struct g_raid_volume *vol) 1618 { 1619 struct g_raid_disk *disk; 1620 struct g_raid_subdisk *sd; 1621 struct g_raid_softc *sc; 1622 struct g_provider *pp; 1623 char name[G_RAID_MAX_VOLUMENAME]; 1624 off_t off; 1625 int i; 1626 1627 sc = vol->v_softc; 1628 sx_assert(&sc->sc_lock, SX_LOCKED); 1629 1630 g_topology_lock(); 1631 /* Try to name provider with volume name. */ 1632 snprintf(name, sizeof(name), "raid/%s", vol->v_name); 1633 if (g_raid_name_format == 0 || vol->v_name[0] == 0 || 1634 g_provider_by_name(name) != NULL) { 1635 /* Otherwise use sequential volume number. */ 1636 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id); 1637 } 1638 1639 pp = g_new_providerf(sc->sc_geom, "%s", name); 1640 pp->flags |= G_PF_DIRECT_RECEIVE; 1641 if (vol->v_tr->tro_class->trc_accept_unmapped) { 1642 pp->flags |= G_PF_ACCEPT_UNMAPPED; 1643 for (i = 0; i < vol->v_disks_count; i++) { 1644 sd = &vol->v_subdisks[i]; 1645 if (sd->sd_state == G_RAID_SUBDISK_S_NONE) 1646 continue; 1647 if ((sd->sd_disk->d_consumer->provider->flags & 1648 G_PF_ACCEPT_UNMAPPED) == 0) 1649 pp->flags &= ~G_PF_ACCEPT_UNMAPPED; 1650 } 1651 } 1652 pp->private = vol; 1653 pp->mediasize = vol->v_mediasize; 1654 pp->sectorsize = vol->v_sectorsize; 1655 pp->stripesize = 0; 1656 pp->stripeoffset = 0; 1657 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 || 1658 vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 || 1659 vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE || 1660 vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) { 1661 if ((disk = vol->v_subdisks[0].sd_disk) != NULL && 1662 disk->d_consumer != NULL && 1663 disk->d_consumer->provider != NULL) { 1664 pp->stripesize = disk->d_consumer->provider->stripesize; 1665 off = disk->d_consumer->provider->stripeoffset; 1666 pp->stripeoffset = off + vol->v_subdisks[0].sd_offset; 1667 if (off > 0) 1668 pp->stripeoffset %= off; 1669 } 1670 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) { 1671 pp->stripesize *= (vol->v_disks_count - 1); 1672 pp->stripeoffset *= (vol->v_disks_count - 1); 1673 } 1674 } else 1675 pp->stripesize = vol->v_strip_size; 1676 vol->v_provider = pp; 1677 g_error_provider(pp, 0); 1678 g_topology_unlock(); 1679 G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.", 1680 pp->name, vol->v_name); 1681 } 1682 1683 static void 1684 g_raid_destroy_provider(struct g_raid_volume *vol) 1685 { 1686 struct g_raid_softc *sc; 1687 struct g_provider *pp; 1688 struct bio *bp, *tmp; 1689 1690 g_topology_assert_not(); 1691 sc = vol->v_softc; 1692 pp = vol->v_provider; 1693 KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name)); 1694 1695 g_topology_lock(); 1696 g_error_provider(pp, ENXIO); 1697 mtx_lock(&sc->sc_queue_mtx); 1698 TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) { 1699 if (bp->bio_to != pp) 1700 continue; 1701 bioq_remove(&sc->sc_queue, bp); 1702 g_io_deliver(bp, ENXIO); 1703 } 1704 mtx_unlock(&sc->sc_queue_mtx); 1705 G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.", 1706 pp->name, vol->v_name); 1707 g_wither_provider(pp, ENXIO); 1708 g_topology_unlock(); 1709 vol->v_provider = NULL; 1710 } 1711 1712 /* 1713 * Update device state. 1714 */ 1715 static int 1716 g_raid_update_volume(struct g_raid_volume *vol, u_int event) 1717 { 1718 struct g_raid_softc *sc; 1719 1720 sc = vol->v_softc; 1721 sx_assert(&sc->sc_lock, SX_XLOCKED); 1722 1723 G_RAID_DEBUG1(2, sc, "Event %s for volume %s.", 1724 g_raid_volume_event2str(event), 1725 vol->v_name); 1726 switch (event) { 1727 case G_RAID_VOLUME_E_DOWN: 1728 if (vol->v_provider != NULL) 1729 g_raid_destroy_provider(vol); 1730 break; 1731 case G_RAID_VOLUME_E_UP: 1732 if (vol->v_provider == NULL) 1733 g_raid_launch_provider(vol); 1734 break; 1735 case G_RAID_VOLUME_E_START: 1736 if (vol->v_tr) 1737 G_RAID_TR_START(vol->v_tr); 1738 return (0); 1739 default: 1740 if (sc->sc_md) 1741 G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event); 1742 return (0); 1743 } 1744 1745 /* Manage root mount release. */ 1746 if (vol->v_starting) { 1747 vol->v_starting = 0; 1748 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount); 1749 root_mount_rel(vol->v_rootmount); 1750 vol->v_rootmount = NULL; 1751 } 1752 if (vol->v_stopping && vol->v_provider_open == 0) 1753 g_raid_destroy_volume(vol); 1754 return (0); 1755 } 1756 1757 /* 1758 * Update subdisk state. 1759 */ 1760 static int 1761 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event) 1762 { 1763 struct g_raid_softc *sc; 1764 struct g_raid_volume *vol; 1765 1766 sc = sd->sd_softc; 1767 vol = sd->sd_volume; 1768 sx_assert(&sc->sc_lock, SX_XLOCKED); 1769 1770 G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.", 1771 g_raid_subdisk_event2str(event), 1772 vol->v_name, sd->sd_pos, 1773 sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]"); 1774 if (vol->v_tr) 1775 G_RAID_TR_EVENT(vol->v_tr, sd, event); 1776 1777 return (0); 1778 } 1779 1780 /* 1781 * Update disk state. 1782 */ 1783 static int 1784 g_raid_update_disk(struct g_raid_disk *disk, u_int event) 1785 { 1786 struct g_raid_softc *sc; 1787 1788 sc = disk->d_softc; 1789 sx_assert(&sc->sc_lock, SX_XLOCKED); 1790 1791 G_RAID_DEBUG1(2, sc, "Event %s for disk %s.", 1792 g_raid_disk_event2str(event), 1793 g_raid_get_diskname(disk)); 1794 1795 if (sc->sc_md) 1796 G_RAID_MD_EVENT(sc->sc_md, disk, event); 1797 return (0); 1798 } 1799 1800 /* 1801 * Node event. 1802 */ 1803 static int 1804 g_raid_update_node(struct g_raid_softc *sc, u_int event) 1805 { 1806 sx_assert(&sc->sc_lock, SX_XLOCKED); 1807 1808 G_RAID_DEBUG1(2, sc, "Event %s for the array.", 1809 g_raid_node_event2str(event)); 1810 1811 if (event == G_RAID_NODE_E_WAKE) 1812 return (0); 1813 if (sc->sc_md) 1814 G_RAID_MD_EVENT(sc->sc_md, NULL, event); 1815 return (0); 1816 } 1817 1818 static int 1819 g_raid_access(struct g_provider *pp, int acr, int acw, int ace) 1820 { 1821 struct g_raid_volume *vol; 1822 struct g_raid_softc *sc; 1823 int dcw, opens, error = 0; 1824 1825 g_topology_assert(); 1826 sc = pp->geom->softc; 1827 vol = pp->private; 1828 KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name)); 1829 KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name)); 1830 1831 G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name, 1832 acr, acw, ace); 1833 dcw = pp->acw + acw; 1834 1835 g_topology_unlock(); 1836 sx_xlock(&sc->sc_lock); 1837 /* Deny new opens while dying. */ 1838 if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) { 1839 error = ENXIO; 1840 goto out; 1841 } 1842 /* Deny write opens for read-only volumes. */ 1843 if (vol->v_read_only && acw > 0) { 1844 error = EROFS; 1845 goto out; 1846 } 1847 if (dcw == 0) 1848 g_raid_clean(vol, dcw); 1849 vol->v_provider_open += acr + acw + ace; 1850 /* Handle delayed node destruction. */ 1851 if (sc->sc_stopping == G_RAID_DESTROY_DELAYED && 1852 vol->v_provider_open == 0) { 1853 /* Count open volumes. */ 1854 opens = g_raid_nopens(sc); 1855 if (opens == 0) { 1856 sc->sc_stopping = G_RAID_DESTROY_HARD; 1857 /* Wake up worker to make it selfdestruct. */ 1858 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 1859 } 1860 } 1861 /* Handle open volume destruction. */ 1862 if (vol->v_stopping && vol->v_provider_open == 0) 1863 g_raid_destroy_volume(vol); 1864 out: 1865 sx_xunlock(&sc->sc_lock); 1866 g_topology_lock(); 1867 return (error); 1868 } 1869 1870 struct g_raid_softc * 1871 g_raid_create_node(struct g_class *mp, 1872 const char *name, struct g_raid_md_object *md) 1873 { 1874 struct g_raid_softc *sc; 1875 struct g_geom *gp; 1876 int error; 1877 1878 g_topology_assert(); 1879 G_RAID_DEBUG(1, "Creating array %s.", name); 1880 1881 gp = g_new_geomf(mp, "%s", name); 1882 sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO); 1883 gp->start = g_raid_start; 1884 gp->orphan = g_raid_orphan; 1885 gp->access = g_raid_access; 1886 gp->dumpconf = g_raid_dumpconf; 1887 1888 sc->sc_md = md; 1889 sc->sc_geom = gp; 1890 sc->sc_flags = 0; 1891 TAILQ_INIT(&sc->sc_volumes); 1892 TAILQ_INIT(&sc->sc_disks); 1893 sx_init(&sc->sc_lock, "graid:lock"); 1894 mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF); 1895 TAILQ_INIT(&sc->sc_events); 1896 bioq_init(&sc->sc_queue); 1897 gp->softc = sc; 1898 error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0, 1899 "g_raid %s", name); 1900 if (error != 0) { 1901 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name); 1902 mtx_destroy(&sc->sc_queue_mtx); 1903 sx_destroy(&sc->sc_lock); 1904 g_destroy_geom(sc->sc_geom); 1905 free(sc, M_RAID); 1906 return (NULL); 1907 } 1908 1909 G_RAID_DEBUG1(0, sc, "Array %s created.", name); 1910 return (sc); 1911 } 1912 1913 struct g_raid_volume * 1914 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id) 1915 { 1916 struct g_raid_volume *vol, *vol1; 1917 int i; 1918 1919 G_RAID_DEBUG1(1, sc, "Creating volume %s.", name); 1920 vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO); 1921 vol->v_softc = sc; 1922 strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME); 1923 vol->v_state = G_RAID_VOLUME_S_STARTING; 1924 vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN; 1925 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN; 1926 vol->v_rotate_parity = 1; 1927 bioq_init(&vol->v_inflight); 1928 bioq_init(&vol->v_locked); 1929 LIST_INIT(&vol->v_locks); 1930 for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) { 1931 vol->v_subdisks[i].sd_softc = sc; 1932 vol->v_subdisks[i].sd_volume = vol; 1933 vol->v_subdisks[i].sd_pos = i; 1934 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE; 1935 } 1936 1937 /* Find free ID for this volume. */ 1938 g_topology_lock(); 1939 vol1 = vol; 1940 if (id >= 0) { 1941 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) { 1942 if (vol1->v_global_id == id) 1943 break; 1944 } 1945 } 1946 if (vol1 != NULL) { 1947 for (id = 0; ; id++) { 1948 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) { 1949 if (vol1->v_global_id == id) 1950 break; 1951 } 1952 if (vol1 == NULL) 1953 break; 1954 } 1955 } 1956 vol->v_global_id = id; 1957 LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next); 1958 g_topology_unlock(); 1959 1960 /* Delay root mounting. */ 1961 vol->v_rootmount = root_mount_hold("GRAID"); 1962 G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount); 1963 vol->v_starting = 1; 1964 TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next); 1965 return (vol); 1966 } 1967 1968 struct g_raid_disk * 1969 g_raid_create_disk(struct g_raid_softc *sc) 1970 { 1971 struct g_raid_disk *disk; 1972 1973 G_RAID_DEBUG1(1, sc, "Creating disk."); 1974 disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO); 1975 disk->d_softc = sc; 1976 disk->d_state = G_RAID_DISK_S_NONE; 1977 TAILQ_INIT(&disk->d_subdisks); 1978 TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next); 1979 return (disk); 1980 } 1981 1982 int g_raid_start_volume(struct g_raid_volume *vol) 1983 { 1984 struct g_raid_tr_class *class; 1985 struct g_raid_tr_object *obj; 1986 int status; 1987 1988 G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name); 1989 LIST_FOREACH(class, &g_raid_tr_classes, trc_list) { 1990 if (!class->trc_enable) 1991 continue; 1992 G_RAID_DEBUG1(2, vol->v_softc, 1993 "Tasting volume %s for %s transformation.", 1994 vol->v_name, class->name); 1995 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 1996 M_WAITOK); 1997 obj->tro_class = class; 1998 obj->tro_volume = vol; 1999 status = G_RAID_TR_TASTE(obj, vol); 2000 if (status != G_RAID_TR_TASTE_FAIL) 2001 break; 2002 kobj_delete((kobj_t)obj, M_RAID); 2003 } 2004 if (class == NULL) { 2005 G_RAID_DEBUG1(0, vol->v_softc, 2006 "No transformation module found for %s.", 2007 vol->v_name); 2008 vol->v_tr = NULL; 2009 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED); 2010 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN, 2011 G_RAID_EVENT_VOLUME); 2012 return (-1); 2013 } 2014 G_RAID_DEBUG1(2, vol->v_softc, 2015 "Transformation module %s chosen for %s.", 2016 class->name, vol->v_name); 2017 vol->v_tr = obj; 2018 return (0); 2019 } 2020 2021 int 2022 g_raid_destroy_node(struct g_raid_softc *sc, int worker) 2023 { 2024 struct g_raid_volume *vol, *tmpv; 2025 struct g_raid_disk *disk, *tmpd; 2026 int error = 0; 2027 2028 sc->sc_stopping = G_RAID_DESTROY_HARD; 2029 TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) { 2030 if (g_raid_destroy_volume(vol)) 2031 error = EBUSY; 2032 } 2033 if (error) 2034 return (error); 2035 TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) { 2036 if (g_raid_destroy_disk(disk)) 2037 error = EBUSY; 2038 } 2039 if (error) 2040 return (error); 2041 if (sc->sc_md) { 2042 G_RAID_MD_FREE(sc->sc_md); 2043 kobj_delete((kobj_t)sc->sc_md, M_RAID); 2044 sc->sc_md = NULL; 2045 } 2046 if (sc->sc_geom != NULL) { 2047 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name); 2048 g_topology_lock(); 2049 sc->sc_geom->softc = NULL; 2050 g_wither_geom(sc->sc_geom, ENXIO); 2051 g_topology_unlock(); 2052 sc->sc_geom = NULL; 2053 } else 2054 G_RAID_DEBUG(1, "Array destroyed."); 2055 if (worker) { 2056 g_raid_event_cancel(sc, sc); 2057 mtx_destroy(&sc->sc_queue_mtx); 2058 sx_xunlock(&sc->sc_lock); 2059 sx_destroy(&sc->sc_lock); 2060 wakeup(&sc->sc_stopping); 2061 free(sc, M_RAID); 2062 curthread->td_pflags &= ~TDP_GEOM; 2063 G_RAID_DEBUG(1, "Thread exiting."); 2064 kproc_exit(0); 2065 } else { 2066 /* Wake up worker to make it selfdestruct. */ 2067 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2068 } 2069 return (0); 2070 } 2071 2072 int 2073 g_raid_destroy_volume(struct g_raid_volume *vol) 2074 { 2075 struct g_raid_softc *sc; 2076 struct g_raid_disk *disk; 2077 int i; 2078 2079 sc = vol->v_softc; 2080 G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name); 2081 vol->v_stopping = 1; 2082 if (vol->v_state != G_RAID_VOLUME_S_STOPPED) { 2083 if (vol->v_tr) { 2084 G_RAID_TR_STOP(vol->v_tr); 2085 return (EBUSY); 2086 } else 2087 vol->v_state = G_RAID_VOLUME_S_STOPPED; 2088 } 2089 if (g_raid_event_check(sc, vol) != 0) 2090 return (EBUSY); 2091 if (vol->v_provider != NULL) 2092 return (EBUSY); 2093 if (vol->v_provider_open != 0) 2094 return (EBUSY); 2095 if (vol->v_tr) { 2096 G_RAID_TR_FREE(vol->v_tr); 2097 kobj_delete((kobj_t)vol->v_tr, M_RAID); 2098 vol->v_tr = NULL; 2099 } 2100 if (vol->v_rootmount) 2101 root_mount_rel(vol->v_rootmount); 2102 g_topology_lock(); 2103 LIST_REMOVE(vol, v_global_next); 2104 g_topology_unlock(); 2105 TAILQ_REMOVE(&sc->sc_volumes, vol, v_next); 2106 for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) { 2107 g_raid_event_cancel(sc, &vol->v_subdisks[i]); 2108 disk = vol->v_subdisks[i].sd_disk; 2109 if (disk == NULL) 2110 continue; 2111 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next); 2112 } 2113 G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name); 2114 if (sc->sc_md) 2115 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol); 2116 g_raid_event_cancel(sc, vol); 2117 free(vol, M_RAID); 2118 if (sc->sc_stopping == G_RAID_DESTROY_HARD) { 2119 /* Wake up worker to let it selfdestruct. */ 2120 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2121 } 2122 return (0); 2123 } 2124 2125 int 2126 g_raid_destroy_disk(struct g_raid_disk *disk) 2127 { 2128 struct g_raid_softc *sc; 2129 struct g_raid_subdisk *sd, *tmp; 2130 2131 sc = disk->d_softc; 2132 G_RAID_DEBUG1(2, sc, "Destroying disk."); 2133 if (disk->d_consumer) { 2134 g_raid_kill_consumer(sc, disk->d_consumer); 2135 disk->d_consumer = NULL; 2136 } 2137 TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) { 2138 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE); 2139 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED, 2140 G_RAID_EVENT_SUBDISK); 2141 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next); 2142 sd->sd_disk = NULL; 2143 } 2144 TAILQ_REMOVE(&sc->sc_disks, disk, d_next); 2145 if (sc->sc_md) 2146 G_RAID_MD_FREE_DISK(sc->sc_md, disk); 2147 g_raid_event_cancel(sc, disk); 2148 free(disk, M_RAID); 2149 return (0); 2150 } 2151 2152 int 2153 g_raid_destroy(struct g_raid_softc *sc, int how) 2154 { 2155 int error, opens; 2156 2157 g_topology_assert_not(); 2158 if (sc == NULL) 2159 return (ENXIO); 2160 sx_assert(&sc->sc_lock, SX_XLOCKED); 2161 2162 /* Count open volumes. */ 2163 opens = g_raid_nopens(sc); 2164 2165 /* React on some opened volumes. */ 2166 if (opens > 0) { 2167 switch (how) { 2168 case G_RAID_DESTROY_SOFT: 2169 G_RAID_DEBUG1(1, sc, 2170 "%d volumes are still open.", 2171 opens); 2172 sx_xunlock(&sc->sc_lock); 2173 return (EBUSY); 2174 case G_RAID_DESTROY_DELAYED: 2175 G_RAID_DEBUG1(1, sc, 2176 "Array will be destroyed on last close."); 2177 sc->sc_stopping = G_RAID_DESTROY_DELAYED; 2178 sx_xunlock(&sc->sc_lock); 2179 return (EBUSY); 2180 case G_RAID_DESTROY_HARD: 2181 G_RAID_DEBUG1(1, sc, 2182 "%d volumes are still open.", 2183 opens); 2184 } 2185 } 2186 2187 /* Mark node for destruction. */ 2188 sc->sc_stopping = G_RAID_DESTROY_HARD; 2189 /* Wake up worker to let it selfdestruct. */ 2190 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2191 /* Sleep until node destroyed. */ 2192 error = sx_sleep(&sc->sc_stopping, &sc->sc_lock, 2193 PRIBIO | PDROP, "r:destroy", hz * 3); 2194 return (error == EWOULDBLOCK ? EBUSY : 0); 2195 } 2196 2197 static void 2198 g_raid_taste_orphan(struct g_consumer *cp) 2199 { 2200 2201 KASSERT(1 == 0, ("%s called while tasting %s.", __func__, 2202 cp->provider->name)); 2203 } 2204 2205 static struct g_geom * 2206 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) 2207 { 2208 struct g_consumer *cp; 2209 struct g_geom *gp, *geom; 2210 struct g_raid_md_class *class; 2211 struct g_raid_md_object *obj; 2212 int status; 2213 2214 g_topology_assert(); 2215 g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); 2216 if (!g_raid_enable) 2217 return (NULL); 2218 G_RAID_DEBUG(2, "Tasting provider %s.", pp->name); 2219 2220 geom = NULL; 2221 status = G_RAID_MD_TASTE_FAIL; 2222 gp = g_new_geomf(mp, "raid:taste"); 2223 /* 2224 * This orphan function should be never called. 2225 */ 2226 gp->orphan = g_raid_taste_orphan; 2227 cp = g_new_consumer(gp); 2228 cp->flags |= G_CF_DIRECT_RECEIVE; 2229 g_attach(cp, pp); 2230 if (g_access(cp, 1, 0, 0) != 0) 2231 goto ofail; 2232 2233 LIST_FOREACH(class, &g_raid_md_classes, mdc_list) { 2234 if (!class->mdc_enable) 2235 continue; 2236 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.", 2237 pp->name, class->name); 2238 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2239 M_WAITOK); 2240 obj->mdo_class = class; 2241 status = G_RAID_MD_TASTE(obj, mp, cp, &geom); 2242 if (status != G_RAID_MD_TASTE_NEW) 2243 kobj_delete((kobj_t)obj, M_RAID); 2244 if (status != G_RAID_MD_TASTE_FAIL) 2245 break; 2246 } 2247 2248 if (status == G_RAID_MD_TASTE_FAIL) 2249 (void)g_access(cp, -1, 0, 0); 2250 ofail: 2251 g_detach(cp); 2252 g_destroy_consumer(cp); 2253 g_destroy_geom(gp); 2254 G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name); 2255 return (geom); 2256 } 2257 2258 int 2259 g_raid_create_node_format(const char *format, struct gctl_req *req, 2260 struct g_geom **gp) 2261 { 2262 struct g_raid_md_class *class; 2263 struct g_raid_md_object *obj; 2264 int status; 2265 2266 G_RAID_DEBUG(2, "Creating array for %s metadata.", format); 2267 LIST_FOREACH(class, &g_raid_md_classes, mdc_list) { 2268 if (strcasecmp(class->name, format) == 0) 2269 break; 2270 } 2271 if (class == NULL) { 2272 G_RAID_DEBUG(1, "No support for %s metadata.", format); 2273 return (G_RAID_MD_TASTE_FAIL); 2274 } 2275 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2276 M_WAITOK); 2277 obj->mdo_class = class; 2278 status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp); 2279 if (status != G_RAID_MD_TASTE_NEW) 2280 kobj_delete((kobj_t)obj, M_RAID); 2281 return (status); 2282 } 2283 2284 static int 2285 g_raid_destroy_geom(struct gctl_req *req __unused, 2286 struct g_class *mp __unused, struct g_geom *gp) 2287 { 2288 struct g_raid_softc *sc; 2289 int error; 2290 2291 g_topology_unlock(); 2292 sc = gp->softc; 2293 sx_xlock(&sc->sc_lock); 2294 g_cancel_event(sc); 2295 error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT); 2296 g_topology_lock(); 2297 return (error); 2298 } 2299 2300 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol, 2301 struct g_raid_subdisk *sd, struct g_raid_disk *disk) 2302 { 2303 2304 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 2305 return; 2306 if (sc->sc_md) 2307 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk); 2308 } 2309 2310 void g_raid_fail_disk(struct g_raid_softc *sc, 2311 struct g_raid_subdisk *sd, struct g_raid_disk *disk) 2312 { 2313 2314 if (disk == NULL) 2315 disk = sd->sd_disk; 2316 if (disk == NULL) { 2317 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!"); 2318 return; 2319 } 2320 if (disk->d_state != G_RAID_DISK_S_ACTIVE) { 2321 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a " 2322 "wrong state (%s)!", g_raid_disk_state2str(disk->d_state)); 2323 return; 2324 } 2325 if (sc->sc_md) 2326 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk); 2327 } 2328 2329 static void 2330 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, 2331 struct g_consumer *cp, struct g_provider *pp) 2332 { 2333 struct g_raid_softc *sc; 2334 struct g_raid_volume *vol; 2335 struct g_raid_subdisk *sd; 2336 struct g_raid_disk *disk; 2337 int i, s; 2338 2339 g_topology_assert(); 2340 2341 sc = gp->softc; 2342 if (sc == NULL) 2343 return; 2344 if (pp != NULL) { 2345 vol = pp->private; 2346 g_topology_unlock(); 2347 sx_xlock(&sc->sc_lock); 2348 sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent, 2349 sc->sc_md->mdo_class->name, 2350 g_raid_volume_level2str(vol->v_raid_level, 2351 vol->v_raid_level_qualifier)); 2352 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent, 2353 vol->v_name); 2354 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent, 2355 g_raid_volume_level2str(vol->v_raid_level, 2356 vol->v_raid_level_qualifier)); 2357 sbuf_printf(sb, 2358 "%s<Transformation>%s</Transformation>\n", indent, 2359 vol->v_tr ? vol->v_tr->tro_class->name : "NONE"); 2360 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent, 2361 vol->v_disks_count); 2362 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent, 2363 vol->v_strip_size); 2364 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2365 g_raid_volume_state2str(vol->v_state)); 2366 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent, 2367 vol->v_dirty ? "Yes" : "No"); 2368 sbuf_printf(sb, "%s<Subdisks>", indent); 2369 for (i = 0; i < vol->v_disks_count; i++) { 2370 sd = &vol->v_subdisks[i]; 2371 if (sd->sd_disk != NULL && 2372 sd->sd_disk->d_consumer != NULL) { 2373 sbuf_printf(sb, "%s ", 2374 g_raid_get_diskname(sd->sd_disk)); 2375 } else { 2376 sbuf_cat(sb, "NONE "); 2377 } 2378 sbuf_printf(sb, "(%s", 2379 g_raid_subdisk_state2str(sd->sd_state)); 2380 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2381 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2382 sbuf_printf(sb, " %d%%", 2383 (int)(sd->sd_rebuild_pos * 100 / 2384 sd->sd_size)); 2385 } 2386 sbuf_cat(sb, ")"); 2387 if (i + 1 < vol->v_disks_count) 2388 sbuf_cat(sb, ", "); 2389 } 2390 sbuf_cat(sb, "</Subdisks>\n"); 2391 sx_xunlock(&sc->sc_lock); 2392 g_topology_lock(); 2393 } else if (cp != NULL) { 2394 disk = cp->private; 2395 if (disk == NULL) 2396 return; 2397 g_topology_unlock(); 2398 sx_xlock(&sc->sc_lock); 2399 sbuf_printf(sb, "%s<State>%s", indent, 2400 g_raid_disk_state2str(disk->d_state)); 2401 if (!TAILQ_EMPTY(&disk->d_subdisks)) { 2402 sbuf_cat(sb, " ("); 2403 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 2404 sbuf_printf(sb, "%s", 2405 g_raid_subdisk_state2str(sd->sd_state)); 2406 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2407 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2408 sbuf_printf(sb, " %d%%", 2409 (int)(sd->sd_rebuild_pos * 100 / 2410 sd->sd_size)); 2411 } 2412 if (TAILQ_NEXT(sd, sd_next)) 2413 sbuf_cat(sb, ", "); 2414 } 2415 sbuf_cat(sb, ")"); 2416 } 2417 sbuf_cat(sb, "</State>\n"); 2418 sbuf_printf(sb, "%s<Subdisks>", indent); 2419 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 2420 sbuf_printf(sb, "r%d(%s):%d@%ju", 2421 sd->sd_volume->v_global_id, 2422 sd->sd_volume->v_name, 2423 sd->sd_pos, (uintmax_t)sd->sd_offset); 2424 if (TAILQ_NEXT(sd, sd_next)) 2425 sbuf_cat(sb, ", "); 2426 } 2427 sbuf_cat(sb, "</Subdisks>\n"); 2428 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent, 2429 disk->d_read_errs); 2430 sx_xunlock(&sc->sc_lock); 2431 g_topology_lock(); 2432 } else { 2433 g_topology_unlock(); 2434 sx_xlock(&sc->sc_lock); 2435 if (sc->sc_md) { 2436 sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent, 2437 sc->sc_md->mdo_class->name); 2438 } 2439 if (!TAILQ_EMPTY(&sc->sc_volumes)) { 2440 s = 0xff; 2441 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 2442 if (vol->v_state < s) 2443 s = vol->v_state; 2444 } 2445 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2446 g_raid_volume_state2str(s)); 2447 } 2448 sx_xunlock(&sc->sc_lock); 2449 g_topology_lock(); 2450 } 2451 } 2452 2453 static void 2454 g_raid_shutdown_post_sync(void *arg, int howto) 2455 { 2456 struct g_class *mp; 2457 struct g_geom *gp, *gp2; 2458 struct g_raid_softc *sc; 2459 struct g_raid_volume *vol; 2460 2461 mp = arg; 2462 g_topology_lock(); 2463 g_raid_shutdown = 1; 2464 LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) { 2465 if ((sc = gp->softc) == NULL) 2466 continue; 2467 g_topology_unlock(); 2468 sx_xlock(&sc->sc_lock); 2469 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) 2470 g_raid_clean(vol, -1); 2471 g_cancel_event(sc); 2472 g_raid_destroy(sc, G_RAID_DESTROY_DELAYED); 2473 g_topology_lock(); 2474 } 2475 g_topology_unlock(); 2476 } 2477 2478 static void 2479 g_raid_init(struct g_class *mp) 2480 { 2481 2482 g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync, 2483 g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST); 2484 if (g_raid_post_sync == NULL) 2485 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event."); 2486 g_raid_started = 1; 2487 } 2488 2489 static void 2490 g_raid_fini(struct g_class *mp) 2491 { 2492 2493 if (g_raid_post_sync != NULL) 2494 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync); 2495 g_raid_started = 0; 2496 } 2497 2498 int 2499 g_raid_md_modevent(module_t mod, int type, void *arg) 2500 { 2501 struct g_raid_md_class *class, *c, *nc; 2502 int error; 2503 2504 error = 0; 2505 class = arg; 2506 switch (type) { 2507 case MOD_LOAD: 2508 c = LIST_FIRST(&g_raid_md_classes); 2509 if (c == NULL || c->mdc_priority > class->mdc_priority) 2510 LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list); 2511 else { 2512 while ((nc = LIST_NEXT(c, mdc_list)) != NULL && 2513 nc->mdc_priority < class->mdc_priority) 2514 c = nc; 2515 LIST_INSERT_AFTER(c, class, mdc_list); 2516 } 2517 if (g_raid_started) 2518 g_retaste(&g_raid_class); 2519 break; 2520 case MOD_UNLOAD: 2521 LIST_REMOVE(class, mdc_list); 2522 break; 2523 default: 2524 error = EOPNOTSUPP; 2525 break; 2526 } 2527 2528 return (error); 2529 } 2530 2531 int 2532 g_raid_tr_modevent(module_t mod, int type, void *arg) 2533 { 2534 struct g_raid_tr_class *class, *c, *nc; 2535 int error; 2536 2537 error = 0; 2538 class = arg; 2539 switch (type) { 2540 case MOD_LOAD: 2541 c = LIST_FIRST(&g_raid_tr_classes); 2542 if (c == NULL || c->trc_priority > class->trc_priority) 2543 LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list); 2544 else { 2545 while ((nc = LIST_NEXT(c, trc_list)) != NULL && 2546 nc->trc_priority < class->trc_priority) 2547 c = nc; 2548 LIST_INSERT_AFTER(c, class, trc_list); 2549 } 2550 break; 2551 case MOD_UNLOAD: 2552 LIST_REMOVE(class, trc_list); 2553 break; 2554 default: 2555 error = EOPNOTSUPP; 2556 break; 2557 } 2558 2559 return (error); 2560 } 2561 2562 /* 2563 * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid) 2564 * to reduce module priority, allowing submodules to register them first. 2565 */ 2566 static moduledata_t g_raid_mod = { 2567 "g_raid", 2568 g_modevent, 2569 &g_raid_class 2570 }; 2571 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD); 2572 MODULE_VERSION(geom_raid, 0); 2573