1 /*- 2 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/bio.h> 32 #include <sys/diskmbr.h> 33 #include <sys/endian.h> 34 #include <sys/gpt.h> 35 #include <sys/kernel.h> 36 #include <sys/kobj.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/malloc.h> 40 #include <sys/mutex.h> 41 #include <sys/queue.h> 42 #include <sys/sbuf.h> 43 #include <sys/systm.h> 44 #include <sys/sysctl.h> 45 #include <sys/uuid.h> 46 #include <geom/geom.h> 47 #include <geom/part/g_part.h> 48 49 #include "g_part_if.h" 50 51 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support"); 52 53 CTASSERT(offsetof(struct gpt_hdr, padding) == 92); 54 CTASSERT(sizeof(struct gpt_ent) == 128); 55 56 #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) 57 58 #define MBRSIZE 512 59 60 enum gpt_elt { 61 GPT_ELT_PRIHDR, 62 GPT_ELT_PRITBL, 63 GPT_ELT_SECHDR, 64 GPT_ELT_SECTBL, 65 GPT_ELT_COUNT 66 }; 67 68 enum gpt_state { 69 GPT_STATE_UNKNOWN, /* Not determined. */ 70 GPT_STATE_MISSING, /* No signature found. */ 71 GPT_STATE_CORRUPT, /* Checksum mismatch. */ 72 GPT_STATE_INVALID, /* Nonconformant/invalid. */ 73 GPT_STATE_OK /* Perfectly fine. */ 74 }; 75 76 struct g_part_gpt_table { 77 struct g_part_table base; 78 u_char mbr[MBRSIZE]; 79 struct gpt_hdr *hdr; 80 quad_t lba[GPT_ELT_COUNT]; 81 enum gpt_state state[GPT_ELT_COUNT]; 82 int bootcamp; 83 }; 84 85 struct g_part_gpt_entry { 86 struct g_part_entry base; 87 struct gpt_ent ent; 88 }; 89 90 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); 91 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); 92 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *); 93 94 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, 95 struct g_part_parms *); 96 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); 97 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); 98 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); 99 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, 100 struct sbuf *, const char *); 101 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); 102 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, 103 struct g_part_parms *); 104 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, 105 char *, size_t); 106 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); 107 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); 108 static int g_part_gpt_setunset(struct g_part_table *table, 109 struct g_part_entry *baseentry, const char *attrib, unsigned int set); 110 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, 111 char *, size_t); 112 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); 113 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, 114 struct g_part_parms *); 115 static int g_part_gpt_recover(struct g_part_table *); 116 117 static kobj_method_t g_part_gpt_methods[] = { 118 KOBJMETHOD(g_part_add, g_part_gpt_add), 119 KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), 120 KOBJMETHOD(g_part_create, g_part_gpt_create), 121 KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), 122 KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), 123 KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), 124 KOBJMETHOD(g_part_modify, g_part_gpt_modify), 125 KOBJMETHOD(g_part_resize, g_part_gpt_resize), 126 KOBJMETHOD(g_part_name, g_part_gpt_name), 127 KOBJMETHOD(g_part_probe, g_part_gpt_probe), 128 KOBJMETHOD(g_part_read, g_part_gpt_read), 129 KOBJMETHOD(g_part_recover, g_part_gpt_recover), 130 KOBJMETHOD(g_part_setunset, g_part_gpt_setunset), 131 KOBJMETHOD(g_part_type, g_part_gpt_type), 132 KOBJMETHOD(g_part_write, g_part_gpt_write), 133 { 0, 0 } 134 }; 135 136 static struct g_part_scheme g_part_gpt_scheme = { 137 "GPT", 138 g_part_gpt_methods, 139 sizeof(struct g_part_gpt_table), 140 .gps_entrysz = sizeof(struct g_part_gpt_entry), 141 .gps_minent = 128, 142 .gps_maxent = 4096, 143 .gps_bootcodesz = MBRSIZE, 144 }; 145 G_PART_SCHEME_DECLARE(g_part_gpt); 146 147 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; 148 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; 149 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; 150 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; 151 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; 152 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; 153 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; 154 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT; 155 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; 156 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; 157 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; 158 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS; 159 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; 160 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; 161 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; 162 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; 163 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; 164 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; 165 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; 166 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; 167 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS; 168 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG; 169 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED; 170 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; 171 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; 172 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; 173 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; 174 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; 175 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; 176 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; 177 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; 178 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; 179 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; 180 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; 181 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; 182 183 static struct g_part_uuid_alias { 184 struct uuid *uuid; 185 int alias; 186 int mbrtype; 187 } gpt_uuid_alias_match[] = { 188 { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab }, 189 { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf }, 190 { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 }, 191 { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 }, 192 { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 }, 193 { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 }, 194 { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 }, 195 { &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 }, 196 { &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee }, 197 { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 }, 198 { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 }, 199 { &gpt_uuid_freebsd_nandfs, G_PART_ALIAS_FREEBSD_NANDFS, 0 }, 200 { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 }, 201 { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 }, 202 { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 }, 203 { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 }, 204 { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b }, 205 { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 }, 206 { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 }, 207 { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 }, 208 { &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 }, 209 { &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 }, 210 { &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 }, 211 { &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 }, 212 { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b }, 213 { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 }, 214 { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 }, 215 { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 }, 216 { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 }, 217 { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 }, 218 { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 }, 219 { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 }, 220 { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 }, 221 { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 }, 222 { NULL, 0, 0 } 223 }; 224 225 static int 226 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start, 227 quad_t end) 228 { 229 230 if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX) 231 return (EINVAL); 232 233 mbr += DOSPARTOFF + idx * DOSPARTSIZE; 234 mbr[0] = 0; 235 if (start == 1) { 236 /* 237 * Treat the PMBR partition specially to maximize 238 * interoperability with BIOSes. 239 */ 240 mbr[1] = mbr[3] = 0; 241 mbr[2] = 2; 242 } else 243 mbr[1] = mbr[2] = mbr[3] = 0xff; 244 mbr[4] = typ; 245 mbr[5] = mbr[6] = mbr[7] = 0xff; 246 le32enc(mbr + 8, (uint32_t)start); 247 le32enc(mbr + 12, (uint32_t)(end - start + 1)); 248 return (0); 249 } 250 251 static int 252 gpt_map_type(struct uuid *t) 253 { 254 struct g_part_uuid_alias *uap; 255 256 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 257 if (EQUUID(t, uap->uuid)) 258 return (uap->mbrtype); 259 } 260 return (0); 261 } 262 263 /* 264 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the 265 * whole disk anymore. Rather, it covers the GPT table and the EFI 266 * system partition only. This way the HFS+ partition and any FAT 267 * partitions can be added to the MBR without creating an overlap. 268 */ 269 static int 270 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname) 271 { 272 uint8_t *p; 273 274 p = table->mbr + DOSPARTOFF; 275 if (p[4] != 0xee || le32dec(p + 8) != 1) 276 return (0); 277 278 p += DOSPARTSIZE; 279 if (p[4] != 0xaf) 280 return (0); 281 282 printf("GEOM: %s: enabling Boot Camp\n", provname); 283 return (1); 284 } 285 286 static void 287 gpt_update_bootcamp(struct g_part_table *basetable) 288 { 289 struct g_part_entry *baseentry; 290 struct g_part_gpt_entry *entry; 291 struct g_part_gpt_table *table; 292 int bootable, error, index, slices, typ; 293 294 table = (struct g_part_gpt_table *)basetable; 295 296 bootable = -1; 297 for (index = 0; index < NDOSPART; index++) { 298 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index]) 299 bootable = index; 300 } 301 302 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 303 slices = 0; 304 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 305 if (baseentry->gpe_deleted) 306 continue; 307 index = baseentry->gpe_index - 1; 308 if (index >= NDOSPART) 309 continue; 310 311 entry = (struct g_part_gpt_entry *)baseentry; 312 313 switch (index) { 314 case 0: /* This must be the EFI system partition. */ 315 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi)) 316 goto disable; 317 error = gpt_write_mbr_entry(table->mbr, index, 0xee, 318 1ull, entry->ent.ent_lba_end); 319 break; 320 case 1: /* This must be the HFS+ partition. */ 321 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs)) 322 goto disable; 323 error = gpt_write_mbr_entry(table->mbr, index, 0xaf, 324 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 325 break; 326 default: 327 typ = gpt_map_type(&entry->ent.ent_type); 328 error = gpt_write_mbr_entry(table->mbr, index, typ, 329 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 330 break; 331 } 332 if (error) 333 continue; 334 335 if (index == bootable) 336 table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80; 337 slices |= 1 << index; 338 } 339 if ((slices & 3) == 3) 340 return; 341 342 disable: 343 table->bootcamp = 0; 344 } 345 346 static struct gpt_hdr * 347 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, 348 enum gpt_elt elt) 349 { 350 struct gpt_hdr *buf, *hdr; 351 struct g_provider *pp; 352 quad_t lba, last; 353 int error; 354 uint32_t crc, sz; 355 356 pp = cp->provider; 357 last = (pp->mediasize / pp->sectorsize) - 1; 358 table->state[elt] = GPT_STATE_MISSING; 359 /* 360 * If the primary header is valid look for secondary 361 * header in AlternateLBA, otherwise in the last medium's LBA. 362 */ 363 if (elt == GPT_ELT_SECHDR) { 364 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK) 365 table->lba[elt] = last; 366 } else 367 table->lba[elt] = 1; 368 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, 369 &error); 370 if (buf == NULL) 371 return (NULL); 372 hdr = NULL; 373 if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) 374 goto fail; 375 376 table->state[elt] = GPT_STATE_CORRUPT; 377 sz = le32toh(buf->hdr_size); 378 if (sz < 92 || sz > pp->sectorsize) 379 goto fail; 380 381 hdr = g_malloc(sz, M_WAITOK | M_ZERO); 382 bcopy(buf, hdr, sz); 383 hdr->hdr_size = sz; 384 385 crc = le32toh(buf->hdr_crc_self); 386 buf->hdr_crc_self = 0; 387 if (crc32(buf, sz) != crc) 388 goto fail; 389 hdr->hdr_crc_self = crc; 390 391 table->state[elt] = GPT_STATE_INVALID; 392 hdr->hdr_revision = le32toh(buf->hdr_revision); 393 if (hdr->hdr_revision < GPT_HDR_REVISION) 394 goto fail; 395 hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); 396 if (hdr->hdr_lba_self != table->lba[elt]) 397 goto fail; 398 hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); 399 if (hdr->hdr_lba_alt == hdr->hdr_lba_self || 400 hdr->hdr_lba_alt > last) 401 goto fail; 402 403 /* Check the managed area. */ 404 hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); 405 if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) 406 goto fail; 407 hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); 408 if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) 409 goto fail; 410 411 /* Check the table location and size of the table. */ 412 hdr->hdr_entries = le32toh(buf->hdr_entries); 413 hdr->hdr_entsz = le32toh(buf->hdr_entsz); 414 if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || 415 (hdr->hdr_entsz & 7) != 0) 416 goto fail; 417 hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); 418 if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) 419 goto fail; 420 if (hdr->hdr_lba_table >= hdr->hdr_lba_start && 421 hdr->hdr_lba_table <= hdr->hdr_lba_end) 422 goto fail; 423 lba = hdr->hdr_lba_table + 424 (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) / 425 pp->sectorsize - 1; 426 if (lba >= last) 427 goto fail; 428 if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) 429 goto fail; 430 431 table->state[elt] = GPT_STATE_OK; 432 le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); 433 hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); 434 435 /* save LBA for secondary header */ 436 if (elt == GPT_ELT_PRIHDR) 437 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt; 438 439 g_free(buf); 440 return (hdr); 441 442 fail: 443 if (hdr != NULL) 444 g_free(hdr); 445 g_free(buf); 446 return (NULL); 447 } 448 449 static struct gpt_ent * 450 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, 451 enum gpt_elt elt, struct gpt_hdr *hdr) 452 { 453 struct g_provider *pp; 454 struct gpt_ent *ent, *tbl; 455 char *buf, *p; 456 unsigned int idx, sectors, tblsz, size; 457 int error; 458 459 if (hdr == NULL) 460 return (NULL); 461 462 pp = cp->provider; 463 table->lba[elt] = hdr->hdr_lba_table; 464 465 table->state[elt] = GPT_STATE_MISSING; 466 tblsz = hdr->hdr_entries * hdr->hdr_entsz; 467 sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize; 468 buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO); 469 for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) { 470 size = (sectors - idx > MAXPHYS / pp->sectorsize) ? MAXPHYS: 471 (sectors - idx) * pp->sectorsize; 472 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize, 473 size, &error); 474 if (p == NULL) { 475 g_free(buf); 476 return (NULL); 477 } 478 bcopy(p, buf + idx * pp->sectorsize, size); 479 g_free(p); 480 } 481 table->state[elt] = GPT_STATE_CORRUPT; 482 if (crc32(buf, tblsz) != hdr->hdr_crc_table) { 483 g_free(buf); 484 return (NULL); 485 } 486 487 table->state[elt] = GPT_STATE_OK; 488 tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), 489 M_WAITOK | M_ZERO); 490 491 for (idx = 0, ent = tbl, p = buf; 492 idx < hdr->hdr_entries; 493 idx++, ent++, p += hdr->hdr_entsz) { 494 le_uuid_dec(p, &ent->ent_type); 495 le_uuid_dec(p + 16, &ent->ent_uuid); 496 ent->ent_lba_start = le64dec(p + 32); 497 ent->ent_lba_end = le64dec(p + 40); 498 ent->ent_attr = le64dec(p + 48); 499 /* Keep UTF-16 in little-endian. */ 500 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); 501 } 502 503 g_free(buf); 504 return (tbl); 505 } 506 507 static int 508 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) 509 { 510 511 if (pri == NULL || sec == NULL) 512 return (0); 513 514 if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) 515 return (0); 516 return ((pri->hdr_revision == sec->hdr_revision && 517 pri->hdr_size == sec->hdr_size && 518 pri->hdr_lba_start == sec->hdr_lba_start && 519 pri->hdr_lba_end == sec->hdr_lba_end && 520 pri->hdr_entries == sec->hdr_entries && 521 pri->hdr_entsz == sec->hdr_entsz && 522 pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); 523 } 524 525 static int 526 gpt_parse_type(const char *type, struct uuid *uuid) 527 { 528 struct uuid tmp; 529 const char *alias; 530 int error; 531 struct g_part_uuid_alias *uap; 532 533 if (type[0] == '!') { 534 error = parse_uuid(type + 1, &tmp); 535 if (error) 536 return (error); 537 if (EQUUID(&tmp, &gpt_uuid_unused)) 538 return (EINVAL); 539 *uuid = tmp; 540 return (0); 541 } 542 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 543 alias = g_part_alias_name(uap->alias); 544 if (!strcasecmp(type, alias)) { 545 *uuid = *uap->uuid; 546 return (0); 547 } 548 } 549 return (EINVAL); 550 } 551 552 static int 553 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, 554 struct g_part_parms *gpp) 555 { 556 struct g_part_gpt_entry *entry; 557 int error; 558 559 entry = (struct g_part_gpt_entry *)baseentry; 560 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 561 if (error) 562 return (error); 563 kern_uuidgen(&entry->ent.ent_uuid, 1); 564 entry->ent.ent_lba_start = baseentry->gpe_start; 565 entry->ent.ent_lba_end = baseentry->gpe_end; 566 if (baseentry->gpe_deleted) { 567 entry->ent.ent_attr = 0; 568 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); 569 } 570 if (gpp->gpp_parms & G_PART_PARM_LABEL) 571 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 572 sizeof(entry->ent.ent_name) / 573 sizeof(entry->ent.ent_name[0])); 574 return (0); 575 } 576 577 static int 578 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) 579 { 580 struct g_part_gpt_table *table; 581 size_t codesz; 582 583 codesz = DOSPARTOFF; 584 table = (struct g_part_gpt_table *)basetable; 585 bzero(table->mbr, codesz); 586 codesz = MIN(codesz, gpp->gpp_codesize); 587 if (codesz > 0) 588 bcopy(gpp->gpp_codeptr, table->mbr, codesz); 589 return (0); 590 } 591 592 static int 593 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) 594 { 595 struct g_provider *pp; 596 struct g_part_gpt_table *table; 597 size_t tblsz; 598 599 /* We don't nest, which means that our depth should be 0. */ 600 if (basetable->gpt_depth != 0) 601 return (ENXIO); 602 603 table = (struct g_part_gpt_table *)basetable; 604 pp = gpp->gpp_provider; 605 tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) + 606 pp->sectorsize - 1) / pp->sectorsize; 607 if (pp->sectorsize < MBRSIZE || 608 pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * 609 pp->sectorsize) 610 return (ENOSPC); 611 612 /* Allocate space for the header */ 613 table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); 614 615 bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 616 table->hdr->hdr_revision = GPT_HDR_REVISION; 617 table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); 618 kern_uuidgen(&table->hdr->hdr_uuid, 1); 619 table->hdr->hdr_entries = basetable->gpt_entries; 620 table->hdr->hdr_entsz = sizeof(struct gpt_ent); 621 622 g_gpt_set_defaults(basetable, pp); 623 return (0); 624 } 625 626 static int 627 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) 628 { 629 struct g_part_gpt_table *table; 630 struct g_provider *pp; 631 632 table = (struct g_part_gpt_table *)basetable; 633 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 634 g_free(table->hdr); 635 table->hdr = NULL; 636 637 /* 638 * Wipe the first 2 sectors to clear the partitioning. Wipe the last 639 * sector only if it has valid secondary header. 640 */ 641 basetable->gpt_smhead |= 3; 642 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 643 table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1) 644 basetable->gpt_smtail |= 1; 645 return (0); 646 } 647 648 static void 649 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 650 struct sbuf *sb, const char *indent) 651 { 652 struct g_part_gpt_entry *entry; 653 654 entry = (struct g_part_gpt_entry *)baseentry; 655 if (indent == NULL) { 656 /* conftxt: libdisk compatibility */ 657 sbuf_printf(sb, " xs GPT xt "); 658 sbuf_printf_uuid(sb, &entry->ent.ent_type); 659 } else if (entry != NULL) { 660 /* confxml: partition entry information */ 661 sbuf_printf(sb, "%s<label>", indent); 662 g_gpt_printf_utf16(sb, entry->ent.ent_name, 663 sizeof(entry->ent.ent_name) >> 1); 664 sbuf_printf(sb, "</label>\n"); 665 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME) 666 sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent); 667 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) { 668 sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n", 669 indent); 670 } 671 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) { 672 sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n", 673 indent); 674 } 675 sbuf_printf(sb, "%s<rawtype>", indent); 676 sbuf_printf_uuid(sb, &entry->ent.ent_type); 677 sbuf_printf(sb, "</rawtype>\n"); 678 sbuf_printf(sb, "%s<rawuuid>", indent); 679 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 680 sbuf_printf(sb, "</rawuuid>\n"); 681 } else { 682 /* confxml: scheme information */ 683 } 684 } 685 686 static int 687 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) 688 { 689 struct g_part_gpt_entry *entry; 690 691 entry = (struct g_part_gpt_entry *)baseentry; 692 return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || 693 EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap)) ? 1 : 0); 694 } 695 696 static int 697 g_part_gpt_modify(struct g_part_table *basetable, 698 struct g_part_entry *baseentry, struct g_part_parms *gpp) 699 { 700 struct g_part_gpt_entry *entry; 701 int error; 702 703 entry = (struct g_part_gpt_entry *)baseentry; 704 if (gpp->gpp_parms & G_PART_PARM_TYPE) { 705 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 706 if (error) 707 return (error); 708 } 709 if (gpp->gpp_parms & G_PART_PARM_LABEL) 710 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 711 sizeof(entry->ent.ent_name) / 712 sizeof(entry->ent.ent_name[0])); 713 return (0); 714 } 715 716 static int 717 g_part_gpt_resize(struct g_part_table *basetable, 718 struct g_part_entry *baseentry, struct g_part_parms *gpp) 719 { 720 struct g_part_gpt_entry *entry; 721 entry = (struct g_part_gpt_entry *)baseentry; 722 723 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; 724 entry->ent.ent_lba_end = baseentry->gpe_end; 725 726 return (0); 727 } 728 729 static const char * 730 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, 731 char *buf, size_t bufsz) 732 { 733 struct g_part_gpt_entry *entry; 734 char c; 735 736 entry = (struct g_part_gpt_entry *)baseentry; 737 c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; 738 snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); 739 return (buf); 740 } 741 742 static int 743 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) 744 { 745 struct g_provider *pp; 746 char *buf; 747 int error, res; 748 749 /* We don't nest, which means that our depth should be 0. */ 750 if (table->gpt_depth != 0) 751 return (ENXIO); 752 753 pp = cp->provider; 754 755 /* 756 * Sanity-check the provider. Since the first sector on the provider 757 * must be a PMBR and a PMBR is 512 bytes large, the sector size 758 * must be at least 512 bytes. Also, since the theoretical minimum 759 * number of sectors needed by GPT is 6, any medium that has less 760 * than 6 sectors is never going to be able to hold a GPT. The 761 * number 6 comes from: 762 * 1 sector for the PMBR 763 * 2 sectors for the GPT headers (each 1 sector) 764 * 2 sectors for the GPT tables (each 1 sector) 765 * 1 sector for an actual partition 766 * It's better to catch this pathological case early than behaving 767 * pathologically later on... 768 */ 769 if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) 770 return (ENOSPC); 771 772 /* Check that there's a MBR. */ 773 buf = g_read_data(cp, 0L, pp->sectorsize, &error); 774 if (buf == NULL) 775 return (error); 776 res = le16dec(buf + DOSMAGICOFFSET); 777 g_free(buf); 778 if (res != DOSMAGIC) 779 return (ENXIO); 780 781 /* Check that there's a primary header. */ 782 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); 783 if (buf == NULL) 784 return (error); 785 res = memcmp(buf, GPT_HDR_SIG, 8); 786 g_free(buf); 787 if (res == 0) 788 return (G_PART_PROBE_PRI_HIGH); 789 790 /* No primary? Check that there's a secondary. */ 791 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 792 &error); 793 if (buf == NULL) 794 return (error); 795 res = memcmp(buf, GPT_HDR_SIG, 8); 796 g_free(buf); 797 return ((res == 0) ? G_PART_PROBE_PRI_HIGH : ENXIO); 798 } 799 800 static int 801 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) 802 { 803 struct gpt_hdr *prihdr, *sechdr; 804 struct gpt_ent *tbl, *pritbl, *sectbl; 805 struct g_provider *pp; 806 struct g_part_gpt_table *table; 807 struct g_part_gpt_entry *entry; 808 u_char *buf; 809 uint64_t last; 810 int error, index; 811 812 table = (struct g_part_gpt_table *)basetable; 813 pp = cp->provider; 814 last = (pp->mediasize / pp->sectorsize) - 1; 815 816 /* Read the PMBR */ 817 buf = g_read_data(cp, 0, pp->sectorsize, &error); 818 if (buf == NULL) 819 return (error); 820 bcopy(buf, table->mbr, MBRSIZE); 821 g_free(buf); 822 823 /* Read the primary header and table. */ 824 prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); 825 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { 826 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); 827 } else { 828 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 829 pritbl = NULL; 830 } 831 832 /* Read the secondary header and table. */ 833 sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); 834 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { 835 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); 836 } else { 837 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 838 sectbl = NULL; 839 } 840 841 /* Fail if we haven't got any good tables at all. */ 842 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && 843 table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 844 printf("GEOM: %s: corrupt or invalid GPT detected.\n", 845 pp->name); 846 printf("GEOM: %s: GPT rejected -- may not be recoverable.\n", 847 pp->name); 848 return (EINVAL); 849 } 850 851 /* 852 * If both headers are good but they disagree with each other, 853 * then invalidate one. We prefer to keep the primary header, 854 * unless the primary table is corrupt. 855 */ 856 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && 857 table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 858 !gpt_matched_hdrs(prihdr, sechdr)) { 859 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { 860 table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; 861 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 862 g_free(sechdr); 863 sechdr = NULL; 864 } else { 865 table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; 866 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 867 g_free(prihdr); 868 prihdr = NULL; 869 } 870 } 871 872 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { 873 printf("GEOM: %s: the primary GPT table is corrupt or " 874 "invalid.\n", pp->name); 875 printf("GEOM: %s: using the secondary instead -- recovery " 876 "strongly advised.\n", pp->name); 877 table->hdr = sechdr; 878 basetable->gpt_corrupt = 1; 879 if (prihdr != NULL) 880 g_free(prihdr); 881 tbl = sectbl; 882 if (pritbl != NULL) 883 g_free(pritbl); 884 } else { 885 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 886 printf("GEOM: %s: the secondary GPT table is corrupt " 887 "or invalid.\n", pp->name); 888 printf("GEOM: %s: using the primary only -- recovery " 889 "suggested.\n", pp->name); 890 basetable->gpt_corrupt = 1; 891 } else if (table->lba[GPT_ELT_SECHDR] != last) { 892 printf( "GEOM: %s: the secondary GPT header is not in " 893 "the last LBA.\n", pp->name); 894 basetable->gpt_corrupt = 1; 895 } 896 table->hdr = prihdr; 897 if (sechdr != NULL) 898 g_free(sechdr); 899 tbl = pritbl; 900 if (sectbl != NULL) 901 g_free(sectbl); 902 } 903 904 basetable->gpt_first = table->hdr->hdr_lba_start; 905 basetable->gpt_last = table->hdr->hdr_lba_end; 906 basetable->gpt_entries = table->hdr->hdr_entries; 907 908 for (index = basetable->gpt_entries - 1; index >= 0; index--) { 909 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) 910 continue; 911 entry = (struct g_part_gpt_entry *)g_part_new_entry( 912 basetable, index + 1, tbl[index].ent_lba_start, 913 tbl[index].ent_lba_end); 914 entry->ent = tbl[index]; 915 } 916 917 g_free(tbl); 918 919 /* 920 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions 921 * if (and only if) any FAT32 or FAT16 partitions have been 922 * created. This happens irrespective of whether Boot Camp is 923 * used/enabled, though it's generally understood to be done 924 * to support legacy Windows under Boot Camp. We refer to this 925 * mirroring simply as Boot Camp. We try to detect Boot Camp 926 * so that we can update the MBR if and when GPT changes have 927 * been made. Note that we do not enable Boot Camp if not 928 * previously enabled because we can't assume that we're on a 929 * Mac alongside Mac OS X. 930 */ 931 table->bootcamp = gpt_is_bootcamp(table, pp->name); 932 933 return (0); 934 } 935 936 static int 937 g_part_gpt_recover(struct g_part_table *basetable) 938 { 939 940 g_gpt_set_defaults(basetable, 941 LIST_FIRST(&basetable->gpt_gp->consumer)->provider); 942 basetable->gpt_corrupt = 0; 943 return (0); 944 } 945 946 static int 947 g_part_gpt_setunset(struct g_part_table *basetable, 948 struct g_part_entry *baseentry, const char *attrib, unsigned int set) 949 { 950 struct g_part_gpt_entry *entry; 951 struct g_part_gpt_table *table; 952 uint64_t attr; 953 int i; 954 955 table = (struct g_part_gpt_table *)basetable; 956 entry = (struct g_part_gpt_entry *)baseentry; 957 958 if (strcasecmp(attrib, "active") == 0) { 959 if (!table->bootcamp || baseentry->gpe_index > NDOSPART) 960 return (EINVAL); 961 for (i = 0; i < NDOSPART; i++) { 962 table->mbr[DOSPARTOFF + i * DOSPARTSIZE] = 963 (i == baseentry->gpe_index - 1) ? 0x80 : 0; 964 } 965 return (0); 966 } 967 968 attr = 0; 969 if (strcasecmp(attrib, "bootme") == 0) { 970 attr |= GPT_ENT_ATTR_BOOTME; 971 } else if (strcasecmp(attrib, "bootonce") == 0) { 972 attr |= GPT_ENT_ATTR_BOOTONCE; 973 if (set) 974 attr |= GPT_ENT_ATTR_BOOTME; 975 } else if (strcasecmp(attrib, "bootfailed") == 0) { 976 /* 977 * It should only be possible to unset BOOTFAILED, but it might 978 * be useful for test purposes to also be able to set it. 979 */ 980 attr |= GPT_ENT_ATTR_BOOTFAILED; 981 } 982 if (attr == 0) 983 return (EINVAL); 984 985 if (set) 986 attr = entry->ent.ent_attr | attr; 987 else 988 attr = entry->ent.ent_attr & ~attr; 989 if (attr != entry->ent.ent_attr) { 990 entry->ent.ent_attr = attr; 991 if (!baseentry->gpe_created) 992 baseentry->gpe_modified = 1; 993 } 994 return (0); 995 } 996 997 static const char * 998 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 999 char *buf, size_t bufsz) 1000 { 1001 struct g_part_gpt_entry *entry; 1002 struct uuid *type; 1003 struct g_part_uuid_alias *uap; 1004 1005 entry = (struct g_part_gpt_entry *)baseentry; 1006 type = &entry->ent.ent_type; 1007 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) 1008 if (EQUUID(type, uap->uuid)) 1009 return (g_part_alias_name(uap->alias)); 1010 buf[0] = '!'; 1011 snprintf_uuid(buf + 1, bufsz - 1, type); 1012 1013 return (buf); 1014 } 1015 1016 static int 1017 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) 1018 { 1019 unsigned char *buf, *bp; 1020 struct g_provider *pp; 1021 struct g_part_entry *baseentry; 1022 struct g_part_gpt_entry *entry; 1023 struct g_part_gpt_table *table; 1024 size_t tblsz; 1025 uint32_t crc; 1026 int error, index; 1027 1028 pp = cp->provider; 1029 table = (struct g_part_gpt_table *)basetable; 1030 tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz + 1031 pp->sectorsize - 1) / pp->sectorsize; 1032 1033 /* Reconstruct the MBR from the GPT if under Boot Camp. */ 1034 if (table->bootcamp) 1035 gpt_update_bootcamp(basetable); 1036 1037 /* Update partition entries in the PMBR if Boot Camp disabled. */ 1038 if (!table->bootcamp) { 1039 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 1040 gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, 1041 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 1042 /* Mark the PMBR active since some BIOS require it. */ 1043 table->mbr[DOSPARTOFF] = 0x80; 1044 } 1045 le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); 1046 1047 /* Write the PMBR */ 1048 buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); 1049 bcopy(table->mbr, buf, MBRSIZE); 1050 error = g_write_data(cp, 0, buf, pp->sectorsize); 1051 g_free(buf); 1052 if (error) 1053 return (error); 1054 1055 /* Allocate space for the header and entries. */ 1056 buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); 1057 1058 memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 1059 le32enc(buf + 8, table->hdr->hdr_revision); 1060 le32enc(buf + 12, table->hdr->hdr_size); 1061 le64enc(buf + 40, table->hdr->hdr_lba_start); 1062 le64enc(buf + 48, table->hdr->hdr_lba_end); 1063 le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); 1064 le32enc(buf + 80, table->hdr->hdr_entries); 1065 le32enc(buf + 84, table->hdr->hdr_entsz); 1066 1067 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1068 if (baseentry->gpe_deleted) 1069 continue; 1070 entry = (struct g_part_gpt_entry *)baseentry; 1071 index = baseentry->gpe_index - 1; 1072 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; 1073 le_uuid_enc(bp, &entry->ent.ent_type); 1074 le_uuid_enc(bp + 16, &entry->ent.ent_uuid); 1075 le64enc(bp + 32, entry->ent.ent_lba_start); 1076 le64enc(bp + 40, entry->ent.ent_lba_end); 1077 le64enc(bp + 48, entry->ent.ent_attr); 1078 memcpy(bp + 56, entry->ent.ent_name, 1079 sizeof(entry->ent.ent_name)); 1080 } 1081 1082 crc = crc32(buf + pp->sectorsize, 1083 table->hdr->hdr_entries * table->hdr->hdr_entsz); 1084 le32enc(buf + 88, crc); 1085 1086 /* Write primary meta-data. */ 1087 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1088 le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ 1089 le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ 1090 le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ 1091 crc = crc32(buf, table->hdr->hdr_size); 1092 le32enc(buf + 16, crc); 1093 1094 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1095 error = g_write_data(cp, 1096 (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize, 1097 buf + (index + 1) * pp->sectorsize, 1098 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1099 (tblsz - index) * pp->sectorsize); 1100 if (error) 1101 goto out; 1102 } 1103 error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, 1104 buf, pp->sectorsize); 1105 if (error) 1106 goto out; 1107 1108 /* Write secondary meta-data. */ 1109 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1110 le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ 1111 le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ 1112 le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ 1113 crc = crc32(buf, table->hdr->hdr_size); 1114 le32enc(buf + 16, crc); 1115 1116 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1117 error = g_write_data(cp, 1118 (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize, 1119 buf + (index + 1) * pp->sectorsize, 1120 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1121 (tblsz - index) * pp->sectorsize); 1122 if (error) 1123 goto out; 1124 } 1125 error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, 1126 buf, pp->sectorsize); 1127 1128 out: 1129 g_free(buf); 1130 return (error); 1131 } 1132 1133 static void 1134 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp) 1135 { 1136 struct g_part_gpt_table *table; 1137 quad_t last; 1138 size_t tblsz; 1139 1140 table = (struct g_part_gpt_table *)basetable; 1141 last = pp->mediasize / pp->sectorsize - 1; 1142 tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) + 1143 pp->sectorsize - 1) / pp->sectorsize; 1144 1145 table->lba[GPT_ELT_PRIHDR] = 1; 1146 table->lba[GPT_ELT_PRITBL] = 2; 1147 table->lba[GPT_ELT_SECHDR] = last; 1148 table->lba[GPT_ELT_SECTBL] = last - tblsz; 1149 table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK; 1150 table->state[GPT_ELT_PRITBL] = GPT_STATE_OK; 1151 table->state[GPT_ELT_SECHDR] = GPT_STATE_OK; 1152 table->state[GPT_ELT_SECTBL] = GPT_STATE_OK; 1153 1154 table->hdr->hdr_lba_start = 2 + tblsz; 1155 table->hdr->hdr_lba_end = last - tblsz - 1; 1156 1157 basetable->gpt_first = table->hdr->hdr_lba_start; 1158 basetable->gpt_last = table->hdr->hdr_lba_end; 1159 } 1160 1161 static void 1162 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) 1163 { 1164 u_int bo; 1165 uint32_t ch; 1166 uint16_t c; 1167 1168 bo = LITTLE_ENDIAN; /* GPT is little-endian */ 1169 while (len > 0 && *str != 0) { 1170 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); 1171 str++, len--; 1172 if ((ch & 0xf800) == 0xd800) { 1173 if (len > 0) { 1174 c = (bo == BIG_ENDIAN) ? be16toh(*str) 1175 : le16toh(*str); 1176 str++, len--; 1177 } else 1178 c = 0xfffd; 1179 if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { 1180 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); 1181 ch += 0x10000; 1182 } else 1183 ch = 0xfffd; 1184 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ 1185 bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; 1186 continue; 1187 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ 1188 continue; 1189 1190 /* Write the Unicode character in UTF-8 */ 1191 if (ch < 0x80) 1192 sbuf_printf(sb, "%c", ch); 1193 else if (ch < 0x800) 1194 sbuf_printf(sb, "%c%c", 0xc0 | (ch >> 6), 1195 0x80 | (ch & 0x3f)); 1196 else if (ch < 0x10000) 1197 sbuf_printf(sb, "%c%c%c", 0xe0 | (ch >> 12), 1198 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1199 else if (ch < 0x200000) 1200 sbuf_printf(sb, "%c%c%c%c", 0xf0 | (ch >> 18), 1201 0x80 | ((ch >> 12) & 0x3f), 1202 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1203 } 1204 } 1205 1206 static void 1207 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) 1208 { 1209 size_t s16idx, s8idx; 1210 uint32_t utfchar; 1211 unsigned int c, utfbytes; 1212 1213 s8idx = s16idx = 0; 1214 utfchar = 0; 1215 utfbytes = 0; 1216 bzero(s16, s16len << 1); 1217 while (s8[s8idx] != 0 && s16idx < s16len) { 1218 c = s8[s8idx++]; 1219 if ((c & 0xc0) != 0x80) { 1220 /* Initial characters. */ 1221 if (utfbytes != 0) { 1222 /* Incomplete encoding of previous char. */ 1223 s16[s16idx++] = htole16(0xfffd); 1224 } 1225 if ((c & 0xf8) == 0xf0) { 1226 utfchar = c & 0x07; 1227 utfbytes = 3; 1228 } else if ((c & 0xf0) == 0xe0) { 1229 utfchar = c & 0x0f; 1230 utfbytes = 2; 1231 } else if ((c & 0xe0) == 0xc0) { 1232 utfchar = c & 0x1f; 1233 utfbytes = 1; 1234 } else { 1235 utfchar = c & 0x7f; 1236 utfbytes = 0; 1237 } 1238 } else { 1239 /* Followup characters. */ 1240 if (utfbytes > 0) { 1241 utfchar = (utfchar << 6) + (c & 0x3f); 1242 utfbytes--; 1243 } else if (utfbytes == 0) 1244 utfbytes = ~0; 1245 } 1246 /* 1247 * Write the complete Unicode character as UTF-16 when we 1248 * have all the UTF-8 charactars collected. 1249 */ 1250 if (utfbytes == 0) { 1251 /* 1252 * If we need to write 2 UTF-16 characters, but 1253 * we only have room for 1, then we truncate the 1254 * string by writing a 0 instead. 1255 */ 1256 if (utfchar >= 0x10000 && s16idx < s16len - 1) { 1257 s16[s16idx++] = 1258 htole16(0xd800 | ((utfchar >> 10) - 0x40)); 1259 s16[s16idx++] = 1260 htole16(0xdc00 | (utfchar & 0x3ff)); 1261 } else 1262 s16[s16idx++] = (utfchar >= 0x10000) ? 0 : 1263 htole16(utfchar); 1264 } 1265 } 1266 /* 1267 * If our input string was truncated, append an invalid encoding 1268 * character to the output string. 1269 */ 1270 if (utfbytes != 0 && s16idx < s16len) 1271 s16[s16idx++] = htole16(0xfffd); 1272 } 1273