1 /*- 2 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/bio.h> 32 #include <sys/diskmbr.h> 33 #include <sys/endian.h> 34 #include <sys/gpt.h> 35 #include <sys/kernel.h> 36 #include <sys/kobj.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/malloc.h> 40 #include <sys/mutex.h> 41 #include <sys/queue.h> 42 #include <sys/sbuf.h> 43 #include <sys/systm.h> 44 #include <sys/sysctl.h> 45 #include <sys/uuid.h> 46 #include <geom/geom.h> 47 #include <geom/geom_int.h> 48 #include <geom/part/g_part.h> 49 50 #include "g_part_if.h" 51 52 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support"); 53 54 CTASSERT(offsetof(struct gpt_hdr, padding) == 92); 55 CTASSERT(sizeof(struct gpt_ent) == 128); 56 57 #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) 58 59 #define MBRSIZE 512 60 61 enum gpt_elt { 62 GPT_ELT_PRIHDR, 63 GPT_ELT_PRITBL, 64 GPT_ELT_SECHDR, 65 GPT_ELT_SECTBL, 66 GPT_ELT_COUNT 67 }; 68 69 enum gpt_state { 70 GPT_STATE_UNKNOWN, /* Not determined. */ 71 GPT_STATE_MISSING, /* No signature found. */ 72 GPT_STATE_CORRUPT, /* Checksum mismatch. */ 73 GPT_STATE_INVALID, /* Nonconformant/invalid. */ 74 GPT_STATE_OK /* Perfectly fine. */ 75 }; 76 77 struct g_part_gpt_table { 78 struct g_part_table base; 79 u_char mbr[MBRSIZE]; 80 struct gpt_hdr *hdr; 81 quad_t lba[GPT_ELT_COUNT]; 82 enum gpt_state state[GPT_ELT_COUNT]; 83 int bootcamp; 84 }; 85 86 struct g_part_gpt_entry { 87 struct g_part_entry base; 88 struct gpt_ent ent; 89 }; 90 91 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); 92 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); 93 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *); 94 95 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, 96 struct g_part_parms *); 97 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); 98 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); 99 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); 100 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, 101 struct sbuf *, const char *); 102 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); 103 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, 104 struct g_part_parms *); 105 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, 106 char *, size_t); 107 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); 108 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); 109 static int g_part_gpt_setunset(struct g_part_table *table, 110 struct g_part_entry *baseentry, const char *attrib, unsigned int set); 111 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, 112 char *, size_t); 113 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); 114 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, 115 struct g_part_parms *); 116 static int g_part_gpt_recover(struct g_part_table *); 117 118 static kobj_method_t g_part_gpt_methods[] = { 119 KOBJMETHOD(g_part_add, g_part_gpt_add), 120 KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), 121 KOBJMETHOD(g_part_create, g_part_gpt_create), 122 KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), 123 KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), 124 KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), 125 KOBJMETHOD(g_part_modify, g_part_gpt_modify), 126 KOBJMETHOD(g_part_resize, g_part_gpt_resize), 127 KOBJMETHOD(g_part_name, g_part_gpt_name), 128 KOBJMETHOD(g_part_probe, g_part_gpt_probe), 129 KOBJMETHOD(g_part_read, g_part_gpt_read), 130 KOBJMETHOD(g_part_recover, g_part_gpt_recover), 131 KOBJMETHOD(g_part_setunset, g_part_gpt_setunset), 132 KOBJMETHOD(g_part_type, g_part_gpt_type), 133 KOBJMETHOD(g_part_write, g_part_gpt_write), 134 { 0, 0 } 135 }; 136 137 static struct g_part_scheme g_part_gpt_scheme = { 138 "GPT", 139 g_part_gpt_methods, 140 sizeof(struct g_part_gpt_table), 141 .gps_entrysz = sizeof(struct g_part_gpt_entry), 142 .gps_minent = 128, 143 .gps_maxent = 4096, 144 .gps_bootcodesz = MBRSIZE, 145 }; 146 G_PART_SCHEME_DECLARE(g_part_gpt); 147 148 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; 149 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; 150 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; 151 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; 152 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; 153 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; 154 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; 155 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT; 156 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; 157 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; 158 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; 159 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS; 160 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; 161 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; 162 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; 163 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; 164 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; 165 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; 166 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; 167 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; 168 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS; 169 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG; 170 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED; 171 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR; 172 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; 173 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; 174 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; 175 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; 176 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; 177 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; 178 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; 179 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; 180 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; 181 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; 182 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; 183 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; 184 static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP; 185 static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1; 186 static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM; 187 static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD; 188 static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY; 189 static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER; 190 static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2; 191 static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32; 192 static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64; 193 194 static struct g_part_uuid_alias { 195 struct uuid *uuid; 196 int alias; 197 int mbrtype; 198 } gpt_uuid_alias_match[] = { 199 { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab }, 200 { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf }, 201 { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 }, 202 { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 }, 203 { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 }, 204 { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 }, 205 { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 }, 206 { &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 }, 207 { &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee }, 208 { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 }, 209 { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 }, 210 { &gpt_uuid_freebsd_nandfs, G_PART_ALIAS_FREEBSD_NANDFS, 0 }, 211 { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 }, 212 { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 }, 213 { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 }, 214 { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 }, 215 { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b }, 216 { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 }, 217 { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 }, 218 { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 }, 219 { &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 }, 220 { &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 }, 221 { &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 }, 222 { &gpt_uuid_vmvsanhdr, G_PART_ALIAS_VMVSANHDR, 0 }, 223 { &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 }, 224 { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b }, 225 { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 }, 226 { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 }, 227 { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 }, 228 { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 }, 229 { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 }, 230 { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 }, 231 { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 }, 232 { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 }, 233 { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 }, 234 { &gpt_uuid_dfbsd_swap, G_PART_ALIAS_DFBSD_SWAP, 0 }, 235 { &gpt_uuid_dfbsd_ufs1, G_PART_ALIAS_DFBSD_UFS, 0 }, 236 { &gpt_uuid_dfbsd_vinum, G_PART_ALIAS_DFBSD_VINUM, 0 }, 237 { &gpt_uuid_dfbsd_ccd, G_PART_ALIAS_DFBSD_CCD, 0 }, 238 { &gpt_uuid_dfbsd_legacy, G_PART_ALIAS_DFBSD_LEGACY, 0 }, 239 { &gpt_uuid_dfbsd_hammer, G_PART_ALIAS_DFBSD_HAMMER, 0 }, 240 { &gpt_uuid_dfbsd_hammer2, G_PART_ALIAS_DFBSD_HAMMER2, 0 }, 241 { &gpt_uuid_dfbsd_label32, G_PART_ALIAS_DFBSD, 0xa5 }, 242 { &gpt_uuid_dfbsd_label64, G_PART_ALIAS_DFBSD64, 0xa5 }, 243 { NULL, 0, 0 } 244 }; 245 246 static int 247 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start, 248 quad_t end) 249 { 250 251 if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX) 252 return (EINVAL); 253 254 mbr += DOSPARTOFF + idx * DOSPARTSIZE; 255 mbr[0] = 0; 256 if (start == 1) { 257 /* 258 * Treat the PMBR partition specially to maximize 259 * interoperability with BIOSes. 260 */ 261 mbr[1] = mbr[3] = 0; 262 mbr[2] = 2; 263 } else 264 mbr[1] = mbr[2] = mbr[3] = 0xff; 265 mbr[4] = typ; 266 mbr[5] = mbr[6] = mbr[7] = 0xff; 267 le32enc(mbr + 8, (uint32_t)start); 268 le32enc(mbr + 12, (uint32_t)(end - start + 1)); 269 return (0); 270 } 271 272 static int 273 gpt_map_type(struct uuid *t) 274 { 275 struct g_part_uuid_alias *uap; 276 277 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 278 if (EQUUID(t, uap->uuid)) 279 return (uap->mbrtype); 280 } 281 return (0); 282 } 283 284 static void 285 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp) 286 { 287 288 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 289 gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, 290 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 291 le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); 292 } 293 294 /* 295 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the 296 * whole disk anymore. Rather, it covers the GPT table and the EFI 297 * system partition only. This way the HFS+ partition and any FAT 298 * partitions can be added to the MBR without creating an overlap. 299 */ 300 static int 301 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname) 302 { 303 uint8_t *p; 304 305 p = table->mbr + DOSPARTOFF; 306 if (p[4] != 0xee || le32dec(p + 8) != 1) 307 return (0); 308 309 p += DOSPARTSIZE; 310 if (p[4] != 0xaf) 311 return (0); 312 313 printf("GEOM: %s: enabling Boot Camp\n", provname); 314 return (1); 315 } 316 317 static void 318 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp) 319 { 320 struct g_part_entry *baseentry; 321 struct g_part_gpt_entry *entry; 322 struct g_part_gpt_table *table; 323 int bootable, error, index, slices, typ; 324 325 table = (struct g_part_gpt_table *)basetable; 326 327 bootable = -1; 328 for (index = 0; index < NDOSPART; index++) { 329 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index]) 330 bootable = index; 331 } 332 333 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 334 slices = 0; 335 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 336 if (baseentry->gpe_deleted) 337 continue; 338 index = baseentry->gpe_index - 1; 339 if (index >= NDOSPART) 340 continue; 341 342 entry = (struct g_part_gpt_entry *)baseentry; 343 344 switch (index) { 345 case 0: /* This must be the EFI system partition. */ 346 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi)) 347 goto disable; 348 error = gpt_write_mbr_entry(table->mbr, index, 0xee, 349 1ull, entry->ent.ent_lba_end); 350 break; 351 case 1: /* This must be the HFS+ partition. */ 352 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs)) 353 goto disable; 354 error = gpt_write_mbr_entry(table->mbr, index, 0xaf, 355 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 356 break; 357 default: 358 typ = gpt_map_type(&entry->ent.ent_type); 359 error = gpt_write_mbr_entry(table->mbr, index, typ, 360 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 361 break; 362 } 363 if (error) 364 continue; 365 366 if (index == bootable) 367 table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80; 368 slices |= 1 << index; 369 } 370 if ((slices & 3) == 3) 371 return; 372 373 disable: 374 table->bootcamp = 0; 375 gpt_create_pmbr(table, pp); 376 } 377 378 static struct gpt_hdr * 379 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, 380 enum gpt_elt elt) 381 { 382 struct gpt_hdr *buf, *hdr; 383 struct g_provider *pp; 384 quad_t lba, last; 385 int error; 386 uint32_t crc, sz; 387 388 pp = cp->provider; 389 last = (pp->mediasize / pp->sectorsize) - 1; 390 table->state[elt] = GPT_STATE_MISSING; 391 /* 392 * If the primary header is valid look for secondary 393 * header in AlternateLBA, otherwise in the last medium's LBA. 394 */ 395 if (elt == GPT_ELT_SECHDR) { 396 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK) 397 table->lba[elt] = last; 398 } else 399 table->lba[elt] = 1; 400 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, 401 &error); 402 if (buf == NULL) 403 return (NULL); 404 hdr = NULL; 405 if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) 406 goto fail; 407 408 table->state[elt] = GPT_STATE_CORRUPT; 409 sz = le32toh(buf->hdr_size); 410 if (sz < 92 || sz > pp->sectorsize) 411 goto fail; 412 413 hdr = g_malloc(sz, M_WAITOK | M_ZERO); 414 bcopy(buf, hdr, sz); 415 hdr->hdr_size = sz; 416 417 crc = le32toh(buf->hdr_crc_self); 418 buf->hdr_crc_self = 0; 419 if (crc32(buf, sz) != crc) 420 goto fail; 421 hdr->hdr_crc_self = crc; 422 423 table->state[elt] = GPT_STATE_INVALID; 424 hdr->hdr_revision = le32toh(buf->hdr_revision); 425 if (hdr->hdr_revision < GPT_HDR_REVISION) 426 goto fail; 427 hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); 428 if (hdr->hdr_lba_self != table->lba[elt]) 429 goto fail; 430 hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); 431 if (hdr->hdr_lba_alt == hdr->hdr_lba_self || 432 hdr->hdr_lba_alt > last) 433 goto fail; 434 435 /* Check the managed area. */ 436 hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); 437 if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) 438 goto fail; 439 hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); 440 if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) 441 goto fail; 442 443 /* Check the table location and size of the table. */ 444 hdr->hdr_entries = le32toh(buf->hdr_entries); 445 hdr->hdr_entsz = le32toh(buf->hdr_entsz); 446 if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || 447 (hdr->hdr_entsz & 7) != 0) 448 goto fail; 449 hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); 450 if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) 451 goto fail; 452 if (hdr->hdr_lba_table >= hdr->hdr_lba_start && 453 hdr->hdr_lba_table <= hdr->hdr_lba_end) 454 goto fail; 455 lba = hdr->hdr_lba_table + 456 (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) / 457 pp->sectorsize - 1; 458 if (lba >= last) 459 goto fail; 460 if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) 461 goto fail; 462 463 table->state[elt] = GPT_STATE_OK; 464 le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); 465 hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); 466 467 /* save LBA for secondary header */ 468 if (elt == GPT_ELT_PRIHDR) 469 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt; 470 471 g_free(buf); 472 return (hdr); 473 474 fail: 475 if (hdr != NULL) 476 g_free(hdr); 477 g_free(buf); 478 return (NULL); 479 } 480 481 static struct gpt_ent * 482 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, 483 enum gpt_elt elt, struct gpt_hdr *hdr) 484 { 485 struct g_provider *pp; 486 struct gpt_ent *ent, *tbl; 487 char *buf, *p; 488 unsigned int idx, sectors, tblsz, size; 489 int error; 490 491 if (hdr == NULL) 492 return (NULL); 493 494 pp = cp->provider; 495 table->lba[elt] = hdr->hdr_lba_table; 496 497 table->state[elt] = GPT_STATE_MISSING; 498 tblsz = hdr->hdr_entries * hdr->hdr_entsz; 499 sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize; 500 buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO); 501 for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) { 502 size = (sectors - idx > MAXPHYS / pp->sectorsize) ? MAXPHYS: 503 (sectors - idx) * pp->sectorsize; 504 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize, 505 size, &error); 506 if (p == NULL) { 507 g_free(buf); 508 return (NULL); 509 } 510 bcopy(p, buf + idx * pp->sectorsize, size); 511 g_free(p); 512 } 513 table->state[elt] = GPT_STATE_CORRUPT; 514 if (crc32(buf, tblsz) != hdr->hdr_crc_table) { 515 g_free(buf); 516 return (NULL); 517 } 518 519 table->state[elt] = GPT_STATE_OK; 520 tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), 521 M_WAITOK | M_ZERO); 522 523 for (idx = 0, ent = tbl, p = buf; 524 idx < hdr->hdr_entries; 525 idx++, ent++, p += hdr->hdr_entsz) { 526 le_uuid_dec(p, &ent->ent_type); 527 le_uuid_dec(p + 16, &ent->ent_uuid); 528 ent->ent_lba_start = le64dec(p + 32); 529 ent->ent_lba_end = le64dec(p + 40); 530 ent->ent_attr = le64dec(p + 48); 531 /* Keep UTF-16 in little-endian. */ 532 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); 533 } 534 535 g_free(buf); 536 return (tbl); 537 } 538 539 static int 540 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) 541 { 542 543 if (pri == NULL || sec == NULL) 544 return (0); 545 546 if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) 547 return (0); 548 return ((pri->hdr_revision == sec->hdr_revision && 549 pri->hdr_size == sec->hdr_size && 550 pri->hdr_lba_start == sec->hdr_lba_start && 551 pri->hdr_lba_end == sec->hdr_lba_end && 552 pri->hdr_entries == sec->hdr_entries && 553 pri->hdr_entsz == sec->hdr_entsz && 554 pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); 555 } 556 557 static int 558 gpt_parse_type(const char *type, struct uuid *uuid) 559 { 560 struct uuid tmp; 561 const char *alias; 562 int error; 563 struct g_part_uuid_alias *uap; 564 565 if (type[0] == '!') { 566 error = parse_uuid(type + 1, &tmp); 567 if (error) 568 return (error); 569 if (EQUUID(&tmp, &gpt_uuid_unused)) 570 return (EINVAL); 571 *uuid = tmp; 572 return (0); 573 } 574 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 575 alias = g_part_alias_name(uap->alias); 576 if (!strcasecmp(type, alias)) { 577 *uuid = *uap->uuid; 578 return (0); 579 } 580 } 581 return (EINVAL); 582 } 583 584 static int 585 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, 586 struct g_part_parms *gpp) 587 { 588 struct g_part_gpt_entry *entry; 589 int error; 590 591 entry = (struct g_part_gpt_entry *)baseentry; 592 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 593 if (error) 594 return (error); 595 kern_uuidgen(&entry->ent.ent_uuid, 1); 596 entry->ent.ent_lba_start = baseentry->gpe_start; 597 entry->ent.ent_lba_end = baseentry->gpe_end; 598 if (baseentry->gpe_deleted) { 599 entry->ent.ent_attr = 0; 600 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); 601 } 602 if (gpp->gpp_parms & G_PART_PARM_LABEL) 603 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 604 sizeof(entry->ent.ent_name) / 605 sizeof(entry->ent.ent_name[0])); 606 return (0); 607 } 608 609 static int 610 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) 611 { 612 struct g_part_gpt_table *table; 613 size_t codesz; 614 615 codesz = DOSPARTOFF; 616 table = (struct g_part_gpt_table *)basetable; 617 bzero(table->mbr, codesz); 618 codesz = MIN(codesz, gpp->gpp_codesize); 619 if (codesz > 0) 620 bcopy(gpp->gpp_codeptr, table->mbr, codesz); 621 return (0); 622 } 623 624 static int 625 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) 626 { 627 struct g_provider *pp; 628 struct g_part_gpt_table *table; 629 size_t tblsz; 630 631 /* We don't nest, which means that our depth should be 0. */ 632 if (basetable->gpt_depth != 0) 633 return (ENXIO); 634 635 table = (struct g_part_gpt_table *)basetable; 636 pp = gpp->gpp_provider; 637 tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) + 638 pp->sectorsize - 1) / pp->sectorsize; 639 if (pp->sectorsize < MBRSIZE || 640 pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * 641 pp->sectorsize) 642 return (ENOSPC); 643 644 gpt_create_pmbr(table, pp); 645 646 /* Allocate space for the header */ 647 table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); 648 649 bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 650 table->hdr->hdr_revision = GPT_HDR_REVISION; 651 table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); 652 kern_uuidgen(&table->hdr->hdr_uuid, 1); 653 table->hdr->hdr_entries = basetable->gpt_entries; 654 table->hdr->hdr_entsz = sizeof(struct gpt_ent); 655 656 g_gpt_set_defaults(basetable, pp); 657 return (0); 658 } 659 660 static int 661 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) 662 { 663 struct g_part_gpt_table *table; 664 struct g_provider *pp; 665 666 table = (struct g_part_gpt_table *)basetable; 667 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 668 g_free(table->hdr); 669 table->hdr = NULL; 670 671 /* 672 * Wipe the first 2 sectors to clear the partitioning. Wipe the last 673 * sector only if it has valid secondary header. 674 */ 675 basetable->gpt_smhead |= 3; 676 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 677 table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1) 678 basetable->gpt_smtail |= 1; 679 return (0); 680 } 681 682 static void 683 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 684 struct sbuf *sb, const char *indent) 685 { 686 struct g_part_gpt_entry *entry; 687 688 entry = (struct g_part_gpt_entry *)baseentry; 689 if (indent == NULL) { 690 /* conftxt: libdisk compatibility */ 691 sbuf_printf(sb, " xs GPT xt "); 692 sbuf_printf_uuid(sb, &entry->ent.ent_type); 693 } else if (entry != NULL) { 694 /* confxml: partition entry information */ 695 sbuf_printf(sb, "%s<label>", indent); 696 g_gpt_printf_utf16(sb, entry->ent.ent_name, 697 sizeof(entry->ent.ent_name) >> 1); 698 sbuf_printf(sb, "</label>\n"); 699 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME) 700 sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent); 701 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) { 702 sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n", 703 indent); 704 } 705 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) { 706 sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n", 707 indent); 708 } 709 sbuf_printf(sb, "%s<rawtype>", indent); 710 sbuf_printf_uuid(sb, &entry->ent.ent_type); 711 sbuf_printf(sb, "</rawtype>\n"); 712 sbuf_printf(sb, "%s<rawuuid>", indent); 713 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 714 sbuf_printf(sb, "</rawuuid>\n"); 715 } else { 716 /* confxml: scheme information */ 717 } 718 } 719 720 static int 721 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) 722 { 723 struct g_part_gpt_entry *entry; 724 725 entry = (struct g_part_gpt_entry *)baseentry; 726 return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || 727 EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) || 728 EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0); 729 } 730 731 static int 732 g_part_gpt_modify(struct g_part_table *basetable, 733 struct g_part_entry *baseentry, struct g_part_parms *gpp) 734 { 735 struct g_part_gpt_entry *entry; 736 int error; 737 738 entry = (struct g_part_gpt_entry *)baseentry; 739 if (gpp->gpp_parms & G_PART_PARM_TYPE) { 740 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 741 if (error) 742 return (error); 743 } 744 if (gpp->gpp_parms & G_PART_PARM_LABEL) 745 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 746 sizeof(entry->ent.ent_name) / 747 sizeof(entry->ent.ent_name[0])); 748 return (0); 749 } 750 751 static int 752 g_part_gpt_resize(struct g_part_table *basetable, 753 struct g_part_entry *baseentry, struct g_part_parms *gpp) 754 { 755 struct g_part_gpt_entry *entry; 756 757 if (baseentry == NULL) 758 return (EOPNOTSUPP); 759 760 entry = (struct g_part_gpt_entry *)baseentry; 761 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; 762 entry->ent.ent_lba_end = baseentry->gpe_end; 763 764 return (0); 765 } 766 767 static const char * 768 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, 769 char *buf, size_t bufsz) 770 { 771 struct g_part_gpt_entry *entry; 772 char c; 773 774 entry = (struct g_part_gpt_entry *)baseentry; 775 c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; 776 snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); 777 return (buf); 778 } 779 780 static int 781 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) 782 { 783 struct g_provider *pp; 784 u_char *buf; 785 int error, index, pri, res; 786 787 /* We don't nest, which means that our depth should be 0. */ 788 if (table->gpt_depth != 0) 789 return (ENXIO); 790 791 pp = cp->provider; 792 793 /* 794 * Sanity-check the provider. Since the first sector on the provider 795 * must be a PMBR and a PMBR is 512 bytes large, the sector size 796 * must be at least 512 bytes. Also, since the theoretical minimum 797 * number of sectors needed by GPT is 6, any medium that has less 798 * than 6 sectors is never going to be able to hold a GPT. The 799 * number 6 comes from: 800 * 1 sector for the PMBR 801 * 2 sectors for the GPT headers (each 1 sector) 802 * 2 sectors for the GPT tables (each 1 sector) 803 * 1 sector for an actual partition 804 * It's better to catch this pathological case early than behaving 805 * pathologically later on... 806 */ 807 if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) 808 return (ENOSPC); 809 810 /* 811 * Check that there's a MBR or a PMBR. If it's a PMBR, we return 812 * as the highest priority on a match, otherwise we assume some 813 * GPT-unaware tool has destroyed the GPT by recreating a MBR and 814 * we really want the MBR scheme to take precedence. 815 */ 816 buf = g_read_data(cp, 0L, pp->sectorsize, &error); 817 if (buf == NULL) 818 return (error); 819 res = le16dec(buf + DOSMAGICOFFSET); 820 pri = G_PART_PROBE_PRI_LOW; 821 for (index = 0; index < NDOSPART; index++) { 822 if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee) 823 pri = G_PART_PROBE_PRI_HIGH; 824 } 825 g_free(buf); 826 if (res != DOSMAGIC) 827 return (ENXIO); 828 829 /* Check that there's a primary header. */ 830 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); 831 if (buf == NULL) 832 return (error); 833 res = memcmp(buf, GPT_HDR_SIG, 8); 834 g_free(buf); 835 if (res == 0) 836 return (pri); 837 838 /* No primary? Check that there's a secondary. */ 839 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 840 &error); 841 if (buf == NULL) 842 return (error); 843 res = memcmp(buf, GPT_HDR_SIG, 8); 844 g_free(buf); 845 return ((res == 0) ? pri : ENXIO); 846 } 847 848 static int 849 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) 850 { 851 struct gpt_hdr *prihdr, *sechdr; 852 struct gpt_ent *tbl, *pritbl, *sectbl; 853 struct g_provider *pp; 854 struct g_part_gpt_table *table; 855 struct g_part_gpt_entry *entry; 856 u_char *buf; 857 uint64_t last; 858 int error, index; 859 860 table = (struct g_part_gpt_table *)basetable; 861 pp = cp->provider; 862 last = (pp->mediasize / pp->sectorsize) - 1; 863 864 /* Read the PMBR */ 865 buf = g_read_data(cp, 0, pp->sectorsize, &error); 866 if (buf == NULL) 867 return (error); 868 bcopy(buf, table->mbr, MBRSIZE); 869 g_free(buf); 870 871 /* Read the primary header and table. */ 872 prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); 873 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { 874 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); 875 } else { 876 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 877 pritbl = NULL; 878 } 879 880 /* Read the secondary header and table. */ 881 sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); 882 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { 883 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); 884 } else { 885 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 886 sectbl = NULL; 887 } 888 889 /* Fail if we haven't got any good tables at all. */ 890 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && 891 table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 892 printf("GEOM: %s: corrupt or invalid GPT detected.\n", 893 pp->name); 894 printf("GEOM: %s: GPT rejected -- may not be recoverable.\n", 895 pp->name); 896 return (EINVAL); 897 } 898 899 /* 900 * If both headers are good but they disagree with each other, 901 * then invalidate one. We prefer to keep the primary header, 902 * unless the primary table is corrupt. 903 */ 904 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && 905 table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 906 !gpt_matched_hdrs(prihdr, sechdr)) { 907 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { 908 table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; 909 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 910 g_free(sechdr); 911 sechdr = NULL; 912 } else { 913 table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; 914 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 915 g_free(prihdr); 916 prihdr = NULL; 917 } 918 } 919 920 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { 921 printf("GEOM: %s: the primary GPT table is corrupt or " 922 "invalid.\n", pp->name); 923 printf("GEOM: %s: using the secondary instead -- recovery " 924 "strongly advised.\n", pp->name); 925 table->hdr = sechdr; 926 basetable->gpt_corrupt = 1; 927 if (prihdr != NULL) 928 g_free(prihdr); 929 tbl = sectbl; 930 if (pritbl != NULL) 931 g_free(pritbl); 932 } else { 933 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 934 printf("GEOM: %s: the secondary GPT table is corrupt " 935 "or invalid.\n", pp->name); 936 printf("GEOM: %s: using the primary only -- recovery " 937 "suggested.\n", pp->name); 938 basetable->gpt_corrupt = 1; 939 } else if (table->lba[GPT_ELT_SECHDR] != last) { 940 printf( "GEOM: %s: the secondary GPT header is not in " 941 "the last LBA.\n", pp->name); 942 basetable->gpt_corrupt = 1; 943 } 944 table->hdr = prihdr; 945 if (sechdr != NULL) 946 g_free(sechdr); 947 tbl = pritbl; 948 if (sectbl != NULL) 949 g_free(sectbl); 950 } 951 952 basetable->gpt_first = table->hdr->hdr_lba_start; 953 basetable->gpt_last = table->hdr->hdr_lba_end; 954 basetable->gpt_entries = (table->hdr->hdr_lba_start - 2) * 955 pp->sectorsize / table->hdr->hdr_entsz; 956 957 for (index = table->hdr->hdr_entries - 1; index >= 0; index--) { 958 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) 959 continue; 960 entry = (struct g_part_gpt_entry *)g_part_new_entry( 961 basetable, index + 1, tbl[index].ent_lba_start, 962 tbl[index].ent_lba_end); 963 entry->ent = tbl[index]; 964 } 965 966 g_free(tbl); 967 968 /* 969 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions 970 * if (and only if) any FAT32 or FAT16 partitions have been 971 * created. This happens irrespective of whether Boot Camp is 972 * used/enabled, though it's generally understood to be done 973 * to support legacy Windows under Boot Camp. We refer to this 974 * mirroring simply as Boot Camp. We try to detect Boot Camp 975 * so that we can update the MBR if and when GPT changes have 976 * been made. Note that we do not enable Boot Camp if not 977 * previously enabled because we can't assume that we're on a 978 * Mac alongside Mac OS X. 979 */ 980 table->bootcamp = gpt_is_bootcamp(table, pp->name); 981 982 return (0); 983 } 984 985 static int 986 g_part_gpt_recover(struct g_part_table *basetable) 987 { 988 struct g_part_gpt_table *table; 989 struct g_provider *pp; 990 991 table = (struct g_part_gpt_table *)basetable; 992 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 993 gpt_create_pmbr(table, pp); 994 g_gpt_set_defaults(basetable, pp); 995 basetable->gpt_corrupt = 0; 996 return (0); 997 } 998 999 static int 1000 g_part_gpt_setunset(struct g_part_table *basetable, 1001 struct g_part_entry *baseentry, const char *attrib, unsigned int set) 1002 { 1003 struct g_part_gpt_entry *entry; 1004 struct g_part_gpt_table *table; 1005 uint8_t *p; 1006 uint64_t attr; 1007 int i; 1008 1009 table = (struct g_part_gpt_table *)basetable; 1010 entry = (struct g_part_gpt_entry *)baseentry; 1011 1012 if (strcasecmp(attrib, "active") == 0) { 1013 if (table->bootcamp) { 1014 /* The active flag must be set on a valid entry. */ 1015 if (entry == NULL) 1016 return (ENXIO); 1017 if (baseentry->gpe_index > NDOSPART) 1018 return (EINVAL); 1019 for (i = 0; i < NDOSPART; i++) { 1020 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1021 p[0] = (i == baseentry->gpe_index - 1) 1022 ? ((set) ? 0x80 : 0) : 0; 1023 } 1024 } else { 1025 /* The PMBR is marked as active without an entry. */ 1026 if (entry != NULL) 1027 return (ENXIO); 1028 for (i = 0; i < NDOSPART; i++) { 1029 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1030 p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0; 1031 } 1032 } 1033 return (0); 1034 } 1035 1036 if (entry == NULL) 1037 return (ENODEV); 1038 1039 attr = 0; 1040 if (strcasecmp(attrib, "bootme") == 0) { 1041 attr |= GPT_ENT_ATTR_BOOTME; 1042 } else if (strcasecmp(attrib, "bootonce") == 0) { 1043 attr |= GPT_ENT_ATTR_BOOTONCE; 1044 if (set) 1045 attr |= GPT_ENT_ATTR_BOOTME; 1046 } else if (strcasecmp(attrib, "bootfailed") == 0) { 1047 /* 1048 * It should only be possible to unset BOOTFAILED, but it might 1049 * be useful for test purposes to also be able to set it. 1050 */ 1051 attr |= GPT_ENT_ATTR_BOOTFAILED; 1052 } 1053 if (attr == 0) 1054 return (EINVAL); 1055 1056 if (set) 1057 attr = entry->ent.ent_attr | attr; 1058 else 1059 attr = entry->ent.ent_attr & ~attr; 1060 if (attr != entry->ent.ent_attr) { 1061 entry->ent.ent_attr = attr; 1062 if (!baseentry->gpe_created) 1063 baseentry->gpe_modified = 1; 1064 } 1065 return (0); 1066 } 1067 1068 static const char * 1069 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 1070 char *buf, size_t bufsz) 1071 { 1072 struct g_part_gpt_entry *entry; 1073 struct uuid *type; 1074 struct g_part_uuid_alias *uap; 1075 1076 entry = (struct g_part_gpt_entry *)baseentry; 1077 type = &entry->ent.ent_type; 1078 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) 1079 if (EQUUID(type, uap->uuid)) 1080 return (g_part_alias_name(uap->alias)); 1081 buf[0] = '!'; 1082 snprintf_uuid(buf + 1, bufsz - 1, type); 1083 1084 return (buf); 1085 } 1086 1087 static int 1088 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) 1089 { 1090 unsigned char *buf, *bp; 1091 struct g_provider *pp; 1092 struct g_part_entry *baseentry; 1093 struct g_part_gpt_entry *entry; 1094 struct g_part_gpt_table *table; 1095 size_t tblsz; 1096 uint32_t crc; 1097 int error, index; 1098 1099 pp = cp->provider; 1100 table = (struct g_part_gpt_table *)basetable; 1101 tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz + 1102 pp->sectorsize - 1) / pp->sectorsize; 1103 1104 /* Reconstruct the MBR from the GPT if under Boot Camp. */ 1105 if (table->bootcamp) 1106 gpt_update_bootcamp(basetable, pp); 1107 1108 /* Write the PMBR */ 1109 buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); 1110 bcopy(table->mbr, buf, MBRSIZE); 1111 error = g_write_data(cp, 0, buf, pp->sectorsize); 1112 g_free(buf); 1113 if (error) 1114 return (error); 1115 1116 /* Allocate space for the header and entries. */ 1117 buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); 1118 1119 memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 1120 le32enc(buf + 8, table->hdr->hdr_revision); 1121 le32enc(buf + 12, table->hdr->hdr_size); 1122 le64enc(buf + 40, table->hdr->hdr_lba_start); 1123 le64enc(buf + 48, table->hdr->hdr_lba_end); 1124 le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); 1125 le32enc(buf + 80, table->hdr->hdr_entries); 1126 le32enc(buf + 84, table->hdr->hdr_entsz); 1127 1128 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1129 if (baseentry->gpe_deleted) 1130 continue; 1131 entry = (struct g_part_gpt_entry *)baseentry; 1132 index = baseentry->gpe_index - 1; 1133 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; 1134 le_uuid_enc(bp, &entry->ent.ent_type); 1135 le_uuid_enc(bp + 16, &entry->ent.ent_uuid); 1136 le64enc(bp + 32, entry->ent.ent_lba_start); 1137 le64enc(bp + 40, entry->ent.ent_lba_end); 1138 le64enc(bp + 48, entry->ent.ent_attr); 1139 memcpy(bp + 56, entry->ent.ent_name, 1140 sizeof(entry->ent.ent_name)); 1141 } 1142 1143 crc = crc32(buf + pp->sectorsize, 1144 table->hdr->hdr_entries * table->hdr->hdr_entsz); 1145 le32enc(buf + 88, crc); 1146 1147 /* Write primary meta-data. */ 1148 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1149 le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ 1150 le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ 1151 le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ 1152 crc = crc32(buf, table->hdr->hdr_size); 1153 le32enc(buf + 16, crc); 1154 1155 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1156 error = g_write_data(cp, 1157 (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize, 1158 buf + (index + 1) * pp->sectorsize, 1159 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1160 (tblsz - index) * pp->sectorsize); 1161 if (error) 1162 goto out; 1163 } 1164 error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, 1165 buf, pp->sectorsize); 1166 if (error) 1167 goto out; 1168 1169 /* Write secondary meta-data. */ 1170 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1171 le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ 1172 le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ 1173 le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ 1174 crc = crc32(buf, table->hdr->hdr_size); 1175 le32enc(buf + 16, crc); 1176 1177 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1178 error = g_write_data(cp, 1179 (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize, 1180 buf + (index + 1) * pp->sectorsize, 1181 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1182 (tblsz - index) * pp->sectorsize); 1183 if (error) 1184 goto out; 1185 } 1186 error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, 1187 buf, pp->sectorsize); 1188 1189 out: 1190 g_free(buf); 1191 return (error); 1192 } 1193 1194 static void 1195 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp) 1196 { 1197 struct g_part_entry *baseentry; 1198 struct g_part_gpt_entry *entry; 1199 struct g_part_gpt_table *table; 1200 quad_t start, end, min, max; 1201 quad_t lba, last; 1202 size_t spb, tblsz; 1203 1204 table = (struct g_part_gpt_table *)basetable; 1205 last = pp->mediasize / pp->sectorsize - 1; 1206 tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) + 1207 pp->sectorsize - 1) / pp->sectorsize; 1208 1209 table->lba[GPT_ELT_PRIHDR] = 1; 1210 table->lba[GPT_ELT_PRITBL] = 2; 1211 table->lba[GPT_ELT_SECHDR] = last; 1212 table->lba[GPT_ELT_SECTBL] = last - tblsz; 1213 table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK; 1214 table->state[GPT_ELT_PRITBL] = GPT_STATE_OK; 1215 table->state[GPT_ELT_SECHDR] = GPT_STATE_OK; 1216 table->state[GPT_ELT_SECTBL] = GPT_STATE_OK; 1217 1218 max = start = 2 + tblsz; 1219 min = end = last - tblsz - 1; 1220 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1221 if (baseentry->gpe_deleted) 1222 continue; 1223 entry = (struct g_part_gpt_entry *)baseentry; 1224 if (entry->ent.ent_lba_start < min) 1225 min = entry->ent.ent_lba_start; 1226 if (entry->ent.ent_lba_end > max) 1227 max = entry->ent.ent_lba_end; 1228 } 1229 spb = 4096 / pp->sectorsize; 1230 if (spb > 1) { 1231 lba = start + ((start % spb) ? spb - start % spb : 0); 1232 if (lba <= min) 1233 start = lba; 1234 lba = end - (end + 1) % spb; 1235 if (max <= lba) 1236 end = lba; 1237 } 1238 table->hdr->hdr_lba_start = start; 1239 table->hdr->hdr_lba_end = end; 1240 1241 basetable->gpt_first = start; 1242 basetable->gpt_last = end; 1243 } 1244 1245 static void 1246 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) 1247 { 1248 u_int bo; 1249 uint32_t ch; 1250 uint16_t c; 1251 1252 bo = LITTLE_ENDIAN; /* GPT is little-endian */ 1253 while (len > 0 && *str != 0) { 1254 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); 1255 str++, len--; 1256 if ((ch & 0xf800) == 0xd800) { 1257 if (len > 0) { 1258 c = (bo == BIG_ENDIAN) ? be16toh(*str) 1259 : le16toh(*str); 1260 str++, len--; 1261 } else 1262 c = 0xfffd; 1263 if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { 1264 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); 1265 ch += 0x10000; 1266 } else 1267 ch = 0xfffd; 1268 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ 1269 bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; 1270 continue; 1271 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ 1272 continue; 1273 1274 /* Write the Unicode character in UTF-8 */ 1275 if (ch < 0x80) 1276 g_conf_printf_escaped(sb, "%c", ch); 1277 else if (ch < 0x800) 1278 g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6), 1279 0x80 | (ch & 0x3f)); 1280 else if (ch < 0x10000) 1281 g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12), 1282 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1283 else if (ch < 0x200000) 1284 g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 | 1285 (ch >> 18), 0x80 | ((ch >> 12) & 0x3f), 1286 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1287 } 1288 } 1289 1290 static void 1291 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) 1292 { 1293 size_t s16idx, s8idx; 1294 uint32_t utfchar; 1295 unsigned int c, utfbytes; 1296 1297 s8idx = s16idx = 0; 1298 utfchar = 0; 1299 utfbytes = 0; 1300 bzero(s16, s16len << 1); 1301 while (s8[s8idx] != 0 && s16idx < s16len) { 1302 c = s8[s8idx++]; 1303 if ((c & 0xc0) != 0x80) { 1304 /* Initial characters. */ 1305 if (utfbytes != 0) { 1306 /* Incomplete encoding of previous char. */ 1307 s16[s16idx++] = htole16(0xfffd); 1308 } 1309 if ((c & 0xf8) == 0xf0) { 1310 utfchar = c & 0x07; 1311 utfbytes = 3; 1312 } else if ((c & 0xf0) == 0xe0) { 1313 utfchar = c & 0x0f; 1314 utfbytes = 2; 1315 } else if ((c & 0xe0) == 0xc0) { 1316 utfchar = c & 0x1f; 1317 utfbytes = 1; 1318 } else { 1319 utfchar = c & 0x7f; 1320 utfbytes = 0; 1321 } 1322 } else { 1323 /* Followup characters. */ 1324 if (utfbytes > 0) { 1325 utfchar = (utfchar << 6) + (c & 0x3f); 1326 utfbytes--; 1327 } else if (utfbytes == 0) 1328 utfbytes = ~0; 1329 } 1330 /* 1331 * Write the complete Unicode character as UTF-16 when we 1332 * have all the UTF-8 charactars collected. 1333 */ 1334 if (utfbytes == 0) { 1335 /* 1336 * If we need to write 2 UTF-16 characters, but 1337 * we only have room for 1, then we truncate the 1338 * string by writing a 0 instead. 1339 */ 1340 if (utfchar >= 0x10000 && s16idx < s16len - 1) { 1341 s16[s16idx++] = 1342 htole16(0xd800 | ((utfchar >> 10) - 0x40)); 1343 s16[s16idx++] = 1344 htole16(0xdc00 | (utfchar & 0x3ff)); 1345 } else 1346 s16[s16idx++] = (utfchar >= 0x10000) ? 0 : 1347 htole16(utfchar); 1348 } 1349 } 1350 /* 1351 * If our input string was truncated, append an invalid encoding 1352 * character to the output string. 1353 */ 1354 if (utfbytes != 0 && s16idx < s16len) 1355 s16[s16idx++] = htole16(0xfffd); 1356 } 1357