xref: /freebsd/sys/geom/part/g_part_gpt.c (revision c6ec7d31830ab1c80edae95ad5e4b9dba10c47ac)
1 /*-
2  * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/bio.h>
32 #include <sys/diskmbr.h>
33 #include <sys/endian.h>
34 #include <sys/gpt.h>
35 #include <sys/kernel.h>
36 #include <sys/kobj.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mutex.h>
41 #include <sys/queue.h>
42 #include <sys/sbuf.h>
43 #include <sys/systm.h>
44 #include <sys/sysctl.h>
45 #include <sys/uuid.h>
46 #include <geom/geom.h>
47 #include <geom/part/g_part.h>
48 
49 #include "g_part_if.h"
50 
51 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support");
52 
53 CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
54 CTASSERT(sizeof(struct gpt_ent) == 128);
55 
56 #define	EQUUID(a,b)	(memcmp(a, b, sizeof(struct uuid)) == 0)
57 
58 #define	MBRSIZE		512
59 
60 enum gpt_elt {
61 	GPT_ELT_PRIHDR,
62 	GPT_ELT_PRITBL,
63 	GPT_ELT_SECHDR,
64 	GPT_ELT_SECTBL,
65 	GPT_ELT_COUNT
66 };
67 
68 enum gpt_state {
69 	GPT_STATE_UNKNOWN,	/* Not determined. */
70 	GPT_STATE_MISSING,	/* No signature found. */
71 	GPT_STATE_CORRUPT,	/* Checksum mismatch. */
72 	GPT_STATE_INVALID,	/* Nonconformant/invalid. */
73 	GPT_STATE_OK		/* Perfectly fine. */
74 };
75 
76 struct g_part_gpt_table {
77 	struct g_part_table	base;
78 	u_char			mbr[MBRSIZE];
79 	struct gpt_hdr		*hdr;
80 	quad_t			lba[GPT_ELT_COUNT];
81 	enum gpt_state		state[GPT_ELT_COUNT];
82 	int			bootcamp;
83 };
84 
85 struct g_part_gpt_entry {
86 	struct g_part_entry	base;
87 	struct gpt_ent		ent;
88 };
89 
90 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
91 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
92 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *);
93 
94 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
95     struct g_part_parms *);
96 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
97 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
98 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
99 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
100     struct sbuf *, const char *);
101 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
102 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,
103     struct g_part_parms *);
104 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
105     char *, size_t);
106 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
107 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
108 static int g_part_gpt_setunset(struct g_part_table *table,
109     struct g_part_entry *baseentry, const char *attrib, unsigned int set);
110 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
111     char *, size_t);
112 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
113 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *,
114     struct g_part_parms *);
115 static int g_part_gpt_recover(struct g_part_table *);
116 
117 static kobj_method_t g_part_gpt_methods[] = {
118 	KOBJMETHOD(g_part_add,		g_part_gpt_add),
119 	KOBJMETHOD(g_part_bootcode,	g_part_gpt_bootcode),
120 	KOBJMETHOD(g_part_create,	g_part_gpt_create),
121 	KOBJMETHOD(g_part_destroy,	g_part_gpt_destroy),
122 	KOBJMETHOD(g_part_dumpconf,	g_part_gpt_dumpconf),
123 	KOBJMETHOD(g_part_dumpto,	g_part_gpt_dumpto),
124 	KOBJMETHOD(g_part_modify,	g_part_gpt_modify),
125 	KOBJMETHOD(g_part_resize,	g_part_gpt_resize),
126 	KOBJMETHOD(g_part_name,		g_part_gpt_name),
127 	KOBJMETHOD(g_part_probe,	g_part_gpt_probe),
128 	KOBJMETHOD(g_part_read,		g_part_gpt_read),
129 	KOBJMETHOD(g_part_recover,	g_part_gpt_recover),
130 	KOBJMETHOD(g_part_setunset,	g_part_gpt_setunset),
131 	KOBJMETHOD(g_part_type,		g_part_gpt_type),
132 	KOBJMETHOD(g_part_write,	g_part_gpt_write),
133 	{ 0, 0 }
134 };
135 
136 static struct g_part_scheme g_part_gpt_scheme = {
137 	"GPT",
138 	g_part_gpt_methods,
139 	sizeof(struct g_part_gpt_table),
140 	.gps_entrysz = sizeof(struct g_part_gpt_entry),
141 	.gps_minent = 128,
142 	.gps_maxent = 4096,
143 	.gps_bootcodesz = MBRSIZE,
144 };
145 G_PART_SCHEME_DECLARE(g_part_gpt);
146 
147 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT;
148 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
149 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL;
150 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID;
151 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE;
152 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY;
153 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS;
154 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT;
155 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
156 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
157 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
158 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
159 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
160 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
161 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
162 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
163 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
164 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM;
165 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID;
166 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
167 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS;
168 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG;
169 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED;
170 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
171 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED;
172 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA;
173 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA;
174 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD;
175 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD;
176 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS;
177 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS;
178 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID;
179 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP;
180 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
181 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
182 
183 static struct g_part_uuid_alias {
184 	struct uuid *uuid;
185 	int alias;
186 	int mbrtype;
187 } gpt_uuid_alias_match[] = {
188 	{ &gpt_uuid_apple_boot,		G_PART_ALIAS_APPLE_BOOT,	 0xab },
189 	{ &gpt_uuid_apple_hfs,		G_PART_ALIAS_APPLE_HFS,		 0xaf },
190 	{ &gpt_uuid_apple_label,	G_PART_ALIAS_APPLE_LABEL,	 0 },
191 	{ &gpt_uuid_apple_raid,		G_PART_ALIAS_APPLE_RAID,	 0 },
192 	{ &gpt_uuid_apple_raid_offline,	G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 },
193 	{ &gpt_uuid_apple_tv_recovery,	G_PART_ALIAS_APPLE_TV_RECOVERY,	 0 },
194 	{ &gpt_uuid_apple_ufs,		G_PART_ALIAS_APPLE_UFS,		 0 },
195 	{ &gpt_uuid_bios_boot,		G_PART_ALIAS_BIOS_BOOT,		 0 },
196 	{ &gpt_uuid_efi, 		G_PART_ALIAS_EFI,		 0xee },
197 	{ &gpt_uuid_freebsd,		G_PART_ALIAS_FREEBSD,		 0xa5 },
198 	{ &gpt_uuid_freebsd_boot, 	G_PART_ALIAS_FREEBSD_BOOT,	 0 },
199 	{ &gpt_uuid_freebsd_nandfs, 	G_PART_ALIAS_FREEBSD_NANDFS,	 0 },
200 	{ &gpt_uuid_freebsd_swap,	G_PART_ALIAS_FREEBSD_SWAP,	 0 },
201 	{ &gpt_uuid_freebsd_ufs,	G_PART_ALIAS_FREEBSD_UFS,	 0 },
202 	{ &gpt_uuid_freebsd_vinum,	G_PART_ALIAS_FREEBSD_VINUM,	 0 },
203 	{ &gpt_uuid_freebsd_zfs,	G_PART_ALIAS_FREEBSD_ZFS,	 0 },
204 	{ &gpt_uuid_linux_data,		G_PART_ALIAS_LINUX_DATA,	 0x0b },
205 	{ &gpt_uuid_linux_lvm,		G_PART_ALIAS_LINUX_LVM,		 0 },
206 	{ &gpt_uuid_linux_raid,		G_PART_ALIAS_LINUX_RAID,	 0 },
207 	{ &gpt_uuid_linux_swap,		G_PART_ALIAS_LINUX_SWAP,	 0 },
208 	{ &gpt_uuid_vmfs,		G_PART_ALIAS_VMFS,		 0 },
209 	{ &gpt_uuid_vmkdiag,		G_PART_ALIAS_VMKDIAG,		 0 },
210 	{ &gpt_uuid_vmreserved,		G_PART_ALIAS_VMRESERVED,	 0 },
211 	{ &gpt_uuid_mbr,		G_PART_ALIAS_MBR,		 0 },
212 	{ &gpt_uuid_ms_basic_data,	G_PART_ALIAS_MS_BASIC_DATA,	 0x0b },
213 	{ &gpt_uuid_ms_ldm_data,	G_PART_ALIAS_MS_LDM_DATA,	 0 },
214 	{ &gpt_uuid_ms_ldm_metadata,	G_PART_ALIAS_MS_LDM_METADATA,	 0 },
215 	{ &gpt_uuid_ms_reserved,	G_PART_ALIAS_MS_RESERVED,	 0 },
216 	{ &gpt_uuid_netbsd_ccd,		G_PART_ALIAS_NETBSD_CCD,	 0 },
217 	{ &gpt_uuid_netbsd_cgd,		G_PART_ALIAS_NETBSD_CGD,	 0 },
218 	{ &gpt_uuid_netbsd_ffs,		G_PART_ALIAS_NETBSD_FFS,	 0 },
219 	{ &gpt_uuid_netbsd_lfs,		G_PART_ALIAS_NETBSD_LFS,	 0 },
220 	{ &gpt_uuid_netbsd_raid,	G_PART_ALIAS_NETBSD_RAID,	 0 },
221 	{ &gpt_uuid_netbsd_swap,	G_PART_ALIAS_NETBSD_SWAP,	 0 },
222 	{ NULL, 0, 0 }
223 };
224 
225 static int
226 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start,
227     quad_t end)
228 {
229 
230 	if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX)
231 		return (EINVAL);
232 
233 	mbr += DOSPARTOFF + idx * DOSPARTSIZE;
234 	mbr[0] = 0;
235 	if (start == 1) {
236 		/*
237 		 * Treat the PMBR partition specially to maximize
238 		 * interoperability with BIOSes.
239 		 */
240 		mbr[1] = mbr[3] = 0;
241 		mbr[2] = 2;
242 	} else
243 		mbr[1] = mbr[2] = mbr[3] = 0xff;
244 	mbr[4] = typ;
245 	mbr[5] = mbr[6] = mbr[7] = 0xff;
246 	le32enc(mbr + 8, (uint32_t)start);
247 	le32enc(mbr + 12, (uint32_t)(end - start + 1));
248 	return (0);
249 }
250 
251 static int
252 gpt_map_type(struct uuid *t)
253 {
254 	struct g_part_uuid_alias *uap;
255 
256 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
257 		if (EQUUID(t, uap->uuid))
258 			return (uap->mbrtype);
259 	}
260 	return (0);
261 }
262 
263 /*
264  * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the
265  * whole disk anymore. Rather, it covers the GPT table and the EFI
266  * system partition only. This way the HFS+ partition and any FAT
267  * partitions can be added to the MBR without creating an overlap.
268  */
269 static int
270 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname)
271 {
272 	uint8_t *p;
273 
274 	p = table->mbr + DOSPARTOFF;
275 	if (p[4] != 0xee || le32dec(p + 8) != 1)
276 		return (0);
277 
278 	p += DOSPARTSIZE;
279 	if (p[4] != 0xaf)
280 		return (0);
281 
282 	printf("GEOM: %s: enabling Boot Camp\n", provname);
283 	return (1);
284 }
285 
286 static void
287 gpt_update_bootcamp(struct g_part_table *basetable)
288 {
289 	struct g_part_entry *baseentry;
290 	struct g_part_gpt_entry *entry;
291 	struct g_part_gpt_table *table;
292 	int bootable, error, index, slices, typ;
293 
294 	table = (struct g_part_gpt_table *)basetable;
295 
296 	bootable = -1;
297 	for (index = 0; index < NDOSPART; index++) {
298 		if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index])
299 			bootable = index;
300 	}
301 
302 	bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
303 	slices = 0;
304 	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
305 		if (baseentry->gpe_deleted)
306 			continue;
307 		index = baseentry->gpe_index - 1;
308 		if (index >= NDOSPART)
309 			continue;
310 
311 		entry = (struct g_part_gpt_entry *)baseentry;
312 
313 		switch (index) {
314 		case 0:	/* This must be the EFI system partition. */
315 			if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi))
316 				goto disable;
317 			error = gpt_write_mbr_entry(table->mbr, index, 0xee,
318 			    1ull, entry->ent.ent_lba_end);
319 			break;
320 		case 1:	/* This must be the HFS+ partition. */
321 			if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs))
322 				goto disable;
323 			error = gpt_write_mbr_entry(table->mbr, index, 0xaf,
324 			    entry->ent.ent_lba_start, entry->ent.ent_lba_end);
325 			break;
326 		default:
327 			typ = gpt_map_type(&entry->ent.ent_type);
328 			error = gpt_write_mbr_entry(table->mbr, index, typ,
329 			    entry->ent.ent_lba_start, entry->ent.ent_lba_end);
330 			break;
331 		}
332 		if (error)
333 			continue;
334 
335 		if (index == bootable)
336 			table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80;
337 		slices |= 1 << index;
338 	}
339 	if ((slices & 3) == 3)
340 		return;
341 
342  disable:
343 	table->bootcamp = 0;
344 }
345 
346 static struct gpt_hdr *
347 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
348     enum gpt_elt elt)
349 {
350 	struct gpt_hdr *buf, *hdr;
351 	struct g_provider *pp;
352 	quad_t lba, last;
353 	int error;
354 	uint32_t crc, sz;
355 
356 	pp = cp->provider;
357 	last = (pp->mediasize / pp->sectorsize) - 1;
358 	table->state[elt] = GPT_STATE_MISSING;
359 	/*
360 	 * If the primary header is valid look for secondary
361 	 * header in AlternateLBA, otherwise in the last medium's LBA.
362 	 */
363 	if (elt == GPT_ELT_SECHDR) {
364 		if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK)
365 			table->lba[elt] = last;
366 	} else
367 		table->lba[elt] = 1;
368 	buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
369 	    &error);
370 	if (buf == NULL)
371 		return (NULL);
372 	hdr = NULL;
373 	if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0)
374 		goto fail;
375 
376 	table->state[elt] = GPT_STATE_CORRUPT;
377 	sz = le32toh(buf->hdr_size);
378 	if (sz < 92 || sz > pp->sectorsize)
379 		goto fail;
380 
381 	hdr = g_malloc(sz, M_WAITOK | M_ZERO);
382 	bcopy(buf, hdr, sz);
383 	hdr->hdr_size = sz;
384 
385 	crc = le32toh(buf->hdr_crc_self);
386 	buf->hdr_crc_self = 0;
387 	if (crc32(buf, sz) != crc)
388 		goto fail;
389 	hdr->hdr_crc_self = crc;
390 
391 	table->state[elt] = GPT_STATE_INVALID;
392 	hdr->hdr_revision = le32toh(buf->hdr_revision);
393 	if (hdr->hdr_revision < GPT_HDR_REVISION)
394 		goto fail;
395 	hdr->hdr_lba_self = le64toh(buf->hdr_lba_self);
396 	if (hdr->hdr_lba_self != table->lba[elt])
397 		goto fail;
398 	hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt);
399 	if (hdr->hdr_lba_alt == hdr->hdr_lba_self ||
400 	    hdr->hdr_lba_alt > last)
401 		goto fail;
402 
403 	/* Check the managed area. */
404 	hdr->hdr_lba_start = le64toh(buf->hdr_lba_start);
405 	if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
406 		goto fail;
407 	hdr->hdr_lba_end = le64toh(buf->hdr_lba_end);
408 	if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
409 		goto fail;
410 
411 	/* Check the table location and size of the table. */
412 	hdr->hdr_entries = le32toh(buf->hdr_entries);
413 	hdr->hdr_entsz = le32toh(buf->hdr_entsz);
414 	if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
415 	    (hdr->hdr_entsz & 7) != 0)
416 		goto fail;
417 	hdr->hdr_lba_table = le64toh(buf->hdr_lba_table);
418 	if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
419 		goto fail;
420 	if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
421 	    hdr->hdr_lba_table <= hdr->hdr_lba_end)
422 		goto fail;
423 	lba = hdr->hdr_lba_table +
424 	    (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) /
425 	    pp->sectorsize - 1;
426 	if (lba >= last)
427 		goto fail;
428 	if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
429 		goto fail;
430 
431 	table->state[elt] = GPT_STATE_OK;
432 	le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid);
433 	hdr->hdr_crc_table = le32toh(buf->hdr_crc_table);
434 
435 	/* save LBA for secondary header */
436 	if (elt == GPT_ELT_PRIHDR)
437 		table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt;
438 
439 	g_free(buf);
440 	return (hdr);
441 
442  fail:
443 	if (hdr != NULL)
444 		g_free(hdr);
445 	g_free(buf);
446 	return (NULL);
447 }
448 
449 static struct gpt_ent *
450 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
451     enum gpt_elt elt, struct gpt_hdr *hdr)
452 {
453 	struct g_provider *pp;
454 	struct gpt_ent *ent, *tbl;
455 	char *buf, *p;
456 	unsigned int idx, sectors, tblsz, size;
457 	int error;
458 
459 	if (hdr == NULL)
460 		return (NULL);
461 
462 	pp = cp->provider;
463 	table->lba[elt] = hdr->hdr_lba_table;
464 
465 	table->state[elt] = GPT_STATE_MISSING;
466 	tblsz = hdr->hdr_entries * hdr->hdr_entsz;
467 	sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize;
468 	buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO);
469 	for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) {
470 		size = (sectors - idx > MAXPHYS / pp->sectorsize) ?  MAXPHYS:
471 		    (sectors - idx) * pp->sectorsize;
472 		p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize,
473 		    size, &error);
474 		if (p == NULL) {
475 			g_free(buf);
476 			return (NULL);
477 		}
478 		bcopy(p, buf + idx * pp->sectorsize, size);
479 		g_free(p);
480 	}
481 	table->state[elt] = GPT_STATE_CORRUPT;
482 	if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
483 		g_free(buf);
484 		return (NULL);
485 	}
486 
487 	table->state[elt] = GPT_STATE_OK;
488 	tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
489 	    M_WAITOK | M_ZERO);
490 
491 	for (idx = 0, ent = tbl, p = buf;
492 	     idx < hdr->hdr_entries;
493 	     idx++, ent++, p += hdr->hdr_entsz) {
494 		le_uuid_dec(p, &ent->ent_type);
495 		le_uuid_dec(p + 16, &ent->ent_uuid);
496 		ent->ent_lba_start = le64dec(p + 32);
497 		ent->ent_lba_end = le64dec(p + 40);
498 		ent->ent_attr = le64dec(p + 48);
499 		/* Keep UTF-16 in little-endian. */
500 		bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
501 	}
502 
503 	g_free(buf);
504 	return (tbl);
505 }
506 
507 static int
508 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
509 {
510 
511 	if (pri == NULL || sec == NULL)
512 		return (0);
513 
514 	if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
515 		return (0);
516 	return ((pri->hdr_revision == sec->hdr_revision &&
517 	    pri->hdr_size == sec->hdr_size &&
518 	    pri->hdr_lba_start == sec->hdr_lba_start &&
519 	    pri->hdr_lba_end == sec->hdr_lba_end &&
520 	    pri->hdr_entries == sec->hdr_entries &&
521 	    pri->hdr_entsz == sec->hdr_entsz &&
522 	    pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
523 }
524 
525 static int
526 gpt_parse_type(const char *type, struct uuid *uuid)
527 {
528 	struct uuid tmp;
529 	const char *alias;
530 	int error;
531 	struct g_part_uuid_alias *uap;
532 
533 	if (type[0] == '!') {
534 		error = parse_uuid(type + 1, &tmp);
535 		if (error)
536 			return (error);
537 		if (EQUUID(&tmp, &gpt_uuid_unused))
538 			return (EINVAL);
539 		*uuid = tmp;
540 		return (0);
541 	}
542 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
543 		alias = g_part_alias_name(uap->alias);
544 		if (!strcasecmp(type, alias)) {
545 			*uuid = *uap->uuid;
546 			return (0);
547 		}
548 	}
549 	return (EINVAL);
550 }
551 
552 static int
553 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
554     struct g_part_parms *gpp)
555 {
556 	struct g_part_gpt_entry *entry;
557 	int error;
558 
559 	entry = (struct g_part_gpt_entry *)baseentry;
560 	error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
561 	if (error)
562 		return (error);
563 	kern_uuidgen(&entry->ent.ent_uuid, 1);
564 	entry->ent.ent_lba_start = baseentry->gpe_start;
565 	entry->ent.ent_lba_end = baseentry->gpe_end;
566 	if (baseentry->gpe_deleted) {
567 		entry->ent.ent_attr = 0;
568 		bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
569 	}
570 	if (gpp->gpp_parms & G_PART_PARM_LABEL)
571 		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
572 		    sizeof(entry->ent.ent_name) /
573 		    sizeof(entry->ent.ent_name[0]));
574 	return (0);
575 }
576 
577 static int
578 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
579 {
580 	struct g_part_gpt_table *table;
581 	size_t codesz;
582 
583 	codesz = DOSPARTOFF;
584 	table = (struct g_part_gpt_table *)basetable;
585 	bzero(table->mbr, codesz);
586 	codesz = MIN(codesz, gpp->gpp_codesize);
587 	if (codesz > 0)
588 		bcopy(gpp->gpp_codeptr, table->mbr, codesz);
589 	return (0);
590 }
591 
592 static int
593 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
594 {
595 	struct g_provider *pp;
596 	struct g_part_gpt_table *table;
597 	size_t tblsz;
598 
599 	/* We don't nest, which means that our depth should be 0. */
600 	if (basetable->gpt_depth != 0)
601 		return (ENXIO);
602 
603 	table = (struct g_part_gpt_table *)basetable;
604 	pp = gpp->gpp_provider;
605 	tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
606 	    pp->sectorsize - 1) / pp->sectorsize;
607 	if (pp->sectorsize < MBRSIZE ||
608 	    pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
609 	    pp->sectorsize)
610 		return (ENOSPC);
611 
612 	/* Allocate space for the header */
613 	table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO);
614 
615 	bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
616 	table->hdr->hdr_revision = GPT_HDR_REVISION;
617 	table->hdr->hdr_size = offsetof(struct gpt_hdr, padding);
618 	kern_uuidgen(&table->hdr->hdr_uuid, 1);
619 	table->hdr->hdr_entries = basetable->gpt_entries;
620 	table->hdr->hdr_entsz = sizeof(struct gpt_ent);
621 
622 	g_gpt_set_defaults(basetable, pp);
623 	return (0);
624 }
625 
626 static int
627 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
628 {
629 	struct g_part_gpt_table *table;
630 	struct g_provider *pp;
631 
632 	table = (struct g_part_gpt_table *)basetable;
633 	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
634 	g_free(table->hdr);
635 	table->hdr = NULL;
636 
637 	/*
638 	 * Wipe the first 2 sectors to clear the partitioning. Wipe the last
639 	 * sector only if it has valid secondary header.
640 	 */
641 	basetable->gpt_smhead |= 3;
642 	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
643 	    table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1)
644 		basetable->gpt_smtail |= 1;
645 	return (0);
646 }
647 
648 static void
649 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry,
650     struct sbuf *sb, const char *indent)
651 {
652 	struct g_part_gpt_entry *entry;
653 
654 	entry = (struct g_part_gpt_entry *)baseentry;
655 	if (indent == NULL) {
656 		/* conftxt: libdisk compatibility */
657 		sbuf_printf(sb, " xs GPT xt ");
658 		sbuf_printf_uuid(sb, &entry->ent.ent_type);
659 	} else if (entry != NULL) {
660 		/* confxml: partition entry information */
661 		sbuf_printf(sb, "%s<label>", indent);
662 		g_gpt_printf_utf16(sb, entry->ent.ent_name,
663 		    sizeof(entry->ent.ent_name) >> 1);
664 		sbuf_printf(sb, "</label>\n");
665 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)
666 			sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent);
667 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) {
668 			sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n",
669 			    indent);
670 		}
671 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) {
672 			sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n",
673 			    indent);
674 		}
675 		sbuf_printf(sb, "%s<rawtype>", indent);
676 		sbuf_printf_uuid(sb, &entry->ent.ent_type);
677 		sbuf_printf(sb, "</rawtype>\n");
678 		sbuf_printf(sb, "%s<rawuuid>", indent);
679 		sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
680 		sbuf_printf(sb, "</rawuuid>\n");
681 	} else {
682 		/* confxml: scheme information */
683 	}
684 }
685 
686 static int
687 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
688 {
689 	struct g_part_gpt_entry *entry;
690 
691 	entry = (struct g_part_gpt_entry *)baseentry;
692 	return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
693 	    EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap)) ? 1 : 0);
694 }
695 
696 static int
697 g_part_gpt_modify(struct g_part_table *basetable,
698     struct g_part_entry *baseentry, struct g_part_parms *gpp)
699 {
700 	struct g_part_gpt_entry *entry;
701 	int error;
702 
703 	entry = (struct g_part_gpt_entry *)baseentry;
704 	if (gpp->gpp_parms & G_PART_PARM_TYPE) {
705 		error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
706 		if (error)
707 			return (error);
708 	}
709 	if (gpp->gpp_parms & G_PART_PARM_LABEL)
710 		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
711 		    sizeof(entry->ent.ent_name) /
712 		    sizeof(entry->ent.ent_name[0]));
713 	return (0);
714 }
715 
716 static int
717 g_part_gpt_resize(struct g_part_table *basetable,
718     struct g_part_entry *baseentry, struct g_part_parms *gpp)
719 {
720 	struct g_part_gpt_entry *entry;
721 	entry = (struct g_part_gpt_entry *)baseentry;
722 
723 	baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
724 	entry->ent.ent_lba_end = baseentry->gpe_end;
725 
726 	return (0);
727 }
728 
729 static const char *
730 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
731     char *buf, size_t bufsz)
732 {
733 	struct g_part_gpt_entry *entry;
734 	char c;
735 
736 	entry = (struct g_part_gpt_entry *)baseentry;
737 	c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
738 	snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
739 	return (buf);
740 }
741 
742 static int
743 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
744 {
745 	struct g_provider *pp;
746 	char *buf;
747 	int error, res;
748 
749 	/* We don't nest, which means that our depth should be 0. */
750 	if (table->gpt_depth != 0)
751 		return (ENXIO);
752 
753 	pp = cp->provider;
754 
755 	/*
756 	 * Sanity-check the provider. Since the first sector on the provider
757 	 * must be a PMBR and a PMBR is 512 bytes large, the sector size
758 	 * must be at least 512 bytes.  Also, since the theoretical minimum
759 	 * number of sectors needed by GPT is 6, any medium that has less
760 	 * than 6 sectors is never going to be able to hold a GPT. The
761 	 * number 6 comes from:
762 	 *	1 sector for the PMBR
763 	 *	2 sectors for the GPT headers (each 1 sector)
764 	 *	2 sectors for the GPT tables (each 1 sector)
765 	 *	1 sector for an actual partition
766 	 * It's better to catch this pathological case early than behaving
767 	 * pathologically later on...
768 	 */
769 	if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
770 		return (ENOSPC);
771 
772 	/* Check that there's a MBR. */
773 	buf = g_read_data(cp, 0L, pp->sectorsize, &error);
774 	if (buf == NULL)
775 		return (error);
776 	res = le16dec(buf + DOSMAGICOFFSET);
777 	g_free(buf);
778 	if (res != DOSMAGIC)
779 		return (ENXIO);
780 
781 	/* Check that there's a primary header. */
782 	buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
783 	if (buf == NULL)
784 		return (error);
785 	res = memcmp(buf, GPT_HDR_SIG, 8);
786 	g_free(buf);
787 	if (res == 0)
788 		return (G_PART_PROBE_PRI_HIGH);
789 
790 	/* No primary? Check that there's a secondary. */
791 	buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
792 	    &error);
793 	if (buf == NULL)
794 		return (error);
795 	res = memcmp(buf, GPT_HDR_SIG, 8);
796 	g_free(buf);
797 	return ((res == 0) ? G_PART_PROBE_PRI_HIGH : ENXIO);
798 }
799 
800 static int
801 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
802 {
803 	struct gpt_hdr *prihdr, *sechdr;
804 	struct gpt_ent *tbl, *pritbl, *sectbl;
805 	struct g_provider *pp;
806 	struct g_part_gpt_table *table;
807 	struct g_part_gpt_entry *entry;
808 	u_char *buf;
809 	uint64_t last;
810 	int error, index;
811 
812 	table = (struct g_part_gpt_table *)basetable;
813 	pp = cp->provider;
814 	last = (pp->mediasize / pp->sectorsize) - 1;
815 
816 	/* Read the PMBR */
817 	buf = g_read_data(cp, 0, pp->sectorsize, &error);
818 	if (buf == NULL)
819 		return (error);
820 	bcopy(buf, table->mbr, MBRSIZE);
821 	g_free(buf);
822 
823 	/* Read the primary header and table. */
824 	prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR);
825 	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
826 		pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr);
827 	} else {
828 		table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
829 		pritbl = NULL;
830 	}
831 
832 	/* Read the secondary header and table. */
833 	sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR);
834 	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
835 		sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr);
836 	} else {
837 		table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
838 		sectbl = NULL;
839 	}
840 
841 	/* Fail if we haven't got any good tables at all. */
842 	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
843 	    table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
844 		printf("GEOM: %s: corrupt or invalid GPT detected.\n",
845 		    pp->name);
846 		printf("GEOM: %s: GPT rejected -- may not be recoverable.\n",
847 		    pp->name);
848 		return (EINVAL);
849 	}
850 
851 	/*
852 	 * If both headers are good but they disagree with each other,
853 	 * then invalidate one. We prefer to keep the primary header,
854 	 * unless the primary table is corrupt.
855 	 */
856 	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
857 	    table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
858 	    !gpt_matched_hdrs(prihdr, sechdr)) {
859 		if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
860 			table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
861 			table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
862 			g_free(sechdr);
863 			sechdr = NULL;
864 		} else {
865 			table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
866 			table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
867 			g_free(prihdr);
868 			prihdr = NULL;
869 		}
870 	}
871 
872 	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
873 		printf("GEOM: %s: the primary GPT table is corrupt or "
874 		    "invalid.\n", pp->name);
875 		printf("GEOM: %s: using the secondary instead -- recovery "
876 		    "strongly advised.\n", pp->name);
877 		table->hdr = sechdr;
878 		basetable->gpt_corrupt = 1;
879 		if (prihdr != NULL)
880 			g_free(prihdr);
881 		tbl = sectbl;
882 		if (pritbl != NULL)
883 			g_free(pritbl);
884 	} else {
885 		if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
886 			printf("GEOM: %s: the secondary GPT table is corrupt "
887 			    "or invalid.\n", pp->name);
888 			printf("GEOM: %s: using the primary only -- recovery "
889 			    "suggested.\n", pp->name);
890 			basetable->gpt_corrupt = 1;
891 		} else if (table->lba[GPT_ELT_SECHDR] != last) {
892 			printf( "GEOM: %s: the secondary GPT header is not in "
893 			    "the last LBA.\n", pp->name);
894 			basetable->gpt_corrupt = 1;
895 		}
896 		table->hdr = prihdr;
897 		if (sechdr != NULL)
898 			g_free(sechdr);
899 		tbl = pritbl;
900 		if (sectbl != NULL)
901 			g_free(sectbl);
902 	}
903 
904 	basetable->gpt_first = table->hdr->hdr_lba_start;
905 	basetable->gpt_last = table->hdr->hdr_lba_end;
906 	basetable->gpt_entries = table->hdr->hdr_entries;
907 
908 	for (index = basetable->gpt_entries - 1; index >= 0; index--) {
909 		if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
910 			continue;
911 		entry = (struct g_part_gpt_entry *)g_part_new_entry(
912 		    basetable, index + 1, tbl[index].ent_lba_start,
913 		    tbl[index].ent_lba_end);
914 		entry->ent = tbl[index];
915 	}
916 
917 	g_free(tbl);
918 
919 	/*
920 	 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions
921 	 * if (and only if) any FAT32 or FAT16 partitions have been
922 	 * created. This happens irrespective of whether Boot Camp is
923 	 * used/enabled, though it's generally understood to be done
924 	 * to support legacy Windows under Boot Camp. We refer to this
925 	 * mirroring simply as Boot Camp. We try to detect Boot Camp
926 	 * so that we can update the MBR if and when GPT changes have
927 	 * been made. Note that we do not enable Boot Camp if not
928 	 * previously enabled because we can't assume that we're on a
929 	 * Mac alongside Mac OS X.
930 	 */
931 	table->bootcamp = gpt_is_bootcamp(table, pp->name);
932 
933 	return (0);
934 }
935 
936 static int
937 g_part_gpt_recover(struct g_part_table *basetable)
938 {
939 
940 	g_gpt_set_defaults(basetable,
941 	    LIST_FIRST(&basetable->gpt_gp->consumer)->provider);
942 	basetable->gpt_corrupt = 0;
943 	return (0);
944 }
945 
946 static int
947 g_part_gpt_setunset(struct g_part_table *basetable,
948     struct g_part_entry *baseentry, const char *attrib, unsigned int set)
949 {
950 	struct g_part_gpt_entry *entry;
951 	struct g_part_gpt_table *table;
952 	uint64_t attr;
953 	int i;
954 
955 	table = (struct g_part_gpt_table *)basetable;
956 	entry = (struct g_part_gpt_entry *)baseentry;
957 
958 	if (strcasecmp(attrib, "active") == 0) {
959 		if (!table->bootcamp || baseentry->gpe_index > NDOSPART)
960 			return (EINVAL);
961 		for (i = 0; i < NDOSPART; i++) {
962 			table->mbr[DOSPARTOFF + i * DOSPARTSIZE] =
963 			    (i == baseentry->gpe_index - 1) ? 0x80 : 0;
964 		}
965 		return (0);
966 	}
967 
968 	attr = 0;
969 	if (strcasecmp(attrib, "bootme") == 0) {
970 		attr |= GPT_ENT_ATTR_BOOTME;
971 	} else if (strcasecmp(attrib, "bootonce") == 0) {
972 		attr |= GPT_ENT_ATTR_BOOTONCE;
973 		if (set)
974 			attr |= GPT_ENT_ATTR_BOOTME;
975 	} else if (strcasecmp(attrib, "bootfailed") == 0) {
976 		/*
977 		 * It should only be possible to unset BOOTFAILED, but it might
978 		 * be useful for test purposes to also be able to set it.
979 		 */
980 		attr |= GPT_ENT_ATTR_BOOTFAILED;
981 	}
982 	if (attr == 0)
983 		return (EINVAL);
984 
985 	if (set)
986 		attr = entry->ent.ent_attr | attr;
987 	else
988 		attr = entry->ent.ent_attr & ~attr;
989 	if (attr != entry->ent.ent_attr) {
990 		entry->ent.ent_attr = attr;
991 		if (!baseentry->gpe_created)
992 			baseentry->gpe_modified = 1;
993 	}
994 	return (0);
995 }
996 
997 static const char *
998 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
999     char *buf, size_t bufsz)
1000 {
1001 	struct g_part_gpt_entry *entry;
1002 	struct uuid *type;
1003 	struct g_part_uuid_alias *uap;
1004 
1005 	entry = (struct g_part_gpt_entry *)baseentry;
1006 	type = &entry->ent.ent_type;
1007 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++)
1008 		if (EQUUID(type, uap->uuid))
1009 			return (g_part_alias_name(uap->alias));
1010 	buf[0] = '!';
1011 	snprintf_uuid(buf + 1, bufsz - 1, type);
1012 
1013 	return (buf);
1014 }
1015 
1016 static int
1017 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
1018 {
1019 	unsigned char *buf, *bp;
1020 	struct g_provider *pp;
1021 	struct g_part_entry *baseentry;
1022 	struct g_part_gpt_entry *entry;
1023 	struct g_part_gpt_table *table;
1024 	size_t tblsz;
1025 	uint32_t crc;
1026 	int error, index;
1027 
1028 	pp = cp->provider;
1029 	table = (struct g_part_gpt_table *)basetable;
1030 	tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz +
1031 	    pp->sectorsize - 1) / pp->sectorsize;
1032 
1033 	/* Reconstruct the MBR from the GPT if under Boot Camp. */
1034 	if (table->bootcamp)
1035 		gpt_update_bootcamp(basetable);
1036 
1037 	/* Update partition entries in the PMBR if Boot Camp disabled. */
1038 	if (!table->bootcamp) {
1039 		bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
1040 		gpt_write_mbr_entry(table->mbr, 0, 0xee, 1,
1041 		    MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
1042 		/* Mark the PMBR active since some BIOS require it. */
1043 		table->mbr[DOSPARTOFF] = 0x80;
1044 	}
1045 	le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
1046 
1047 	/* Write the PMBR */
1048 	buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
1049 	bcopy(table->mbr, buf, MBRSIZE);
1050 	error = g_write_data(cp, 0, buf, pp->sectorsize);
1051 	g_free(buf);
1052 	if (error)
1053 		return (error);
1054 
1055 	/* Allocate space for the header and entries. */
1056 	buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
1057 
1058 	memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
1059 	le32enc(buf + 8, table->hdr->hdr_revision);
1060 	le32enc(buf + 12, table->hdr->hdr_size);
1061 	le64enc(buf + 40, table->hdr->hdr_lba_start);
1062 	le64enc(buf + 48, table->hdr->hdr_lba_end);
1063 	le_uuid_enc(buf + 56, &table->hdr->hdr_uuid);
1064 	le32enc(buf + 80, table->hdr->hdr_entries);
1065 	le32enc(buf + 84, table->hdr->hdr_entsz);
1066 
1067 	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1068 		if (baseentry->gpe_deleted)
1069 			continue;
1070 		entry = (struct g_part_gpt_entry *)baseentry;
1071 		index = baseentry->gpe_index - 1;
1072 		bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index;
1073 		le_uuid_enc(bp, &entry->ent.ent_type);
1074 		le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
1075 		le64enc(bp + 32, entry->ent.ent_lba_start);
1076 		le64enc(bp + 40, entry->ent.ent_lba_end);
1077 		le64enc(bp + 48, entry->ent.ent_attr);
1078 		memcpy(bp + 56, entry->ent.ent_name,
1079 		    sizeof(entry->ent.ent_name));
1080 	}
1081 
1082 	crc = crc32(buf + pp->sectorsize,
1083 	    table->hdr->hdr_entries * table->hdr->hdr_entsz);
1084 	le32enc(buf + 88, crc);
1085 
1086 	/* Write primary meta-data. */
1087 	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1088 	le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_self. */
1089 	le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_alt. */
1090 	le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]);	/* hdr_lba_table. */
1091 	crc = crc32(buf, table->hdr->hdr_size);
1092 	le32enc(buf + 16, crc);
1093 
1094 	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1095 		error = g_write_data(cp,
1096 		    (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize,
1097 		    buf + (index + 1) * pp->sectorsize,
1098 		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1099 		    (tblsz - index) * pp->sectorsize);
1100 		if (error)
1101 			goto out;
1102 	}
1103 	error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
1104 	    buf, pp->sectorsize);
1105 	if (error)
1106 		goto out;
1107 
1108 	/* Write secondary meta-data. */
1109 	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1110 	le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_self. */
1111 	le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_alt. */
1112 	le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]);	/* hdr_lba_table. */
1113 	crc = crc32(buf, table->hdr->hdr_size);
1114 	le32enc(buf + 16, crc);
1115 
1116 	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1117 		error = g_write_data(cp,
1118 		    (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize,
1119 		    buf + (index + 1) * pp->sectorsize,
1120 		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1121 		    (tblsz - index) * pp->sectorsize);
1122 		if (error)
1123 			goto out;
1124 	}
1125 	error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
1126 	    buf, pp->sectorsize);
1127 
1128  out:
1129 	g_free(buf);
1130 	return (error);
1131 }
1132 
1133 static void
1134 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp)
1135 {
1136 	struct g_part_gpt_table *table;
1137 	quad_t last;
1138 	size_t tblsz;
1139 
1140 	table = (struct g_part_gpt_table *)basetable;
1141 	last = pp->mediasize / pp->sectorsize - 1;
1142 	tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
1143 	    pp->sectorsize - 1) / pp->sectorsize;
1144 
1145 	table->lba[GPT_ELT_PRIHDR] = 1;
1146 	table->lba[GPT_ELT_PRITBL] = 2;
1147 	table->lba[GPT_ELT_SECHDR] = last;
1148 	table->lba[GPT_ELT_SECTBL] = last - tblsz;
1149 	table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK;
1150 	table->state[GPT_ELT_PRITBL] = GPT_STATE_OK;
1151 	table->state[GPT_ELT_SECHDR] = GPT_STATE_OK;
1152 	table->state[GPT_ELT_SECTBL] = GPT_STATE_OK;
1153 
1154 	table->hdr->hdr_lba_start = 2 + tblsz;
1155 	table->hdr->hdr_lba_end = last - tblsz - 1;
1156 
1157 	basetable->gpt_first = table->hdr->hdr_lba_start;
1158 	basetable->gpt_last = table->hdr->hdr_lba_end;
1159 }
1160 
1161 static void
1162 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
1163 {
1164 	u_int bo;
1165 	uint32_t ch;
1166 	uint16_t c;
1167 
1168 	bo = LITTLE_ENDIAN;	/* GPT is little-endian */
1169 	while (len > 0 && *str != 0) {
1170 		ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
1171 		str++, len--;
1172 		if ((ch & 0xf800) == 0xd800) {
1173 			if (len > 0) {
1174 				c = (bo == BIG_ENDIAN) ? be16toh(*str)
1175 				    : le16toh(*str);
1176 				str++, len--;
1177 			} else
1178 				c = 0xfffd;
1179 			if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
1180 				ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
1181 				ch += 0x10000;
1182 			} else
1183 				ch = 0xfffd;
1184 		} else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
1185 			bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
1186 			continue;
1187 		} else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
1188 			continue;
1189 
1190 		/* Write the Unicode character in UTF-8 */
1191 		if (ch < 0x80)
1192 			sbuf_printf(sb, "%c", ch);
1193 		else if (ch < 0x800)
1194 			sbuf_printf(sb, "%c%c", 0xc0 | (ch >> 6),
1195 			    0x80 | (ch & 0x3f));
1196 		else if (ch < 0x10000)
1197 			sbuf_printf(sb, "%c%c%c", 0xe0 | (ch >> 12),
1198 			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1199 		else if (ch < 0x200000)
1200 			sbuf_printf(sb, "%c%c%c%c", 0xf0 | (ch >> 18),
1201 			    0x80 | ((ch >> 12) & 0x3f),
1202 			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1203 	}
1204 }
1205 
1206 static void
1207 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
1208 {
1209 	size_t s16idx, s8idx;
1210 	uint32_t utfchar;
1211 	unsigned int c, utfbytes;
1212 
1213 	s8idx = s16idx = 0;
1214 	utfchar = 0;
1215 	utfbytes = 0;
1216 	bzero(s16, s16len << 1);
1217 	while (s8[s8idx] != 0 && s16idx < s16len) {
1218 		c = s8[s8idx++];
1219 		if ((c & 0xc0) != 0x80) {
1220 			/* Initial characters. */
1221 			if (utfbytes != 0) {
1222 				/* Incomplete encoding of previous char. */
1223 				s16[s16idx++] = htole16(0xfffd);
1224 			}
1225 			if ((c & 0xf8) == 0xf0) {
1226 				utfchar = c & 0x07;
1227 				utfbytes = 3;
1228 			} else if ((c & 0xf0) == 0xe0) {
1229 				utfchar = c & 0x0f;
1230 				utfbytes = 2;
1231 			} else if ((c & 0xe0) == 0xc0) {
1232 				utfchar = c & 0x1f;
1233 				utfbytes = 1;
1234 			} else {
1235 				utfchar = c & 0x7f;
1236 				utfbytes = 0;
1237 			}
1238 		} else {
1239 			/* Followup characters. */
1240 			if (utfbytes > 0) {
1241 				utfchar = (utfchar << 6) + (c & 0x3f);
1242 				utfbytes--;
1243 			} else if (utfbytes == 0)
1244 				utfbytes = ~0;
1245 		}
1246 		/*
1247 		 * Write the complete Unicode character as UTF-16 when we
1248 		 * have all the UTF-8 charactars collected.
1249 		 */
1250 		if (utfbytes == 0) {
1251 			/*
1252 			 * If we need to write 2 UTF-16 characters, but
1253 			 * we only have room for 1, then we truncate the
1254 			 * string by writing a 0 instead.
1255 			 */
1256 			if (utfchar >= 0x10000 && s16idx < s16len - 1) {
1257 				s16[s16idx++] =
1258 				    htole16(0xd800 | ((utfchar >> 10) - 0x40));
1259 				s16[s16idx++] =
1260 				    htole16(0xdc00 | (utfchar & 0x3ff));
1261 			} else
1262 				s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
1263 				    htole16(utfchar);
1264 		}
1265 	}
1266 	/*
1267 	 * If our input string was truncated, append an invalid encoding
1268 	 * character to the output string.
1269 	 */
1270 	if (utfbytes != 0 && s16idx < s16len)
1271 		s16[s16idx++] = htole16(0xfffd);
1272 }
1273