1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/bio.h> 34 #include <sys/diskmbr.h> 35 #include <sys/gsb_crc32.h> 36 #include <sys/endian.h> 37 #include <sys/gpt.h> 38 #include <sys/kernel.h> 39 #include <sys/kobj.h> 40 #include <sys/limits.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mutex.h> 44 #include <sys/queue.h> 45 #include <sys/sbuf.h> 46 #include <sys/systm.h> 47 #include <sys/sysctl.h> 48 #include <sys/uuid.h> 49 #include <geom/geom.h> 50 #include <geom/geom_int.h> 51 #include <geom/part/g_part.h> 52 53 #include "g_part_if.h" 54 55 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support"); 56 57 CTASSERT(offsetof(struct gpt_hdr, padding) == 92); 58 CTASSERT(sizeof(struct gpt_ent) == 128); 59 60 #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) 61 62 #define MBRSIZE 512 63 64 enum gpt_elt { 65 GPT_ELT_PRIHDR, 66 GPT_ELT_PRITBL, 67 GPT_ELT_SECHDR, 68 GPT_ELT_SECTBL, 69 GPT_ELT_COUNT 70 }; 71 72 enum gpt_state { 73 GPT_STATE_UNKNOWN, /* Not determined. */ 74 GPT_STATE_MISSING, /* No signature found. */ 75 GPT_STATE_CORRUPT, /* Checksum mismatch. */ 76 GPT_STATE_INVALID, /* Nonconformant/invalid. */ 77 GPT_STATE_OK /* Perfectly fine. */ 78 }; 79 80 struct g_part_gpt_table { 81 struct g_part_table base; 82 u_char mbr[MBRSIZE]; 83 struct gpt_hdr *hdr; 84 quad_t lba[GPT_ELT_COUNT]; 85 enum gpt_state state[GPT_ELT_COUNT]; 86 int bootcamp; 87 }; 88 89 struct g_part_gpt_entry { 90 struct g_part_entry base; 91 struct gpt_ent ent; 92 }; 93 94 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); 95 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); 96 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *); 97 98 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, 99 struct g_part_parms *); 100 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); 101 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); 102 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); 103 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, 104 struct sbuf *, const char *); 105 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); 106 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, 107 struct g_part_parms *); 108 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, 109 char *, size_t); 110 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); 111 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); 112 static int g_part_gpt_setunset(struct g_part_table *table, 113 struct g_part_entry *baseentry, const char *attrib, unsigned int set); 114 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, 115 char *, size_t); 116 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); 117 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, 118 struct g_part_parms *); 119 static int g_part_gpt_recover(struct g_part_table *); 120 121 static kobj_method_t g_part_gpt_methods[] = { 122 KOBJMETHOD(g_part_add, g_part_gpt_add), 123 KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), 124 KOBJMETHOD(g_part_create, g_part_gpt_create), 125 KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), 126 KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), 127 KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), 128 KOBJMETHOD(g_part_modify, g_part_gpt_modify), 129 KOBJMETHOD(g_part_resize, g_part_gpt_resize), 130 KOBJMETHOD(g_part_name, g_part_gpt_name), 131 KOBJMETHOD(g_part_probe, g_part_gpt_probe), 132 KOBJMETHOD(g_part_read, g_part_gpt_read), 133 KOBJMETHOD(g_part_recover, g_part_gpt_recover), 134 KOBJMETHOD(g_part_setunset, g_part_gpt_setunset), 135 KOBJMETHOD(g_part_type, g_part_gpt_type), 136 KOBJMETHOD(g_part_write, g_part_gpt_write), 137 { 0, 0 } 138 }; 139 140 static struct g_part_scheme g_part_gpt_scheme = { 141 "GPT", 142 g_part_gpt_methods, 143 sizeof(struct g_part_gpt_table), 144 .gps_entrysz = sizeof(struct g_part_gpt_entry), 145 .gps_minent = 128, 146 .gps_maxent = 4096, 147 .gps_bootcodesz = MBRSIZE, 148 }; 149 G_PART_SCHEME_DECLARE(g_part_gpt); 150 MODULE_VERSION(geom_part_gpt, 0); 151 152 static struct uuid gpt_uuid_apple_apfs = GPT_ENT_TYPE_APPLE_APFS; 153 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; 154 static struct uuid gpt_uuid_apple_core_storage = 155 GPT_ENT_TYPE_APPLE_CORE_STORAGE; 156 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; 157 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; 158 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; 159 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; 160 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; 161 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; 162 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT; 163 static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE; 164 static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL; 165 static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED; 166 static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT; 167 static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD; 168 static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER; 169 static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2; 170 static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32; 171 static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64; 172 static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY; 173 static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP; 174 static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1; 175 static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM; 176 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; 177 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; 178 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; 179 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS; 180 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; 181 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; 182 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; 183 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; 184 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; 185 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; 186 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; 187 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; 188 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; 189 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; 190 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; 191 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; 192 static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY; 193 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; 194 static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES; 195 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; 196 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; 197 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; 198 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; 199 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; 200 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; 201 static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA; 202 static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT; 203 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; 204 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS; 205 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG; 206 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED; 207 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR; 208 209 static struct g_part_uuid_alias { 210 struct uuid *uuid; 211 int alias; 212 int mbrtype; 213 } gpt_uuid_alias_match[] = { 214 { &gpt_uuid_apple_apfs, G_PART_ALIAS_APPLE_APFS, 0 }, 215 { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab }, 216 { &gpt_uuid_apple_core_storage, G_PART_ALIAS_APPLE_CORE_STORAGE, 0 }, 217 { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf }, 218 { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 }, 219 { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 }, 220 { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 }, 221 { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 }, 222 { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 }, 223 { &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 }, 224 { &gpt_uuid_chromeos_firmware, G_PART_ALIAS_CHROMEOS_FIRMWARE, 0 }, 225 { &gpt_uuid_chromeos_kernel, G_PART_ALIAS_CHROMEOS_KERNEL, 0 }, 226 { &gpt_uuid_chromeos_reserved, G_PART_ALIAS_CHROMEOS_RESERVED, 0 }, 227 { &gpt_uuid_chromeos_root, G_PART_ALIAS_CHROMEOS_ROOT, 0 }, 228 { &gpt_uuid_dfbsd_ccd, G_PART_ALIAS_DFBSD_CCD, 0 }, 229 { &gpt_uuid_dfbsd_hammer, G_PART_ALIAS_DFBSD_HAMMER, 0 }, 230 { &gpt_uuid_dfbsd_hammer2, G_PART_ALIAS_DFBSD_HAMMER2, 0 }, 231 { &gpt_uuid_dfbsd_label32, G_PART_ALIAS_DFBSD, 0xa5 }, 232 { &gpt_uuid_dfbsd_label64, G_PART_ALIAS_DFBSD64, 0xa5 }, 233 { &gpt_uuid_dfbsd_legacy, G_PART_ALIAS_DFBSD_LEGACY, 0 }, 234 { &gpt_uuid_dfbsd_swap, G_PART_ALIAS_DFBSD_SWAP, 0 }, 235 { &gpt_uuid_dfbsd_ufs1, G_PART_ALIAS_DFBSD_UFS, 0 }, 236 { &gpt_uuid_dfbsd_vinum, G_PART_ALIAS_DFBSD_VINUM, 0 }, 237 { &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee }, 238 { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 }, 239 { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 }, 240 { &gpt_uuid_freebsd_nandfs, G_PART_ALIAS_FREEBSD_NANDFS, 0 }, 241 { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 }, 242 { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 }, 243 { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 }, 244 { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 }, 245 { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b }, 246 { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 }, 247 { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 }, 248 { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 }, 249 { &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 }, 250 { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b }, 251 { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 }, 252 { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 }, 253 { &gpt_uuid_ms_recovery, G_PART_ALIAS_MS_RECOVERY, 0 }, 254 { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 }, 255 { &gpt_uuid_ms_spaces, G_PART_ALIAS_MS_SPACES, 0 }, 256 { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 }, 257 { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 }, 258 { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 }, 259 { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 }, 260 { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 }, 261 { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 }, 262 { &gpt_uuid_openbsd_data, G_PART_ALIAS_OPENBSD_DATA, 0 }, 263 { &gpt_uuid_prep_boot, G_PART_ALIAS_PREP_BOOT, 0x41 }, 264 { &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 }, 265 { &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 }, 266 { &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 }, 267 { &gpt_uuid_vmvsanhdr, G_PART_ALIAS_VMVSANHDR, 0 }, 268 { NULL, 0, 0 } 269 }; 270 271 static int 272 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start, 273 quad_t end) 274 { 275 276 if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX) 277 return (EINVAL); 278 279 mbr += DOSPARTOFF + idx * DOSPARTSIZE; 280 mbr[0] = 0; 281 if (start == 1) { 282 /* 283 * Treat the PMBR partition specially to maximize 284 * interoperability with BIOSes. 285 */ 286 mbr[1] = mbr[3] = 0; 287 mbr[2] = 2; 288 } else 289 mbr[1] = mbr[2] = mbr[3] = 0xff; 290 mbr[4] = typ; 291 mbr[5] = mbr[6] = mbr[7] = 0xff; 292 le32enc(mbr + 8, (uint32_t)start); 293 le32enc(mbr + 12, (uint32_t)(end - start + 1)); 294 return (0); 295 } 296 297 static int 298 gpt_map_type(struct uuid *t) 299 { 300 struct g_part_uuid_alias *uap; 301 302 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 303 if (EQUUID(t, uap->uuid)) 304 return (uap->mbrtype); 305 } 306 return (0); 307 } 308 309 static void 310 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp) 311 { 312 313 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 314 gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, 315 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 316 le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); 317 } 318 319 /* 320 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the 321 * whole disk anymore. Rather, it covers the GPT table and the EFI 322 * system partition only. This way the HFS+ partition and any FAT 323 * partitions can be added to the MBR without creating an overlap. 324 */ 325 static int 326 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname) 327 { 328 uint8_t *p; 329 330 p = table->mbr + DOSPARTOFF; 331 if (p[4] != 0xee || le32dec(p + 8) != 1) 332 return (0); 333 334 p += DOSPARTSIZE; 335 if (p[4] != 0xaf) 336 return (0); 337 338 printf("GEOM: %s: enabling Boot Camp\n", provname); 339 return (1); 340 } 341 342 static void 343 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp) 344 { 345 struct g_part_entry *baseentry; 346 struct g_part_gpt_entry *entry; 347 struct g_part_gpt_table *table; 348 int bootable, error, index, slices, typ; 349 350 table = (struct g_part_gpt_table *)basetable; 351 352 bootable = -1; 353 for (index = 0; index < NDOSPART; index++) { 354 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index]) 355 bootable = index; 356 } 357 358 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 359 slices = 0; 360 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 361 if (baseentry->gpe_deleted) 362 continue; 363 index = baseentry->gpe_index - 1; 364 if (index >= NDOSPART) 365 continue; 366 367 entry = (struct g_part_gpt_entry *)baseentry; 368 369 switch (index) { 370 case 0: /* This must be the EFI system partition. */ 371 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi)) 372 goto disable; 373 error = gpt_write_mbr_entry(table->mbr, index, 0xee, 374 1ull, entry->ent.ent_lba_end); 375 break; 376 case 1: /* This must be the HFS+ partition. */ 377 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs)) 378 goto disable; 379 error = gpt_write_mbr_entry(table->mbr, index, 0xaf, 380 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 381 break; 382 default: 383 typ = gpt_map_type(&entry->ent.ent_type); 384 error = gpt_write_mbr_entry(table->mbr, index, typ, 385 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 386 break; 387 } 388 if (error) 389 continue; 390 391 if (index == bootable) 392 table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80; 393 slices |= 1 << index; 394 } 395 if ((slices & 3) == 3) 396 return; 397 398 disable: 399 table->bootcamp = 0; 400 gpt_create_pmbr(table, pp); 401 } 402 403 static struct gpt_hdr * 404 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, 405 enum gpt_elt elt) 406 { 407 struct gpt_hdr *buf, *hdr; 408 struct g_provider *pp; 409 quad_t lba, last; 410 int error; 411 uint32_t crc, sz; 412 413 pp = cp->provider; 414 last = (pp->mediasize / pp->sectorsize) - 1; 415 table->state[elt] = GPT_STATE_MISSING; 416 /* 417 * If the primary header is valid look for secondary 418 * header in AlternateLBA, otherwise in the last medium's LBA. 419 */ 420 if (elt == GPT_ELT_SECHDR) { 421 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK) 422 table->lba[elt] = last; 423 } else 424 table->lba[elt] = 1; 425 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, 426 &error); 427 if (buf == NULL) 428 return (NULL); 429 hdr = NULL; 430 if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) 431 goto fail; 432 433 table->state[elt] = GPT_STATE_CORRUPT; 434 sz = le32toh(buf->hdr_size); 435 if (sz < 92 || sz > pp->sectorsize) 436 goto fail; 437 438 hdr = g_malloc(sz, M_WAITOK | M_ZERO); 439 bcopy(buf, hdr, sz); 440 hdr->hdr_size = sz; 441 442 crc = le32toh(buf->hdr_crc_self); 443 buf->hdr_crc_self = 0; 444 if (crc32(buf, sz) != crc) 445 goto fail; 446 hdr->hdr_crc_self = crc; 447 448 table->state[elt] = GPT_STATE_INVALID; 449 hdr->hdr_revision = le32toh(buf->hdr_revision); 450 if (hdr->hdr_revision < GPT_HDR_REVISION) 451 goto fail; 452 hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); 453 if (hdr->hdr_lba_self != table->lba[elt]) 454 goto fail; 455 hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); 456 if (hdr->hdr_lba_alt == hdr->hdr_lba_self || 457 hdr->hdr_lba_alt > last) 458 goto fail; 459 460 /* Check the managed area. */ 461 hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); 462 if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) 463 goto fail; 464 hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); 465 if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) 466 goto fail; 467 468 /* Check the table location and size of the table. */ 469 hdr->hdr_entries = le32toh(buf->hdr_entries); 470 hdr->hdr_entsz = le32toh(buf->hdr_entsz); 471 if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || 472 (hdr->hdr_entsz & 7) != 0) 473 goto fail; 474 hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); 475 if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) 476 goto fail; 477 if (hdr->hdr_lba_table >= hdr->hdr_lba_start && 478 hdr->hdr_lba_table <= hdr->hdr_lba_end) 479 goto fail; 480 lba = hdr->hdr_lba_table + 481 howmany(hdr->hdr_entries * hdr->hdr_entsz, pp->sectorsize) - 1; 482 if (lba >= last) 483 goto fail; 484 if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) 485 goto fail; 486 487 table->state[elt] = GPT_STATE_OK; 488 le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); 489 hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); 490 491 /* save LBA for secondary header */ 492 if (elt == GPT_ELT_PRIHDR) 493 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt; 494 495 g_free(buf); 496 return (hdr); 497 498 fail: 499 if (hdr != NULL) 500 g_free(hdr); 501 g_free(buf); 502 return (NULL); 503 } 504 505 static struct gpt_ent * 506 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, 507 enum gpt_elt elt, struct gpt_hdr *hdr) 508 { 509 struct g_provider *pp; 510 struct gpt_ent *ent, *tbl; 511 char *buf, *p; 512 unsigned int idx, sectors, tblsz, size; 513 int error; 514 515 if (hdr == NULL) 516 return (NULL); 517 518 pp = cp->provider; 519 table->lba[elt] = hdr->hdr_lba_table; 520 521 table->state[elt] = GPT_STATE_MISSING; 522 tblsz = hdr->hdr_entries * hdr->hdr_entsz; 523 sectors = howmany(tblsz, pp->sectorsize); 524 buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO); 525 for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) { 526 size = (sectors - idx > MAXPHYS / pp->sectorsize) ? MAXPHYS: 527 (sectors - idx) * pp->sectorsize; 528 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize, 529 size, &error); 530 if (p == NULL) { 531 g_free(buf); 532 return (NULL); 533 } 534 bcopy(p, buf + idx * pp->sectorsize, size); 535 g_free(p); 536 } 537 table->state[elt] = GPT_STATE_CORRUPT; 538 if (crc32(buf, tblsz) != hdr->hdr_crc_table) { 539 g_free(buf); 540 return (NULL); 541 } 542 543 table->state[elt] = GPT_STATE_OK; 544 tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), 545 M_WAITOK | M_ZERO); 546 547 for (idx = 0, ent = tbl, p = buf; 548 idx < hdr->hdr_entries; 549 idx++, ent++, p += hdr->hdr_entsz) { 550 le_uuid_dec(p, &ent->ent_type); 551 le_uuid_dec(p + 16, &ent->ent_uuid); 552 ent->ent_lba_start = le64dec(p + 32); 553 ent->ent_lba_end = le64dec(p + 40); 554 ent->ent_attr = le64dec(p + 48); 555 /* Keep UTF-16 in little-endian. */ 556 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); 557 } 558 559 g_free(buf); 560 return (tbl); 561 } 562 563 static int 564 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) 565 { 566 567 if (pri == NULL || sec == NULL) 568 return (0); 569 570 if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) 571 return (0); 572 return ((pri->hdr_revision == sec->hdr_revision && 573 pri->hdr_size == sec->hdr_size && 574 pri->hdr_lba_start == sec->hdr_lba_start && 575 pri->hdr_lba_end == sec->hdr_lba_end && 576 pri->hdr_entries == sec->hdr_entries && 577 pri->hdr_entsz == sec->hdr_entsz && 578 pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); 579 } 580 581 static int 582 gpt_parse_type(const char *type, struct uuid *uuid) 583 { 584 struct uuid tmp; 585 const char *alias; 586 int error; 587 struct g_part_uuid_alias *uap; 588 589 if (type[0] == '!') { 590 error = parse_uuid(type + 1, &tmp); 591 if (error) 592 return (error); 593 if (EQUUID(&tmp, &gpt_uuid_unused)) 594 return (EINVAL); 595 *uuid = tmp; 596 return (0); 597 } 598 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 599 alias = g_part_alias_name(uap->alias); 600 if (!strcasecmp(type, alias)) { 601 *uuid = *uap->uuid; 602 return (0); 603 } 604 } 605 return (EINVAL); 606 } 607 608 static int 609 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, 610 struct g_part_parms *gpp) 611 { 612 struct g_part_gpt_entry *entry; 613 int error; 614 615 entry = (struct g_part_gpt_entry *)baseentry; 616 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 617 if (error) 618 return (error); 619 kern_uuidgen(&entry->ent.ent_uuid, 1); 620 entry->ent.ent_lba_start = baseentry->gpe_start; 621 entry->ent.ent_lba_end = baseentry->gpe_end; 622 if (baseentry->gpe_deleted) { 623 entry->ent.ent_attr = 0; 624 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); 625 } 626 if (gpp->gpp_parms & G_PART_PARM_LABEL) 627 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 628 sizeof(entry->ent.ent_name) / 629 sizeof(entry->ent.ent_name[0])); 630 return (0); 631 } 632 633 static int 634 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) 635 { 636 struct g_part_gpt_table *table; 637 size_t codesz; 638 639 codesz = DOSPARTOFF; 640 table = (struct g_part_gpt_table *)basetable; 641 bzero(table->mbr, codesz); 642 codesz = MIN(codesz, gpp->gpp_codesize); 643 if (codesz > 0) 644 bcopy(gpp->gpp_codeptr, table->mbr, codesz); 645 return (0); 646 } 647 648 static int 649 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) 650 { 651 struct g_provider *pp; 652 struct g_part_gpt_table *table; 653 size_t tblsz; 654 655 /* We don't nest, which means that our depth should be 0. */ 656 if (basetable->gpt_depth != 0) 657 return (ENXIO); 658 659 table = (struct g_part_gpt_table *)basetable; 660 pp = gpp->gpp_provider; 661 tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent), 662 pp->sectorsize); 663 if (pp->sectorsize < MBRSIZE || 664 pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * 665 pp->sectorsize) 666 return (ENOSPC); 667 668 gpt_create_pmbr(table, pp); 669 670 /* Allocate space for the header */ 671 table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); 672 673 bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 674 table->hdr->hdr_revision = GPT_HDR_REVISION; 675 table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); 676 kern_uuidgen(&table->hdr->hdr_uuid, 1); 677 table->hdr->hdr_entries = basetable->gpt_entries; 678 table->hdr->hdr_entsz = sizeof(struct gpt_ent); 679 680 g_gpt_set_defaults(basetable, pp); 681 return (0); 682 } 683 684 static int 685 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) 686 { 687 struct g_part_gpt_table *table; 688 struct g_provider *pp; 689 690 table = (struct g_part_gpt_table *)basetable; 691 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 692 g_free(table->hdr); 693 table->hdr = NULL; 694 695 /* 696 * Wipe the first 2 sectors and last one to clear the partitioning. 697 * Wipe sectors only if they have valid metadata. 698 */ 699 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) 700 basetable->gpt_smhead |= 3; 701 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 702 table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1) 703 basetable->gpt_smtail |= 1; 704 return (0); 705 } 706 707 static void 708 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 709 struct sbuf *sb, const char *indent) 710 { 711 struct g_part_gpt_entry *entry; 712 713 entry = (struct g_part_gpt_entry *)baseentry; 714 if (indent == NULL) { 715 /* conftxt: libdisk compatibility */ 716 sbuf_cat(sb, " xs GPT xt "); 717 sbuf_printf_uuid(sb, &entry->ent.ent_type); 718 } else if (entry != NULL) { 719 /* confxml: partition entry information */ 720 sbuf_printf(sb, "%s<label>", indent); 721 g_gpt_printf_utf16(sb, entry->ent.ent_name, 722 sizeof(entry->ent.ent_name) >> 1); 723 sbuf_cat(sb, "</label>\n"); 724 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME) 725 sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent); 726 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) { 727 sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n", 728 indent); 729 } 730 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) { 731 sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n", 732 indent); 733 } 734 sbuf_printf(sb, "%s<rawtype>", indent); 735 sbuf_printf_uuid(sb, &entry->ent.ent_type); 736 sbuf_cat(sb, "</rawtype>\n"); 737 sbuf_printf(sb, "%s<rawuuid>", indent); 738 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 739 sbuf_cat(sb, "</rawuuid>\n"); 740 sbuf_printf(sb, "%s<efimedia>", indent); 741 sbuf_printf(sb, "HD(%d,GPT,", entry->base.gpe_index); 742 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 743 sbuf_printf(sb, ",%#jx,%#jx)", (intmax_t)entry->base.gpe_start, 744 (intmax_t)(entry->base.gpe_end - entry->base.gpe_start + 1)); 745 sbuf_cat(sb, "</efimedia>\n"); 746 } else { 747 /* confxml: scheme information */ 748 } 749 } 750 751 static int 752 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) 753 { 754 struct g_part_gpt_entry *entry; 755 756 entry = (struct g_part_gpt_entry *)baseentry; 757 return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || 758 EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) || 759 EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0); 760 } 761 762 static int 763 g_part_gpt_modify(struct g_part_table *basetable, 764 struct g_part_entry *baseentry, struct g_part_parms *gpp) 765 { 766 struct g_part_gpt_entry *entry; 767 int error; 768 769 entry = (struct g_part_gpt_entry *)baseentry; 770 if (gpp->gpp_parms & G_PART_PARM_TYPE) { 771 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 772 if (error) 773 return (error); 774 } 775 if (gpp->gpp_parms & G_PART_PARM_LABEL) 776 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 777 sizeof(entry->ent.ent_name) / 778 sizeof(entry->ent.ent_name[0])); 779 return (0); 780 } 781 782 static int 783 g_part_gpt_resize(struct g_part_table *basetable, 784 struct g_part_entry *baseentry, struct g_part_parms *gpp) 785 { 786 struct g_part_gpt_entry *entry; 787 788 if (baseentry == NULL) 789 return (g_part_gpt_recover(basetable)); 790 791 entry = (struct g_part_gpt_entry *)baseentry; 792 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; 793 entry->ent.ent_lba_end = baseentry->gpe_end; 794 795 return (0); 796 } 797 798 static const char * 799 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, 800 char *buf, size_t bufsz) 801 { 802 struct g_part_gpt_entry *entry; 803 char c; 804 805 entry = (struct g_part_gpt_entry *)baseentry; 806 c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; 807 snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); 808 return (buf); 809 } 810 811 static int 812 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) 813 { 814 struct g_provider *pp; 815 u_char *buf; 816 int error, index, pri, res; 817 818 /* We don't nest, which means that our depth should be 0. */ 819 if (table->gpt_depth != 0) 820 return (ENXIO); 821 822 pp = cp->provider; 823 824 /* 825 * Sanity-check the provider. Since the first sector on the provider 826 * must be a PMBR and a PMBR is 512 bytes large, the sector size 827 * must be at least 512 bytes. Also, since the theoretical minimum 828 * number of sectors needed by GPT is 6, any medium that has less 829 * than 6 sectors is never going to be able to hold a GPT. The 830 * number 6 comes from: 831 * 1 sector for the PMBR 832 * 2 sectors for the GPT headers (each 1 sector) 833 * 2 sectors for the GPT tables (each 1 sector) 834 * 1 sector for an actual partition 835 * It's better to catch this pathological case early than behaving 836 * pathologically later on... 837 */ 838 if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) 839 return (ENOSPC); 840 841 /* 842 * Check that there's a MBR or a PMBR. If it's a PMBR, we return 843 * as the highest priority on a match, otherwise we assume some 844 * GPT-unaware tool has destroyed the GPT by recreating a MBR and 845 * we really want the MBR scheme to take precedence. 846 */ 847 buf = g_read_data(cp, 0L, pp->sectorsize, &error); 848 if (buf == NULL) 849 return (error); 850 res = le16dec(buf + DOSMAGICOFFSET); 851 pri = G_PART_PROBE_PRI_LOW; 852 if (res == DOSMAGIC) { 853 for (index = 0; index < NDOSPART; index++) { 854 if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee) 855 pri = G_PART_PROBE_PRI_HIGH; 856 } 857 g_free(buf); 858 859 /* Check that there's a primary header. */ 860 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); 861 if (buf == NULL) 862 return (error); 863 res = memcmp(buf, GPT_HDR_SIG, 8); 864 g_free(buf); 865 if (res == 0) 866 return (pri); 867 } else 868 g_free(buf); 869 870 /* No primary? Check that there's a secondary. */ 871 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 872 &error); 873 if (buf == NULL) 874 return (error); 875 res = memcmp(buf, GPT_HDR_SIG, 8); 876 g_free(buf); 877 return ((res == 0) ? pri : ENXIO); 878 } 879 880 static int 881 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) 882 { 883 struct gpt_hdr *prihdr, *sechdr; 884 struct gpt_ent *tbl, *pritbl, *sectbl; 885 struct g_provider *pp; 886 struct g_part_gpt_table *table; 887 struct g_part_gpt_entry *entry; 888 u_char *buf; 889 uint64_t last; 890 int error, index; 891 892 table = (struct g_part_gpt_table *)basetable; 893 pp = cp->provider; 894 last = (pp->mediasize / pp->sectorsize) - 1; 895 896 /* Read the PMBR */ 897 buf = g_read_data(cp, 0, pp->sectorsize, &error); 898 if (buf == NULL) 899 return (error); 900 bcopy(buf, table->mbr, MBRSIZE); 901 g_free(buf); 902 903 /* Read the primary header and table. */ 904 prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); 905 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { 906 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); 907 } else { 908 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 909 pritbl = NULL; 910 } 911 912 /* Read the secondary header and table. */ 913 sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); 914 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { 915 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); 916 } else { 917 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 918 sectbl = NULL; 919 } 920 921 /* Fail if we haven't got any good tables at all. */ 922 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && 923 table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 924 printf("GEOM: %s: corrupt or invalid GPT detected.\n", 925 pp->name); 926 printf("GEOM: %s: GPT rejected -- may not be recoverable.\n", 927 pp->name); 928 if (prihdr != NULL) 929 g_free(prihdr); 930 if (pritbl != NULL) 931 g_free(pritbl); 932 if (sechdr != NULL) 933 g_free(sechdr); 934 if (sectbl != NULL) 935 g_free(sectbl); 936 return (EINVAL); 937 } 938 939 /* 940 * If both headers are good but they disagree with each other, 941 * then invalidate one. We prefer to keep the primary header, 942 * unless the primary table is corrupt. 943 */ 944 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && 945 table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 946 !gpt_matched_hdrs(prihdr, sechdr)) { 947 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { 948 table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; 949 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 950 g_free(sechdr); 951 sechdr = NULL; 952 } else { 953 table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; 954 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 955 g_free(prihdr); 956 prihdr = NULL; 957 } 958 } 959 960 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { 961 printf("GEOM: %s: the primary GPT table is corrupt or " 962 "invalid.\n", pp->name); 963 printf("GEOM: %s: using the secondary instead -- recovery " 964 "strongly advised.\n", pp->name); 965 table->hdr = sechdr; 966 basetable->gpt_corrupt = 1; 967 if (prihdr != NULL) 968 g_free(prihdr); 969 tbl = sectbl; 970 if (pritbl != NULL) 971 g_free(pritbl); 972 } else { 973 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 974 printf("GEOM: %s: the secondary GPT table is corrupt " 975 "or invalid.\n", pp->name); 976 printf("GEOM: %s: using the primary only -- recovery " 977 "suggested.\n", pp->name); 978 basetable->gpt_corrupt = 1; 979 } else if (table->lba[GPT_ELT_SECHDR] != last) { 980 printf( "GEOM: %s: the secondary GPT header is not in " 981 "the last LBA.\n", pp->name); 982 basetable->gpt_corrupt = 1; 983 } 984 table->hdr = prihdr; 985 if (sechdr != NULL) 986 g_free(sechdr); 987 tbl = pritbl; 988 if (sectbl != NULL) 989 g_free(sectbl); 990 } 991 992 basetable->gpt_first = table->hdr->hdr_lba_start; 993 basetable->gpt_last = table->hdr->hdr_lba_end; 994 basetable->gpt_entries = table->hdr->hdr_entries; 995 996 for (index = basetable->gpt_entries - 1; index >= 0; index--) { 997 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) 998 continue; 999 entry = (struct g_part_gpt_entry *)g_part_new_entry( 1000 basetable, index + 1, tbl[index].ent_lba_start, 1001 tbl[index].ent_lba_end); 1002 entry->ent = tbl[index]; 1003 } 1004 1005 g_free(tbl); 1006 1007 /* 1008 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions 1009 * if (and only if) any FAT32 or FAT16 partitions have been 1010 * created. This happens irrespective of whether Boot Camp is 1011 * used/enabled, though it's generally understood to be done 1012 * to support legacy Windows under Boot Camp. We refer to this 1013 * mirroring simply as Boot Camp. We try to detect Boot Camp 1014 * so that we can update the MBR if and when GPT changes have 1015 * been made. Note that we do not enable Boot Camp if not 1016 * previously enabled because we can't assume that we're on a 1017 * Mac alongside Mac OS X. 1018 */ 1019 table->bootcamp = gpt_is_bootcamp(table, pp->name); 1020 1021 return (0); 1022 } 1023 1024 static int 1025 g_part_gpt_recover(struct g_part_table *basetable) 1026 { 1027 struct g_part_gpt_table *table; 1028 struct g_provider *pp; 1029 1030 table = (struct g_part_gpt_table *)basetable; 1031 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 1032 gpt_create_pmbr(table, pp); 1033 g_gpt_set_defaults(basetable, pp); 1034 basetable->gpt_corrupt = 0; 1035 return (0); 1036 } 1037 1038 static int 1039 g_part_gpt_setunset(struct g_part_table *basetable, 1040 struct g_part_entry *baseentry, const char *attrib, unsigned int set) 1041 { 1042 struct g_part_gpt_entry *entry; 1043 struct g_part_gpt_table *table; 1044 struct g_provider *pp; 1045 uint8_t *p; 1046 uint64_t attr; 1047 int i; 1048 1049 table = (struct g_part_gpt_table *)basetable; 1050 entry = (struct g_part_gpt_entry *)baseentry; 1051 1052 if (strcasecmp(attrib, "active") == 0) { 1053 if (table->bootcamp) { 1054 /* The active flag must be set on a valid entry. */ 1055 if (entry == NULL) 1056 return (ENXIO); 1057 if (baseentry->gpe_index > NDOSPART) 1058 return (EINVAL); 1059 for (i = 0; i < NDOSPART; i++) { 1060 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1061 p[0] = (i == baseentry->gpe_index - 1) 1062 ? ((set) ? 0x80 : 0) : 0; 1063 } 1064 } else { 1065 /* The PMBR is marked as active without an entry. */ 1066 if (entry != NULL) 1067 return (ENXIO); 1068 for (i = 0; i < NDOSPART; i++) { 1069 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1070 p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0; 1071 } 1072 } 1073 return (0); 1074 } else if (strcasecmp(attrib, "lenovofix") == 0) { 1075 /* 1076 * Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR. 1077 * This workaround allows Lenovo X220, T420, T520, etc to boot 1078 * from GPT Partitions in BIOS mode. 1079 */ 1080 1081 if (entry != NULL) 1082 return (ENXIO); 1083 1084 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 1085 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 1086 gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1, 1087 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 1088 return (0); 1089 } 1090 1091 if (entry == NULL) 1092 return (ENODEV); 1093 1094 attr = 0; 1095 if (strcasecmp(attrib, "bootme") == 0) { 1096 attr |= GPT_ENT_ATTR_BOOTME; 1097 } else if (strcasecmp(attrib, "bootonce") == 0) { 1098 attr |= GPT_ENT_ATTR_BOOTONCE; 1099 if (set) 1100 attr |= GPT_ENT_ATTR_BOOTME; 1101 } else if (strcasecmp(attrib, "bootfailed") == 0) { 1102 /* 1103 * It should only be possible to unset BOOTFAILED, but it might 1104 * be useful for test purposes to also be able to set it. 1105 */ 1106 attr |= GPT_ENT_ATTR_BOOTFAILED; 1107 } 1108 if (attr == 0) 1109 return (EINVAL); 1110 1111 if (set) 1112 attr = entry->ent.ent_attr | attr; 1113 else 1114 attr = entry->ent.ent_attr & ~attr; 1115 if (attr != entry->ent.ent_attr) { 1116 entry->ent.ent_attr = attr; 1117 if (!baseentry->gpe_created) 1118 baseentry->gpe_modified = 1; 1119 } 1120 return (0); 1121 } 1122 1123 static const char * 1124 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 1125 char *buf, size_t bufsz) 1126 { 1127 struct g_part_gpt_entry *entry; 1128 struct uuid *type; 1129 struct g_part_uuid_alias *uap; 1130 1131 entry = (struct g_part_gpt_entry *)baseentry; 1132 type = &entry->ent.ent_type; 1133 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) 1134 if (EQUUID(type, uap->uuid)) 1135 return (g_part_alias_name(uap->alias)); 1136 buf[0] = '!'; 1137 snprintf_uuid(buf + 1, bufsz - 1, type); 1138 1139 return (buf); 1140 } 1141 1142 static int 1143 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) 1144 { 1145 unsigned char *buf, *bp; 1146 struct g_provider *pp; 1147 struct g_part_entry *baseentry; 1148 struct g_part_gpt_entry *entry; 1149 struct g_part_gpt_table *table; 1150 size_t tblsz; 1151 uint32_t crc; 1152 int error, index; 1153 1154 pp = cp->provider; 1155 table = (struct g_part_gpt_table *)basetable; 1156 tblsz = howmany(table->hdr->hdr_entries * table->hdr->hdr_entsz, 1157 pp->sectorsize); 1158 1159 /* Reconstruct the MBR from the GPT if under Boot Camp. */ 1160 if (table->bootcamp) 1161 gpt_update_bootcamp(basetable, pp); 1162 1163 /* Write the PMBR */ 1164 buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); 1165 bcopy(table->mbr, buf, MBRSIZE); 1166 error = g_write_data(cp, 0, buf, pp->sectorsize); 1167 g_free(buf); 1168 if (error) 1169 return (error); 1170 1171 /* Allocate space for the header and entries. */ 1172 buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); 1173 1174 memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 1175 le32enc(buf + 8, table->hdr->hdr_revision); 1176 le32enc(buf + 12, table->hdr->hdr_size); 1177 le64enc(buf + 40, table->hdr->hdr_lba_start); 1178 le64enc(buf + 48, table->hdr->hdr_lba_end); 1179 le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); 1180 le32enc(buf + 80, table->hdr->hdr_entries); 1181 le32enc(buf + 84, table->hdr->hdr_entsz); 1182 1183 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1184 if (baseentry->gpe_deleted) 1185 continue; 1186 entry = (struct g_part_gpt_entry *)baseentry; 1187 index = baseentry->gpe_index - 1; 1188 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; 1189 le_uuid_enc(bp, &entry->ent.ent_type); 1190 le_uuid_enc(bp + 16, &entry->ent.ent_uuid); 1191 le64enc(bp + 32, entry->ent.ent_lba_start); 1192 le64enc(bp + 40, entry->ent.ent_lba_end); 1193 le64enc(bp + 48, entry->ent.ent_attr); 1194 memcpy(bp + 56, entry->ent.ent_name, 1195 sizeof(entry->ent.ent_name)); 1196 } 1197 1198 crc = crc32(buf + pp->sectorsize, 1199 table->hdr->hdr_entries * table->hdr->hdr_entsz); 1200 le32enc(buf + 88, crc); 1201 1202 /* Write primary meta-data. */ 1203 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1204 le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ 1205 le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ 1206 le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ 1207 crc = crc32(buf, table->hdr->hdr_size); 1208 le32enc(buf + 16, crc); 1209 1210 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1211 error = g_write_data(cp, 1212 (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize, 1213 buf + (index + 1) * pp->sectorsize, 1214 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1215 (tblsz - index) * pp->sectorsize); 1216 if (error) 1217 goto out; 1218 } 1219 error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, 1220 buf, pp->sectorsize); 1221 if (error) 1222 goto out; 1223 1224 /* Write secondary meta-data. */ 1225 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1226 le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ 1227 le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ 1228 le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ 1229 crc = crc32(buf, table->hdr->hdr_size); 1230 le32enc(buf + 16, crc); 1231 1232 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1233 error = g_write_data(cp, 1234 (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize, 1235 buf + (index + 1) * pp->sectorsize, 1236 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1237 (tblsz - index) * pp->sectorsize); 1238 if (error) 1239 goto out; 1240 } 1241 error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, 1242 buf, pp->sectorsize); 1243 1244 out: 1245 g_free(buf); 1246 return (error); 1247 } 1248 1249 static void 1250 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp) 1251 { 1252 struct g_part_entry *baseentry; 1253 struct g_part_gpt_entry *entry; 1254 struct g_part_gpt_table *table; 1255 quad_t start, end, min, max; 1256 quad_t lba, last; 1257 size_t spb, tblsz; 1258 1259 table = (struct g_part_gpt_table *)basetable; 1260 last = pp->mediasize / pp->sectorsize - 1; 1261 tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent), 1262 pp->sectorsize); 1263 1264 table->lba[GPT_ELT_PRIHDR] = 1; 1265 table->lba[GPT_ELT_PRITBL] = 2; 1266 table->lba[GPT_ELT_SECHDR] = last; 1267 table->lba[GPT_ELT_SECTBL] = last - tblsz; 1268 table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK; 1269 table->state[GPT_ELT_PRITBL] = GPT_STATE_OK; 1270 table->state[GPT_ELT_SECHDR] = GPT_STATE_OK; 1271 table->state[GPT_ELT_SECTBL] = GPT_STATE_OK; 1272 1273 max = start = 2 + tblsz; 1274 min = end = last - tblsz - 1; 1275 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1276 if (baseentry->gpe_deleted) 1277 continue; 1278 entry = (struct g_part_gpt_entry *)baseentry; 1279 if (entry->ent.ent_lba_start < min) 1280 min = entry->ent.ent_lba_start; 1281 if (entry->ent.ent_lba_end > max) 1282 max = entry->ent.ent_lba_end; 1283 } 1284 spb = 4096 / pp->sectorsize; 1285 if (spb > 1) { 1286 lba = start + ((start % spb) ? spb - start % spb : 0); 1287 if (lba <= min) 1288 start = lba; 1289 lba = end - (end + 1) % spb; 1290 if (max <= lba) 1291 end = lba; 1292 } 1293 table->hdr->hdr_lba_start = start; 1294 table->hdr->hdr_lba_end = end; 1295 1296 basetable->gpt_first = start; 1297 basetable->gpt_last = end; 1298 } 1299 1300 static void 1301 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) 1302 { 1303 u_int bo; 1304 uint32_t ch; 1305 uint16_t c; 1306 1307 bo = LITTLE_ENDIAN; /* GPT is little-endian */ 1308 while (len > 0 && *str != 0) { 1309 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); 1310 str++, len--; 1311 if ((ch & 0xf800) == 0xd800) { 1312 if (len > 0) { 1313 c = (bo == BIG_ENDIAN) ? be16toh(*str) 1314 : le16toh(*str); 1315 str++, len--; 1316 } else 1317 c = 0xfffd; 1318 if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { 1319 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); 1320 ch += 0x10000; 1321 } else 1322 ch = 0xfffd; 1323 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ 1324 bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; 1325 continue; 1326 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ 1327 continue; 1328 1329 /* Write the Unicode character in UTF-8 */ 1330 if (ch < 0x80) 1331 g_conf_printf_escaped(sb, "%c", ch); 1332 else if (ch < 0x800) 1333 g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6), 1334 0x80 | (ch & 0x3f)); 1335 else if (ch < 0x10000) 1336 g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12), 1337 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1338 else if (ch < 0x200000) 1339 g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 | 1340 (ch >> 18), 0x80 | ((ch >> 12) & 0x3f), 1341 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1342 } 1343 } 1344 1345 static void 1346 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) 1347 { 1348 size_t s16idx, s8idx; 1349 uint32_t utfchar; 1350 unsigned int c, utfbytes; 1351 1352 s8idx = s16idx = 0; 1353 utfchar = 0; 1354 utfbytes = 0; 1355 bzero(s16, s16len << 1); 1356 while (s8[s8idx] != 0 && s16idx < s16len) { 1357 c = s8[s8idx++]; 1358 if ((c & 0xc0) != 0x80) { 1359 /* Initial characters. */ 1360 if (utfbytes != 0) { 1361 /* Incomplete encoding of previous char. */ 1362 s16[s16idx++] = htole16(0xfffd); 1363 } 1364 if ((c & 0xf8) == 0xf0) { 1365 utfchar = c & 0x07; 1366 utfbytes = 3; 1367 } else if ((c & 0xf0) == 0xe0) { 1368 utfchar = c & 0x0f; 1369 utfbytes = 2; 1370 } else if ((c & 0xe0) == 0xc0) { 1371 utfchar = c & 0x1f; 1372 utfbytes = 1; 1373 } else { 1374 utfchar = c & 0x7f; 1375 utfbytes = 0; 1376 } 1377 } else { 1378 /* Followup characters. */ 1379 if (utfbytes > 0) { 1380 utfchar = (utfchar << 6) + (c & 0x3f); 1381 utfbytes--; 1382 } else if (utfbytes == 0) 1383 utfbytes = ~0; 1384 } 1385 /* 1386 * Write the complete Unicode character as UTF-16 when we 1387 * have all the UTF-8 charactars collected. 1388 */ 1389 if (utfbytes == 0) { 1390 /* 1391 * If we need to write 2 UTF-16 characters, but 1392 * we only have room for 1, then we truncate the 1393 * string by writing a 0 instead. 1394 */ 1395 if (utfchar >= 0x10000 && s16idx < s16len - 1) { 1396 s16[s16idx++] = 1397 htole16(0xd800 | ((utfchar >> 10) - 0x40)); 1398 s16[s16idx++] = 1399 htole16(0xdc00 | (utfchar & 0x3ff)); 1400 } else 1401 s16[s16idx++] = (utfchar >= 0x10000) ? 0 : 1402 htole16(utfchar); 1403 } 1404 } 1405 /* 1406 * If our input string was truncated, append an invalid encoding 1407 * character to the output string. 1408 */ 1409 if (utfbytes != 0 && s16idx < s16len) 1410 s16[s16idx++] = htole16(0xfffd); 1411 } 1412