xref: /freebsd/sys/geom/part/g_part_gpt.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/bio.h>
31 #include <sys/diskmbr.h>
32 #include <sys/gsb_crc32.h>
33 #include <sys/endian.h>
34 #include <sys/gpt.h>
35 #include <sys/kernel.h>
36 #include <sys/kobj.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mutex.h>
41 #include <sys/queue.h>
42 #include <sys/sbuf.h>
43 #include <sys/systm.h>
44 #include <sys/sysctl.h>
45 #include <sys/uuid.h>
46 #include <geom/geom.h>
47 #include <geom/geom_int.h>
48 #include <geom/part/g_part.h>
49 
50 #include "g_part_if.h"
51 
52 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support");
53 
54 SYSCTL_DECL(_kern_geom_part);
55 static SYSCTL_NODE(_kern_geom_part, OID_AUTO, gpt,
56     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
57     "GEOM_PART_GPT GUID Partition Table");
58 
59 static u_int allow_nesting = 0;
60 SYSCTL_UINT(_kern_geom_part_gpt, OID_AUTO, allow_nesting,
61     CTLFLAG_RWTUN, &allow_nesting, 0, "Allow GPT to be nested inside other schemes");
62 
63 CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
64 CTASSERT(sizeof(struct gpt_ent) == 128);
65 
66 extern u_int geom_part_check_integrity;
67 
68 #define	EQUUID(a,b)	(memcmp(a, b, sizeof(struct uuid)) == 0)
69 
70 #define	MBRSIZE		512
71 
72 enum gpt_elt {
73 	GPT_ELT_PRIHDR,
74 	GPT_ELT_PRITBL,
75 	GPT_ELT_SECHDR,
76 	GPT_ELT_SECTBL,
77 	GPT_ELT_COUNT
78 };
79 
80 enum gpt_state {
81 	GPT_STATE_UNKNOWN,	/* Not determined. */
82 	GPT_STATE_MISSING,	/* No signature found. */
83 	GPT_STATE_CORRUPT,	/* Checksum mismatch. */
84 	GPT_STATE_INVALID,	/* Nonconformant/invalid. */
85 	GPT_STATE_UNSUPPORTED,  /* Not supported. */
86 	GPT_STATE_OK		/* Perfectly fine. */
87 };
88 
89 struct g_part_gpt_table {
90 	struct g_part_table	base;
91 	u_char			mbr[MBRSIZE];
92 	struct gpt_hdr		*hdr;
93 	quad_t			lba[GPT_ELT_COUNT];
94 	enum gpt_state		state[GPT_ELT_COUNT];
95 	int			bootcamp;
96 };
97 
98 struct g_part_gpt_entry {
99 	struct g_part_entry	base;
100 	struct gpt_ent		ent;
101 };
102 
103 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
104 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
105 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *,
106     struct g_part_parms *);
107 
108 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
109     struct g_part_parms *);
110 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
111 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
112 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
113 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
114     struct sbuf *, const char *);
115 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
116 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,
117     struct g_part_parms *);
118 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
119     char *, size_t);
120 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
121 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
122 static int g_part_gpt_setunset(struct g_part_table *table,
123     struct g_part_entry *baseentry, const char *attrib, unsigned int set);
124 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
125     char *, size_t);
126 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
127 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *,
128     struct g_part_parms *);
129 static int g_part_gpt_recover(struct g_part_table *);
130 
131 static kobj_method_t g_part_gpt_methods[] = {
132 	KOBJMETHOD(g_part_add,		g_part_gpt_add),
133 	KOBJMETHOD(g_part_bootcode,	g_part_gpt_bootcode),
134 	KOBJMETHOD(g_part_create,	g_part_gpt_create),
135 	KOBJMETHOD(g_part_destroy,	g_part_gpt_destroy),
136 	KOBJMETHOD(g_part_dumpconf,	g_part_gpt_dumpconf),
137 	KOBJMETHOD(g_part_dumpto,	g_part_gpt_dumpto),
138 	KOBJMETHOD(g_part_modify,	g_part_gpt_modify),
139 	KOBJMETHOD(g_part_resize,	g_part_gpt_resize),
140 	KOBJMETHOD(g_part_name,		g_part_gpt_name),
141 	KOBJMETHOD(g_part_probe,	g_part_gpt_probe),
142 	KOBJMETHOD(g_part_read,		g_part_gpt_read),
143 	KOBJMETHOD(g_part_recover,	g_part_gpt_recover),
144 	KOBJMETHOD(g_part_setunset,	g_part_gpt_setunset),
145 	KOBJMETHOD(g_part_type,		g_part_gpt_type),
146 	KOBJMETHOD(g_part_write,	g_part_gpt_write),
147 	{ 0, 0 }
148 };
149 
150 #define MAXENTSIZE 1024
151 
152 static struct g_part_scheme g_part_gpt_scheme = {
153 	"GPT",
154 	g_part_gpt_methods,
155 	sizeof(struct g_part_gpt_table),
156 	.gps_entrysz = sizeof(struct g_part_gpt_entry),
157 	.gps_minent = 1,
158 	.gps_defent = 128,
159 	.gps_maxent = 4096,
160 	.gps_bootcodesz = MBRSIZE,
161 };
162 G_PART_SCHEME_DECLARE(g_part_gpt);
163 MODULE_VERSION(geom_part_gpt, 0);
164 
165 static struct uuid gpt_uuid_apple_apfs = GPT_ENT_TYPE_APPLE_APFS;
166 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT;
167 static struct uuid gpt_uuid_apple_core_storage =
168     GPT_ENT_TYPE_APPLE_CORE_STORAGE;
169 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
170 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL;
171 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID;
172 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE;
173 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY;
174 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS;
175 static struct uuid gpt_uuid_apple_zfs = GPT_ENT_TYPE_APPLE_ZFS;
176 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT;
177 static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE;
178 static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL;
179 static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED;
180 static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT;
181 static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD;
182 static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER;
183 static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2;
184 static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32;
185 static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64;
186 static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY;
187 static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP;
188 static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1;
189 static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM;
190 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
191 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
192 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
193 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
194 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
195 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
196 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
197 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
198 static struct uuid gpt_uuid_hifive_fsbl = GPT_ENT_TYPE_HIFIVE_FSBL;
199 static struct uuid gpt_uuid_hifive_bbl = GPT_ENT_TYPE_HIFIVE_BBL;
200 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
201 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM;
202 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID;
203 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
204 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
205 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
206 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA;
207 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA;
208 static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY;
209 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED;
210 static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES;
211 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD;
212 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD;
213 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS;
214 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS;
215 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID;
216 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP;
217 static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA;
218 static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT;
219 static struct uuid gpt_uuid_solaris_boot = GPT_ENT_TYPE_SOLARIS_BOOT;
220 static struct uuid gpt_uuid_solaris_root = GPT_ENT_TYPE_SOLARIS_ROOT;
221 static struct uuid gpt_uuid_solaris_swap = GPT_ENT_TYPE_SOLARIS_SWAP;
222 static struct uuid gpt_uuid_solaris_backup = GPT_ENT_TYPE_SOLARIS_BACKUP;
223 static struct uuid gpt_uuid_solaris_var = GPT_ENT_TYPE_SOLARIS_VAR;
224 static struct uuid gpt_uuid_solaris_home = GPT_ENT_TYPE_SOLARIS_HOME;
225 static struct uuid gpt_uuid_solaris_altsec = GPT_ENT_TYPE_SOLARIS_ALTSEC;
226 static struct uuid gpt_uuid_solaris_reserved = GPT_ENT_TYPE_SOLARIS_RESERVED;
227 static struct uuid gpt_uuid_u_boot_env = GPT_ENT_TYPE_U_BOOT_ENV;
228 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
229 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS;
230 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG;
231 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED;
232 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR;
233 
234 static struct g_part_uuid_alias {
235 	struct uuid *uuid;
236 	int alias;
237 	int mbrtype;
238 } gpt_uuid_alias_match[] = {
239 	{ &gpt_uuid_apple_apfs,		G_PART_ALIAS_APPLE_APFS,	 0 },
240 	{ &gpt_uuid_apple_boot,		G_PART_ALIAS_APPLE_BOOT,	 0xab },
241 	{ &gpt_uuid_apple_core_storage,	G_PART_ALIAS_APPLE_CORE_STORAGE, 0 },
242 	{ &gpt_uuid_apple_hfs,		G_PART_ALIAS_APPLE_HFS,		 0xaf },
243 	{ &gpt_uuid_apple_label,	G_PART_ALIAS_APPLE_LABEL,	 0 },
244 	{ &gpt_uuid_apple_raid,		G_PART_ALIAS_APPLE_RAID,	 0 },
245 	{ &gpt_uuid_apple_raid_offline,	G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 },
246 	{ &gpt_uuid_apple_tv_recovery,	G_PART_ALIAS_APPLE_TV_RECOVERY,	 0 },
247 	{ &gpt_uuid_apple_ufs,		G_PART_ALIAS_APPLE_UFS,		 0 },
248 	{ &gpt_uuid_apple_zfs,		G_PART_ALIAS_APPLE_ZFS,		 0 },
249 	{ &gpt_uuid_bios_boot,		G_PART_ALIAS_BIOS_BOOT,		 0 },
250 	{ &gpt_uuid_chromeos_firmware,	G_PART_ALIAS_CHROMEOS_FIRMWARE,	 0 },
251 	{ &gpt_uuid_chromeos_kernel,	G_PART_ALIAS_CHROMEOS_KERNEL,	 0 },
252 	{ &gpt_uuid_chromeos_reserved,	G_PART_ALIAS_CHROMEOS_RESERVED,	 0 },
253 	{ &gpt_uuid_chromeos_root,	G_PART_ALIAS_CHROMEOS_ROOT,	 0 },
254 	{ &gpt_uuid_dfbsd_ccd,		G_PART_ALIAS_DFBSD_CCD,		 0 },
255 	{ &gpt_uuid_dfbsd_hammer,	G_PART_ALIAS_DFBSD_HAMMER,	 0 },
256 	{ &gpt_uuid_dfbsd_hammer2,	G_PART_ALIAS_DFBSD_HAMMER2,	 0 },
257 	{ &gpt_uuid_dfbsd_label32,	G_PART_ALIAS_DFBSD,		 0xa5 },
258 	{ &gpt_uuid_dfbsd_label64,	G_PART_ALIAS_DFBSD64,		 0xa5 },
259 	{ &gpt_uuid_dfbsd_legacy,	G_PART_ALIAS_DFBSD_LEGACY,	 0 },
260 	{ &gpt_uuid_dfbsd_swap,		G_PART_ALIAS_DFBSD_SWAP,	 0 },
261 	{ &gpt_uuid_dfbsd_ufs1,		G_PART_ALIAS_DFBSD_UFS,		 0 },
262 	{ &gpt_uuid_dfbsd_vinum,	G_PART_ALIAS_DFBSD_VINUM,	 0 },
263 	{ &gpt_uuid_efi, 		G_PART_ALIAS_EFI,		 0xee },
264 	{ &gpt_uuid_freebsd,		G_PART_ALIAS_FREEBSD,		 0xa5 },
265 	{ &gpt_uuid_freebsd_boot, 	G_PART_ALIAS_FREEBSD_BOOT,	 0 },
266 	{ &gpt_uuid_freebsd_nandfs, 	G_PART_ALIAS_FREEBSD_NANDFS,	 0 },
267 	{ &gpt_uuid_freebsd_swap,	G_PART_ALIAS_FREEBSD_SWAP,	 0 },
268 	{ &gpt_uuid_freebsd_ufs,	G_PART_ALIAS_FREEBSD_UFS,	 0 },
269 	{ &gpt_uuid_freebsd_vinum,	G_PART_ALIAS_FREEBSD_VINUM,	 0 },
270 	{ &gpt_uuid_freebsd_zfs,	G_PART_ALIAS_FREEBSD_ZFS,	 0 },
271 	{ &gpt_uuid_hifive_fsbl,	G_PART_ALIAS_HIFIVE_FSBL,	 0 },
272 	{ &gpt_uuid_hifive_bbl,		G_PART_ALIAS_HIFIVE_BBL,	 0 },
273 	{ &gpt_uuid_linux_data,		G_PART_ALIAS_LINUX_DATA,	 0x0b },
274 	{ &gpt_uuid_linux_lvm,		G_PART_ALIAS_LINUX_LVM,		 0 },
275 	{ &gpt_uuid_linux_raid,		G_PART_ALIAS_LINUX_RAID,	 0 },
276 	{ &gpt_uuid_linux_swap,		G_PART_ALIAS_LINUX_SWAP,	 0 },
277 	{ &gpt_uuid_mbr,		G_PART_ALIAS_MBR,		 0 },
278 	{ &gpt_uuid_ms_basic_data,	G_PART_ALIAS_MS_BASIC_DATA,	 0x0b },
279 	{ &gpt_uuid_ms_ldm_data,	G_PART_ALIAS_MS_LDM_DATA,	 0 },
280 	{ &gpt_uuid_ms_ldm_metadata,	G_PART_ALIAS_MS_LDM_METADATA,	 0 },
281 	{ &gpt_uuid_ms_recovery,	G_PART_ALIAS_MS_RECOVERY,	 0 },
282 	{ &gpt_uuid_ms_reserved,	G_PART_ALIAS_MS_RESERVED,	 0 },
283 	{ &gpt_uuid_ms_spaces,		G_PART_ALIAS_MS_SPACES,		 0 },
284 	{ &gpt_uuid_netbsd_ccd,		G_PART_ALIAS_NETBSD_CCD,	 0 },
285 	{ &gpt_uuid_netbsd_cgd,		G_PART_ALIAS_NETBSD_CGD,	 0 },
286 	{ &gpt_uuid_netbsd_ffs,		G_PART_ALIAS_NETBSD_FFS,	 0 },
287 	{ &gpt_uuid_netbsd_lfs,		G_PART_ALIAS_NETBSD_LFS,	 0 },
288 	{ &gpt_uuid_netbsd_raid,	G_PART_ALIAS_NETBSD_RAID,	 0 },
289 	{ &gpt_uuid_netbsd_swap,	G_PART_ALIAS_NETBSD_SWAP,	 0 },
290 	{ &gpt_uuid_openbsd_data,	G_PART_ALIAS_OPENBSD_DATA,	 0 },
291 	{ &gpt_uuid_prep_boot,		G_PART_ALIAS_PREP_BOOT,		 0x41 },
292 	{ &gpt_uuid_solaris_boot,	G_PART_ALIAS_SOLARIS_BOOT,	 0 },
293 	{ &gpt_uuid_solaris_root,	G_PART_ALIAS_SOLARIS_ROOT,	 0 },
294 	{ &gpt_uuid_solaris_swap,	G_PART_ALIAS_SOLARIS_SWAP,	 0 },
295 	{ &gpt_uuid_solaris_backup,	G_PART_ALIAS_SOLARIS_BACKUP,	 0 },
296 	{ &gpt_uuid_solaris_var,	G_PART_ALIAS_SOLARIS_VAR,	 0 },
297 	{ &gpt_uuid_solaris_home,	G_PART_ALIAS_SOLARIS_HOME,	 0 },
298 	{ &gpt_uuid_solaris_altsec,	G_PART_ALIAS_SOLARIS_ALTSEC,	 0 },
299 	{ &gpt_uuid_solaris_reserved,	G_PART_ALIAS_SOLARIS_RESERVED,	 0 },
300 	{ &gpt_uuid_u_boot_env,		G_PART_ALIAS_U_BOOT_ENV,	 0 },
301 	{ &gpt_uuid_vmfs,		G_PART_ALIAS_VMFS,		 0 },
302 	{ &gpt_uuid_vmkdiag,		G_PART_ALIAS_VMKDIAG,		 0 },
303 	{ &gpt_uuid_vmreserved,		G_PART_ALIAS_VMRESERVED,	 0 },
304 	{ &gpt_uuid_vmvsanhdr,		G_PART_ALIAS_VMVSANHDR,		 0 },
305 	{ NULL, 0, 0 }
306 };
307 
308 static int
309 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start,
310     quad_t end)
311 {
312 
313 	if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX)
314 		return (EINVAL);
315 
316 	mbr += DOSPARTOFF + idx * DOSPARTSIZE;
317 	mbr[0] = 0;
318 	if (start == 1) {
319 		/*
320 		 * Treat the PMBR partition specially to maximize
321 		 * interoperability with BIOSes.
322 		 */
323 		mbr[1] = mbr[3] = 0;
324 		mbr[2] = 2;
325 	} else
326 		mbr[1] = mbr[2] = mbr[3] = 0xff;
327 	mbr[4] = typ;
328 	mbr[5] = mbr[6] = mbr[7] = 0xff;
329 	le32enc(mbr + 8, (uint32_t)start);
330 	le32enc(mbr + 12, (uint32_t)(end - start + 1));
331 	return (0);
332 }
333 
334 static int
335 gpt_map_type(struct uuid *t)
336 {
337 	struct g_part_uuid_alias *uap;
338 
339 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
340 		if (EQUUID(t, uap->uuid))
341 			return (uap->mbrtype);
342 	}
343 	return (0);
344 }
345 
346 static void
347 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp)
348 {
349 
350 	bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
351 	gpt_write_mbr_entry(table->mbr, 0, 0xee, 1,
352 	    MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
353 	le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
354 }
355 
356 /*
357  * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the
358  * whole disk anymore. Rather, it covers the GPT table and the EFI
359  * system partition only. This way the HFS+ partition and any FAT
360  * partitions can be added to the MBR without creating an overlap.
361  */
362 static int
363 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname)
364 {
365 	uint8_t *p;
366 
367 	p = table->mbr + DOSPARTOFF;
368 	if (p[4] != 0xee || le32dec(p + 8) != 1)
369 		return (0);
370 
371 	p += DOSPARTSIZE;
372 	if (p[4] != 0xaf)
373 		return (0);
374 
375 	printf("GEOM: %s: enabling Boot Camp\n", provname);
376 	return (1);
377 }
378 
379 static void
380 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp)
381 {
382 	struct g_part_entry *baseentry;
383 	struct g_part_gpt_entry *entry;
384 	struct g_part_gpt_table *table;
385 	int bootable, error, index, slices, typ;
386 
387 	table = (struct g_part_gpt_table *)basetable;
388 
389 	bootable = -1;
390 	for (index = 0; index < NDOSPART; index++) {
391 		if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index])
392 			bootable = index;
393 	}
394 
395 	bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
396 	slices = 0;
397 	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
398 		if (baseentry->gpe_deleted)
399 			continue;
400 		index = baseentry->gpe_index - 1;
401 		if (index >= NDOSPART)
402 			continue;
403 
404 		entry = (struct g_part_gpt_entry *)baseentry;
405 
406 		switch (index) {
407 		case 0:	/* This must be the EFI system partition. */
408 			if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi))
409 				goto disable;
410 			error = gpt_write_mbr_entry(table->mbr, index, 0xee,
411 			    1ull, entry->ent.ent_lba_end);
412 			break;
413 		case 1:	/* This must be the HFS+ partition. */
414 			if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs))
415 				goto disable;
416 			error = gpt_write_mbr_entry(table->mbr, index, 0xaf,
417 			    entry->ent.ent_lba_start, entry->ent.ent_lba_end);
418 			break;
419 		default:
420 			typ = gpt_map_type(&entry->ent.ent_type);
421 			error = gpt_write_mbr_entry(table->mbr, index, typ,
422 			    entry->ent.ent_lba_start, entry->ent.ent_lba_end);
423 			break;
424 		}
425 		if (error)
426 			continue;
427 
428 		if (index == bootable)
429 			table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80;
430 		slices |= 1 << index;
431 	}
432 	if ((slices & 3) == 3)
433 		return;
434 
435  disable:
436 	table->bootcamp = 0;
437 	gpt_create_pmbr(table, pp);
438 }
439 
440 static struct gpt_hdr *
441 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
442     enum gpt_elt elt)
443 {
444 	struct gpt_hdr *buf, *hdr;
445 	struct g_provider *pp;
446 	quad_t lba, last;
447 	int error;
448 	uint32_t crc, sz;
449 
450 	pp = cp->provider;
451 	last = (pp->mediasize / pp->sectorsize) - 1;
452 	table->state[elt] = GPT_STATE_MISSING;
453 	/*
454 	 * If the primary header is valid look for secondary
455 	 * header in AlternateLBA, otherwise in the last medium's LBA.
456 	 */
457 	if (elt == GPT_ELT_SECHDR) {
458 		if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK)
459 			table->lba[elt] = last;
460 	} else
461 		table->lba[elt] = 1;
462 	buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
463 	    &error);
464 	if (buf == NULL)
465 		return (NULL);
466 	hdr = NULL;
467 	if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0)
468 		goto fail;
469 
470 	table->state[elt] = GPT_STATE_CORRUPT;
471 	sz = le32toh(buf->hdr_size);
472 	if (sz < 92 || sz > pp->sectorsize)
473 		goto fail;
474 
475 	hdr = g_malloc(sz, M_WAITOK | M_ZERO);
476 	bcopy(buf, hdr, sz);
477 	hdr->hdr_size = sz;
478 
479 	crc = le32toh(buf->hdr_crc_self);
480 	buf->hdr_crc_self = 0;
481 	if (crc32(buf, sz) != crc)
482 		goto fail;
483 	hdr->hdr_crc_self = crc;
484 
485 	table->state[elt] = GPT_STATE_INVALID;
486 	hdr->hdr_revision = le32toh(buf->hdr_revision);
487 	if (hdr->hdr_revision < GPT_HDR_REVISION)
488 		goto fail;
489 	hdr->hdr_lba_self = le64toh(buf->hdr_lba_self);
490 	if (hdr->hdr_lba_self != table->lba[elt])
491 		goto fail;
492 	hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt);
493 	if (hdr->hdr_lba_alt == hdr->hdr_lba_self)
494 		goto fail;
495 	if (hdr->hdr_lba_alt > last && geom_part_check_integrity)
496 		goto fail;
497 
498 	/* Check the managed area. */
499 	hdr->hdr_lba_start = le64toh(buf->hdr_lba_start);
500 	if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
501 		goto fail;
502 	hdr->hdr_lba_end = le64toh(buf->hdr_lba_end);
503 	if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
504 		goto fail;
505 
506 	/* Check the table location and size of the table. */
507 	hdr->hdr_entries = le32toh(buf->hdr_entries);
508 	hdr->hdr_entsz = le32toh(buf->hdr_entsz);
509 	if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
510 	    (hdr->hdr_entsz & 7) != 0)
511 		goto fail;
512 	hdr->hdr_lba_table = le64toh(buf->hdr_lba_table);
513 	if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
514 		goto fail;
515 	if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
516 	    hdr->hdr_lba_table <= hdr->hdr_lba_end)
517 		goto fail;
518 	lba = hdr->hdr_lba_table +
519 	    howmany((uint64_t)hdr->hdr_entries * hdr->hdr_entsz,
520 	        pp->sectorsize) - 1;
521 	if (lba >= last)
522 		goto fail;
523 	if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
524 		goto fail;
525 
526 	table->state[elt] = GPT_STATE_OK;
527 	le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid);
528 	hdr->hdr_crc_table = le32toh(buf->hdr_crc_table);
529 
530 	/* save LBA for secondary header */
531 	if (elt == GPT_ELT_PRIHDR)
532 		table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt;
533 
534 	g_free(buf);
535 	return (hdr);
536 
537  fail:
538 	g_free(hdr);
539 	g_free(buf);
540 	return (NULL);
541 }
542 
543 static struct gpt_ent *
544 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
545     enum gpt_elt elt, struct gpt_hdr *hdr)
546 {
547 	struct g_provider *pp;
548 	struct gpt_ent *ent, *tbl;
549 	char *buf, *p;
550 	unsigned int idx, sectors, tblsz, size;
551 	int error;
552 
553 	if (hdr == NULL)
554 		return (NULL);
555 	if (hdr->hdr_entries > g_part_gpt_scheme.gps_maxent ||
556 	    hdr->hdr_entsz > MAXENTSIZE) {
557 		table->state[elt] = GPT_STATE_UNSUPPORTED;
558 		return (NULL);
559 	}
560 
561 	pp = cp->provider;
562 	table->lba[elt] = hdr->hdr_lba_table;
563 
564 	table->state[elt] = GPT_STATE_MISSING;
565 	tblsz = hdr->hdr_entries * hdr->hdr_entsz;
566 	sectors = howmany(tblsz, pp->sectorsize);
567 	buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO);
568 	for (idx = 0; idx < sectors; idx += maxphys / pp->sectorsize) {
569 		size = (sectors - idx > maxphys / pp->sectorsize) ?  maxphys:
570 		    (sectors - idx) * pp->sectorsize;
571 		p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize,
572 		    size, &error);
573 		if (p == NULL) {
574 			g_free(buf);
575 			return (NULL);
576 		}
577 		bcopy(p, buf + idx * pp->sectorsize, size);
578 		g_free(p);
579 	}
580 	table->state[elt] = GPT_STATE_CORRUPT;
581 	if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
582 		g_free(buf);
583 		return (NULL);
584 	}
585 
586 	table->state[elt] = GPT_STATE_OK;
587 	tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
588 	    M_WAITOK | M_ZERO);
589 
590 	for (idx = 0, ent = tbl, p = buf;
591 	     idx < hdr->hdr_entries;
592 	     idx++, ent++, p += hdr->hdr_entsz) {
593 		le_uuid_dec(p, &ent->ent_type);
594 		le_uuid_dec(p + 16, &ent->ent_uuid);
595 		ent->ent_lba_start = le64dec(p + 32);
596 		ent->ent_lba_end = le64dec(p + 40);
597 		ent->ent_attr = le64dec(p + 48);
598 		/* Keep UTF-16 in little-endian. */
599 		bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
600 	}
601 
602 	g_free(buf);
603 	return (tbl);
604 }
605 
606 static int
607 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
608 {
609 
610 	if (pri == NULL || sec == NULL)
611 		return (0);
612 
613 	if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
614 		return (0);
615 	return ((pri->hdr_revision == sec->hdr_revision &&
616 	    pri->hdr_size == sec->hdr_size &&
617 	    pri->hdr_lba_start == sec->hdr_lba_start &&
618 	    pri->hdr_lba_end == sec->hdr_lba_end &&
619 	    pri->hdr_entries == sec->hdr_entries &&
620 	    pri->hdr_entsz == sec->hdr_entsz &&
621 	    pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
622 }
623 
624 static int
625 gpt_parse_type(const char *type, struct uuid *uuid)
626 {
627 	struct uuid tmp;
628 	const char *alias;
629 	int error;
630 	struct g_part_uuid_alias *uap;
631 
632 	if (type[0] == '!') {
633 		error = parse_uuid(type + 1, &tmp);
634 		if (error)
635 			return (error);
636 		if (EQUUID(&tmp, &gpt_uuid_unused))
637 			return (EINVAL);
638 		*uuid = tmp;
639 		return (0);
640 	}
641 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
642 		alias = g_part_alias_name(uap->alias);
643 		if (!strcasecmp(type, alias)) {
644 			*uuid = *uap->uuid;
645 			return (0);
646 		}
647 	}
648 	return (EINVAL);
649 }
650 
651 static int
652 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
653     struct g_part_parms *gpp)
654 {
655 	struct g_part_gpt_entry *entry;
656 	int error;
657 
658 	entry = (struct g_part_gpt_entry *)baseentry;
659 	error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
660 	if (error)
661 		return (error);
662 	kern_uuidgen(&entry->ent.ent_uuid, 1);
663 	entry->ent.ent_lba_start = baseentry->gpe_start;
664 	entry->ent.ent_lba_end = baseentry->gpe_end;
665 	if (baseentry->gpe_deleted) {
666 		entry->ent.ent_attr = 0;
667 		bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
668 	}
669 	if (gpp->gpp_parms & G_PART_PARM_LABEL)
670 		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
671 		    sizeof(entry->ent.ent_name) /
672 		    sizeof(entry->ent.ent_name[0]));
673 	return (0);
674 }
675 
676 static int
677 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
678 {
679 	struct g_part_gpt_table *table;
680 	size_t codesz;
681 
682 	codesz = DOSPARTOFF;
683 	table = (struct g_part_gpt_table *)basetable;
684 	bzero(table->mbr, codesz);
685 	codesz = MIN(codesz, gpp->gpp_codesize);
686 	if (codesz > 0)
687 		bcopy(gpp->gpp_codeptr, table->mbr, codesz);
688 	return (0);
689 }
690 
691 static int
692 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
693 {
694 	struct g_provider *pp;
695 	struct g_part_gpt_table *table;
696 	size_t tblsz;
697 
698 	/* Our depth should be 0 unless nesting was explicitly enabled. */
699 	if (!allow_nesting && basetable->gpt_depth != 0)
700 		return (ENXIO);
701 
702 	table = (struct g_part_gpt_table *)basetable;
703 	pp = gpp->gpp_provider;
704 	tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent),
705 	    pp->sectorsize);
706 	if (pp->sectorsize < MBRSIZE ||
707 	    pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
708 	    pp->sectorsize)
709 		return (ENOSPC);
710 
711 	gpt_create_pmbr(table, pp);
712 
713 	/* Allocate space for the header */
714 	table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO);
715 
716 	bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
717 	table->hdr->hdr_revision = GPT_HDR_REVISION;
718 	table->hdr->hdr_size = offsetof(struct gpt_hdr, padding);
719 	kern_uuidgen(&table->hdr->hdr_uuid, 1);
720 	table->hdr->hdr_entries = basetable->gpt_entries;
721 	table->hdr->hdr_entsz = sizeof(struct gpt_ent);
722 
723 	g_gpt_set_defaults(basetable, pp, gpp);
724 	return (0);
725 }
726 
727 static int
728 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
729 {
730 	struct g_part_gpt_table *table;
731 	struct g_provider *pp;
732 
733 	table = (struct g_part_gpt_table *)basetable;
734 	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
735 	g_free(table->hdr);
736 	table->hdr = NULL;
737 
738 	/*
739 	 * Wipe the first 2 sectors and last one to clear the partitioning.
740 	 * Wipe sectors only if they have valid metadata.
741 	 */
742 	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK)
743 		basetable->gpt_smhead |= 3;
744 	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
745 	    table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1)
746 		basetable->gpt_smtail |= 1;
747 	return (0);
748 }
749 
750 static void
751 g_part_gpt_efimedia(struct g_part_gpt_entry *entry, struct sbuf *sb)
752 {
753 	sbuf_printf(sb, "HD(%d,GPT,", entry->base.gpe_index);
754 	sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
755 	sbuf_printf(sb, ",%#jx,%#jx)", (intmax_t)entry->base.gpe_start,
756 	    (intmax_t)(entry->base.gpe_end - entry->base.gpe_start + 1));
757 }
758 
759 static void
760 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry,
761     struct sbuf *sb, const char *indent)
762 {
763 	struct g_part_gpt_entry *entry;
764 
765 	entry = (struct g_part_gpt_entry *)baseentry;
766 	if (indent == NULL) {
767 		/* conftxt: libdisk compatibility */
768 		sbuf_cat(sb, " xs GPT xt ");
769 		sbuf_printf_uuid(sb, &entry->ent.ent_type);
770 	} else if (entry != NULL) {
771 		/* confxml: partition entry information */
772 		sbuf_printf(sb, "%s<label>", indent);
773 		g_gpt_printf_utf16(sb, entry->ent.ent_name,
774 		    sizeof(entry->ent.ent_name) >> 1);
775 		sbuf_cat(sb, "</label>\n");
776 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)
777 			sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent);
778 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) {
779 			sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n",
780 			    indent);
781 		}
782 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) {
783 			sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n",
784 			    indent);
785 		}
786 		sbuf_printf(sb, "%s<rawtype>", indent);
787 		sbuf_printf_uuid(sb, &entry->ent.ent_type);
788 		sbuf_cat(sb, "</rawtype>\n");
789 		sbuf_printf(sb, "%s<rawuuid>", indent);
790 		sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
791 		sbuf_cat(sb, "</rawuuid>\n");
792 		sbuf_printf(sb, "%s<efimedia>", indent);
793 		g_part_gpt_efimedia(entry, sb);
794 		sbuf_cat(sb, "</efimedia>\n");
795 	} else {
796 		/* confxml: scheme information */
797 	}
798 }
799 
800 static int
801 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
802 {
803 	struct g_part_gpt_entry *entry;
804 
805 	entry = (struct g_part_gpt_entry *)baseentry;
806 	return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
807 	    EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) ||
808 	    EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0);
809 }
810 
811 static int
812 g_part_gpt_modify(struct g_part_table *basetable,
813     struct g_part_entry *baseentry, struct g_part_parms *gpp)
814 {
815 	struct g_part_gpt_entry *entry;
816 	int error;
817 
818 	entry = (struct g_part_gpt_entry *)baseentry;
819 	if (gpp->gpp_parms & G_PART_PARM_TYPE) {
820 		error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
821 		if (error)
822 			return (error);
823 	}
824 	if (gpp->gpp_parms & G_PART_PARM_LABEL)
825 		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
826 		    sizeof(entry->ent.ent_name) /
827 		    sizeof(entry->ent.ent_name[0]));
828 	return (0);
829 }
830 
831 static int
832 g_part_gpt_resize(struct g_part_table *basetable,
833     struct g_part_entry *baseentry, struct g_part_parms *gpp)
834 {
835 	struct g_part_gpt_entry *entry;
836 
837 	if (baseentry == NULL)
838 		return (g_part_gpt_recover(basetable));
839 
840 	entry = (struct g_part_gpt_entry *)baseentry;
841 	baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
842 	entry->ent.ent_lba_end = baseentry->gpe_end;
843 
844 	return (0);
845 }
846 
847 static const char *
848 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
849     char *buf, size_t bufsz)
850 {
851 	struct g_part_gpt_entry *entry;
852 	char c;
853 
854 	entry = (struct g_part_gpt_entry *)baseentry;
855 	c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
856 	snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
857 	return (buf);
858 }
859 
860 static int
861 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
862 {
863 	struct g_provider *pp;
864 	u_char *buf;
865 	int error, index, pri, res;
866 
867 	/* Our depth should be 0 unless nesting was explicitly enabled. */
868 	if (!allow_nesting && table->gpt_depth != 0)
869 		return (ENXIO);
870 
871 	pp = cp->provider;
872 
873 	/*
874 	 * Sanity-check the provider. Since the first sector on the provider
875 	 * must be a PMBR and a PMBR is 512 bytes large, the sector size
876 	 * must be at least 512 bytes.  Also, since the theoretical minimum
877 	 * number of sectors needed by GPT is 6, any medium that has less
878 	 * than 6 sectors is never going to be able to hold a GPT. The
879 	 * number 6 comes from:
880 	 *	1 sector for the PMBR
881 	 *	2 sectors for the GPT headers (each 1 sector)
882 	 *	2 sectors for the GPT tables (each 1 sector)
883 	 *	1 sector for an actual partition
884 	 * It's better to catch this pathological case early than behaving
885 	 * pathologically later on...
886 	 */
887 	if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
888 		return (ENOSPC);
889 
890 	/*
891 	 * Check that there's a MBR or a PMBR. If it's a PMBR, we return
892 	 * as the highest priority on a match, otherwise we assume some
893 	 * GPT-unaware tool has destroyed the GPT by recreating a MBR and
894 	 * we really want the MBR scheme to take precedence.
895 	 */
896 	buf = g_read_data(cp, 0L, pp->sectorsize, &error);
897 	if (buf == NULL)
898 		return (error);
899 	res = le16dec(buf + DOSMAGICOFFSET);
900 	pri = G_PART_PROBE_PRI_LOW;
901 	if (res == DOSMAGIC) {
902 		for (index = 0; index < NDOSPART; index++) {
903 			if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee)
904 				pri = G_PART_PROBE_PRI_HIGH;
905 		}
906 		g_free(buf);
907 
908 		/* Check that there's a primary header. */
909 		buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
910 		if (buf == NULL)
911 			return (error);
912 		res = memcmp(buf, GPT_HDR_SIG, 8);
913 		g_free(buf);
914 		if (res == 0)
915 			return (pri);
916 	} else
917 		g_free(buf);
918 
919 	/* No primary? Check that there's a secondary. */
920 	buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
921 	    &error);
922 	if (buf == NULL)
923 		return (error);
924 	res = memcmp(buf, GPT_HDR_SIG, 8);
925 	g_free(buf);
926 	return ((res == 0) ? pri : ENXIO);
927 }
928 
929 static int
930 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
931 {
932 	struct gpt_hdr *prihdr, *sechdr;
933 	struct gpt_ent *tbl, *pritbl, *sectbl;
934 	struct g_provider *pp;
935 	struct g_part_gpt_table *table;
936 	struct g_part_gpt_entry *entry;
937 	u_char *buf;
938 	uint64_t last;
939 	int error, index;
940 
941 	table = (struct g_part_gpt_table *)basetable;
942 	pp = cp->provider;
943 	last = (pp->mediasize / pp->sectorsize) - 1;
944 
945 	/* Read the PMBR */
946 	buf = g_read_data(cp, 0, pp->sectorsize, &error);
947 	if (buf == NULL)
948 		return (error);
949 	bcopy(buf, table->mbr, MBRSIZE);
950 	g_free(buf);
951 
952 	/* Read the primary header and table. */
953 	prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR);
954 	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
955 		pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr);
956 	} else {
957 		table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
958 		pritbl = NULL;
959 	}
960 
961 	/* Read the secondary header and table. */
962 	sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR);
963 	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
964 		sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr);
965 	} else {
966 		table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
967 		sectbl = NULL;
968 	}
969 
970 	/* Fail if we haven't got any good tables at all. */
971 	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
972 	    table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
973 		if (table->state[GPT_ELT_PRITBL] == GPT_STATE_UNSUPPORTED &&
974 		    table->state[GPT_ELT_SECTBL] == GPT_STATE_UNSUPPORTED &&
975 		    gpt_matched_hdrs(prihdr, sechdr)) {
976 			printf("GEOM: %s: unsupported GPT detected.\n",
977 			    pp->name);
978 			printf(
979 		    "GEOM: %s: number of GPT entries: %u, entry size: %uB.\n",
980 			    pp->name, prihdr->hdr_entries, prihdr->hdr_entsz);
981 			printf(
982     "GEOM: %s: maximum supported number of GPT entries: %u, entry size: %uB.\n",
983 			    pp->name, g_part_gpt_scheme.gps_maxent, MAXENTSIZE);
984 			printf("GEOM: %s: GPT rejected.\n", pp->name);
985 		} else {
986 			printf("GEOM: %s: corrupt or invalid GPT detected.\n",
987 			    pp->name);
988 			printf(
989 		    "GEOM: %s: GPT rejected -- may not be recoverable.\n",
990 			    pp->name);
991 		}
992 		g_free(prihdr);
993 		g_free(pritbl);
994 		g_free(sechdr);
995 		g_free(sectbl);
996 		return (EINVAL);
997 	}
998 
999 	/*
1000 	 * If both headers are good but they disagree with each other,
1001 	 * then invalidate one. We prefer to keep the primary header,
1002 	 * unless the primary table is corrupt.
1003 	 */
1004 	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
1005 	    table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
1006 	    !gpt_matched_hdrs(prihdr, sechdr)) {
1007 		if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
1008 			table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
1009 			table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
1010 			g_free(sechdr);
1011 			sechdr = NULL;
1012 		} else {
1013 			table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
1014 			table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
1015 			g_free(prihdr);
1016 			prihdr = NULL;
1017 		}
1018 	}
1019 
1020 	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
1021 		printf("GEOM: %s: the primary GPT table is corrupt or "
1022 		    "invalid.\n", pp->name);
1023 		printf("GEOM: %s: using the secondary instead -- recovery "
1024 		    "strongly advised.\n", pp->name);
1025 		table->hdr = sechdr;
1026 		basetable->gpt_corrupt = 1;
1027 		g_free(prihdr);
1028 		tbl = sectbl;
1029 		g_free(pritbl);
1030 	} else {
1031 		if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
1032 			printf("GEOM: %s: the secondary GPT table is corrupt "
1033 			    "or invalid.\n", pp->name);
1034 			printf("GEOM: %s: using the primary only -- recovery "
1035 			    "suggested.\n", pp->name);
1036 			basetable->gpt_corrupt = 1;
1037 		} else if (table->lba[GPT_ELT_SECHDR] != last) {
1038 			printf( "GEOM: %s: the secondary GPT header is not in "
1039 			    "the last LBA.\n", pp->name);
1040 			basetable->gpt_corrupt = 1;
1041 		}
1042 		table->hdr = prihdr;
1043 		g_free(sechdr);
1044 		tbl = pritbl;
1045 		g_free(sectbl);
1046 	}
1047 
1048 	/*
1049 	 * The reserved area preceeds the valid area for partitions. Warn when
1050 	 * the lba_start doesn't meet the standard's minimum size for the gpt
1051 	 * entry array. UEFI 2.10 section 5.3 specifies that the LBA must be 32
1052 	 * (for 512 byte sectors) or 6 (4k sectors) or larger. This is different
1053 	 * than the number of valid entries in the GPT entry array, which can be
1054 	 * smaller.
1055 	 */
1056 	if (table->hdr->hdr_lba_start < GPT_MIN_RESERVED / pp->sectorsize + 2) {
1057 		printf("GEOM: warning: %s lba_start %llu < required min %d\n",
1058 		    pp->name, (unsigned long long)table->hdr->hdr_lba_start,
1059 		    GPT_MIN_RESERVED / pp->sectorsize + 2);
1060 	}
1061 
1062 	basetable->gpt_first = table->hdr->hdr_lba_start;
1063 	basetable->gpt_last = table->hdr->hdr_lba_end;
1064 	basetable->gpt_entries = table->hdr->hdr_entries;
1065 
1066 	for (index = basetable->gpt_entries - 1; index >= 0; index--) {
1067 		if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
1068 			continue;
1069 		entry = (struct g_part_gpt_entry *)g_part_new_entry(
1070 		    basetable, index + 1, tbl[index].ent_lba_start,
1071 		    tbl[index].ent_lba_end);
1072 		entry->ent = tbl[index];
1073 	}
1074 
1075 	g_free(tbl);
1076 
1077 	/*
1078 	 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions
1079 	 * if (and only if) any FAT32 or FAT16 partitions have been
1080 	 * created. This happens irrespective of whether Boot Camp is
1081 	 * used/enabled, though it's generally understood to be done
1082 	 * to support legacy Windows under Boot Camp. We refer to this
1083 	 * mirroring simply as Boot Camp. We try to detect Boot Camp
1084 	 * so that we can update the MBR if and when GPT changes have
1085 	 * been made. Note that we do not enable Boot Camp if not
1086 	 * previously enabled because we can't assume that we're on a
1087 	 * Mac alongside Mac OS X.
1088 	 */
1089 	table->bootcamp = gpt_is_bootcamp(table, pp->name);
1090 
1091 	return (0);
1092 }
1093 
1094 static int
1095 g_part_gpt_recover(struct g_part_table *basetable)
1096 {
1097 	struct g_part_gpt_table *table;
1098 	struct g_provider *pp;
1099 
1100 	table = (struct g_part_gpt_table *)basetable;
1101 	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
1102 	gpt_create_pmbr(table, pp);
1103 	g_gpt_set_defaults(basetable, pp, NULL);
1104 	basetable->gpt_corrupt = 0;
1105 	return (0);
1106 }
1107 
1108 static int
1109 g_part_gpt_setunset(struct g_part_table *basetable,
1110     struct g_part_entry *baseentry, const char *attrib, unsigned int set)
1111 {
1112 	struct g_part_gpt_entry *entry;
1113 	struct g_part_gpt_table *table;
1114 	struct g_provider *pp;
1115 	uint8_t *p;
1116 	uint64_t attr;
1117 	int i;
1118 
1119 	table = (struct g_part_gpt_table *)basetable;
1120 	entry = (struct g_part_gpt_entry *)baseentry;
1121 
1122 	if (strcasecmp(attrib, "active") == 0) {
1123 		if (table->bootcamp) {
1124 			/* The active flag must be set on a valid entry. */
1125 			if (entry == NULL)
1126 				return (ENXIO);
1127 			if (baseentry->gpe_index > NDOSPART)
1128 				return (EINVAL);
1129 			for (i = 0; i < NDOSPART; i++) {
1130 				p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
1131 				p[0] = (i == baseentry->gpe_index - 1)
1132 				    ? ((set) ? 0x80 : 0) : 0;
1133 			}
1134 		} else {
1135 			/* The PMBR is marked as active without an entry. */
1136 			if (entry != NULL)
1137 				return (ENXIO);
1138 			for (i = 0; i < NDOSPART; i++) {
1139 				p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
1140 				p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0;
1141 			}
1142 		}
1143 		return (0);
1144 	} else if (strcasecmp(attrib, "lenovofix") == 0) {
1145 		/*
1146 		 * Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR.
1147 		 * This workaround allows Lenovo X220, T420, T520, etc to boot
1148 		 * from GPT Partitions in BIOS mode.
1149 		 */
1150 
1151 		if (entry != NULL)
1152 			return (ENXIO);
1153 
1154 		pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
1155 		bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
1156 		gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1,
1157 		    MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
1158 		return (0);
1159 	}
1160 
1161 	if (entry == NULL)
1162 		return (ENODEV);
1163 
1164 	attr = 0;
1165 	if (strcasecmp(attrib, "bootme") == 0) {
1166 		attr |= GPT_ENT_ATTR_BOOTME;
1167 	} else if (strcasecmp(attrib, "bootonce") == 0) {
1168 		attr |= GPT_ENT_ATTR_BOOTONCE;
1169 		if (set)
1170 			attr |= GPT_ENT_ATTR_BOOTME;
1171 	} else if (strcasecmp(attrib, "bootfailed") == 0) {
1172 		/*
1173 		 * It should only be possible to unset BOOTFAILED, but it might
1174 		 * be useful for test purposes to also be able to set it.
1175 		 */
1176 		attr |= GPT_ENT_ATTR_BOOTFAILED;
1177 	}
1178 	if (attr == 0)
1179 		return (EINVAL);
1180 
1181 	if (set)
1182 		attr = entry->ent.ent_attr | attr;
1183 	else
1184 		attr = entry->ent.ent_attr & ~attr;
1185 	if (attr != entry->ent.ent_attr) {
1186 		entry->ent.ent_attr = attr;
1187 		if (!baseentry->gpe_created)
1188 			baseentry->gpe_modified = 1;
1189 	}
1190 	return (0);
1191 }
1192 
1193 static const char *
1194 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
1195     char *buf, size_t bufsz)
1196 {
1197 	struct g_part_gpt_entry *entry;
1198 	struct uuid *type;
1199 	struct g_part_uuid_alias *uap;
1200 
1201 	entry = (struct g_part_gpt_entry *)baseentry;
1202 	type = &entry->ent.ent_type;
1203 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++)
1204 		if (EQUUID(type, uap->uuid))
1205 			return (g_part_alias_name(uap->alias));
1206 	buf[0] = '!';
1207 	snprintf_uuid(buf + 1, bufsz - 1, type);
1208 
1209 	return (buf);
1210 }
1211 
1212 static int
1213 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
1214 {
1215 	unsigned char *buf, *bp;
1216 	struct g_provider *pp;
1217 	struct g_part_entry *baseentry;
1218 	struct g_part_gpt_entry *entry;
1219 	struct g_part_gpt_table *table;
1220 	size_t tblsz;
1221 	uint32_t crc;
1222 	int error, index;
1223 
1224 	pp = cp->provider;
1225 	table = (struct g_part_gpt_table *)basetable;
1226 	tblsz = howmany(table->hdr->hdr_entries * table->hdr->hdr_entsz,
1227 	    pp->sectorsize);
1228 
1229 	/* Reconstruct the MBR from the GPT if under Boot Camp. */
1230 	if (table->bootcamp)
1231 		gpt_update_bootcamp(basetable, pp);
1232 
1233 	/* Write the PMBR */
1234 	buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
1235 	bcopy(table->mbr, buf, MBRSIZE);
1236 	error = g_write_data(cp, 0, buf, pp->sectorsize);
1237 	g_free(buf);
1238 	if (error)
1239 		return (error);
1240 
1241 	/* Allocate space for the header and entries. */
1242 	buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
1243 
1244 	memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
1245 	le32enc(buf + 8, table->hdr->hdr_revision);
1246 	le32enc(buf + 12, table->hdr->hdr_size);
1247 	le64enc(buf + 40, table->hdr->hdr_lba_start);
1248 	le64enc(buf + 48, table->hdr->hdr_lba_end);
1249 	le_uuid_enc(buf + 56, &table->hdr->hdr_uuid);
1250 	le32enc(buf + 80, table->hdr->hdr_entries);
1251 	le32enc(buf + 84, table->hdr->hdr_entsz);
1252 
1253 	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1254 		if (baseentry->gpe_deleted)
1255 			continue;
1256 		entry = (struct g_part_gpt_entry *)baseentry;
1257 		index = baseentry->gpe_index - 1;
1258 		bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index;
1259 		le_uuid_enc(bp, &entry->ent.ent_type);
1260 		le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
1261 		le64enc(bp + 32, entry->ent.ent_lba_start);
1262 		le64enc(bp + 40, entry->ent.ent_lba_end);
1263 		le64enc(bp + 48, entry->ent.ent_attr);
1264 		memcpy(bp + 56, entry->ent.ent_name,
1265 		    sizeof(entry->ent.ent_name));
1266 	}
1267 
1268 	crc = crc32(buf + pp->sectorsize,
1269 	    table->hdr->hdr_entries * table->hdr->hdr_entsz);
1270 	le32enc(buf + 88, crc);
1271 
1272 	/* Write primary meta-data. */
1273 	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1274 	le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_self. */
1275 	le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_alt. */
1276 	le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]);	/* hdr_lba_table. */
1277 	crc = crc32(buf, table->hdr->hdr_size);
1278 	le32enc(buf + 16, crc);
1279 
1280 	for (index = 0; index < tblsz; index += maxphys / pp->sectorsize) {
1281 		error = g_write_data(cp,
1282 		    (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize,
1283 		    buf + (index + 1) * pp->sectorsize,
1284 		    (tblsz - index > maxphys / pp->sectorsize) ? maxphys :
1285 		    (tblsz - index) * pp->sectorsize);
1286 		if (error)
1287 			goto out;
1288 	}
1289 	error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
1290 	    buf, pp->sectorsize);
1291 	if (error)
1292 		goto out;
1293 
1294 	/* Write secondary meta-data. */
1295 	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1296 	le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_self. */
1297 	le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_alt. */
1298 	le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]);	/* hdr_lba_table. */
1299 	crc = crc32(buf, table->hdr->hdr_size);
1300 	le32enc(buf + 16, crc);
1301 
1302 	for (index = 0; index < tblsz; index += maxphys / pp->sectorsize) {
1303 		error = g_write_data(cp,
1304 		    (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize,
1305 		    buf + (index + 1) * pp->sectorsize,
1306 		    (tblsz - index > maxphys / pp->sectorsize) ? maxphys :
1307 		    (tblsz - index) * pp->sectorsize);
1308 		if (error)
1309 			goto out;
1310 	}
1311 	error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
1312 	    buf, pp->sectorsize);
1313 
1314  out:
1315 	g_free(buf);
1316 	return (error);
1317 }
1318 
1319 static void
1320 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp,
1321 	struct g_part_parms *gpp)
1322 {
1323 	struct g_part_entry *baseentry;
1324 	struct g_part_gpt_entry *entry;
1325 	struct g_part_gpt_table *table;
1326 	quad_t start, end, min, max;
1327 	quad_t lba, last;
1328 	size_t spb, tblsz;
1329 
1330 	table = (struct g_part_gpt_table *)basetable;
1331 	last = pp->mediasize / pp->sectorsize - 1;
1332 	tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent),
1333 	    pp->sectorsize);
1334 
1335 	table->lba[GPT_ELT_PRIHDR] = 1;
1336 	table->lba[GPT_ELT_PRITBL] = 2;
1337 	table->lba[GPT_ELT_SECHDR] = last;
1338 	table->lba[GPT_ELT_SECTBL] = last - tblsz;
1339 	table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK;
1340 	table->state[GPT_ELT_PRITBL] = GPT_STATE_OK;
1341 	table->state[GPT_ELT_SECHDR] = GPT_STATE_OK;
1342 	table->state[GPT_ELT_SECTBL] = GPT_STATE_OK;
1343 
1344 	max = start = 2 + tblsz;
1345 	min = end = last - tblsz - 1;
1346 	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1347 		if (baseentry->gpe_deleted)
1348 			continue;
1349 		entry = (struct g_part_gpt_entry *)baseentry;
1350 		if (entry->ent.ent_lba_start < min)
1351 			min = entry->ent.ent_lba_start;
1352 		if (entry->ent.ent_lba_end > max)
1353 			max = entry->ent.ent_lba_end;
1354 	}
1355 	/*
1356 	 * Don't force alignment of any kind whatsoever on resize, restore or
1357 	 * recover. resize doesn't go through this path, recover has a NULL gpp
1358 	 * and restore has flags == restore (maybe with an appended 'C' to
1359 	 * commit the operation). For these operations, we have to trust the
1360 	 * user knows what they are doing.
1361 	 *
1362 	 * Otherwise it some flavor of creation of a new partition, so we align
1363 	 * to a 4k offset on the drive, to make 512e/4kn drives more performant
1364 	 * by default.
1365 	 */
1366 	if (gpp == NULL ||
1367 	    (gpp->gpp_parms & G_PART_PARM_FLAGS) == 0 ||
1368 	    strstr(gpp->gpp_flags, "restore") == NULL) {
1369 		spb = 4096 / pp->sectorsize;
1370 		if (spb > 1) {
1371 			lba = start + ((start % spb) ? spb - start % spb : 0);
1372 			if (lba <= min)
1373 				start = lba;
1374 			lba = end - (end + 1) % spb;
1375 			if (max <= lba)
1376 				end = lba;
1377 		}
1378 	}
1379 	table->hdr->hdr_lba_start = start;
1380 	table->hdr->hdr_lba_end = end;
1381 
1382 	basetable->gpt_first = start;
1383 	basetable->gpt_last = end;
1384 }
1385 
1386 static void
1387 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
1388 {
1389 	u_int bo;
1390 	uint32_t ch;
1391 	uint16_t c;
1392 
1393 	bo = LITTLE_ENDIAN;	/* GPT is little-endian */
1394 	while (len > 0 && *str != 0) {
1395 		ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
1396 		str++, len--;
1397 		if ((ch & 0xf800) == 0xd800) {
1398 			if (len > 0) {
1399 				c = (bo == BIG_ENDIAN) ? be16toh(*str)
1400 				    : le16toh(*str);
1401 				str++, len--;
1402 			} else
1403 				c = 0xfffd;
1404 			if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
1405 				ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
1406 				ch += 0x10000;
1407 			} else
1408 				ch = 0xfffd;
1409 		} else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
1410 			bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
1411 			continue;
1412 		} else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
1413 			continue;
1414 
1415 		/* Write the Unicode character in UTF-8 */
1416 		if (ch < 0x80)
1417 			g_conf_printf_escaped(sb, "%c", ch);
1418 		else if (ch < 0x800)
1419 			g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6),
1420 			    0x80 | (ch & 0x3f));
1421 		else if (ch < 0x10000)
1422 			g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12),
1423 			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1424 		else if (ch < 0x200000)
1425 			g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 |
1426 			    (ch >> 18), 0x80 | ((ch >> 12) & 0x3f),
1427 			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1428 	}
1429 }
1430 
1431 static void
1432 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
1433 {
1434 	size_t s16idx, s8idx;
1435 	uint32_t utfchar;
1436 	unsigned int c, utfbytes;
1437 
1438 	s8idx = s16idx = 0;
1439 	utfchar = 0;
1440 	utfbytes = 0;
1441 	bzero(s16, s16len << 1);
1442 	while (s8[s8idx] != 0 && s16idx < s16len) {
1443 		c = s8[s8idx++];
1444 		if ((c & 0xc0) != 0x80) {
1445 			/* Initial characters. */
1446 			if (utfbytes != 0) {
1447 				/* Incomplete encoding of previous char. */
1448 				s16[s16idx++] = htole16(0xfffd);
1449 			}
1450 			if ((c & 0xf8) == 0xf0) {
1451 				utfchar = c & 0x07;
1452 				utfbytes = 3;
1453 			} else if ((c & 0xf0) == 0xe0) {
1454 				utfchar = c & 0x0f;
1455 				utfbytes = 2;
1456 			} else if ((c & 0xe0) == 0xc0) {
1457 				utfchar = c & 0x1f;
1458 				utfbytes = 1;
1459 			} else {
1460 				utfchar = c & 0x7f;
1461 				utfbytes = 0;
1462 			}
1463 		} else {
1464 			/* Followup characters. */
1465 			if (utfbytes > 0) {
1466 				utfchar = (utfchar << 6) + (c & 0x3f);
1467 				utfbytes--;
1468 			} else if (utfbytes == 0)
1469 				utfbytes = ~0;
1470 		}
1471 		/*
1472 		 * Write the complete Unicode character as UTF-16 when we
1473 		 * have all the UTF-8 charactars collected.
1474 		 */
1475 		if (utfbytes == 0) {
1476 			/*
1477 			 * If we need to write 2 UTF-16 characters, but
1478 			 * we only have room for 1, then we truncate the
1479 			 * string by writing a 0 instead.
1480 			 */
1481 			if (utfchar >= 0x10000 && s16idx < s16len - 1) {
1482 				s16[s16idx++] =
1483 				    htole16(0xd800 | ((utfchar >> 10) - 0x40));
1484 				s16[s16idx++] =
1485 				    htole16(0xdc00 | (utfchar & 0x3ff));
1486 			} else
1487 				s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
1488 				    htole16(utfchar);
1489 		}
1490 	}
1491 	/*
1492 	 * If our input string was truncated, append an invalid encoding
1493 	 * character to the output string.
1494 	 */
1495 	if (utfbytes != 0 && s16idx < s16len)
1496 		s16[s16idx++] = htole16(0xfffd);
1497 }
1498