1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/bio.h> 31 #include <sys/diskmbr.h> 32 #include <sys/gsb_crc32.h> 33 #include <sys/endian.h> 34 #include <sys/gpt.h> 35 #include <sys/kernel.h> 36 #include <sys/kobj.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/malloc.h> 40 #include <sys/mutex.h> 41 #include <sys/queue.h> 42 #include <sys/sbuf.h> 43 #include <sys/systm.h> 44 #include <sys/sysctl.h> 45 #include <sys/uuid.h> 46 #include <geom/geom.h> 47 #include <geom/geom_int.h> 48 #include <geom/part/g_part.h> 49 50 #include "g_part_if.h" 51 52 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support"); 53 54 SYSCTL_DECL(_kern_geom_part); 55 static SYSCTL_NODE(_kern_geom_part, OID_AUTO, gpt, 56 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 57 "GEOM_PART_GPT GUID Partition Table"); 58 59 static u_int allow_nesting = 0; 60 SYSCTL_UINT(_kern_geom_part_gpt, OID_AUTO, allow_nesting, 61 CTLFLAG_RWTUN, &allow_nesting, 0, "Allow GPT to be nested inside other schemes"); 62 63 CTASSERT(offsetof(struct gpt_hdr, padding) == 92); 64 CTASSERT(sizeof(struct gpt_ent) == 128); 65 66 extern u_int geom_part_check_integrity; 67 68 #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) 69 70 #define MBRSIZE 512 71 72 enum gpt_elt { 73 GPT_ELT_PRIHDR, 74 GPT_ELT_PRITBL, 75 GPT_ELT_SECHDR, 76 GPT_ELT_SECTBL, 77 GPT_ELT_COUNT 78 }; 79 80 enum gpt_state { 81 GPT_STATE_UNKNOWN, /* Not determined. */ 82 GPT_STATE_MISSING, /* No signature found. */ 83 GPT_STATE_CORRUPT, /* Checksum mismatch. */ 84 GPT_STATE_INVALID, /* Nonconformant/invalid. */ 85 GPT_STATE_UNSUPPORTED, /* Not supported. */ 86 GPT_STATE_OK /* Perfectly fine. */ 87 }; 88 89 struct g_part_gpt_table { 90 struct g_part_table base; 91 u_char mbr[MBRSIZE]; 92 struct gpt_hdr *hdr; 93 quad_t lba[GPT_ELT_COUNT]; 94 enum gpt_state state[GPT_ELT_COUNT]; 95 int bootcamp; 96 }; 97 98 struct g_part_gpt_entry { 99 struct g_part_entry base; 100 struct gpt_ent ent; 101 }; 102 103 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); 104 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); 105 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *, 106 struct g_part_parms *); 107 108 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, 109 struct g_part_parms *); 110 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); 111 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); 112 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); 113 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, 114 struct sbuf *, const char *); 115 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); 116 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, 117 struct g_part_parms *); 118 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, 119 char *, size_t); 120 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); 121 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); 122 static int g_part_gpt_setunset(struct g_part_table *table, 123 struct g_part_entry *baseentry, const char *attrib, unsigned int set); 124 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, 125 char *, size_t); 126 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); 127 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, 128 struct g_part_parms *); 129 static int g_part_gpt_recover(struct g_part_table *); 130 131 static kobj_method_t g_part_gpt_methods[] = { 132 KOBJMETHOD(g_part_add, g_part_gpt_add), 133 KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), 134 KOBJMETHOD(g_part_create, g_part_gpt_create), 135 KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), 136 KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), 137 KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), 138 KOBJMETHOD(g_part_modify, g_part_gpt_modify), 139 KOBJMETHOD(g_part_resize, g_part_gpt_resize), 140 KOBJMETHOD(g_part_name, g_part_gpt_name), 141 KOBJMETHOD(g_part_probe, g_part_gpt_probe), 142 KOBJMETHOD(g_part_read, g_part_gpt_read), 143 KOBJMETHOD(g_part_recover, g_part_gpt_recover), 144 KOBJMETHOD(g_part_setunset, g_part_gpt_setunset), 145 KOBJMETHOD(g_part_type, g_part_gpt_type), 146 KOBJMETHOD(g_part_write, g_part_gpt_write), 147 { 0, 0 } 148 }; 149 150 #define MAXENTSIZE 1024 151 152 static struct g_part_scheme g_part_gpt_scheme = { 153 "GPT", 154 g_part_gpt_methods, 155 sizeof(struct g_part_gpt_table), 156 .gps_entrysz = sizeof(struct g_part_gpt_entry), 157 .gps_minent = 128, 158 .gps_maxent = 4096, 159 .gps_bootcodesz = MBRSIZE, 160 }; 161 G_PART_SCHEME_DECLARE(g_part_gpt); 162 MODULE_VERSION(geom_part_gpt, 0); 163 164 static struct uuid gpt_uuid_apple_apfs = GPT_ENT_TYPE_APPLE_APFS; 165 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; 166 static struct uuid gpt_uuid_apple_core_storage = 167 GPT_ENT_TYPE_APPLE_CORE_STORAGE; 168 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; 169 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; 170 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; 171 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; 172 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; 173 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; 174 static struct uuid gpt_uuid_apple_zfs = GPT_ENT_TYPE_APPLE_ZFS; 175 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT; 176 static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE; 177 static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL; 178 static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED; 179 static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT; 180 static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD; 181 static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER; 182 static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2; 183 static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32; 184 static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64; 185 static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY; 186 static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP; 187 static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1; 188 static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM; 189 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; 190 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; 191 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; 192 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS; 193 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; 194 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; 195 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; 196 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; 197 static struct uuid gpt_uuid_hifive_fsbl = GPT_ENT_TYPE_HIFIVE_FSBL; 198 static struct uuid gpt_uuid_hifive_bbl = GPT_ENT_TYPE_HIFIVE_BBL; 199 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; 200 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; 201 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; 202 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; 203 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; 204 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; 205 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; 206 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; 207 static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY; 208 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; 209 static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES; 210 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; 211 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; 212 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; 213 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; 214 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; 215 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; 216 static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA; 217 static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT; 218 static struct uuid gpt_uuid_solaris_boot = GPT_ENT_TYPE_SOLARIS_BOOT; 219 static struct uuid gpt_uuid_solaris_root = GPT_ENT_TYPE_SOLARIS_ROOT; 220 static struct uuid gpt_uuid_solaris_swap = GPT_ENT_TYPE_SOLARIS_SWAP; 221 static struct uuid gpt_uuid_solaris_backup = GPT_ENT_TYPE_SOLARIS_BACKUP; 222 static struct uuid gpt_uuid_solaris_var = GPT_ENT_TYPE_SOLARIS_VAR; 223 static struct uuid gpt_uuid_solaris_home = GPT_ENT_TYPE_SOLARIS_HOME; 224 static struct uuid gpt_uuid_solaris_altsec = GPT_ENT_TYPE_SOLARIS_ALTSEC; 225 static struct uuid gpt_uuid_solaris_reserved = GPT_ENT_TYPE_SOLARIS_RESERVED; 226 static struct uuid gpt_uuid_u_boot_env = GPT_ENT_TYPE_U_BOOT_ENV; 227 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; 228 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS; 229 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG; 230 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED; 231 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR; 232 233 static struct g_part_uuid_alias { 234 struct uuid *uuid; 235 int alias; 236 int mbrtype; 237 } gpt_uuid_alias_match[] = { 238 { &gpt_uuid_apple_apfs, G_PART_ALIAS_APPLE_APFS, 0 }, 239 { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab }, 240 { &gpt_uuid_apple_core_storage, G_PART_ALIAS_APPLE_CORE_STORAGE, 0 }, 241 { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf }, 242 { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 }, 243 { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 }, 244 { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 }, 245 { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 }, 246 { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 }, 247 { &gpt_uuid_apple_zfs, G_PART_ALIAS_APPLE_ZFS, 0 }, 248 { &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 }, 249 { &gpt_uuid_chromeos_firmware, G_PART_ALIAS_CHROMEOS_FIRMWARE, 0 }, 250 { &gpt_uuid_chromeos_kernel, G_PART_ALIAS_CHROMEOS_KERNEL, 0 }, 251 { &gpt_uuid_chromeos_reserved, G_PART_ALIAS_CHROMEOS_RESERVED, 0 }, 252 { &gpt_uuid_chromeos_root, G_PART_ALIAS_CHROMEOS_ROOT, 0 }, 253 { &gpt_uuid_dfbsd_ccd, G_PART_ALIAS_DFBSD_CCD, 0 }, 254 { &gpt_uuid_dfbsd_hammer, G_PART_ALIAS_DFBSD_HAMMER, 0 }, 255 { &gpt_uuid_dfbsd_hammer2, G_PART_ALIAS_DFBSD_HAMMER2, 0 }, 256 { &gpt_uuid_dfbsd_label32, G_PART_ALIAS_DFBSD, 0xa5 }, 257 { &gpt_uuid_dfbsd_label64, G_PART_ALIAS_DFBSD64, 0xa5 }, 258 { &gpt_uuid_dfbsd_legacy, G_PART_ALIAS_DFBSD_LEGACY, 0 }, 259 { &gpt_uuid_dfbsd_swap, G_PART_ALIAS_DFBSD_SWAP, 0 }, 260 { &gpt_uuid_dfbsd_ufs1, G_PART_ALIAS_DFBSD_UFS, 0 }, 261 { &gpt_uuid_dfbsd_vinum, G_PART_ALIAS_DFBSD_VINUM, 0 }, 262 { &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee }, 263 { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 }, 264 { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 }, 265 { &gpt_uuid_freebsd_nandfs, G_PART_ALIAS_FREEBSD_NANDFS, 0 }, 266 { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 }, 267 { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 }, 268 { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 }, 269 { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 }, 270 { &gpt_uuid_hifive_fsbl, G_PART_ALIAS_HIFIVE_FSBL, 0 }, 271 { &gpt_uuid_hifive_bbl, G_PART_ALIAS_HIFIVE_BBL, 0 }, 272 { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b }, 273 { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 }, 274 { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 }, 275 { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 }, 276 { &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 }, 277 { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b }, 278 { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 }, 279 { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 }, 280 { &gpt_uuid_ms_recovery, G_PART_ALIAS_MS_RECOVERY, 0 }, 281 { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 }, 282 { &gpt_uuid_ms_spaces, G_PART_ALIAS_MS_SPACES, 0 }, 283 { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 }, 284 { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 }, 285 { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 }, 286 { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 }, 287 { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 }, 288 { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 }, 289 { &gpt_uuid_openbsd_data, G_PART_ALIAS_OPENBSD_DATA, 0 }, 290 { &gpt_uuid_prep_boot, G_PART_ALIAS_PREP_BOOT, 0x41 }, 291 { &gpt_uuid_solaris_boot, G_PART_ALIAS_SOLARIS_BOOT, 0 }, 292 { &gpt_uuid_solaris_root, G_PART_ALIAS_SOLARIS_ROOT, 0 }, 293 { &gpt_uuid_solaris_swap, G_PART_ALIAS_SOLARIS_SWAP, 0 }, 294 { &gpt_uuid_solaris_backup, G_PART_ALIAS_SOLARIS_BACKUP, 0 }, 295 { &gpt_uuid_solaris_var, G_PART_ALIAS_SOLARIS_VAR, 0 }, 296 { &gpt_uuid_solaris_home, G_PART_ALIAS_SOLARIS_HOME, 0 }, 297 { &gpt_uuid_solaris_altsec, G_PART_ALIAS_SOLARIS_ALTSEC, 0 }, 298 { &gpt_uuid_solaris_reserved, G_PART_ALIAS_SOLARIS_RESERVED, 0 }, 299 { &gpt_uuid_u_boot_env, G_PART_ALIAS_U_BOOT_ENV, 0 }, 300 { &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 }, 301 { &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 }, 302 { &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 }, 303 { &gpt_uuid_vmvsanhdr, G_PART_ALIAS_VMVSANHDR, 0 }, 304 { NULL, 0, 0 } 305 }; 306 307 static int 308 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start, 309 quad_t end) 310 { 311 312 if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX) 313 return (EINVAL); 314 315 mbr += DOSPARTOFF + idx * DOSPARTSIZE; 316 mbr[0] = 0; 317 if (start == 1) { 318 /* 319 * Treat the PMBR partition specially to maximize 320 * interoperability with BIOSes. 321 */ 322 mbr[1] = mbr[3] = 0; 323 mbr[2] = 2; 324 } else 325 mbr[1] = mbr[2] = mbr[3] = 0xff; 326 mbr[4] = typ; 327 mbr[5] = mbr[6] = mbr[7] = 0xff; 328 le32enc(mbr + 8, (uint32_t)start); 329 le32enc(mbr + 12, (uint32_t)(end - start + 1)); 330 return (0); 331 } 332 333 static int 334 gpt_map_type(struct uuid *t) 335 { 336 struct g_part_uuid_alias *uap; 337 338 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 339 if (EQUUID(t, uap->uuid)) 340 return (uap->mbrtype); 341 } 342 return (0); 343 } 344 345 static void 346 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp) 347 { 348 349 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 350 gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, 351 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 352 le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); 353 } 354 355 /* 356 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the 357 * whole disk anymore. Rather, it covers the GPT table and the EFI 358 * system partition only. This way the HFS+ partition and any FAT 359 * partitions can be added to the MBR without creating an overlap. 360 */ 361 static int 362 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname) 363 { 364 uint8_t *p; 365 366 p = table->mbr + DOSPARTOFF; 367 if (p[4] != 0xee || le32dec(p + 8) != 1) 368 return (0); 369 370 p += DOSPARTSIZE; 371 if (p[4] != 0xaf) 372 return (0); 373 374 printf("GEOM: %s: enabling Boot Camp\n", provname); 375 return (1); 376 } 377 378 static void 379 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp) 380 { 381 struct g_part_entry *baseentry; 382 struct g_part_gpt_entry *entry; 383 struct g_part_gpt_table *table; 384 int bootable, error, index, slices, typ; 385 386 table = (struct g_part_gpt_table *)basetable; 387 388 bootable = -1; 389 for (index = 0; index < NDOSPART; index++) { 390 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index]) 391 bootable = index; 392 } 393 394 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 395 slices = 0; 396 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 397 if (baseentry->gpe_deleted) 398 continue; 399 index = baseentry->gpe_index - 1; 400 if (index >= NDOSPART) 401 continue; 402 403 entry = (struct g_part_gpt_entry *)baseentry; 404 405 switch (index) { 406 case 0: /* This must be the EFI system partition. */ 407 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi)) 408 goto disable; 409 error = gpt_write_mbr_entry(table->mbr, index, 0xee, 410 1ull, entry->ent.ent_lba_end); 411 break; 412 case 1: /* This must be the HFS+ partition. */ 413 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs)) 414 goto disable; 415 error = gpt_write_mbr_entry(table->mbr, index, 0xaf, 416 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 417 break; 418 default: 419 typ = gpt_map_type(&entry->ent.ent_type); 420 error = gpt_write_mbr_entry(table->mbr, index, typ, 421 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 422 break; 423 } 424 if (error) 425 continue; 426 427 if (index == bootable) 428 table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80; 429 slices |= 1 << index; 430 } 431 if ((slices & 3) == 3) 432 return; 433 434 disable: 435 table->bootcamp = 0; 436 gpt_create_pmbr(table, pp); 437 } 438 439 static struct gpt_hdr * 440 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, 441 enum gpt_elt elt) 442 { 443 struct gpt_hdr *buf, *hdr; 444 struct g_provider *pp; 445 quad_t lba, last; 446 int error; 447 uint32_t crc, sz; 448 449 pp = cp->provider; 450 last = (pp->mediasize / pp->sectorsize) - 1; 451 table->state[elt] = GPT_STATE_MISSING; 452 /* 453 * If the primary header is valid look for secondary 454 * header in AlternateLBA, otherwise in the last medium's LBA. 455 */ 456 if (elt == GPT_ELT_SECHDR) { 457 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK) 458 table->lba[elt] = last; 459 } else 460 table->lba[elt] = 1; 461 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, 462 &error); 463 if (buf == NULL) 464 return (NULL); 465 hdr = NULL; 466 if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) 467 goto fail; 468 469 table->state[elt] = GPT_STATE_CORRUPT; 470 sz = le32toh(buf->hdr_size); 471 if (sz < 92 || sz > pp->sectorsize) 472 goto fail; 473 474 hdr = g_malloc(sz, M_WAITOK | M_ZERO); 475 bcopy(buf, hdr, sz); 476 hdr->hdr_size = sz; 477 478 crc = le32toh(buf->hdr_crc_self); 479 buf->hdr_crc_self = 0; 480 if (crc32(buf, sz) != crc) 481 goto fail; 482 hdr->hdr_crc_self = crc; 483 484 table->state[elt] = GPT_STATE_INVALID; 485 hdr->hdr_revision = le32toh(buf->hdr_revision); 486 if (hdr->hdr_revision < GPT_HDR_REVISION) 487 goto fail; 488 hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); 489 if (hdr->hdr_lba_self != table->lba[elt]) 490 goto fail; 491 hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); 492 if (hdr->hdr_lba_alt == hdr->hdr_lba_self) 493 goto fail; 494 if (hdr->hdr_lba_alt > last && geom_part_check_integrity) 495 goto fail; 496 497 /* Check the managed area. */ 498 hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); 499 if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) 500 goto fail; 501 hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); 502 if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) 503 goto fail; 504 505 /* Check the table location and size of the table. */ 506 hdr->hdr_entries = le32toh(buf->hdr_entries); 507 hdr->hdr_entsz = le32toh(buf->hdr_entsz); 508 if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || 509 (hdr->hdr_entsz & 7) != 0) 510 goto fail; 511 hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); 512 if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) 513 goto fail; 514 if (hdr->hdr_lba_table >= hdr->hdr_lba_start && 515 hdr->hdr_lba_table <= hdr->hdr_lba_end) 516 goto fail; 517 lba = hdr->hdr_lba_table + 518 howmany((uint64_t)hdr->hdr_entries * hdr->hdr_entsz, 519 pp->sectorsize) - 1; 520 if (lba >= last) 521 goto fail; 522 if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) 523 goto fail; 524 525 table->state[elt] = GPT_STATE_OK; 526 le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); 527 hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); 528 529 /* save LBA for secondary header */ 530 if (elt == GPT_ELT_PRIHDR) 531 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt; 532 533 g_free(buf); 534 return (hdr); 535 536 fail: 537 g_free(hdr); 538 g_free(buf); 539 return (NULL); 540 } 541 542 static struct gpt_ent * 543 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, 544 enum gpt_elt elt, struct gpt_hdr *hdr) 545 { 546 struct g_provider *pp; 547 struct gpt_ent *ent, *tbl; 548 char *buf, *p; 549 unsigned int idx, sectors, tblsz, size; 550 int error; 551 552 if (hdr == NULL) 553 return (NULL); 554 if (hdr->hdr_entries > g_part_gpt_scheme.gps_maxent || 555 hdr->hdr_entsz > MAXENTSIZE) { 556 table->state[elt] = GPT_STATE_UNSUPPORTED; 557 return (NULL); 558 } 559 560 pp = cp->provider; 561 table->lba[elt] = hdr->hdr_lba_table; 562 563 table->state[elt] = GPT_STATE_MISSING; 564 tblsz = hdr->hdr_entries * hdr->hdr_entsz; 565 sectors = howmany(tblsz, pp->sectorsize); 566 buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO); 567 for (idx = 0; idx < sectors; idx += maxphys / pp->sectorsize) { 568 size = (sectors - idx > maxphys / pp->sectorsize) ? maxphys: 569 (sectors - idx) * pp->sectorsize; 570 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize, 571 size, &error); 572 if (p == NULL) { 573 g_free(buf); 574 return (NULL); 575 } 576 bcopy(p, buf + idx * pp->sectorsize, size); 577 g_free(p); 578 } 579 table->state[elt] = GPT_STATE_CORRUPT; 580 if (crc32(buf, tblsz) != hdr->hdr_crc_table) { 581 g_free(buf); 582 return (NULL); 583 } 584 585 table->state[elt] = GPT_STATE_OK; 586 tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), 587 M_WAITOK | M_ZERO); 588 589 for (idx = 0, ent = tbl, p = buf; 590 idx < hdr->hdr_entries; 591 idx++, ent++, p += hdr->hdr_entsz) { 592 le_uuid_dec(p, &ent->ent_type); 593 le_uuid_dec(p + 16, &ent->ent_uuid); 594 ent->ent_lba_start = le64dec(p + 32); 595 ent->ent_lba_end = le64dec(p + 40); 596 ent->ent_attr = le64dec(p + 48); 597 /* Keep UTF-16 in little-endian. */ 598 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); 599 } 600 601 g_free(buf); 602 return (tbl); 603 } 604 605 static int 606 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) 607 { 608 609 if (pri == NULL || sec == NULL) 610 return (0); 611 612 if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) 613 return (0); 614 return ((pri->hdr_revision == sec->hdr_revision && 615 pri->hdr_size == sec->hdr_size && 616 pri->hdr_lba_start == sec->hdr_lba_start && 617 pri->hdr_lba_end == sec->hdr_lba_end && 618 pri->hdr_entries == sec->hdr_entries && 619 pri->hdr_entsz == sec->hdr_entsz && 620 pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); 621 } 622 623 static int 624 gpt_parse_type(const char *type, struct uuid *uuid) 625 { 626 struct uuid tmp; 627 const char *alias; 628 int error; 629 struct g_part_uuid_alias *uap; 630 631 if (type[0] == '!') { 632 error = parse_uuid(type + 1, &tmp); 633 if (error) 634 return (error); 635 if (EQUUID(&tmp, &gpt_uuid_unused)) 636 return (EINVAL); 637 *uuid = tmp; 638 return (0); 639 } 640 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 641 alias = g_part_alias_name(uap->alias); 642 if (!strcasecmp(type, alias)) { 643 *uuid = *uap->uuid; 644 return (0); 645 } 646 } 647 return (EINVAL); 648 } 649 650 static int 651 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, 652 struct g_part_parms *gpp) 653 { 654 struct g_part_gpt_entry *entry; 655 int error; 656 657 entry = (struct g_part_gpt_entry *)baseentry; 658 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 659 if (error) 660 return (error); 661 kern_uuidgen(&entry->ent.ent_uuid, 1); 662 entry->ent.ent_lba_start = baseentry->gpe_start; 663 entry->ent.ent_lba_end = baseentry->gpe_end; 664 if (baseentry->gpe_deleted) { 665 entry->ent.ent_attr = 0; 666 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); 667 } 668 if (gpp->gpp_parms & G_PART_PARM_LABEL) 669 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 670 sizeof(entry->ent.ent_name) / 671 sizeof(entry->ent.ent_name[0])); 672 return (0); 673 } 674 675 static int 676 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) 677 { 678 struct g_part_gpt_table *table; 679 size_t codesz; 680 681 codesz = DOSPARTOFF; 682 table = (struct g_part_gpt_table *)basetable; 683 bzero(table->mbr, codesz); 684 codesz = MIN(codesz, gpp->gpp_codesize); 685 if (codesz > 0) 686 bcopy(gpp->gpp_codeptr, table->mbr, codesz); 687 return (0); 688 } 689 690 static int 691 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) 692 { 693 struct g_provider *pp; 694 struct g_part_gpt_table *table; 695 size_t tblsz; 696 697 /* Our depth should be 0 unless nesting was explicitly enabled. */ 698 if (!allow_nesting && basetable->gpt_depth != 0) 699 return (ENXIO); 700 701 table = (struct g_part_gpt_table *)basetable; 702 pp = gpp->gpp_provider; 703 tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent), 704 pp->sectorsize); 705 if (pp->sectorsize < MBRSIZE || 706 pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * 707 pp->sectorsize) 708 return (ENOSPC); 709 710 gpt_create_pmbr(table, pp); 711 712 /* Allocate space for the header */ 713 table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); 714 715 bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 716 table->hdr->hdr_revision = GPT_HDR_REVISION; 717 table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); 718 kern_uuidgen(&table->hdr->hdr_uuid, 1); 719 table->hdr->hdr_entries = basetable->gpt_entries; 720 table->hdr->hdr_entsz = sizeof(struct gpt_ent); 721 722 g_gpt_set_defaults(basetable, pp, gpp); 723 return (0); 724 } 725 726 static int 727 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) 728 { 729 struct g_part_gpt_table *table; 730 struct g_provider *pp; 731 732 table = (struct g_part_gpt_table *)basetable; 733 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 734 g_free(table->hdr); 735 table->hdr = NULL; 736 737 /* 738 * Wipe the first 2 sectors and last one to clear the partitioning. 739 * Wipe sectors only if they have valid metadata. 740 */ 741 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) 742 basetable->gpt_smhead |= 3; 743 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 744 table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1) 745 basetable->gpt_smtail |= 1; 746 return (0); 747 } 748 749 static void 750 g_part_gpt_efimedia(struct g_part_gpt_entry *entry, struct sbuf *sb) 751 { 752 sbuf_printf(sb, "HD(%d,GPT,", entry->base.gpe_index); 753 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 754 sbuf_printf(sb, ",%#jx,%#jx)", (intmax_t)entry->base.gpe_start, 755 (intmax_t)(entry->base.gpe_end - entry->base.gpe_start + 1)); 756 } 757 758 static void 759 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 760 struct sbuf *sb, const char *indent) 761 { 762 struct g_part_gpt_entry *entry; 763 764 entry = (struct g_part_gpt_entry *)baseentry; 765 if (indent == NULL) { 766 /* conftxt: libdisk compatibility */ 767 sbuf_cat(sb, " xs GPT xt "); 768 sbuf_printf_uuid(sb, &entry->ent.ent_type); 769 } else if (entry != NULL) { 770 /* confxml: partition entry information */ 771 sbuf_printf(sb, "%s<label>", indent); 772 g_gpt_printf_utf16(sb, entry->ent.ent_name, 773 sizeof(entry->ent.ent_name) >> 1); 774 sbuf_cat(sb, "</label>\n"); 775 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME) 776 sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent); 777 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) { 778 sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n", 779 indent); 780 } 781 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) { 782 sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n", 783 indent); 784 } 785 sbuf_printf(sb, "%s<rawtype>", indent); 786 sbuf_printf_uuid(sb, &entry->ent.ent_type); 787 sbuf_cat(sb, "</rawtype>\n"); 788 sbuf_printf(sb, "%s<rawuuid>", indent); 789 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 790 sbuf_cat(sb, "</rawuuid>\n"); 791 sbuf_printf(sb, "%s<efimedia>", indent); 792 g_part_gpt_efimedia(entry, sb); 793 sbuf_cat(sb, "</efimedia>\n"); 794 } else { 795 /* confxml: scheme information */ 796 } 797 } 798 799 static int 800 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) 801 { 802 struct g_part_gpt_entry *entry; 803 804 entry = (struct g_part_gpt_entry *)baseentry; 805 return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || 806 EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) || 807 EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0); 808 } 809 810 static int 811 g_part_gpt_modify(struct g_part_table *basetable, 812 struct g_part_entry *baseentry, struct g_part_parms *gpp) 813 { 814 struct g_part_gpt_entry *entry; 815 int error; 816 817 entry = (struct g_part_gpt_entry *)baseentry; 818 if (gpp->gpp_parms & G_PART_PARM_TYPE) { 819 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 820 if (error) 821 return (error); 822 } 823 if (gpp->gpp_parms & G_PART_PARM_LABEL) 824 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 825 sizeof(entry->ent.ent_name) / 826 sizeof(entry->ent.ent_name[0])); 827 return (0); 828 } 829 830 static int 831 g_part_gpt_resize(struct g_part_table *basetable, 832 struct g_part_entry *baseentry, struct g_part_parms *gpp) 833 { 834 struct g_part_gpt_entry *entry; 835 836 if (baseentry == NULL) 837 return (g_part_gpt_recover(basetable)); 838 839 entry = (struct g_part_gpt_entry *)baseentry; 840 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; 841 entry->ent.ent_lba_end = baseentry->gpe_end; 842 843 return (0); 844 } 845 846 static const char * 847 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, 848 char *buf, size_t bufsz) 849 { 850 struct g_part_gpt_entry *entry; 851 char c; 852 853 entry = (struct g_part_gpt_entry *)baseentry; 854 c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; 855 snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); 856 return (buf); 857 } 858 859 static int 860 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) 861 { 862 struct g_provider *pp; 863 u_char *buf; 864 int error, index, pri, res; 865 866 /* Our depth should be 0 unless nesting was explicitly enabled. */ 867 if (!allow_nesting && table->gpt_depth != 0) 868 return (ENXIO); 869 870 pp = cp->provider; 871 872 /* 873 * Sanity-check the provider. Since the first sector on the provider 874 * must be a PMBR and a PMBR is 512 bytes large, the sector size 875 * must be at least 512 bytes. Also, since the theoretical minimum 876 * number of sectors needed by GPT is 6, any medium that has less 877 * than 6 sectors is never going to be able to hold a GPT. The 878 * number 6 comes from: 879 * 1 sector for the PMBR 880 * 2 sectors for the GPT headers (each 1 sector) 881 * 2 sectors for the GPT tables (each 1 sector) 882 * 1 sector for an actual partition 883 * It's better to catch this pathological case early than behaving 884 * pathologically later on... 885 */ 886 if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) 887 return (ENOSPC); 888 889 /* 890 * Check that there's a MBR or a PMBR. If it's a PMBR, we return 891 * as the highest priority on a match, otherwise we assume some 892 * GPT-unaware tool has destroyed the GPT by recreating a MBR and 893 * we really want the MBR scheme to take precedence. 894 */ 895 buf = g_read_data(cp, 0L, pp->sectorsize, &error); 896 if (buf == NULL) 897 return (error); 898 res = le16dec(buf + DOSMAGICOFFSET); 899 pri = G_PART_PROBE_PRI_LOW; 900 if (res == DOSMAGIC) { 901 for (index = 0; index < NDOSPART; index++) { 902 if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee) 903 pri = G_PART_PROBE_PRI_HIGH; 904 } 905 g_free(buf); 906 907 /* Check that there's a primary header. */ 908 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); 909 if (buf == NULL) 910 return (error); 911 res = memcmp(buf, GPT_HDR_SIG, 8); 912 g_free(buf); 913 if (res == 0) 914 return (pri); 915 } else 916 g_free(buf); 917 918 /* No primary? Check that there's a secondary. */ 919 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 920 &error); 921 if (buf == NULL) 922 return (error); 923 res = memcmp(buf, GPT_HDR_SIG, 8); 924 g_free(buf); 925 return ((res == 0) ? pri : ENXIO); 926 } 927 928 static int 929 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) 930 { 931 struct gpt_hdr *prihdr, *sechdr; 932 struct gpt_ent *tbl, *pritbl, *sectbl; 933 struct g_provider *pp; 934 struct g_part_gpt_table *table; 935 struct g_part_gpt_entry *entry; 936 u_char *buf; 937 uint64_t last; 938 int error, index; 939 940 table = (struct g_part_gpt_table *)basetable; 941 pp = cp->provider; 942 last = (pp->mediasize / pp->sectorsize) - 1; 943 944 /* Read the PMBR */ 945 buf = g_read_data(cp, 0, pp->sectorsize, &error); 946 if (buf == NULL) 947 return (error); 948 bcopy(buf, table->mbr, MBRSIZE); 949 g_free(buf); 950 951 /* Read the primary header and table. */ 952 prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); 953 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { 954 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); 955 } else { 956 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 957 pritbl = NULL; 958 } 959 960 /* Read the secondary header and table. */ 961 sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); 962 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { 963 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); 964 } else { 965 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 966 sectbl = NULL; 967 } 968 969 /* Fail if we haven't got any good tables at all. */ 970 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && 971 table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 972 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_UNSUPPORTED && 973 table->state[GPT_ELT_SECTBL] == GPT_STATE_UNSUPPORTED && 974 gpt_matched_hdrs(prihdr, sechdr)) { 975 printf("GEOM: %s: unsupported GPT detected.\n", 976 pp->name); 977 printf( 978 "GEOM: %s: number of GPT entries: %u, entry size: %uB.\n", 979 pp->name, prihdr->hdr_entries, prihdr->hdr_entsz); 980 printf( 981 "GEOM: %s: maximum supported number of GPT entries: %u, entry size: %uB.\n", 982 pp->name, g_part_gpt_scheme.gps_maxent, MAXENTSIZE); 983 printf("GEOM: %s: GPT rejected.\n", pp->name); 984 } else { 985 printf("GEOM: %s: corrupt or invalid GPT detected.\n", 986 pp->name); 987 printf( 988 "GEOM: %s: GPT rejected -- may not be recoverable.\n", 989 pp->name); 990 } 991 g_free(prihdr); 992 g_free(pritbl); 993 g_free(sechdr); 994 g_free(sectbl); 995 return (EINVAL); 996 } 997 998 /* 999 * If both headers are good but they disagree with each other, 1000 * then invalidate one. We prefer to keep the primary header, 1001 * unless the primary table is corrupt. 1002 */ 1003 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && 1004 table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 1005 !gpt_matched_hdrs(prihdr, sechdr)) { 1006 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { 1007 table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; 1008 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 1009 g_free(sechdr); 1010 sechdr = NULL; 1011 } else { 1012 table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; 1013 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 1014 g_free(prihdr); 1015 prihdr = NULL; 1016 } 1017 } 1018 1019 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { 1020 printf("GEOM: %s: the primary GPT table is corrupt or " 1021 "invalid.\n", pp->name); 1022 printf("GEOM: %s: using the secondary instead -- recovery " 1023 "strongly advised.\n", pp->name); 1024 table->hdr = sechdr; 1025 basetable->gpt_corrupt = 1; 1026 g_free(prihdr); 1027 tbl = sectbl; 1028 g_free(pritbl); 1029 } else { 1030 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 1031 printf("GEOM: %s: the secondary GPT table is corrupt " 1032 "or invalid.\n", pp->name); 1033 printf("GEOM: %s: using the primary only -- recovery " 1034 "suggested.\n", pp->name); 1035 basetable->gpt_corrupt = 1; 1036 } else if (table->lba[GPT_ELT_SECHDR] != last) { 1037 printf( "GEOM: %s: the secondary GPT header is not in " 1038 "the last LBA.\n", pp->name); 1039 basetable->gpt_corrupt = 1; 1040 } 1041 table->hdr = prihdr; 1042 g_free(sechdr); 1043 tbl = pritbl; 1044 g_free(sectbl); 1045 } 1046 1047 basetable->gpt_first = table->hdr->hdr_lba_start; 1048 basetable->gpt_last = table->hdr->hdr_lba_end; 1049 basetable->gpt_entries = table->hdr->hdr_entries; 1050 1051 for (index = basetable->gpt_entries - 1; index >= 0; index--) { 1052 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) 1053 continue; 1054 entry = (struct g_part_gpt_entry *)g_part_new_entry( 1055 basetable, index + 1, tbl[index].ent_lba_start, 1056 tbl[index].ent_lba_end); 1057 entry->ent = tbl[index]; 1058 } 1059 1060 g_free(tbl); 1061 1062 /* 1063 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions 1064 * if (and only if) any FAT32 or FAT16 partitions have been 1065 * created. This happens irrespective of whether Boot Camp is 1066 * used/enabled, though it's generally understood to be done 1067 * to support legacy Windows under Boot Camp. We refer to this 1068 * mirroring simply as Boot Camp. We try to detect Boot Camp 1069 * so that we can update the MBR if and when GPT changes have 1070 * been made. Note that we do not enable Boot Camp if not 1071 * previously enabled because we can't assume that we're on a 1072 * Mac alongside Mac OS X. 1073 */ 1074 table->bootcamp = gpt_is_bootcamp(table, pp->name); 1075 1076 return (0); 1077 } 1078 1079 static int 1080 g_part_gpt_recover(struct g_part_table *basetable) 1081 { 1082 struct g_part_gpt_table *table; 1083 struct g_provider *pp; 1084 1085 table = (struct g_part_gpt_table *)basetable; 1086 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 1087 gpt_create_pmbr(table, pp); 1088 g_gpt_set_defaults(basetable, pp, NULL); 1089 basetable->gpt_corrupt = 0; 1090 return (0); 1091 } 1092 1093 static int 1094 g_part_gpt_setunset(struct g_part_table *basetable, 1095 struct g_part_entry *baseentry, const char *attrib, unsigned int set) 1096 { 1097 struct g_part_gpt_entry *entry; 1098 struct g_part_gpt_table *table; 1099 struct g_provider *pp; 1100 uint8_t *p; 1101 uint64_t attr; 1102 int i; 1103 1104 table = (struct g_part_gpt_table *)basetable; 1105 entry = (struct g_part_gpt_entry *)baseentry; 1106 1107 if (strcasecmp(attrib, "active") == 0) { 1108 if (table->bootcamp) { 1109 /* The active flag must be set on a valid entry. */ 1110 if (entry == NULL) 1111 return (ENXIO); 1112 if (baseentry->gpe_index > NDOSPART) 1113 return (EINVAL); 1114 for (i = 0; i < NDOSPART; i++) { 1115 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1116 p[0] = (i == baseentry->gpe_index - 1) 1117 ? ((set) ? 0x80 : 0) : 0; 1118 } 1119 } else { 1120 /* The PMBR is marked as active without an entry. */ 1121 if (entry != NULL) 1122 return (ENXIO); 1123 for (i = 0; i < NDOSPART; i++) { 1124 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1125 p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0; 1126 } 1127 } 1128 return (0); 1129 } else if (strcasecmp(attrib, "lenovofix") == 0) { 1130 /* 1131 * Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR. 1132 * This workaround allows Lenovo X220, T420, T520, etc to boot 1133 * from GPT Partitions in BIOS mode. 1134 */ 1135 1136 if (entry != NULL) 1137 return (ENXIO); 1138 1139 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 1140 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 1141 gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1, 1142 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 1143 return (0); 1144 } 1145 1146 if (entry == NULL) 1147 return (ENODEV); 1148 1149 attr = 0; 1150 if (strcasecmp(attrib, "bootme") == 0) { 1151 attr |= GPT_ENT_ATTR_BOOTME; 1152 } else if (strcasecmp(attrib, "bootonce") == 0) { 1153 attr |= GPT_ENT_ATTR_BOOTONCE; 1154 if (set) 1155 attr |= GPT_ENT_ATTR_BOOTME; 1156 } else if (strcasecmp(attrib, "bootfailed") == 0) { 1157 /* 1158 * It should only be possible to unset BOOTFAILED, but it might 1159 * be useful for test purposes to also be able to set it. 1160 */ 1161 attr |= GPT_ENT_ATTR_BOOTFAILED; 1162 } 1163 if (attr == 0) 1164 return (EINVAL); 1165 1166 if (set) 1167 attr = entry->ent.ent_attr | attr; 1168 else 1169 attr = entry->ent.ent_attr & ~attr; 1170 if (attr != entry->ent.ent_attr) { 1171 entry->ent.ent_attr = attr; 1172 if (!baseentry->gpe_created) 1173 baseentry->gpe_modified = 1; 1174 } 1175 return (0); 1176 } 1177 1178 static const char * 1179 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 1180 char *buf, size_t bufsz) 1181 { 1182 struct g_part_gpt_entry *entry; 1183 struct uuid *type; 1184 struct g_part_uuid_alias *uap; 1185 1186 entry = (struct g_part_gpt_entry *)baseentry; 1187 type = &entry->ent.ent_type; 1188 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) 1189 if (EQUUID(type, uap->uuid)) 1190 return (g_part_alias_name(uap->alias)); 1191 buf[0] = '!'; 1192 snprintf_uuid(buf + 1, bufsz - 1, type); 1193 1194 return (buf); 1195 } 1196 1197 static int 1198 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) 1199 { 1200 unsigned char *buf, *bp; 1201 struct g_provider *pp; 1202 struct g_part_entry *baseentry; 1203 struct g_part_gpt_entry *entry; 1204 struct g_part_gpt_table *table; 1205 size_t tblsz; 1206 uint32_t crc; 1207 int error, index; 1208 1209 pp = cp->provider; 1210 table = (struct g_part_gpt_table *)basetable; 1211 tblsz = howmany(table->hdr->hdr_entries * table->hdr->hdr_entsz, 1212 pp->sectorsize); 1213 1214 /* Reconstruct the MBR from the GPT if under Boot Camp. */ 1215 if (table->bootcamp) 1216 gpt_update_bootcamp(basetable, pp); 1217 1218 /* Write the PMBR */ 1219 buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); 1220 bcopy(table->mbr, buf, MBRSIZE); 1221 error = g_write_data(cp, 0, buf, pp->sectorsize); 1222 g_free(buf); 1223 if (error) 1224 return (error); 1225 1226 /* Allocate space for the header and entries. */ 1227 buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); 1228 1229 memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 1230 le32enc(buf + 8, table->hdr->hdr_revision); 1231 le32enc(buf + 12, table->hdr->hdr_size); 1232 le64enc(buf + 40, table->hdr->hdr_lba_start); 1233 le64enc(buf + 48, table->hdr->hdr_lba_end); 1234 le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); 1235 le32enc(buf + 80, table->hdr->hdr_entries); 1236 le32enc(buf + 84, table->hdr->hdr_entsz); 1237 1238 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1239 if (baseentry->gpe_deleted) 1240 continue; 1241 entry = (struct g_part_gpt_entry *)baseentry; 1242 index = baseentry->gpe_index - 1; 1243 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; 1244 le_uuid_enc(bp, &entry->ent.ent_type); 1245 le_uuid_enc(bp + 16, &entry->ent.ent_uuid); 1246 le64enc(bp + 32, entry->ent.ent_lba_start); 1247 le64enc(bp + 40, entry->ent.ent_lba_end); 1248 le64enc(bp + 48, entry->ent.ent_attr); 1249 memcpy(bp + 56, entry->ent.ent_name, 1250 sizeof(entry->ent.ent_name)); 1251 } 1252 1253 crc = crc32(buf + pp->sectorsize, 1254 table->hdr->hdr_entries * table->hdr->hdr_entsz); 1255 le32enc(buf + 88, crc); 1256 1257 /* Write primary meta-data. */ 1258 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1259 le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ 1260 le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ 1261 le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ 1262 crc = crc32(buf, table->hdr->hdr_size); 1263 le32enc(buf + 16, crc); 1264 1265 for (index = 0; index < tblsz; index += maxphys / pp->sectorsize) { 1266 error = g_write_data(cp, 1267 (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize, 1268 buf + (index + 1) * pp->sectorsize, 1269 (tblsz - index > maxphys / pp->sectorsize) ? maxphys : 1270 (tblsz - index) * pp->sectorsize); 1271 if (error) 1272 goto out; 1273 } 1274 error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, 1275 buf, pp->sectorsize); 1276 if (error) 1277 goto out; 1278 1279 /* Write secondary meta-data. */ 1280 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1281 le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ 1282 le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ 1283 le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ 1284 crc = crc32(buf, table->hdr->hdr_size); 1285 le32enc(buf + 16, crc); 1286 1287 for (index = 0; index < tblsz; index += maxphys / pp->sectorsize) { 1288 error = g_write_data(cp, 1289 (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize, 1290 buf + (index + 1) * pp->sectorsize, 1291 (tblsz - index > maxphys / pp->sectorsize) ? maxphys : 1292 (tblsz - index) * pp->sectorsize); 1293 if (error) 1294 goto out; 1295 } 1296 error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, 1297 buf, pp->sectorsize); 1298 1299 out: 1300 g_free(buf); 1301 return (error); 1302 } 1303 1304 static void 1305 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp, 1306 struct g_part_parms *gpp) 1307 { 1308 struct g_part_entry *baseentry; 1309 struct g_part_gpt_entry *entry; 1310 struct g_part_gpt_table *table; 1311 quad_t start, end, min, max; 1312 quad_t lba, last; 1313 size_t spb, tblsz; 1314 1315 table = (struct g_part_gpt_table *)basetable; 1316 last = pp->mediasize / pp->sectorsize - 1; 1317 tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent), 1318 pp->sectorsize); 1319 1320 table->lba[GPT_ELT_PRIHDR] = 1; 1321 table->lba[GPT_ELT_PRITBL] = 2; 1322 table->lba[GPT_ELT_SECHDR] = last; 1323 table->lba[GPT_ELT_SECTBL] = last - tblsz; 1324 table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK; 1325 table->state[GPT_ELT_PRITBL] = GPT_STATE_OK; 1326 table->state[GPT_ELT_SECHDR] = GPT_STATE_OK; 1327 table->state[GPT_ELT_SECTBL] = GPT_STATE_OK; 1328 1329 max = start = 2 + tblsz; 1330 min = end = last - tblsz - 1; 1331 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1332 if (baseentry->gpe_deleted) 1333 continue; 1334 entry = (struct g_part_gpt_entry *)baseentry; 1335 if (entry->ent.ent_lba_start < min) 1336 min = entry->ent.ent_lba_start; 1337 if (entry->ent.ent_lba_end > max) 1338 max = entry->ent.ent_lba_end; 1339 } 1340 /* 1341 * Don't force alignment of any kind whatsoever on resize, restore or 1342 * recover. resize doesn't go through this path, recover has a NULL gpp 1343 * and restore has flags == restore (maybe with an appended 'C' to 1344 * commit the operation). For these operations, we have to trust the 1345 * user knows what they are doing. 1346 * 1347 * Otherwise it some flavor of creation of a new partition, so we align 1348 * to a 4k offset on the drive, to make 512e/4kn drives more performant 1349 * by default. 1350 */ 1351 if (gpp == NULL || 1352 (gpp->gpp_parms & G_PART_PARM_FLAGS) == 0 || 1353 strstr(gpp->gpp_flags, "restore") == NULL) { 1354 spb = 4096 / pp->sectorsize; 1355 if (spb > 1) { 1356 lba = start + ((start % spb) ? spb - start % spb : 0); 1357 if (lba <= min) 1358 start = lba; 1359 lba = end - (end + 1) % spb; 1360 if (max <= lba) 1361 end = lba; 1362 } 1363 } 1364 table->hdr->hdr_lba_start = start; 1365 table->hdr->hdr_lba_end = end; 1366 1367 basetable->gpt_first = start; 1368 basetable->gpt_last = end; 1369 } 1370 1371 static void 1372 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) 1373 { 1374 u_int bo; 1375 uint32_t ch; 1376 uint16_t c; 1377 1378 bo = LITTLE_ENDIAN; /* GPT is little-endian */ 1379 while (len > 0 && *str != 0) { 1380 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); 1381 str++, len--; 1382 if ((ch & 0xf800) == 0xd800) { 1383 if (len > 0) { 1384 c = (bo == BIG_ENDIAN) ? be16toh(*str) 1385 : le16toh(*str); 1386 str++, len--; 1387 } else 1388 c = 0xfffd; 1389 if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { 1390 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); 1391 ch += 0x10000; 1392 } else 1393 ch = 0xfffd; 1394 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ 1395 bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; 1396 continue; 1397 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ 1398 continue; 1399 1400 /* Write the Unicode character in UTF-8 */ 1401 if (ch < 0x80) 1402 g_conf_printf_escaped(sb, "%c", ch); 1403 else if (ch < 0x800) 1404 g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6), 1405 0x80 | (ch & 0x3f)); 1406 else if (ch < 0x10000) 1407 g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12), 1408 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1409 else if (ch < 0x200000) 1410 g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 | 1411 (ch >> 18), 0x80 | ((ch >> 12) & 0x3f), 1412 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1413 } 1414 } 1415 1416 static void 1417 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) 1418 { 1419 size_t s16idx, s8idx; 1420 uint32_t utfchar; 1421 unsigned int c, utfbytes; 1422 1423 s8idx = s16idx = 0; 1424 utfchar = 0; 1425 utfbytes = 0; 1426 bzero(s16, s16len << 1); 1427 while (s8[s8idx] != 0 && s16idx < s16len) { 1428 c = s8[s8idx++]; 1429 if ((c & 0xc0) != 0x80) { 1430 /* Initial characters. */ 1431 if (utfbytes != 0) { 1432 /* Incomplete encoding of previous char. */ 1433 s16[s16idx++] = htole16(0xfffd); 1434 } 1435 if ((c & 0xf8) == 0xf0) { 1436 utfchar = c & 0x07; 1437 utfbytes = 3; 1438 } else if ((c & 0xf0) == 0xe0) { 1439 utfchar = c & 0x0f; 1440 utfbytes = 2; 1441 } else if ((c & 0xe0) == 0xc0) { 1442 utfchar = c & 0x1f; 1443 utfbytes = 1; 1444 } else { 1445 utfchar = c & 0x7f; 1446 utfbytes = 0; 1447 } 1448 } else { 1449 /* Followup characters. */ 1450 if (utfbytes > 0) { 1451 utfchar = (utfchar << 6) + (c & 0x3f); 1452 utfbytes--; 1453 } else if (utfbytes == 0) 1454 utfbytes = ~0; 1455 } 1456 /* 1457 * Write the complete Unicode character as UTF-16 when we 1458 * have all the UTF-8 charactars collected. 1459 */ 1460 if (utfbytes == 0) { 1461 /* 1462 * If we need to write 2 UTF-16 characters, but 1463 * we only have room for 1, then we truncate the 1464 * string by writing a 0 instead. 1465 */ 1466 if (utfchar >= 0x10000 && s16idx < s16len - 1) { 1467 s16[s16idx++] = 1468 htole16(0xd800 | ((utfchar >> 10) - 0x40)); 1469 s16[s16idx++] = 1470 htole16(0xdc00 | (utfchar & 0x3ff)); 1471 } else 1472 s16[s16idx++] = (utfchar >= 0x10000) ? 0 : 1473 htole16(utfchar); 1474 } 1475 } 1476 /* 1477 * If our input string was truncated, append an invalid encoding 1478 * character to the output string. 1479 */ 1480 if (utfbytes != 0 && s16idx < s16len) 1481 s16[s16idx++] = htole16(0xfffd); 1482 } 1483