1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/bio.h> 34 #include <sys/diskmbr.h> 35 #include <sys/endian.h> 36 #include <sys/gpt.h> 37 #include <sys/kernel.h> 38 #include <sys/kobj.h> 39 #include <sys/limits.h> 40 #include <sys/lock.h> 41 #include <sys/malloc.h> 42 #include <sys/mutex.h> 43 #include <sys/queue.h> 44 #include <sys/sbuf.h> 45 #include <sys/systm.h> 46 #include <sys/sysctl.h> 47 #include <sys/uuid.h> 48 #include <geom/geom.h> 49 #include <geom/geom_int.h> 50 #include <geom/part/g_part.h> 51 52 #include "g_part_if.h" 53 54 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support"); 55 56 CTASSERT(offsetof(struct gpt_hdr, padding) == 92); 57 CTASSERT(sizeof(struct gpt_ent) == 128); 58 59 #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) 60 61 #define MBRSIZE 512 62 63 enum gpt_elt { 64 GPT_ELT_PRIHDR, 65 GPT_ELT_PRITBL, 66 GPT_ELT_SECHDR, 67 GPT_ELT_SECTBL, 68 GPT_ELT_COUNT 69 }; 70 71 enum gpt_state { 72 GPT_STATE_UNKNOWN, /* Not determined. */ 73 GPT_STATE_MISSING, /* No signature found. */ 74 GPT_STATE_CORRUPT, /* Checksum mismatch. */ 75 GPT_STATE_INVALID, /* Nonconformant/invalid. */ 76 GPT_STATE_OK /* Perfectly fine. */ 77 }; 78 79 struct g_part_gpt_table { 80 struct g_part_table base; 81 u_char mbr[MBRSIZE]; 82 struct gpt_hdr *hdr; 83 quad_t lba[GPT_ELT_COUNT]; 84 enum gpt_state state[GPT_ELT_COUNT]; 85 int bootcamp; 86 }; 87 88 struct g_part_gpt_entry { 89 struct g_part_entry base; 90 struct gpt_ent ent; 91 }; 92 93 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); 94 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); 95 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *); 96 97 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, 98 struct g_part_parms *); 99 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); 100 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); 101 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); 102 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, 103 struct sbuf *, const char *); 104 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); 105 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, 106 struct g_part_parms *); 107 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, 108 char *, size_t); 109 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); 110 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); 111 static int g_part_gpt_setunset(struct g_part_table *table, 112 struct g_part_entry *baseentry, const char *attrib, unsigned int set); 113 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, 114 char *, size_t); 115 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); 116 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, 117 struct g_part_parms *); 118 static int g_part_gpt_recover(struct g_part_table *); 119 120 static kobj_method_t g_part_gpt_methods[] = { 121 KOBJMETHOD(g_part_add, g_part_gpt_add), 122 KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), 123 KOBJMETHOD(g_part_create, g_part_gpt_create), 124 KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), 125 KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), 126 KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), 127 KOBJMETHOD(g_part_modify, g_part_gpt_modify), 128 KOBJMETHOD(g_part_resize, g_part_gpt_resize), 129 KOBJMETHOD(g_part_name, g_part_gpt_name), 130 KOBJMETHOD(g_part_probe, g_part_gpt_probe), 131 KOBJMETHOD(g_part_read, g_part_gpt_read), 132 KOBJMETHOD(g_part_recover, g_part_gpt_recover), 133 KOBJMETHOD(g_part_setunset, g_part_gpt_setunset), 134 KOBJMETHOD(g_part_type, g_part_gpt_type), 135 KOBJMETHOD(g_part_write, g_part_gpt_write), 136 { 0, 0 } 137 }; 138 139 static struct g_part_scheme g_part_gpt_scheme = { 140 "GPT", 141 g_part_gpt_methods, 142 sizeof(struct g_part_gpt_table), 143 .gps_entrysz = sizeof(struct g_part_gpt_entry), 144 .gps_minent = 128, 145 .gps_maxent = 4096, 146 .gps_bootcodesz = MBRSIZE, 147 }; 148 G_PART_SCHEME_DECLARE(g_part_gpt); 149 150 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; 151 static struct uuid gpt_uuid_apple_core_storage = 152 GPT_ENT_TYPE_APPLE_CORE_STORAGE; 153 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; 154 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; 155 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; 156 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; 157 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; 158 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; 159 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT; 160 static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE; 161 static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL; 162 static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED; 163 static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT; 164 static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD; 165 static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER; 166 static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2; 167 static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32; 168 static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64; 169 static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY; 170 static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP; 171 static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1; 172 static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM; 173 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; 174 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; 175 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; 176 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS; 177 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; 178 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; 179 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; 180 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; 181 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; 182 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; 183 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; 184 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; 185 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; 186 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; 187 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; 188 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; 189 static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY; 190 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; 191 static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES; 192 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; 193 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; 194 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; 195 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; 196 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; 197 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; 198 static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA; 199 static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT; 200 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; 201 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS; 202 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG; 203 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED; 204 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR; 205 206 static struct g_part_uuid_alias { 207 struct uuid *uuid; 208 int alias; 209 int mbrtype; 210 } gpt_uuid_alias_match[] = { 211 { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab }, 212 { &gpt_uuid_apple_core_storage, G_PART_ALIAS_APPLE_CORE_STORAGE, 0 }, 213 { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf }, 214 { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 }, 215 { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 }, 216 { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 }, 217 { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 }, 218 { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 }, 219 { &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 }, 220 { &gpt_uuid_chromeos_firmware, G_PART_ALIAS_CHROMEOS_FIRMWARE, 0 }, 221 { &gpt_uuid_chromeos_kernel, G_PART_ALIAS_CHROMEOS_KERNEL, 0 }, 222 { &gpt_uuid_chromeos_reserved, G_PART_ALIAS_CHROMEOS_RESERVED, 0 }, 223 { &gpt_uuid_chromeos_root, G_PART_ALIAS_CHROMEOS_ROOT, 0 }, 224 { &gpt_uuid_dfbsd_ccd, G_PART_ALIAS_DFBSD_CCD, 0 }, 225 { &gpt_uuid_dfbsd_hammer, G_PART_ALIAS_DFBSD_HAMMER, 0 }, 226 { &gpt_uuid_dfbsd_hammer2, G_PART_ALIAS_DFBSD_HAMMER2, 0 }, 227 { &gpt_uuid_dfbsd_label32, G_PART_ALIAS_DFBSD, 0xa5 }, 228 { &gpt_uuid_dfbsd_label64, G_PART_ALIAS_DFBSD64, 0xa5 }, 229 { &gpt_uuid_dfbsd_legacy, G_PART_ALIAS_DFBSD_LEGACY, 0 }, 230 { &gpt_uuid_dfbsd_swap, G_PART_ALIAS_DFBSD_SWAP, 0 }, 231 { &gpt_uuid_dfbsd_ufs1, G_PART_ALIAS_DFBSD_UFS, 0 }, 232 { &gpt_uuid_dfbsd_vinum, G_PART_ALIAS_DFBSD_VINUM, 0 }, 233 { &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee }, 234 { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 }, 235 { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 }, 236 { &gpt_uuid_freebsd_nandfs, G_PART_ALIAS_FREEBSD_NANDFS, 0 }, 237 { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 }, 238 { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 }, 239 { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 }, 240 { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 }, 241 { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b }, 242 { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 }, 243 { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 }, 244 { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 }, 245 { &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 }, 246 { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b }, 247 { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 }, 248 { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 }, 249 { &gpt_uuid_ms_recovery, G_PART_ALIAS_MS_RECOVERY, 0 }, 250 { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 }, 251 { &gpt_uuid_ms_spaces, G_PART_ALIAS_MS_SPACES, 0 }, 252 { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 }, 253 { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 }, 254 { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 }, 255 { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 }, 256 { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 }, 257 { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 }, 258 { &gpt_uuid_openbsd_data, G_PART_ALIAS_OPENBSD_DATA, 0 }, 259 { &gpt_uuid_prep_boot, G_PART_ALIAS_PREP_BOOT, 0x41 }, 260 { &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 }, 261 { &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 }, 262 { &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 }, 263 { &gpt_uuid_vmvsanhdr, G_PART_ALIAS_VMVSANHDR, 0 }, 264 { NULL, 0, 0 } 265 }; 266 267 static int 268 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start, 269 quad_t end) 270 { 271 272 if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX) 273 return (EINVAL); 274 275 mbr += DOSPARTOFF + idx * DOSPARTSIZE; 276 mbr[0] = 0; 277 if (start == 1) { 278 /* 279 * Treat the PMBR partition specially to maximize 280 * interoperability with BIOSes. 281 */ 282 mbr[1] = mbr[3] = 0; 283 mbr[2] = 2; 284 } else 285 mbr[1] = mbr[2] = mbr[3] = 0xff; 286 mbr[4] = typ; 287 mbr[5] = mbr[6] = mbr[7] = 0xff; 288 le32enc(mbr + 8, (uint32_t)start); 289 le32enc(mbr + 12, (uint32_t)(end - start + 1)); 290 return (0); 291 } 292 293 static int 294 gpt_map_type(struct uuid *t) 295 { 296 struct g_part_uuid_alias *uap; 297 298 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 299 if (EQUUID(t, uap->uuid)) 300 return (uap->mbrtype); 301 } 302 return (0); 303 } 304 305 static void 306 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp) 307 { 308 309 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 310 gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, 311 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 312 le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); 313 } 314 315 /* 316 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the 317 * whole disk anymore. Rather, it covers the GPT table and the EFI 318 * system partition only. This way the HFS+ partition and any FAT 319 * partitions can be added to the MBR without creating an overlap. 320 */ 321 static int 322 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname) 323 { 324 uint8_t *p; 325 326 p = table->mbr + DOSPARTOFF; 327 if (p[4] != 0xee || le32dec(p + 8) != 1) 328 return (0); 329 330 p += DOSPARTSIZE; 331 if (p[4] != 0xaf) 332 return (0); 333 334 printf("GEOM: %s: enabling Boot Camp\n", provname); 335 return (1); 336 } 337 338 static void 339 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp) 340 { 341 struct g_part_entry *baseentry; 342 struct g_part_gpt_entry *entry; 343 struct g_part_gpt_table *table; 344 int bootable, error, index, slices, typ; 345 346 table = (struct g_part_gpt_table *)basetable; 347 348 bootable = -1; 349 for (index = 0; index < NDOSPART; index++) { 350 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index]) 351 bootable = index; 352 } 353 354 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 355 slices = 0; 356 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 357 if (baseentry->gpe_deleted) 358 continue; 359 index = baseentry->gpe_index - 1; 360 if (index >= NDOSPART) 361 continue; 362 363 entry = (struct g_part_gpt_entry *)baseentry; 364 365 switch (index) { 366 case 0: /* This must be the EFI system partition. */ 367 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi)) 368 goto disable; 369 error = gpt_write_mbr_entry(table->mbr, index, 0xee, 370 1ull, entry->ent.ent_lba_end); 371 break; 372 case 1: /* This must be the HFS+ partition. */ 373 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs)) 374 goto disable; 375 error = gpt_write_mbr_entry(table->mbr, index, 0xaf, 376 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 377 break; 378 default: 379 typ = gpt_map_type(&entry->ent.ent_type); 380 error = gpt_write_mbr_entry(table->mbr, index, typ, 381 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 382 break; 383 } 384 if (error) 385 continue; 386 387 if (index == bootable) 388 table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80; 389 slices |= 1 << index; 390 } 391 if ((slices & 3) == 3) 392 return; 393 394 disable: 395 table->bootcamp = 0; 396 gpt_create_pmbr(table, pp); 397 } 398 399 static struct gpt_hdr * 400 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, 401 enum gpt_elt elt) 402 { 403 struct gpt_hdr *buf, *hdr; 404 struct g_provider *pp; 405 quad_t lba, last; 406 int error; 407 uint32_t crc, sz; 408 409 pp = cp->provider; 410 last = (pp->mediasize / pp->sectorsize) - 1; 411 table->state[elt] = GPT_STATE_MISSING; 412 /* 413 * If the primary header is valid look for secondary 414 * header in AlternateLBA, otherwise in the last medium's LBA. 415 */ 416 if (elt == GPT_ELT_SECHDR) { 417 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK) 418 table->lba[elt] = last; 419 } else 420 table->lba[elt] = 1; 421 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, 422 &error); 423 if (buf == NULL) 424 return (NULL); 425 hdr = NULL; 426 if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) 427 goto fail; 428 429 table->state[elt] = GPT_STATE_CORRUPT; 430 sz = le32toh(buf->hdr_size); 431 if (sz < 92 || sz > pp->sectorsize) 432 goto fail; 433 434 hdr = g_malloc(sz, M_WAITOK | M_ZERO); 435 bcopy(buf, hdr, sz); 436 hdr->hdr_size = sz; 437 438 crc = le32toh(buf->hdr_crc_self); 439 buf->hdr_crc_self = 0; 440 if (crc32(buf, sz) != crc) 441 goto fail; 442 hdr->hdr_crc_self = crc; 443 444 table->state[elt] = GPT_STATE_INVALID; 445 hdr->hdr_revision = le32toh(buf->hdr_revision); 446 if (hdr->hdr_revision < GPT_HDR_REVISION) 447 goto fail; 448 hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); 449 if (hdr->hdr_lba_self != table->lba[elt]) 450 goto fail; 451 hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); 452 if (hdr->hdr_lba_alt == hdr->hdr_lba_self || 453 hdr->hdr_lba_alt > last) 454 goto fail; 455 456 /* Check the managed area. */ 457 hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); 458 if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) 459 goto fail; 460 hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); 461 if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) 462 goto fail; 463 464 /* Check the table location and size of the table. */ 465 hdr->hdr_entries = le32toh(buf->hdr_entries); 466 hdr->hdr_entsz = le32toh(buf->hdr_entsz); 467 if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || 468 (hdr->hdr_entsz & 7) != 0) 469 goto fail; 470 hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); 471 if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) 472 goto fail; 473 if (hdr->hdr_lba_table >= hdr->hdr_lba_start && 474 hdr->hdr_lba_table <= hdr->hdr_lba_end) 475 goto fail; 476 lba = hdr->hdr_lba_table + 477 howmany(hdr->hdr_entries * hdr->hdr_entsz, pp->sectorsize) - 1; 478 if (lba >= last) 479 goto fail; 480 if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) 481 goto fail; 482 483 table->state[elt] = GPT_STATE_OK; 484 le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); 485 hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); 486 487 /* save LBA for secondary header */ 488 if (elt == GPT_ELT_PRIHDR) 489 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt; 490 491 g_free(buf); 492 return (hdr); 493 494 fail: 495 if (hdr != NULL) 496 g_free(hdr); 497 g_free(buf); 498 return (NULL); 499 } 500 501 static struct gpt_ent * 502 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, 503 enum gpt_elt elt, struct gpt_hdr *hdr) 504 { 505 struct g_provider *pp; 506 struct gpt_ent *ent, *tbl; 507 char *buf, *p; 508 unsigned int idx, sectors, tblsz, size; 509 int error; 510 511 if (hdr == NULL) 512 return (NULL); 513 514 pp = cp->provider; 515 table->lba[elt] = hdr->hdr_lba_table; 516 517 table->state[elt] = GPT_STATE_MISSING; 518 tblsz = hdr->hdr_entries * hdr->hdr_entsz; 519 sectors = howmany(tblsz, pp->sectorsize); 520 buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO); 521 for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) { 522 size = (sectors - idx > MAXPHYS / pp->sectorsize) ? MAXPHYS: 523 (sectors - idx) * pp->sectorsize; 524 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize, 525 size, &error); 526 if (p == NULL) { 527 g_free(buf); 528 return (NULL); 529 } 530 bcopy(p, buf + idx * pp->sectorsize, size); 531 g_free(p); 532 } 533 table->state[elt] = GPT_STATE_CORRUPT; 534 if (crc32(buf, tblsz) != hdr->hdr_crc_table) { 535 g_free(buf); 536 return (NULL); 537 } 538 539 table->state[elt] = GPT_STATE_OK; 540 tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), 541 M_WAITOK | M_ZERO); 542 543 for (idx = 0, ent = tbl, p = buf; 544 idx < hdr->hdr_entries; 545 idx++, ent++, p += hdr->hdr_entsz) { 546 le_uuid_dec(p, &ent->ent_type); 547 le_uuid_dec(p + 16, &ent->ent_uuid); 548 ent->ent_lba_start = le64dec(p + 32); 549 ent->ent_lba_end = le64dec(p + 40); 550 ent->ent_attr = le64dec(p + 48); 551 /* Keep UTF-16 in little-endian. */ 552 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); 553 } 554 555 g_free(buf); 556 return (tbl); 557 } 558 559 static int 560 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) 561 { 562 563 if (pri == NULL || sec == NULL) 564 return (0); 565 566 if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) 567 return (0); 568 return ((pri->hdr_revision == sec->hdr_revision && 569 pri->hdr_size == sec->hdr_size && 570 pri->hdr_lba_start == sec->hdr_lba_start && 571 pri->hdr_lba_end == sec->hdr_lba_end && 572 pri->hdr_entries == sec->hdr_entries && 573 pri->hdr_entsz == sec->hdr_entsz && 574 pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); 575 } 576 577 static int 578 gpt_parse_type(const char *type, struct uuid *uuid) 579 { 580 struct uuid tmp; 581 const char *alias; 582 int error; 583 struct g_part_uuid_alias *uap; 584 585 if (type[0] == '!') { 586 error = parse_uuid(type + 1, &tmp); 587 if (error) 588 return (error); 589 if (EQUUID(&tmp, &gpt_uuid_unused)) 590 return (EINVAL); 591 *uuid = tmp; 592 return (0); 593 } 594 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 595 alias = g_part_alias_name(uap->alias); 596 if (!strcasecmp(type, alias)) { 597 *uuid = *uap->uuid; 598 return (0); 599 } 600 } 601 return (EINVAL); 602 } 603 604 static int 605 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, 606 struct g_part_parms *gpp) 607 { 608 struct g_part_gpt_entry *entry; 609 int error; 610 611 entry = (struct g_part_gpt_entry *)baseentry; 612 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 613 if (error) 614 return (error); 615 kern_uuidgen(&entry->ent.ent_uuid, 1); 616 entry->ent.ent_lba_start = baseentry->gpe_start; 617 entry->ent.ent_lba_end = baseentry->gpe_end; 618 if (baseentry->gpe_deleted) { 619 entry->ent.ent_attr = 0; 620 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); 621 } 622 if (gpp->gpp_parms & G_PART_PARM_LABEL) 623 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 624 sizeof(entry->ent.ent_name) / 625 sizeof(entry->ent.ent_name[0])); 626 return (0); 627 } 628 629 static int 630 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) 631 { 632 struct g_part_gpt_table *table; 633 size_t codesz; 634 635 codesz = DOSPARTOFF; 636 table = (struct g_part_gpt_table *)basetable; 637 bzero(table->mbr, codesz); 638 codesz = MIN(codesz, gpp->gpp_codesize); 639 if (codesz > 0) 640 bcopy(gpp->gpp_codeptr, table->mbr, codesz); 641 return (0); 642 } 643 644 static int 645 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) 646 { 647 struct g_provider *pp; 648 struct g_part_gpt_table *table; 649 size_t tblsz; 650 651 /* We don't nest, which means that our depth should be 0. */ 652 if (basetable->gpt_depth != 0) 653 return (ENXIO); 654 655 table = (struct g_part_gpt_table *)basetable; 656 pp = gpp->gpp_provider; 657 tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent), 658 pp->sectorsize); 659 if (pp->sectorsize < MBRSIZE || 660 pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * 661 pp->sectorsize) 662 return (ENOSPC); 663 664 gpt_create_pmbr(table, pp); 665 666 /* Allocate space for the header */ 667 table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); 668 669 bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 670 table->hdr->hdr_revision = GPT_HDR_REVISION; 671 table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); 672 kern_uuidgen(&table->hdr->hdr_uuid, 1); 673 table->hdr->hdr_entries = basetable->gpt_entries; 674 table->hdr->hdr_entsz = sizeof(struct gpt_ent); 675 676 g_gpt_set_defaults(basetable, pp); 677 return (0); 678 } 679 680 static int 681 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) 682 { 683 struct g_part_gpt_table *table; 684 struct g_provider *pp; 685 686 table = (struct g_part_gpt_table *)basetable; 687 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 688 g_free(table->hdr); 689 table->hdr = NULL; 690 691 /* 692 * Wipe the first 2 sectors and last one to clear the partitioning. 693 * Wipe sectors only if they have valid metadata. 694 */ 695 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) 696 basetable->gpt_smhead |= 3; 697 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 698 table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1) 699 basetable->gpt_smtail |= 1; 700 return (0); 701 } 702 703 static void 704 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 705 struct sbuf *sb, const char *indent) 706 { 707 struct g_part_gpt_entry *entry; 708 709 entry = (struct g_part_gpt_entry *)baseentry; 710 if (indent == NULL) { 711 /* conftxt: libdisk compatibility */ 712 sbuf_printf(sb, " xs GPT xt "); 713 sbuf_printf_uuid(sb, &entry->ent.ent_type); 714 } else if (entry != NULL) { 715 /* confxml: partition entry information */ 716 sbuf_printf(sb, "%s<label>", indent); 717 g_gpt_printf_utf16(sb, entry->ent.ent_name, 718 sizeof(entry->ent.ent_name) >> 1); 719 sbuf_printf(sb, "</label>\n"); 720 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME) 721 sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent); 722 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) { 723 sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n", 724 indent); 725 } 726 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) { 727 sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n", 728 indent); 729 } 730 sbuf_printf(sb, "%s<rawtype>", indent); 731 sbuf_printf_uuid(sb, &entry->ent.ent_type); 732 sbuf_printf(sb, "</rawtype>\n"); 733 sbuf_printf(sb, "%s<rawuuid>", indent); 734 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 735 sbuf_printf(sb, "</rawuuid>\n"); 736 sbuf_printf(sb, "%s<efimedia>", indent); 737 sbuf_printf(sb, "HD(%d,GPT,", entry->base.gpe_index); 738 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 739 sbuf_printf(sb, ",%#jx,%#jx)", (intmax_t)entry->base.gpe_start, 740 (intmax_t)(entry->base.gpe_end - entry->base.gpe_start + 1)); 741 sbuf_printf(sb, "</efimedia>\n"); 742 } else { 743 /* confxml: scheme information */ 744 } 745 } 746 747 static int 748 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) 749 { 750 struct g_part_gpt_entry *entry; 751 752 entry = (struct g_part_gpt_entry *)baseentry; 753 return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || 754 EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) || 755 EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0); 756 } 757 758 static int 759 g_part_gpt_modify(struct g_part_table *basetable, 760 struct g_part_entry *baseentry, struct g_part_parms *gpp) 761 { 762 struct g_part_gpt_entry *entry; 763 int error; 764 765 entry = (struct g_part_gpt_entry *)baseentry; 766 if (gpp->gpp_parms & G_PART_PARM_TYPE) { 767 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 768 if (error) 769 return (error); 770 } 771 if (gpp->gpp_parms & G_PART_PARM_LABEL) 772 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 773 sizeof(entry->ent.ent_name) / 774 sizeof(entry->ent.ent_name[0])); 775 return (0); 776 } 777 778 static int 779 g_part_gpt_resize(struct g_part_table *basetable, 780 struct g_part_entry *baseentry, struct g_part_parms *gpp) 781 { 782 struct g_part_gpt_entry *entry; 783 784 if (baseentry == NULL) 785 return (g_part_gpt_recover(basetable)); 786 787 entry = (struct g_part_gpt_entry *)baseentry; 788 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; 789 entry->ent.ent_lba_end = baseentry->gpe_end; 790 791 return (0); 792 } 793 794 static const char * 795 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, 796 char *buf, size_t bufsz) 797 { 798 struct g_part_gpt_entry *entry; 799 char c; 800 801 entry = (struct g_part_gpt_entry *)baseentry; 802 c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; 803 snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); 804 return (buf); 805 } 806 807 static int 808 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) 809 { 810 struct g_provider *pp; 811 u_char *buf; 812 int error, index, pri, res; 813 814 /* We don't nest, which means that our depth should be 0. */ 815 if (table->gpt_depth != 0) 816 return (ENXIO); 817 818 pp = cp->provider; 819 820 /* 821 * Sanity-check the provider. Since the first sector on the provider 822 * must be a PMBR and a PMBR is 512 bytes large, the sector size 823 * must be at least 512 bytes. Also, since the theoretical minimum 824 * number of sectors needed by GPT is 6, any medium that has less 825 * than 6 sectors is never going to be able to hold a GPT. The 826 * number 6 comes from: 827 * 1 sector for the PMBR 828 * 2 sectors for the GPT headers (each 1 sector) 829 * 2 sectors for the GPT tables (each 1 sector) 830 * 1 sector for an actual partition 831 * It's better to catch this pathological case early than behaving 832 * pathologically later on... 833 */ 834 if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) 835 return (ENOSPC); 836 837 /* 838 * Check that there's a MBR or a PMBR. If it's a PMBR, we return 839 * as the highest priority on a match, otherwise we assume some 840 * GPT-unaware tool has destroyed the GPT by recreating a MBR and 841 * we really want the MBR scheme to take precedence. 842 */ 843 buf = g_read_data(cp, 0L, pp->sectorsize, &error); 844 if (buf == NULL) 845 return (error); 846 res = le16dec(buf + DOSMAGICOFFSET); 847 pri = G_PART_PROBE_PRI_LOW; 848 if (res == DOSMAGIC) { 849 for (index = 0; index < NDOSPART; index++) { 850 if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee) 851 pri = G_PART_PROBE_PRI_HIGH; 852 } 853 g_free(buf); 854 855 /* Check that there's a primary header. */ 856 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); 857 if (buf == NULL) 858 return (error); 859 res = memcmp(buf, GPT_HDR_SIG, 8); 860 g_free(buf); 861 if (res == 0) 862 return (pri); 863 } else 864 g_free(buf); 865 866 /* No primary? Check that there's a secondary. */ 867 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 868 &error); 869 if (buf == NULL) 870 return (error); 871 res = memcmp(buf, GPT_HDR_SIG, 8); 872 g_free(buf); 873 return ((res == 0) ? pri : ENXIO); 874 } 875 876 static int 877 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) 878 { 879 struct gpt_hdr *prihdr, *sechdr; 880 struct gpt_ent *tbl, *pritbl, *sectbl; 881 struct g_provider *pp; 882 struct g_part_gpt_table *table; 883 struct g_part_gpt_entry *entry; 884 u_char *buf; 885 uint64_t last; 886 int error, index; 887 888 table = (struct g_part_gpt_table *)basetable; 889 pp = cp->provider; 890 last = (pp->mediasize / pp->sectorsize) - 1; 891 892 /* Read the PMBR */ 893 buf = g_read_data(cp, 0, pp->sectorsize, &error); 894 if (buf == NULL) 895 return (error); 896 bcopy(buf, table->mbr, MBRSIZE); 897 g_free(buf); 898 899 /* Read the primary header and table. */ 900 prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); 901 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { 902 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); 903 } else { 904 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 905 pritbl = NULL; 906 } 907 908 /* Read the secondary header and table. */ 909 sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); 910 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { 911 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); 912 } else { 913 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 914 sectbl = NULL; 915 } 916 917 /* Fail if we haven't got any good tables at all. */ 918 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && 919 table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 920 printf("GEOM: %s: corrupt or invalid GPT detected.\n", 921 pp->name); 922 printf("GEOM: %s: GPT rejected -- may not be recoverable.\n", 923 pp->name); 924 return (EINVAL); 925 } 926 927 /* 928 * If both headers are good but they disagree with each other, 929 * then invalidate one. We prefer to keep the primary header, 930 * unless the primary table is corrupt. 931 */ 932 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && 933 table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 934 !gpt_matched_hdrs(prihdr, sechdr)) { 935 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { 936 table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; 937 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 938 g_free(sechdr); 939 sechdr = NULL; 940 } else { 941 table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; 942 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 943 g_free(prihdr); 944 prihdr = NULL; 945 } 946 } 947 948 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { 949 printf("GEOM: %s: the primary GPT table is corrupt or " 950 "invalid.\n", pp->name); 951 printf("GEOM: %s: using the secondary instead -- recovery " 952 "strongly advised.\n", pp->name); 953 table->hdr = sechdr; 954 basetable->gpt_corrupt = 1; 955 if (prihdr != NULL) 956 g_free(prihdr); 957 tbl = sectbl; 958 if (pritbl != NULL) 959 g_free(pritbl); 960 } else { 961 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 962 printf("GEOM: %s: the secondary GPT table is corrupt " 963 "or invalid.\n", pp->name); 964 printf("GEOM: %s: using the primary only -- recovery " 965 "suggested.\n", pp->name); 966 basetable->gpt_corrupt = 1; 967 } else if (table->lba[GPT_ELT_SECHDR] != last) { 968 printf( "GEOM: %s: the secondary GPT header is not in " 969 "the last LBA.\n", pp->name); 970 basetable->gpt_corrupt = 1; 971 } 972 table->hdr = prihdr; 973 if (sechdr != NULL) 974 g_free(sechdr); 975 tbl = pritbl; 976 if (sectbl != NULL) 977 g_free(sectbl); 978 } 979 980 basetable->gpt_first = table->hdr->hdr_lba_start; 981 basetable->gpt_last = table->hdr->hdr_lba_end; 982 basetable->gpt_entries = (table->hdr->hdr_lba_start - 2) * 983 pp->sectorsize / table->hdr->hdr_entsz; 984 985 for (index = table->hdr->hdr_entries - 1; index >= 0; index--) { 986 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) 987 continue; 988 entry = (struct g_part_gpt_entry *)g_part_new_entry( 989 basetable, index + 1, tbl[index].ent_lba_start, 990 tbl[index].ent_lba_end); 991 entry->ent = tbl[index]; 992 } 993 994 g_free(tbl); 995 996 /* 997 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions 998 * if (and only if) any FAT32 or FAT16 partitions have been 999 * created. This happens irrespective of whether Boot Camp is 1000 * used/enabled, though it's generally understood to be done 1001 * to support legacy Windows under Boot Camp. We refer to this 1002 * mirroring simply as Boot Camp. We try to detect Boot Camp 1003 * so that we can update the MBR if and when GPT changes have 1004 * been made. Note that we do not enable Boot Camp if not 1005 * previously enabled because we can't assume that we're on a 1006 * Mac alongside Mac OS X. 1007 */ 1008 table->bootcamp = gpt_is_bootcamp(table, pp->name); 1009 1010 return (0); 1011 } 1012 1013 static int 1014 g_part_gpt_recover(struct g_part_table *basetable) 1015 { 1016 struct g_part_gpt_table *table; 1017 struct g_provider *pp; 1018 1019 table = (struct g_part_gpt_table *)basetable; 1020 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 1021 gpt_create_pmbr(table, pp); 1022 g_gpt_set_defaults(basetable, pp); 1023 basetable->gpt_corrupt = 0; 1024 return (0); 1025 } 1026 1027 static int 1028 g_part_gpt_setunset(struct g_part_table *basetable, 1029 struct g_part_entry *baseentry, const char *attrib, unsigned int set) 1030 { 1031 struct g_part_gpt_entry *entry; 1032 struct g_part_gpt_table *table; 1033 struct g_provider *pp; 1034 uint8_t *p; 1035 uint64_t attr; 1036 int i; 1037 1038 table = (struct g_part_gpt_table *)basetable; 1039 entry = (struct g_part_gpt_entry *)baseentry; 1040 1041 if (strcasecmp(attrib, "active") == 0) { 1042 if (table->bootcamp) { 1043 /* The active flag must be set on a valid entry. */ 1044 if (entry == NULL) 1045 return (ENXIO); 1046 if (baseentry->gpe_index > NDOSPART) 1047 return (EINVAL); 1048 for (i = 0; i < NDOSPART; i++) { 1049 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1050 p[0] = (i == baseentry->gpe_index - 1) 1051 ? ((set) ? 0x80 : 0) : 0; 1052 } 1053 } else { 1054 /* The PMBR is marked as active without an entry. */ 1055 if (entry != NULL) 1056 return (ENXIO); 1057 for (i = 0; i < NDOSPART; i++) { 1058 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1059 p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0; 1060 } 1061 } 1062 return (0); 1063 } else if (strcasecmp(attrib, "lenovofix") == 0) { 1064 /* 1065 * Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR. 1066 * This workaround allows Lenovo X220, T420, T520, etc to boot 1067 * from GPT Partitions in BIOS mode. 1068 */ 1069 1070 if (entry != NULL) 1071 return (ENXIO); 1072 1073 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 1074 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 1075 gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1, 1076 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 1077 return (0); 1078 } 1079 1080 if (entry == NULL) 1081 return (ENODEV); 1082 1083 attr = 0; 1084 if (strcasecmp(attrib, "bootme") == 0) { 1085 attr |= GPT_ENT_ATTR_BOOTME; 1086 } else if (strcasecmp(attrib, "bootonce") == 0) { 1087 attr |= GPT_ENT_ATTR_BOOTONCE; 1088 if (set) 1089 attr |= GPT_ENT_ATTR_BOOTME; 1090 } else if (strcasecmp(attrib, "bootfailed") == 0) { 1091 /* 1092 * It should only be possible to unset BOOTFAILED, but it might 1093 * be useful for test purposes to also be able to set it. 1094 */ 1095 attr |= GPT_ENT_ATTR_BOOTFAILED; 1096 } 1097 if (attr == 0) 1098 return (EINVAL); 1099 1100 if (set) 1101 attr = entry->ent.ent_attr | attr; 1102 else 1103 attr = entry->ent.ent_attr & ~attr; 1104 if (attr != entry->ent.ent_attr) { 1105 entry->ent.ent_attr = attr; 1106 if (!baseentry->gpe_created) 1107 baseentry->gpe_modified = 1; 1108 } 1109 return (0); 1110 } 1111 1112 static const char * 1113 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 1114 char *buf, size_t bufsz) 1115 { 1116 struct g_part_gpt_entry *entry; 1117 struct uuid *type; 1118 struct g_part_uuid_alias *uap; 1119 1120 entry = (struct g_part_gpt_entry *)baseentry; 1121 type = &entry->ent.ent_type; 1122 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) 1123 if (EQUUID(type, uap->uuid)) 1124 return (g_part_alias_name(uap->alias)); 1125 buf[0] = '!'; 1126 snprintf_uuid(buf + 1, bufsz - 1, type); 1127 1128 return (buf); 1129 } 1130 1131 static int 1132 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) 1133 { 1134 unsigned char *buf, *bp; 1135 struct g_provider *pp; 1136 struct g_part_entry *baseentry; 1137 struct g_part_gpt_entry *entry; 1138 struct g_part_gpt_table *table; 1139 size_t tblsz; 1140 uint32_t crc; 1141 int error, index; 1142 1143 pp = cp->provider; 1144 table = (struct g_part_gpt_table *)basetable; 1145 tblsz = howmany(table->hdr->hdr_entries * table->hdr->hdr_entsz, 1146 pp->sectorsize); 1147 1148 /* Reconstruct the MBR from the GPT if under Boot Camp. */ 1149 if (table->bootcamp) 1150 gpt_update_bootcamp(basetable, pp); 1151 1152 /* Write the PMBR */ 1153 buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); 1154 bcopy(table->mbr, buf, MBRSIZE); 1155 error = g_write_data(cp, 0, buf, pp->sectorsize); 1156 g_free(buf); 1157 if (error) 1158 return (error); 1159 1160 /* Allocate space for the header and entries. */ 1161 buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); 1162 1163 memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 1164 le32enc(buf + 8, table->hdr->hdr_revision); 1165 le32enc(buf + 12, table->hdr->hdr_size); 1166 le64enc(buf + 40, table->hdr->hdr_lba_start); 1167 le64enc(buf + 48, table->hdr->hdr_lba_end); 1168 le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); 1169 le32enc(buf + 80, table->hdr->hdr_entries); 1170 le32enc(buf + 84, table->hdr->hdr_entsz); 1171 1172 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1173 if (baseentry->gpe_deleted) 1174 continue; 1175 entry = (struct g_part_gpt_entry *)baseentry; 1176 index = baseentry->gpe_index - 1; 1177 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; 1178 le_uuid_enc(bp, &entry->ent.ent_type); 1179 le_uuid_enc(bp + 16, &entry->ent.ent_uuid); 1180 le64enc(bp + 32, entry->ent.ent_lba_start); 1181 le64enc(bp + 40, entry->ent.ent_lba_end); 1182 le64enc(bp + 48, entry->ent.ent_attr); 1183 memcpy(bp + 56, entry->ent.ent_name, 1184 sizeof(entry->ent.ent_name)); 1185 } 1186 1187 crc = crc32(buf + pp->sectorsize, 1188 table->hdr->hdr_entries * table->hdr->hdr_entsz); 1189 le32enc(buf + 88, crc); 1190 1191 /* Write primary meta-data. */ 1192 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1193 le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ 1194 le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ 1195 le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ 1196 crc = crc32(buf, table->hdr->hdr_size); 1197 le32enc(buf + 16, crc); 1198 1199 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1200 error = g_write_data(cp, 1201 (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize, 1202 buf + (index + 1) * pp->sectorsize, 1203 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1204 (tblsz - index) * pp->sectorsize); 1205 if (error) 1206 goto out; 1207 } 1208 error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, 1209 buf, pp->sectorsize); 1210 if (error) 1211 goto out; 1212 1213 /* Write secondary meta-data. */ 1214 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1215 le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ 1216 le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ 1217 le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ 1218 crc = crc32(buf, table->hdr->hdr_size); 1219 le32enc(buf + 16, crc); 1220 1221 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1222 error = g_write_data(cp, 1223 (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize, 1224 buf + (index + 1) * pp->sectorsize, 1225 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1226 (tblsz - index) * pp->sectorsize); 1227 if (error) 1228 goto out; 1229 } 1230 error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, 1231 buf, pp->sectorsize); 1232 1233 out: 1234 g_free(buf); 1235 return (error); 1236 } 1237 1238 static void 1239 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp) 1240 { 1241 struct g_part_entry *baseentry; 1242 struct g_part_gpt_entry *entry; 1243 struct g_part_gpt_table *table; 1244 quad_t start, end, min, max; 1245 quad_t lba, last; 1246 size_t spb, tblsz; 1247 1248 table = (struct g_part_gpt_table *)basetable; 1249 last = pp->mediasize / pp->sectorsize - 1; 1250 tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent), 1251 pp->sectorsize); 1252 1253 table->lba[GPT_ELT_PRIHDR] = 1; 1254 table->lba[GPT_ELT_PRITBL] = 2; 1255 table->lba[GPT_ELT_SECHDR] = last; 1256 table->lba[GPT_ELT_SECTBL] = last - tblsz; 1257 table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK; 1258 table->state[GPT_ELT_PRITBL] = GPT_STATE_OK; 1259 table->state[GPT_ELT_SECHDR] = GPT_STATE_OK; 1260 table->state[GPT_ELT_SECTBL] = GPT_STATE_OK; 1261 1262 max = start = 2 + tblsz; 1263 min = end = last - tblsz - 1; 1264 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1265 if (baseentry->gpe_deleted) 1266 continue; 1267 entry = (struct g_part_gpt_entry *)baseentry; 1268 if (entry->ent.ent_lba_start < min) 1269 min = entry->ent.ent_lba_start; 1270 if (entry->ent.ent_lba_end > max) 1271 max = entry->ent.ent_lba_end; 1272 } 1273 spb = 4096 / pp->sectorsize; 1274 if (spb > 1) { 1275 lba = start + ((start % spb) ? spb - start % spb : 0); 1276 if (lba <= min) 1277 start = lba; 1278 lba = end - (end + 1) % spb; 1279 if (max <= lba) 1280 end = lba; 1281 } 1282 table->hdr->hdr_lba_start = start; 1283 table->hdr->hdr_lba_end = end; 1284 1285 basetable->gpt_first = start; 1286 basetable->gpt_last = end; 1287 } 1288 1289 static void 1290 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) 1291 { 1292 u_int bo; 1293 uint32_t ch; 1294 uint16_t c; 1295 1296 bo = LITTLE_ENDIAN; /* GPT is little-endian */ 1297 while (len > 0 && *str != 0) { 1298 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); 1299 str++, len--; 1300 if ((ch & 0xf800) == 0xd800) { 1301 if (len > 0) { 1302 c = (bo == BIG_ENDIAN) ? be16toh(*str) 1303 : le16toh(*str); 1304 str++, len--; 1305 } else 1306 c = 0xfffd; 1307 if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { 1308 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); 1309 ch += 0x10000; 1310 } else 1311 ch = 0xfffd; 1312 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ 1313 bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; 1314 continue; 1315 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ 1316 continue; 1317 1318 /* Write the Unicode character in UTF-8 */ 1319 if (ch < 0x80) 1320 g_conf_printf_escaped(sb, "%c", ch); 1321 else if (ch < 0x800) 1322 g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6), 1323 0x80 | (ch & 0x3f)); 1324 else if (ch < 0x10000) 1325 g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12), 1326 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1327 else if (ch < 0x200000) 1328 g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 | 1329 (ch >> 18), 0x80 | ((ch >> 12) & 0x3f), 1330 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1331 } 1332 } 1333 1334 static void 1335 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) 1336 { 1337 size_t s16idx, s8idx; 1338 uint32_t utfchar; 1339 unsigned int c, utfbytes; 1340 1341 s8idx = s16idx = 0; 1342 utfchar = 0; 1343 utfbytes = 0; 1344 bzero(s16, s16len << 1); 1345 while (s8[s8idx] != 0 && s16idx < s16len) { 1346 c = s8[s8idx++]; 1347 if ((c & 0xc0) != 0x80) { 1348 /* Initial characters. */ 1349 if (utfbytes != 0) { 1350 /* Incomplete encoding of previous char. */ 1351 s16[s16idx++] = htole16(0xfffd); 1352 } 1353 if ((c & 0xf8) == 0xf0) { 1354 utfchar = c & 0x07; 1355 utfbytes = 3; 1356 } else if ((c & 0xf0) == 0xe0) { 1357 utfchar = c & 0x0f; 1358 utfbytes = 2; 1359 } else if ((c & 0xe0) == 0xc0) { 1360 utfchar = c & 0x1f; 1361 utfbytes = 1; 1362 } else { 1363 utfchar = c & 0x7f; 1364 utfbytes = 0; 1365 } 1366 } else { 1367 /* Followup characters. */ 1368 if (utfbytes > 0) { 1369 utfchar = (utfchar << 6) + (c & 0x3f); 1370 utfbytes--; 1371 } else if (utfbytes == 0) 1372 utfbytes = ~0; 1373 } 1374 /* 1375 * Write the complete Unicode character as UTF-16 when we 1376 * have all the UTF-8 charactars collected. 1377 */ 1378 if (utfbytes == 0) { 1379 /* 1380 * If we need to write 2 UTF-16 characters, but 1381 * we only have room for 1, then we truncate the 1382 * string by writing a 0 instead. 1383 */ 1384 if (utfchar >= 0x10000 && s16idx < s16len - 1) { 1385 s16[s16idx++] = 1386 htole16(0xd800 | ((utfchar >> 10) - 0x40)); 1387 s16[s16idx++] = 1388 htole16(0xdc00 | (utfchar & 0x3ff)); 1389 } else 1390 s16[s16idx++] = (utfchar >= 0x10000) ? 0 : 1391 htole16(utfchar); 1392 } 1393 } 1394 /* 1395 * If our input string was truncated, append an invalid encoding 1396 * character to the output string. 1397 */ 1398 if (utfbytes != 0 && s16idx < s16len) 1399 s16[s16idx++] = htole16(0xfffd); 1400 } 1401