1 /*- 2 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/bio.h> 32 #include <sys/diskmbr.h> 33 #include <sys/endian.h> 34 #include <sys/gpt.h> 35 #include <sys/kernel.h> 36 #include <sys/kobj.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/malloc.h> 40 #include <sys/mutex.h> 41 #include <sys/queue.h> 42 #include <sys/sbuf.h> 43 #include <sys/systm.h> 44 #include <sys/sysctl.h> 45 #include <sys/uuid.h> 46 #include <geom/geom.h> 47 #include <geom/geom_int.h> 48 #include <geom/part/g_part.h> 49 50 #include "g_part_if.h" 51 52 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support"); 53 54 CTASSERT(offsetof(struct gpt_hdr, padding) == 92); 55 CTASSERT(sizeof(struct gpt_ent) == 128); 56 57 #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) 58 59 #define MBRSIZE 512 60 61 enum gpt_elt { 62 GPT_ELT_PRIHDR, 63 GPT_ELT_PRITBL, 64 GPT_ELT_SECHDR, 65 GPT_ELT_SECTBL, 66 GPT_ELT_COUNT 67 }; 68 69 enum gpt_state { 70 GPT_STATE_UNKNOWN, /* Not determined. */ 71 GPT_STATE_MISSING, /* No signature found. */ 72 GPT_STATE_CORRUPT, /* Checksum mismatch. */ 73 GPT_STATE_INVALID, /* Nonconformant/invalid. */ 74 GPT_STATE_OK /* Perfectly fine. */ 75 }; 76 77 struct g_part_gpt_table { 78 struct g_part_table base; 79 u_char mbr[MBRSIZE]; 80 struct gpt_hdr *hdr; 81 quad_t lba[GPT_ELT_COUNT]; 82 enum gpt_state state[GPT_ELT_COUNT]; 83 int bootcamp; 84 }; 85 86 struct g_part_gpt_entry { 87 struct g_part_entry base; 88 struct gpt_ent ent; 89 }; 90 91 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); 92 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); 93 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *); 94 95 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, 96 struct g_part_parms *); 97 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); 98 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); 99 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); 100 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, 101 struct sbuf *, const char *); 102 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); 103 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, 104 struct g_part_parms *); 105 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, 106 char *, size_t); 107 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); 108 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); 109 static int g_part_gpt_setunset(struct g_part_table *table, 110 struct g_part_entry *baseentry, const char *attrib, unsigned int set); 111 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, 112 char *, size_t); 113 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); 114 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, 115 struct g_part_parms *); 116 static int g_part_gpt_recover(struct g_part_table *); 117 118 static kobj_method_t g_part_gpt_methods[] = { 119 KOBJMETHOD(g_part_add, g_part_gpt_add), 120 KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), 121 KOBJMETHOD(g_part_create, g_part_gpt_create), 122 KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), 123 KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), 124 KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), 125 KOBJMETHOD(g_part_modify, g_part_gpt_modify), 126 KOBJMETHOD(g_part_resize, g_part_gpt_resize), 127 KOBJMETHOD(g_part_name, g_part_gpt_name), 128 KOBJMETHOD(g_part_probe, g_part_gpt_probe), 129 KOBJMETHOD(g_part_read, g_part_gpt_read), 130 KOBJMETHOD(g_part_recover, g_part_gpt_recover), 131 KOBJMETHOD(g_part_setunset, g_part_gpt_setunset), 132 KOBJMETHOD(g_part_type, g_part_gpt_type), 133 KOBJMETHOD(g_part_write, g_part_gpt_write), 134 { 0, 0 } 135 }; 136 137 static struct g_part_scheme g_part_gpt_scheme = { 138 "GPT", 139 g_part_gpt_methods, 140 sizeof(struct g_part_gpt_table), 141 .gps_entrysz = sizeof(struct g_part_gpt_entry), 142 .gps_minent = 128, 143 .gps_maxent = 4096, 144 .gps_bootcodesz = MBRSIZE, 145 }; 146 G_PART_SCHEME_DECLARE(g_part_gpt); 147 148 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; 149 static struct uuid gpt_uuid_apple_core_storage = 150 GPT_ENT_TYPE_APPLE_CORE_STORAGE; 151 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; 152 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; 153 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; 154 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; 155 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; 156 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; 157 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT; 158 static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE; 159 static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL; 160 static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED; 161 static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT; 162 static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD; 163 static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER; 164 static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2; 165 static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32; 166 static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64; 167 static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY; 168 static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP; 169 static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1; 170 static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM; 171 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; 172 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; 173 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; 174 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS; 175 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; 176 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; 177 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; 178 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; 179 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; 180 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; 181 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; 182 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; 183 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; 184 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; 185 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; 186 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; 187 static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY; 188 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; 189 static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES; 190 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; 191 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; 192 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; 193 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; 194 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; 195 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; 196 static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA; 197 static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT; 198 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; 199 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS; 200 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG; 201 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED; 202 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR; 203 204 static struct g_part_uuid_alias { 205 struct uuid *uuid; 206 int alias; 207 int mbrtype; 208 } gpt_uuid_alias_match[] = { 209 { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab }, 210 { &gpt_uuid_apple_core_storage, G_PART_ALIAS_APPLE_CORE_STORAGE, 0 }, 211 { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf }, 212 { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 }, 213 { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 }, 214 { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 }, 215 { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 }, 216 { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 }, 217 { &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 }, 218 { &gpt_uuid_chromeos_firmware, G_PART_ALIAS_CHROMEOS_FIRMWARE, 0 }, 219 { &gpt_uuid_chromeos_kernel, G_PART_ALIAS_CHROMEOS_KERNEL, 0 }, 220 { &gpt_uuid_chromeos_reserved, G_PART_ALIAS_CHROMEOS_RESERVED, 0 }, 221 { &gpt_uuid_chromeos_root, G_PART_ALIAS_CHROMEOS_ROOT, 0 }, 222 { &gpt_uuid_dfbsd_ccd, G_PART_ALIAS_DFBSD_CCD, 0 }, 223 { &gpt_uuid_dfbsd_hammer, G_PART_ALIAS_DFBSD_HAMMER, 0 }, 224 { &gpt_uuid_dfbsd_hammer2, G_PART_ALIAS_DFBSD_HAMMER2, 0 }, 225 { &gpt_uuid_dfbsd_label32, G_PART_ALIAS_DFBSD, 0xa5 }, 226 { &gpt_uuid_dfbsd_label64, G_PART_ALIAS_DFBSD64, 0xa5 }, 227 { &gpt_uuid_dfbsd_legacy, G_PART_ALIAS_DFBSD_LEGACY, 0 }, 228 { &gpt_uuid_dfbsd_swap, G_PART_ALIAS_DFBSD_SWAP, 0 }, 229 { &gpt_uuid_dfbsd_ufs1, G_PART_ALIAS_DFBSD_UFS, 0 }, 230 { &gpt_uuid_dfbsd_vinum, G_PART_ALIAS_DFBSD_VINUM, 0 }, 231 { &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee }, 232 { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 }, 233 { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 }, 234 { &gpt_uuid_freebsd_nandfs, G_PART_ALIAS_FREEBSD_NANDFS, 0 }, 235 { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 }, 236 { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 }, 237 { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 }, 238 { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 }, 239 { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b }, 240 { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 }, 241 { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 }, 242 { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 }, 243 { &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 }, 244 { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b }, 245 { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 }, 246 { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 }, 247 { &gpt_uuid_ms_recovery, G_PART_ALIAS_MS_RECOVERY, 0 }, 248 { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 }, 249 { &gpt_uuid_ms_spaces, G_PART_ALIAS_MS_SPACES, 0 }, 250 { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 }, 251 { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 }, 252 { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 }, 253 { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 }, 254 { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 }, 255 { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 }, 256 { &gpt_uuid_openbsd_data, G_PART_ALIAS_OPENBSD_DATA, 0 }, 257 { &gpt_uuid_prep_boot, G_PART_ALIAS_PREP_BOOT, 0x41 }, 258 { &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 }, 259 { &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 }, 260 { &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 }, 261 { &gpt_uuid_vmvsanhdr, G_PART_ALIAS_VMVSANHDR, 0 }, 262 { NULL, 0, 0 } 263 }; 264 265 static int 266 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start, 267 quad_t end) 268 { 269 270 if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX) 271 return (EINVAL); 272 273 mbr += DOSPARTOFF + idx * DOSPARTSIZE; 274 mbr[0] = 0; 275 if (start == 1) { 276 /* 277 * Treat the PMBR partition specially to maximize 278 * interoperability with BIOSes. 279 */ 280 mbr[1] = mbr[3] = 0; 281 mbr[2] = 2; 282 } else 283 mbr[1] = mbr[2] = mbr[3] = 0xff; 284 mbr[4] = typ; 285 mbr[5] = mbr[6] = mbr[7] = 0xff; 286 le32enc(mbr + 8, (uint32_t)start); 287 le32enc(mbr + 12, (uint32_t)(end - start + 1)); 288 return (0); 289 } 290 291 static int 292 gpt_map_type(struct uuid *t) 293 { 294 struct g_part_uuid_alias *uap; 295 296 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 297 if (EQUUID(t, uap->uuid)) 298 return (uap->mbrtype); 299 } 300 return (0); 301 } 302 303 static void 304 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp) 305 { 306 307 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 308 gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, 309 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 310 le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); 311 } 312 313 /* 314 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the 315 * whole disk anymore. Rather, it covers the GPT table and the EFI 316 * system partition only. This way the HFS+ partition and any FAT 317 * partitions can be added to the MBR without creating an overlap. 318 */ 319 static int 320 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname) 321 { 322 uint8_t *p; 323 324 p = table->mbr + DOSPARTOFF; 325 if (p[4] != 0xee || le32dec(p + 8) != 1) 326 return (0); 327 328 p += DOSPARTSIZE; 329 if (p[4] != 0xaf) 330 return (0); 331 332 printf("GEOM: %s: enabling Boot Camp\n", provname); 333 return (1); 334 } 335 336 static void 337 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp) 338 { 339 struct g_part_entry *baseentry; 340 struct g_part_gpt_entry *entry; 341 struct g_part_gpt_table *table; 342 int bootable, error, index, slices, typ; 343 344 table = (struct g_part_gpt_table *)basetable; 345 346 bootable = -1; 347 for (index = 0; index < NDOSPART; index++) { 348 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index]) 349 bootable = index; 350 } 351 352 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 353 slices = 0; 354 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 355 if (baseentry->gpe_deleted) 356 continue; 357 index = baseentry->gpe_index - 1; 358 if (index >= NDOSPART) 359 continue; 360 361 entry = (struct g_part_gpt_entry *)baseentry; 362 363 switch (index) { 364 case 0: /* This must be the EFI system partition. */ 365 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi)) 366 goto disable; 367 error = gpt_write_mbr_entry(table->mbr, index, 0xee, 368 1ull, entry->ent.ent_lba_end); 369 break; 370 case 1: /* This must be the HFS+ partition. */ 371 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs)) 372 goto disable; 373 error = gpt_write_mbr_entry(table->mbr, index, 0xaf, 374 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 375 break; 376 default: 377 typ = gpt_map_type(&entry->ent.ent_type); 378 error = gpt_write_mbr_entry(table->mbr, index, typ, 379 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 380 break; 381 } 382 if (error) 383 continue; 384 385 if (index == bootable) 386 table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80; 387 slices |= 1 << index; 388 } 389 if ((slices & 3) == 3) 390 return; 391 392 disable: 393 table->bootcamp = 0; 394 gpt_create_pmbr(table, pp); 395 } 396 397 static struct gpt_hdr * 398 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, 399 enum gpt_elt elt) 400 { 401 struct gpt_hdr *buf, *hdr; 402 struct g_provider *pp; 403 quad_t lba, last; 404 int error; 405 uint32_t crc, sz; 406 407 pp = cp->provider; 408 last = (pp->mediasize / pp->sectorsize) - 1; 409 table->state[elt] = GPT_STATE_MISSING; 410 /* 411 * If the primary header is valid look for secondary 412 * header in AlternateLBA, otherwise in the last medium's LBA. 413 */ 414 if (elt == GPT_ELT_SECHDR) { 415 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK) 416 table->lba[elt] = last; 417 } else 418 table->lba[elt] = 1; 419 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, 420 &error); 421 if (buf == NULL) 422 return (NULL); 423 hdr = NULL; 424 if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) 425 goto fail; 426 427 table->state[elt] = GPT_STATE_CORRUPT; 428 sz = le32toh(buf->hdr_size); 429 if (sz < 92 || sz > pp->sectorsize) 430 goto fail; 431 432 hdr = g_malloc(sz, M_WAITOK | M_ZERO); 433 bcopy(buf, hdr, sz); 434 hdr->hdr_size = sz; 435 436 crc = le32toh(buf->hdr_crc_self); 437 buf->hdr_crc_self = 0; 438 if (crc32(buf, sz) != crc) 439 goto fail; 440 hdr->hdr_crc_self = crc; 441 442 table->state[elt] = GPT_STATE_INVALID; 443 hdr->hdr_revision = le32toh(buf->hdr_revision); 444 if (hdr->hdr_revision < GPT_HDR_REVISION) 445 goto fail; 446 hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); 447 if (hdr->hdr_lba_self != table->lba[elt]) 448 goto fail; 449 hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); 450 if (hdr->hdr_lba_alt == hdr->hdr_lba_self || 451 hdr->hdr_lba_alt > last) 452 goto fail; 453 454 /* Check the managed area. */ 455 hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); 456 if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) 457 goto fail; 458 hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); 459 if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) 460 goto fail; 461 462 /* Check the table location and size of the table. */ 463 hdr->hdr_entries = le32toh(buf->hdr_entries); 464 hdr->hdr_entsz = le32toh(buf->hdr_entsz); 465 if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || 466 (hdr->hdr_entsz & 7) != 0) 467 goto fail; 468 hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); 469 if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) 470 goto fail; 471 if (hdr->hdr_lba_table >= hdr->hdr_lba_start && 472 hdr->hdr_lba_table <= hdr->hdr_lba_end) 473 goto fail; 474 lba = hdr->hdr_lba_table + 475 howmany(hdr->hdr_entries * hdr->hdr_entsz, pp->sectorsize) - 1; 476 if (lba >= last) 477 goto fail; 478 if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) 479 goto fail; 480 481 table->state[elt] = GPT_STATE_OK; 482 le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); 483 hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); 484 485 /* save LBA for secondary header */ 486 if (elt == GPT_ELT_PRIHDR) 487 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt; 488 489 g_free(buf); 490 return (hdr); 491 492 fail: 493 if (hdr != NULL) 494 g_free(hdr); 495 g_free(buf); 496 return (NULL); 497 } 498 499 static struct gpt_ent * 500 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, 501 enum gpt_elt elt, struct gpt_hdr *hdr) 502 { 503 struct g_provider *pp; 504 struct gpt_ent *ent, *tbl; 505 char *buf, *p; 506 unsigned int idx, sectors, tblsz, size; 507 int error; 508 509 if (hdr == NULL) 510 return (NULL); 511 512 pp = cp->provider; 513 table->lba[elt] = hdr->hdr_lba_table; 514 515 table->state[elt] = GPT_STATE_MISSING; 516 tblsz = hdr->hdr_entries * hdr->hdr_entsz; 517 sectors = howmany(tblsz, pp->sectorsize); 518 buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO); 519 for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) { 520 size = (sectors - idx > MAXPHYS / pp->sectorsize) ? MAXPHYS: 521 (sectors - idx) * pp->sectorsize; 522 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize, 523 size, &error); 524 if (p == NULL) { 525 g_free(buf); 526 return (NULL); 527 } 528 bcopy(p, buf + idx * pp->sectorsize, size); 529 g_free(p); 530 } 531 table->state[elt] = GPT_STATE_CORRUPT; 532 if (crc32(buf, tblsz) != hdr->hdr_crc_table) { 533 g_free(buf); 534 return (NULL); 535 } 536 537 table->state[elt] = GPT_STATE_OK; 538 tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), 539 M_WAITOK | M_ZERO); 540 541 for (idx = 0, ent = tbl, p = buf; 542 idx < hdr->hdr_entries; 543 idx++, ent++, p += hdr->hdr_entsz) { 544 le_uuid_dec(p, &ent->ent_type); 545 le_uuid_dec(p + 16, &ent->ent_uuid); 546 ent->ent_lba_start = le64dec(p + 32); 547 ent->ent_lba_end = le64dec(p + 40); 548 ent->ent_attr = le64dec(p + 48); 549 /* Keep UTF-16 in little-endian. */ 550 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); 551 } 552 553 g_free(buf); 554 return (tbl); 555 } 556 557 static int 558 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) 559 { 560 561 if (pri == NULL || sec == NULL) 562 return (0); 563 564 if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) 565 return (0); 566 return ((pri->hdr_revision == sec->hdr_revision && 567 pri->hdr_size == sec->hdr_size && 568 pri->hdr_lba_start == sec->hdr_lba_start && 569 pri->hdr_lba_end == sec->hdr_lba_end && 570 pri->hdr_entries == sec->hdr_entries && 571 pri->hdr_entsz == sec->hdr_entsz && 572 pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); 573 } 574 575 static int 576 gpt_parse_type(const char *type, struct uuid *uuid) 577 { 578 struct uuid tmp; 579 const char *alias; 580 int error; 581 struct g_part_uuid_alias *uap; 582 583 if (type[0] == '!') { 584 error = parse_uuid(type + 1, &tmp); 585 if (error) 586 return (error); 587 if (EQUUID(&tmp, &gpt_uuid_unused)) 588 return (EINVAL); 589 *uuid = tmp; 590 return (0); 591 } 592 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 593 alias = g_part_alias_name(uap->alias); 594 if (!strcasecmp(type, alias)) { 595 *uuid = *uap->uuid; 596 return (0); 597 } 598 } 599 return (EINVAL); 600 } 601 602 static int 603 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, 604 struct g_part_parms *gpp) 605 { 606 struct g_part_gpt_entry *entry; 607 int error; 608 609 entry = (struct g_part_gpt_entry *)baseentry; 610 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 611 if (error) 612 return (error); 613 kern_uuidgen(&entry->ent.ent_uuid, 1); 614 entry->ent.ent_lba_start = baseentry->gpe_start; 615 entry->ent.ent_lba_end = baseentry->gpe_end; 616 if (baseentry->gpe_deleted) { 617 entry->ent.ent_attr = 0; 618 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); 619 } 620 if (gpp->gpp_parms & G_PART_PARM_LABEL) 621 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 622 sizeof(entry->ent.ent_name) / 623 sizeof(entry->ent.ent_name[0])); 624 return (0); 625 } 626 627 static int 628 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) 629 { 630 struct g_part_gpt_table *table; 631 size_t codesz; 632 633 codesz = DOSPARTOFF; 634 table = (struct g_part_gpt_table *)basetable; 635 bzero(table->mbr, codesz); 636 codesz = MIN(codesz, gpp->gpp_codesize); 637 if (codesz > 0) 638 bcopy(gpp->gpp_codeptr, table->mbr, codesz); 639 return (0); 640 } 641 642 static int 643 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) 644 { 645 struct g_provider *pp; 646 struct g_part_gpt_table *table; 647 size_t tblsz; 648 649 /* We don't nest, which means that our depth should be 0. */ 650 if (basetable->gpt_depth != 0) 651 return (ENXIO); 652 653 table = (struct g_part_gpt_table *)basetable; 654 pp = gpp->gpp_provider; 655 tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent), 656 pp->sectorsize); 657 if (pp->sectorsize < MBRSIZE || 658 pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * 659 pp->sectorsize) 660 return (ENOSPC); 661 662 gpt_create_pmbr(table, pp); 663 664 /* Allocate space for the header */ 665 table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); 666 667 bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 668 table->hdr->hdr_revision = GPT_HDR_REVISION; 669 table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); 670 kern_uuidgen(&table->hdr->hdr_uuid, 1); 671 table->hdr->hdr_entries = basetable->gpt_entries; 672 table->hdr->hdr_entsz = sizeof(struct gpt_ent); 673 674 g_gpt_set_defaults(basetable, pp); 675 return (0); 676 } 677 678 static int 679 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) 680 { 681 struct g_part_gpt_table *table; 682 struct g_provider *pp; 683 684 table = (struct g_part_gpt_table *)basetable; 685 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 686 g_free(table->hdr); 687 table->hdr = NULL; 688 689 /* 690 * Wipe the first 2 sectors and last one to clear the partitioning. 691 * Wipe sectors only if they have valid metadata. 692 */ 693 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) 694 basetable->gpt_smhead |= 3; 695 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 696 table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1) 697 basetable->gpt_smtail |= 1; 698 return (0); 699 } 700 701 static void 702 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 703 struct sbuf *sb, const char *indent) 704 { 705 struct g_part_gpt_entry *entry; 706 707 entry = (struct g_part_gpt_entry *)baseentry; 708 if (indent == NULL) { 709 /* conftxt: libdisk compatibility */ 710 sbuf_printf(sb, " xs GPT xt "); 711 sbuf_printf_uuid(sb, &entry->ent.ent_type); 712 } else if (entry != NULL) { 713 /* confxml: partition entry information */ 714 sbuf_printf(sb, "%s<label>", indent); 715 g_gpt_printf_utf16(sb, entry->ent.ent_name, 716 sizeof(entry->ent.ent_name) >> 1); 717 sbuf_printf(sb, "</label>\n"); 718 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME) 719 sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent); 720 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) { 721 sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n", 722 indent); 723 } 724 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) { 725 sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n", 726 indent); 727 } 728 sbuf_printf(sb, "%s<rawtype>", indent); 729 sbuf_printf_uuid(sb, &entry->ent.ent_type); 730 sbuf_printf(sb, "</rawtype>\n"); 731 sbuf_printf(sb, "%s<rawuuid>", indent); 732 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 733 sbuf_printf(sb, "</rawuuid>\n"); 734 sbuf_printf(sb, "%s<efimedia>", indent); 735 sbuf_printf(sb, "HD(%d,GPT,", entry->base.gpe_index); 736 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 737 sbuf_printf(sb, ",%#jx,%#jx)", (intmax_t)entry->base.gpe_start, 738 (intmax_t)(entry->base.gpe_end - entry->base.gpe_start + 1)); 739 sbuf_printf(sb, "</efimedia>\n"); 740 } else { 741 /* confxml: scheme information */ 742 } 743 } 744 745 static int 746 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) 747 { 748 struct g_part_gpt_entry *entry; 749 750 entry = (struct g_part_gpt_entry *)baseentry; 751 return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || 752 EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) || 753 EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0); 754 } 755 756 static int 757 g_part_gpt_modify(struct g_part_table *basetable, 758 struct g_part_entry *baseentry, struct g_part_parms *gpp) 759 { 760 struct g_part_gpt_entry *entry; 761 int error; 762 763 entry = (struct g_part_gpt_entry *)baseentry; 764 if (gpp->gpp_parms & G_PART_PARM_TYPE) { 765 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 766 if (error) 767 return (error); 768 } 769 if (gpp->gpp_parms & G_PART_PARM_LABEL) 770 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 771 sizeof(entry->ent.ent_name) / 772 sizeof(entry->ent.ent_name[0])); 773 return (0); 774 } 775 776 static int 777 g_part_gpt_resize(struct g_part_table *basetable, 778 struct g_part_entry *baseentry, struct g_part_parms *gpp) 779 { 780 struct g_part_gpt_entry *entry; 781 782 if (baseentry == NULL) 783 return (g_part_gpt_recover(basetable)); 784 785 entry = (struct g_part_gpt_entry *)baseentry; 786 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; 787 entry->ent.ent_lba_end = baseentry->gpe_end; 788 789 return (0); 790 } 791 792 static const char * 793 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, 794 char *buf, size_t bufsz) 795 { 796 struct g_part_gpt_entry *entry; 797 char c; 798 799 entry = (struct g_part_gpt_entry *)baseentry; 800 c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; 801 snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); 802 return (buf); 803 } 804 805 static int 806 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) 807 { 808 struct g_provider *pp; 809 u_char *buf; 810 int error, index, pri, res; 811 812 /* We don't nest, which means that our depth should be 0. */ 813 if (table->gpt_depth != 0) 814 return (ENXIO); 815 816 pp = cp->provider; 817 818 /* 819 * Sanity-check the provider. Since the first sector on the provider 820 * must be a PMBR and a PMBR is 512 bytes large, the sector size 821 * must be at least 512 bytes. Also, since the theoretical minimum 822 * number of sectors needed by GPT is 6, any medium that has less 823 * than 6 sectors is never going to be able to hold a GPT. The 824 * number 6 comes from: 825 * 1 sector for the PMBR 826 * 2 sectors for the GPT headers (each 1 sector) 827 * 2 sectors for the GPT tables (each 1 sector) 828 * 1 sector for an actual partition 829 * It's better to catch this pathological case early than behaving 830 * pathologically later on... 831 */ 832 if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) 833 return (ENOSPC); 834 835 /* 836 * Check that there's a MBR or a PMBR. If it's a PMBR, we return 837 * as the highest priority on a match, otherwise we assume some 838 * GPT-unaware tool has destroyed the GPT by recreating a MBR and 839 * we really want the MBR scheme to take precedence. 840 */ 841 buf = g_read_data(cp, 0L, pp->sectorsize, &error); 842 if (buf == NULL) 843 return (error); 844 res = le16dec(buf + DOSMAGICOFFSET); 845 pri = G_PART_PROBE_PRI_LOW; 846 if (res == DOSMAGIC) { 847 for (index = 0; index < NDOSPART; index++) { 848 if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee) 849 pri = G_PART_PROBE_PRI_HIGH; 850 } 851 g_free(buf); 852 853 /* Check that there's a primary header. */ 854 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); 855 if (buf == NULL) 856 return (error); 857 res = memcmp(buf, GPT_HDR_SIG, 8); 858 g_free(buf); 859 if (res == 0) 860 return (pri); 861 } else 862 g_free(buf); 863 864 /* No primary? Check that there's a secondary. */ 865 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 866 &error); 867 if (buf == NULL) 868 return (error); 869 res = memcmp(buf, GPT_HDR_SIG, 8); 870 g_free(buf); 871 return ((res == 0) ? pri : ENXIO); 872 } 873 874 static int 875 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) 876 { 877 struct gpt_hdr *prihdr, *sechdr; 878 struct gpt_ent *tbl, *pritbl, *sectbl; 879 struct g_provider *pp; 880 struct g_part_gpt_table *table; 881 struct g_part_gpt_entry *entry; 882 u_char *buf; 883 uint64_t last; 884 int error, index; 885 886 table = (struct g_part_gpt_table *)basetable; 887 pp = cp->provider; 888 last = (pp->mediasize / pp->sectorsize) - 1; 889 890 /* Read the PMBR */ 891 buf = g_read_data(cp, 0, pp->sectorsize, &error); 892 if (buf == NULL) 893 return (error); 894 bcopy(buf, table->mbr, MBRSIZE); 895 g_free(buf); 896 897 /* Read the primary header and table. */ 898 prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); 899 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { 900 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); 901 } else { 902 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 903 pritbl = NULL; 904 } 905 906 /* Read the secondary header and table. */ 907 sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); 908 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { 909 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); 910 } else { 911 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 912 sectbl = NULL; 913 } 914 915 /* Fail if we haven't got any good tables at all. */ 916 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && 917 table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 918 printf("GEOM: %s: corrupt or invalid GPT detected.\n", 919 pp->name); 920 printf("GEOM: %s: GPT rejected -- may not be recoverable.\n", 921 pp->name); 922 return (EINVAL); 923 } 924 925 /* 926 * If both headers are good but they disagree with each other, 927 * then invalidate one. We prefer to keep the primary header, 928 * unless the primary table is corrupt. 929 */ 930 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && 931 table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 932 !gpt_matched_hdrs(prihdr, sechdr)) { 933 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { 934 table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; 935 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 936 g_free(sechdr); 937 sechdr = NULL; 938 } else { 939 table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; 940 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 941 g_free(prihdr); 942 prihdr = NULL; 943 } 944 } 945 946 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { 947 printf("GEOM: %s: the primary GPT table is corrupt or " 948 "invalid.\n", pp->name); 949 printf("GEOM: %s: using the secondary instead -- recovery " 950 "strongly advised.\n", pp->name); 951 table->hdr = sechdr; 952 basetable->gpt_corrupt = 1; 953 if (prihdr != NULL) 954 g_free(prihdr); 955 tbl = sectbl; 956 if (pritbl != NULL) 957 g_free(pritbl); 958 } else { 959 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 960 printf("GEOM: %s: the secondary GPT table is corrupt " 961 "or invalid.\n", pp->name); 962 printf("GEOM: %s: using the primary only -- recovery " 963 "suggested.\n", pp->name); 964 basetable->gpt_corrupt = 1; 965 } else if (table->lba[GPT_ELT_SECHDR] != last) { 966 printf( "GEOM: %s: the secondary GPT header is not in " 967 "the last LBA.\n", pp->name); 968 basetable->gpt_corrupt = 1; 969 } 970 table->hdr = prihdr; 971 if (sechdr != NULL) 972 g_free(sechdr); 973 tbl = pritbl; 974 if (sectbl != NULL) 975 g_free(sectbl); 976 } 977 978 basetable->gpt_first = table->hdr->hdr_lba_start; 979 basetable->gpt_last = table->hdr->hdr_lba_end; 980 basetable->gpt_entries = (table->hdr->hdr_lba_start - 2) * 981 pp->sectorsize / table->hdr->hdr_entsz; 982 983 for (index = table->hdr->hdr_entries - 1; index >= 0; index--) { 984 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) 985 continue; 986 entry = (struct g_part_gpt_entry *)g_part_new_entry( 987 basetable, index + 1, tbl[index].ent_lba_start, 988 tbl[index].ent_lba_end); 989 entry->ent = tbl[index]; 990 } 991 992 g_free(tbl); 993 994 /* 995 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions 996 * if (and only if) any FAT32 or FAT16 partitions have been 997 * created. This happens irrespective of whether Boot Camp is 998 * used/enabled, though it's generally understood to be done 999 * to support legacy Windows under Boot Camp. We refer to this 1000 * mirroring simply as Boot Camp. We try to detect Boot Camp 1001 * so that we can update the MBR if and when GPT changes have 1002 * been made. Note that we do not enable Boot Camp if not 1003 * previously enabled because we can't assume that we're on a 1004 * Mac alongside Mac OS X. 1005 */ 1006 table->bootcamp = gpt_is_bootcamp(table, pp->name); 1007 1008 return (0); 1009 } 1010 1011 static int 1012 g_part_gpt_recover(struct g_part_table *basetable) 1013 { 1014 struct g_part_gpt_table *table; 1015 struct g_provider *pp; 1016 1017 table = (struct g_part_gpt_table *)basetable; 1018 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 1019 gpt_create_pmbr(table, pp); 1020 g_gpt_set_defaults(basetable, pp); 1021 basetable->gpt_corrupt = 0; 1022 return (0); 1023 } 1024 1025 static int 1026 g_part_gpt_setunset(struct g_part_table *basetable, 1027 struct g_part_entry *baseentry, const char *attrib, unsigned int set) 1028 { 1029 struct g_part_gpt_entry *entry; 1030 struct g_part_gpt_table *table; 1031 struct g_provider *pp; 1032 uint8_t *p; 1033 uint64_t attr; 1034 int i; 1035 1036 table = (struct g_part_gpt_table *)basetable; 1037 entry = (struct g_part_gpt_entry *)baseentry; 1038 1039 if (strcasecmp(attrib, "active") == 0) { 1040 if (table->bootcamp) { 1041 /* The active flag must be set on a valid entry. */ 1042 if (entry == NULL) 1043 return (ENXIO); 1044 if (baseentry->gpe_index > NDOSPART) 1045 return (EINVAL); 1046 for (i = 0; i < NDOSPART; i++) { 1047 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1048 p[0] = (i == baseentry->gpe_index - 1) 1049 ? ((set) ? 0x80 : 0) : 0; 1050 } 1051 } else { 1052 /* The PMBR is marked as active without an entry. */ 1053 if (entry != NULL) 1054 return (ENXIO); 1055 for (i = 0; i < NDOSPART; i++) { 1056 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1057 p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0; 1058 } 1059 } 1060 return (0); 1061 } else if (strcasecmp(attrib, "lenovofix") == 0) { 1062 /* 1063 * Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR. 1064 * This workaround allows Lenovo X220, T420, T520, etc to boot 1065 * from GPT Partitions in BIOS mode. 1066 */ 1067 1068 if (entry != NULL) 1069 return (ENXIO); 1070 1071 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 1072 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 1073 gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1, 1074 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 1075 return (0); 1076 } 1077 1078 if (entry == NULL) 1079 return (ENODEV); 1080 1081 attr = 0; 1082 if (strcasecmp(attrib, "bootme") == 0) { 1083 attr |= GPT_ENT_ATTR_BOOTME; 1084 } else if (strcasecmp(attrib, "bootonce") == 0) { 1085 attr |= GPT_ENT_ATTR_BOOTONCE; 1086 if (set) 1087 attr |= GPT_ENT_ATTR_BOOTME; 1088 } else if (strcasecmp(attrib, "bootfailed") == 0) { 1089 /* 1090 * It should only be possible to unset BOOTFAILED, but it might 1091 * be useful for test purposes to also be able to set it. 1092 */ 1093 attr |= GPT_ENT_ATTR_BOOTFAILED; 1094 } 1095 if (attr == 0) 1096 return (EINVAL); 1097 1098 if (set) 1099 attr = entry->ent.ent_attr | attr; 1100 else 1101 attr = entry->ent.ent_attr & ~attr; 1102 if (attr != entry->ent.ent_attr) { 1103 entry->ent.ent_attr = attr; 1104 if (!baseentry->gpe_created) 1105 baseentry->gpe_modified = 1; 1106 } 1107 return (0); 1108 } 1109 1110 static const char * 1111 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 1112 char *buf, size_t bufsz) 1113 { 1114 struct g_part_gpt_entry *entry; 1115 struct uuid *type; 1116 struct g_part_uuid_alias *uap; 1117 1118 entry = (struct g_part_gpt_entry *)baseentry; 1119 type = &entry->ent.ent_type; 1120 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) 1121 if (EQUUID(type, uap->uuid)) 1122 return (g_part_alias_name(uap->alias)); 1123 buf[0] = '!'; 1124 snprintf_uuid(buf + 1, bufsz - 1, type); 1125 1126 return (buf); 1127 } 1128 1129 static int 1130 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) 1131 { 1132 unsigned char *buf, *bp; 1133 struct g_provider *pp; 1134 struct g_part_entry *baseentry; 1135 struct g_part_gpt_entry *entry; 1136 struct g_part_gpt_table *table; 1137 size_t tblsz; 1138 uint32_t crc; 1139 int error, index; 1140 1141 pp = cp->provider; 1142 table = (struct g_part_gpt_table *)basetable; 1143 tblsz = howmany(table->hdr->hdr_entries * table->hdr->hdr_entsz, 1144 pp->sectorsize); 1145 1146 /* Reconstruct the MBR from the GPT if under Boot Camp. */ 1147 if (table->bootcamp) 1148 gpt_update_bootcamp(basetable, pp); 1149 1150 /* Write the PMBR */ 1151 buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); 1152 bcopy(table->mbr, buf, MBRSIZE); 1153 error = g_write_data(cp, 0, buf, pp->sectorsize); 1154 g_free(buf); 1155 if (error) 1156 return (error); 1157 1158 /* Allocate space for the header and entries. */ 1159 buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); 1160 1161 memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 1162 le32enc(buf + 8, table->hdr->hdr_revision); 1163 le32enc(buf + 12, table->hdr->hdr_size); 1164 le64enc(buf + 40, table->hdr->hdr_lba_start); 1165 le64enc(buf + 48, table->hdr->hdr_lba_end); 1166 le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); 1167 le32enc(buf + 80, table->hdr->hdr_entries); 1168 le32enc(buf + 84, table->hdr->hdr_entsz); 1169 1170 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1171 if (baseentry->gpe_deleted) 1172 continue; 1173 entry = (struct g_part_gpt_entry *)baseentry; 1174 index = baseentry->gpe_index - 1; 1175 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; 1176 le_uuid_enc(bp, &entry->ent.ent_type); 1177 le_uuid_enc(bp + 16, &entry->ent.ent_uuid); 1178 le64enc(bp + 32, entry->ent.ent_lba_start); 1179 le64enc(bp + 40, entry->ent.ent_lba_end); 1180 le64enc(bp + 48, entry->ent.ent_attr); 1181 memcpy(bp + 56, entry->ent.ent_name, 1182 sizeof(entry->ent.ent_name)); 1183 } 1184 1185 crc = crc32(buf + pp->sectorsize, 1186 table->hdr->hdr_entries * table->hdr->hdr_entsz); 1187 le32enc(buf + 88, crc); 1188 1189 /* Write primary meta-data. */ 1190 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1191 le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ 1192 le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ 1193 le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ 1194 crc = crc32(buf, table->hdr->hdr_size); 1195 le32enc(buf + 16, crc); 1196 1197 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1198 error = g_write_data(cp, 1199 (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize, 1200 buf + (index + 1) * pp->sectorsize, 1201 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1202 (tblsz - index) * pp->sectorsize); 1203 if (error) 1204 goto out; 1205 } 1206 error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, 1207 buf, pp->sectorsize); 1208 if (error) 1209 goto out; 1210 1211 /* Write secondary meta-data. */ 1212 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1213 le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ 1214 le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ 1215 le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ 1216 crc = crc32(buf, table->hdr->hdr_size); 1217 le32enc(buf + 16, crc); 1218 1219 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1220 error = g_write_data(cp, 1221 (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize, 1222 buf + (index + 1) * pp->sectorsize, 1223 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1224 (tblsz - index) * pp->sectorsize); 1225 if (error) 1226 goto out; 1227 } 1228 error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, 1229 buf, pp->sectorsize); 1230 1231 out: 1232 g_free(buf); 1233 return (error); 1234 } 1235 1236 static void 1237 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp) 1238 { 1239 struct g_part_entry *baseentry; 1240 struct g_part_gpt_entry *entry; 1241 struct g_part_gpt_table *table; 1242 quad_t start, end, min, max; 1243 quad_t lba, last; 1244 size_t spb, tblsz; 1245 1246 table = (struct g_part_gpt_table *)basetable; 1247 last = pp->mediasize / pp->sectorsize - 1; 1248 tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent), 1249 pp->sectorsize); 1250 1251 table->lba[GPT_ELT_PRIHDR] = 1; 1252 table->lba[GPT_ELT_PRITBL] = 2; 1253 table->lba[GPT_ELT_SECHDR] = last; 1254 table->lba[GPT_ELT_SECTBL] = last - tblsz; 1255 table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK; 1256 table->state[GPT_ELT_PRITBL] = GPT_STATE_OK; 1257 table->state[GPT_ELT_SECHDR] = GPT_STATE_OK; 1258 table->state[GPT_ELT_SECTBL] = GPT_STATE_OK; 1259 1260 max = start = 2 + tblsz; 1261 min = end = last - tblsz - 1; 1262 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1263 if (baseentry->gpe_deleted) 1264 continue; 1265 entry = (struct g_part_gpt_entry *)baseentry; 1266 if (entry->ent.ent_lba_start < min) 1267 min = entry->ent.ent_lba_start; 1268 if (entry->ent.ent_lba_end > max) 1269 max = entry->ent.ent_lba_end; 1270 } 1271 spb = 4096 / pp->sectorsize; 1272 if (spb > 1) { 1273 lba = start + ((start % spb) ? spb - start % spb : 0); 1274 if (lba <= min) 1275 start = lba; 1276 lba = end - (end + 1) % spb; 1277 if (max <= lba) 1278 end = lba; 1279 } 1280 table->hdr->hdr_lba_start = start; 1281 table->hdr->hdr_lba_end = end; 1282 1283 basetable->gpt_first = start; 1284 basetable->gpt_last = end; 1285 } 1286 1287 static void 1288 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) 1289 { 1290 u_int bo; 1291 uint32_t ch; 1292 uint16_t c; 1293 1294 bo = LITTLE_ENDIAN; /* GPT is little-endian */ 1295 while (len > 0 && *str != 0) { 1296 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); 1297 str++, len--; 1298 if ((ch & 0xf800) == 0xd800) { 1299 if (len > 0) { 1300 c = (bo == BIG_ENDIAN) ? be16toh(*str) 1301 : le16toh(*str); 1302 str++, len--; 1303 } else 1304 c = 0xfffd; 1305 if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { 1306 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); 1307 ch += 0x10000; 1308 } else 1309 ch = 0xfffd; 1310 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ 1311 bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; 1312 continue; 1313 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ 1314 continue; 1315 1316 /* Write the Unicode character in UTF-8 */ 1317 if (ch < 0x80) 1318 g_conf_printf_escaped(sb, "%c", ch); 1319 else if (ch < 0x800) 1320 g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6), 1321 0x80 | (ch & 0x3f)); 1322 else if (ch < 0x10000) 1323 g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12), 1324 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1325 else if (ch < 0x200000) 1326 g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 | 1327 (ch >> 18), 0x80 | ((ch >> 12) & 0x3f), 1328 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1329 } 1330 } 1331 1332 static void 1333 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) 1334 { 1335 size_t s16idx, s8idx; 1336 uint32_t utfchar; 1337 unsigned int c, utfbytes; 1338 1339 s8idx = s16idx = 0; 1340 utfchar = 0; 1341 utfbytes = 0; 1342 bzero(s16, s16len << 1); 1343 while (s8[s8idx] != 0 && s16idx < s16len) { 1344 c = s8[s8idx++]; 1345 if ((c & 0xc0) != 0x80) { 1346 /* Initial characters. */ 1347 if (utfbytes != 0) { 1348 /* Incomplete encoding of previous char. */ 1349 s16[s16idx++] = htole16(0xfffd); 1350 } 1351 if ((c & 0xf8) == 0xf0) { 1352 utfchar = c & 0x07; 1353 utfbytes = 3; 1354 } else if ((c & 0xf0) == 0xe0) { 1355 utfchar = c & 0x0f; 1356 utfbytes = 2; 1357 } else if ((c & 0xe0) == 0xc0) { 1358 utfchar = c & 0x1f; 1359 utfbytes = 1; 1360 } else { 1361 utfchar = c & 0x7f; 1362 utfbytes = 0; 1363 } 1364 } else { 1365 /* Followup characters. */ 1366 if (utfbytes > 0) { 1367 utfchar = (utfchar << 6) + (c & 0x3f); 1368 utfbytes--; 1369 } else if (utfbytes == 0) 1370 utfbytes = ~0; 1371 } 1372 /* 1373 * Write the complete Unicode character as UTF-16 when we 1374 * have all the UTF-8 charactars collected. 1375 */ 1376 if (utfbytes == 0) { 1377 /* 1378 * If we need to write 2 UTF-16 characters, but 1379 * we only have room for 1, then we truncate the 1380 * string by writing a 0 instead. 1381 */ 1382 if (utfchar >= 0x10000 && s16idx < s16len - 1) { 1383 s16[s16idx++] = 1384 htole16(0xd800 | ((utfchar >> 10) - 0x40)); 1385 s16[s16idx++] = 1386 htole16(0xdc00 | (utfchar & 0x3ff)); 1387 } else 1388 s16[s16idx++] = (utfchar >= 0x10000) ? 0 : 1389 htole16(utfchar); 1390 } 1391 } 1392 /* 1393 * If our input string was truncated, append an invalid encoding 1394 * character to the output string. 1395 */ 1396 if (utfbytes != 0 && s16idx < s16len) 1397 s16[s16idx++] = htole16(0xfffd); 1398 } 1399