xref: /freebsd/sys/geom/part/g_part_gpt.c (revision ad6fc754f3d0dc2047171b41cb4d6e13da3deb98)
1 /*-
2  * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/bio.h>
32 #include <sys/diskmbr.h>
33 #include <sys/endian.h>
34 #include <sys/gpt.h>
35 #include <sys/kernel.h>
36 #include <sys/kobj.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mutex.h>
41 #include <sys/queue.h>
42 #include <sys/sbuf.h>
43 #include <sys/systm.h>
44 #include <sys/sysctl.h>
45 #include <sys/uuid.h>
46 #include <geom/geom.h>
47 #include <geom/geom_int.h>
48 #include <geom/part/g_part.h>
49 
50 #include "g_part_if.h"
51 
52 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support");
53 
54 CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
55 CTASSERT(sizeof(struct gpt_ent) == 128);
56 
57 #define	EQUUID(a,b)	(memcmp(a, b, sizeof(struct uuid)) == 0)
58 
59 #define	MBRSIZE		512
60 
61 enum gpt_elt {
62 	GPT_ELT_PRIHDR,
63 	GPT_ELT_PRITBL,
64 	GPT_ELT_SECHDR,
65 	GPT_ELT_SECTBL,
66 	GPT_ELT_COUNT
67 };
68 
69 enum gpt_state {
70 	GPT_STATE_UNKNOWN,	/* Not determined. */
71 	GPT_STATE_MISSING,	/* No signature found. */
72 	GPT_STATE_CORRUPT,	/* Checksum mismatch. */
73 	GPT_STATE_INVALID,	/* Nonconformant/invalid. */
74 	GPT_STATE_OK		/* Perfectly fine. */
75 };
76 
77 struct g_part_gpt_table {
78 	struct g_part_table	base;
79 	u_char			mbr[MBRSIZE];
80 	struct gpt_hdr		*hdr;
81 	quad_t			lba[GPT_ELT_COUNT];
82 	enum gpt_state		state[GPT_ELT_COUNT];
83 	int			bootcamp;
84 };
85 
86 struct g_part_gpt_entry {
87 	struct g_part_entry	base;
88 	struct gpt_ent		ent;
89 };
90 
91 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
92 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
93 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *);
94 
95 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
96     struct g_part_parms *);
97 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
98 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
99 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
100 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
101     struct sbuf *, const char *);
102 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
103 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,
104     struct g_part_parms *);
105 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
106     char *, size_t);
107 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
108 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
109 static int g_part_gpt_setunset(struct g_part_table *table,
110     struct g_part_entry *baseentry, const char *attrib, unsigned int set);
111 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
112     char *, size_t);
113 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
114 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *,
115     struct g_part_parms *);
116 static int g_part_gpt_recover(struct g_part_table *);
117 
118 static kobj_method_t g_part_gpt_methods[] = {
119 	KOBJMETHOD(g_part_add,		g_part_gpt_add),
120 	KOBJMETHOD(g_part_bootcode,	g_part_gpt_bootcode),
121 	KOBJMETHOD(g_part_create,	g_part_gpt_create),
122 	KOBJMETHOD(g_part_destroy,	g_part_gpt_destroy),
123 	KOBJMETHOD(g_part_dumpconf,	g_part_gpt_dumpconf),
124 	KOBJMETHOD(g_part_dumpto,	g_part_gpt_dumpto),
125 	KOBJMETHOD(g_part_modify,	g_part_gpt_modify),
126 	KOBJMETHOD(g_part_resize,	g_part_gpt_resize),
127 	KOBJMETHOD(g_part_name,		g_part_gpt_name),
128 	KOBJMETHOD(g_part_probe,	g_part_gpt_probe),
129 	KOBJMETHOD(g_part_read,		g_part_gpt_read),
130 	KOBJMETHOD(g_part_recover,	g_part_gpt_recover),
131 	KOBJMETHOD(g_part_setunset,	g_part_gpt_setunset),
132 	KOBJMETHOD(g_part_type,		g_part_gpt_type),
133 	KOBJMETHOD(g_part_write,	g_part_gpt_write),
134 	{ 0, 0 }
135 };
136 
137 static struct g_part_scheme g_part_gpt_scheme = {
138 	"GPT",
139 	g_part_gpt_methods,
140 	sizeof(struct g_part_gpt_table),
141 	.gps_entrysz = sizeof(struct g_part_gpt_entry),
142 	.gps_minent = 128,
143 	.gps_maxent = 4096,
144 	.gps_bootcodesz = MBRSIZE,
145 };
146 G_PART_SCHEME_DECLARE(g_part_gpt);
147 
148 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT;
149 static struct uuid gpt_uuid_apple_core_storage =
150     GPT_ENT_TYPE_APPLE_CORE_STORAGE;
151 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
152 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL;
153 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID;
154 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE;
155 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY;
156 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS;
157 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT;
158 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
159 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
160 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
161 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
162 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
163 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
164 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
165 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
166 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
167 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM;
168 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID;
169 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
170 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS;
171 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG;
172 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED;
173 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR;
174 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
175 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED;
176 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA;
177 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA;
178 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD;
179 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD;
180 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS;
181 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS;
182 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID;
183 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP;
184 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
185 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
186 static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP;
187 static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1;
188 static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM;
189 static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD;
190 static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY;
191 static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER;
192 static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2;
193 static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32;
194 static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64;
195 static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT;
196 
197 static struct g_part_uuid_alias {
198 	struct uuid *uuid;
199 	int alias;
200 	int mbrtype;
201 } gpt_uuid_alias_match[] = {
202 	{ &gpt_uuid_apple_boot,		G_PART_ALIAS_APPLE_BOOT,	 0xab },
203 	{ &gpt_uuid_apple_core_storage,	G_PART_ALIAS_APPLE_CORE_STORAGE, 0 },
204 	{ &gpt_uuid_apple_hfs,		G_PART_ALIAS_APPLE_HFS,		 0xaf },
205 	{ &gpt_uuid_apple_label,	G_PART_ALIAS_APPLE_LABEL,	 0 },
206 	{ &gpt_uuid_apple_raid,		G_PART_ALIAS_APPLE_RAID,	 0 },
207 	{ &gpt_uuid_apple_raid_offline,	G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 },
208 	{ &gpt_uuid_apple_tv_recovery,	G_PART_ALIAS_APPLE_TV_RECOVERY,	 0 },
209 	{ &gpt_uuid_apple_ufs,		G_PART_ALIAS_APPLE_UFS,		 0 },
210 	{ &gpt_uuid_bios_boot,		G_PART_ALIAS_BIOS_BOOT,		 0 },
211 	{ &gpt_uuid_efi, 		G_PART_ALIAS_EFI,		 0xee },
212 	{ &gpt_uuid_freebsd,		G_PART_ALIAS_FREEBSD,		 0xa5 },
213 	{ &gpt_uuid_freebsd_boot, 	G_PART_ALIAS_FREEBSD_BOOT,	 0 },
214 	{ &gpt_uuid_freebsd_nandfs, 	G_PART_ALIAS_FREEBSD_NANDFS,	 0 },
215 	{ &gpt_uuid_freebsd_swap,	G_PART_ALIAS_FREEBSD_SWAP,	 0 },
216 	{ &gpt_uuid_freebsd_ufs,	G_PART_ALIAS_FREEBSD_UFS,	 0 },
217 	{ &gpt_uuid_freebsd_vinum,	G_PART_ALIAS_FREEBSD_VINUM,	 0 },
218 	{ &gpt_uuid_freebsd_zfs,	G_PART_ALIAS_FREEBSD_ZFS,	 0 },
219 	{ &gpt_uuid_linux_data,		G_PART_ALIAS_LINUX_DATA,	 0x0b },
220 	{ &gpt_uuid_linux_lvm,		G_PART_ALIAS_LINUX_LVM,		 0 },
221 	{ &gpt_uuid_linux_raid,		G_PART_ALIAS_LINUX_RAID,	 0 },
222 	{ &gpt_uuid_linux_swap,		G_PART_ALIAS_LINUX_SWAP,	 0 },
223 	{ &gpt_uuid_vmfs,		G_PART_ALIAS_VMFS,		 0 },
224 	{ &gpt_uuid_vmkdiag,		G_PART_ALIAS_VMKDIAG,		 0 },
225 	{ &gpt_uuid_vmreserved,		G_PART_ALIAS_VMRESERVED,	 0 },
226 	{ &gpt_uuid_vmvsanhdr,		G_PART_ALIAS_VMVSANHDR,		 0 },
227 	{ &gpt_uuid_mbr,		G_PART_ALIAS_MBR,		 0 },
228 	{ &gpt_uuid_ms_basic_data,	G_PART_ALIAS_MS_BASIC_DATA,	 0x0b },
229 	{ &gpt_uuid_ms_ldm_data,	G_PART_ALIAS_MS_LDM_DATA,	 0 },
230 	{ &gpt_uuid_ms_ldm_metadata,	G_PART_ALIAS_MS_LDM_METADATA,	 0 },
231 	{ &gpt_uuid_ms_reserved,	G_PART_ALIAS_MS_RESERVED,	 0 },
232 	{ &gpt_uuid_netbsd_ccd,		G_PART_ALIAS_NETBSD_CCD,	 0 },
233 	{ &gpt_uuid_netbsd_cgd,		G_PART_ALIAS_NETBSD_CGD,	 0 },
234 	{ &gpt_uuid_netbsd_ffs,		G_PART_ALIAS_NETBSD_FFS,	 0 },
235 	{ &gpt_uuid_netbsd_lfs,		G_PART_ALIAS_NETBSD_LFS,	 0 },
236 	{ &gpt_uuid_netbsd_raid,	G_PART_ALIAS_NETBSD_RAID,	 0 },
237 	{ &gpt_uuid_netbsd_swap,	G_PART_ALIAS_NETBSD_SWAP,	 0 },
238 	{ &gpt_uuid_dfbsd_swap,		G_PART_ALIAS_DFBSD_SWAP,	 0 },
239 	{ &gpt_uuid_dfbsd_ufs1,		G_PART_ALIAS_DFBSD_UFS,		 0 },
240 	{ &gpt_uuid_dfbsd_vinum,	G_PART_ALIAS_DFBSD_VINUM,	 0 },
241 	{ &gpt_uuid_dfbsd_ccd,		G_PART_ALIAS_DFBSD_CCD,		 0 },
242 	{ &gpt_uuid_dfbsd_legacy,	G_PART_ALIAS_DFBSD_LEGACY,	 0 },
243 	{ &gpt_uuid_dfbsd_hammer,	G_PART_ALIAS_DFBSD_HAMMER,	 0 },
244 	{ &gpt_uuid_dfbsd_hammer2,	G_PART_ALIAS_DFBSD_HAMMER2,	 0 },
245 	{ &gpt_uuid_dfbsd_label32,	G_PART_ALIAS_DFBSD,		 0xa5 },
246 	{ &gpt_uuid_dfbsd_label64,	G_PART_ALIAS_DFBSD64,		 0xa5 },
247 	{ &gpt_uuid_prep_boot,		G_PART_ALIAS_PREP_BOOT,		 0x41 },
248 	{ NULL, 0, 0 }
249 };
250 
251 static int
252 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start,
253     quad_t end)
254 {
255 
256 	if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX)
257 		return (EINVAL);
258 
259 	mbr += DOSPARTOFF + idx * DOSPARTSIZE;
260 	mbr[0] = 0;
261 	if (start == 1) {
262 		/*
263 		 * Treat the PMBR partition specially to maximize
264 		 * interoperability with BIOSes.
265 		 */
266 		mbr[1] = mbr[3] = 0;
267 		mbr[2] = 2;
268 	} else
269 		mbr[1] = mbr[2] = mbr[3] = 0xff;
270 	mbr[4] = typ;
271 	mbr[5] = mbr[6] = mbr[7] = 0xff;
272 	le32enc(mbr + 8, (uint32_t)start);
273 	le32enc(mbr + 12, (uint32_t)(end - start + 1));
274 	return (0);
275 }
276 
277 static int
278 gpt_map_type(struct uuid *t)
279 {
280 	struct g_part_uuid_alias *uap;
281 
282 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
283 		if (EQUUID(t, uap->uuid))
284 			return (uap->mbrtype);
285 	}
286 	return (0);
287 }
288 
289 static void
290 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp)
291 {
292 
293 	bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
294 	gpt_write_mbr_entry(table->mbr, 0, 0xee, 1,
295 	    MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
296 	le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
297 }
298 
299 /*
300  * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the
301  * whole disk anymore. Rather, it covers the GPT table and the EFI
302  * system partition only. This way the HFS+ partition and any FAT
303  * partitions can be added to the MBR without creating an overlap.
304  */
305 static int
306 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname)
307 {
308 	uint8_t *p;
309 
310 	p = table->mbr + DOSPARTOFF;
311 	if (p[4] != 0xee || le32dec(p + 8) != 1)
312 		return (0);
313 
314 	p += DOSPARTSIZE;
315 	if (p[4] != 0xaf)
316 		return (0);
317 
318 	printf("GEOM: %s: enabling Boot Camp\n", provname);
319 	return (1);
320 }
321 
322 static void
323 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp)
324 {
325 	struct g_part_entry *baseentry;
326 	struct g_part_gpt_entry *entry;
327 	struct g_part_gpt_table *table;
328 	int bootable, error, index, slices, typ;
329 
330 	table = (struct g_part_gpt_table *)basetable;
331 
332 	bootable = -1;
333 	for (index = 0; index < NDOSPART; index++) {
334 		if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index])
335 			bootable = index;
336 	}
337 
338 	bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
339 	slices = 0;
340 	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
341 		if (baseentry->gpe_deleted)
342 			continue;
343 		index = baseentry->gpe_index - 1;
344 		if (index >= NDOSPART)
345 			continue;
346 
347 		entry = (struct g_part_gpt_entry *)baseentry;
348 
349 		switch (index) {
350 		case 0:	/* This must be the EFI system partition. */
351 			if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi))
352 				goto disable;
353 			error = gpt_write_mbr_entry(table->mbr, index, 0xee,
354 			    1ull, entry->ent.ent_lba_end);
355 			break;
356 		case 1:	/* This must be the HFS+ partition. */
357 			if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs))
358 				goto disable;
359 			error = gpt_write_mbr_entry(table->mbr, index, 0xaf,
360 			    entry->ent.ent_lba_start, entry->ent.ent_lba_end);
361 			break;
362 		default:
363 			typ = gpt_map_type(&entry->ent.ent_type);
364 			error = gpt_write_mbr_entry(table->mbr, index, typ,
365 			    entry->ent.ent_lba_start, entry->ent.ent_lba_end);
366 			break;
367 		}
368 		if (error)
369 			continue;
370 
371 		if (index == bootable)
372 			table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80;
373 		slices |= 1 << index;
374 	}
375 	if ((slices & 3) == 3)
376 		return;
377 
378  disable:
379 	table->bootcamp = 0;
380 	gpt_create_pmbr(table, pp);
381 }
382 
383 static struct gpt_hdr *
384 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
385     enum gpt_elt elt)
386 {
387 	struct gpt_hdr *buf, *hdr;
388 	struct g_provider *pp;
389 	quad_t lba, last;
390 	int error;
391 	uint32_t crc, sz;
392 
393 	pp = cp->provider;
394 	last = (pp->mediasize / pp->sectorsize) - 1;
395 	table->state[elt] = GPT_STATE_MISSING;
396 	/*
397 	 * If the primary header is valid look for secondary
398 	 * header in AlternateLBA, otherwise in the last medium's LBA.
399 	 */
400 	if (elt == GPT_ELT_SECHDR) {
401 		if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK)
402 			table->lba[elt] = last;
403 	} else
404 		table->lba[elt] = 1;
405 	buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
406 	    &error);
407 	if (buf == NULL)
408 		return (NULL);
409 	hdr = NULL;
410 	if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0)
411 		goto fail;
412 
413 	table->state[elt] = GPT_STATE_CORRUPT;
414 	sz = le32toh(buf->hdr_size);
415 	if (sz < 92 || sz > pp->sectorsize)
416 		goto fail;
417 
418 	hdr = g_malloc(sz, M_WAITOK | M_ZERO);
419 	bcopy(buf, hdr, sz);
420 	hdr->hdr_size = sz;
421 
422 	crc = le32toh(buf->hdr_crc_self);
423 	buf->hdr_crc_self = 0;
424 	if (crc32(buf, sz) != crc)
425 		goto fail;
426 	hdr->hdr_crc_self = crc;
427 
428 	table->state[elt] = GPT_STATE_INVALID;
429 	hdr->hdr_revision = le32toh(buf->hdr_revision);
430 	if (hdr->hdr_revision < GPT_HDR_REVISION)
431 		goto fail;
432 	hdr->hdr_lba_self = le64toh(buf->hdr_lba_self);
433 	if (hdr->hdr_lba_self != table->lba[elt])
434 		goto fail;
435 	hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt);
436 	if (hdr->hdr_lba_alt == hdr->hdr_lba_self ||
437 	    hdr->hdr_lba_alt > last)
438 		goto fail;
439 
440 	/* Check the managed area. */
441 	hdr->hdr_lba_start = le64toh(buf->hdr_lba_start);
442 	if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
443 		goto fail;
444 	hdr->hdr_lba_end = le64toh(buf->hdr_lba_end);
445 	if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
446 		goto fail;
447 
448 	/* Check the table location and size of the table. */
449 	hdr->hdr_entries = le32toh(buf->hdr_entries);
450 	hdr->hdr_entsz = le32toh(buf->hdr_entsz);
451 	if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
452 	    (hdr->hdr_entsz & 7) != 0)
453 		goto fail;
454 	hdr->hdr_lba_table = le64toh(buf->hdr_lba_table);
455 	if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
456 		goto fail;
457 	if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
458 	    hdr->hdr_lba_table <= hdr->hdr_lba_end)
459 		goto fail;
460 	lba = hdr->hdr_lba_table +
461 	    (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) /
462 	    pp->sectorsize - 1;
463 	if (lba >= last)
464 		goto fail;
465 	if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
466 		goto fail;
467 
468 	table->state[elt] = GPT_STATE_OK;
469 	le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid);
470 	hdr->hdr_crc_table = le32toh(buf->hdr_crc_table);
471 
472 	/* save LBA for secondary header */
473 	if (elt == GPT_ELT_PRIHDR)
474 		table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt;
475 
476 	g_free(buf);
477 	return (hdr);
478 
479  fail:
480 	if (hdr != NULL)
481 		g_free(hdr);
482 	g_free(buf);
483 	return (NULL);
484 }
485 
486 static struct gpt_ent *
487 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
488     enum gpt_elt elt, struct gpt_hdr *hdr)
489 {
490 	struct g_provider *pp;
491 	struct gpt_ent *ent, *tbl;
492 	char *buf, *p;
493 	unsigned int idx, sectors, tblsz, size;
494 	int error;
495 
496 	if (hdr == NULL)
497 		return (NULL);
498 
499 	pp = cp->provider;
500 	table->lba[elt] = hdr->hdr_lba_table;
501 
502 	table->state[elt] = GPT_STATE_MISSING;
503 	tblsz = hdr->hdr_entries * hdr->hdr_entsz;
504 	sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize;
505 	buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO);
506 	for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) {
507 		size = (sectors - idx > MAXPHYS / pp->sectorsize) ?  MAXPHYS:
508 		    (sectors - idx) * pp->sectorsize;
509 		p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize,
510 		    size, &error);
511 		if (p == NULL) {
512 			g_free(buf);
513 			return (NULL);
514 		}
515 		bcopy(p, buf + idx * pp->sectorsize, size);
516 		g_free(p);
517 	}
518 	table->state[elt] = GPT_STATE_CORRUPT;
519 	if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
520 		g_free(buf);
521 		return (NULL);
522 	}
523 
524 	table->state[elt] = GPT_STATE_OK;
525 	tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
526 	    M_WAITOK | M_ZERO);
527 
528 	for (idx = 0, ent = tbl, p = buf;
529 	     idx < hdr->hdr_entries;
530 	     idx++, ent++, p += hdr->hdr_entsz) {
531 		le_uuid_dec(p, &ent->ent_type);
532 		le_uuid_dec(p + 16, &ent->ent_uuid);
533 		ent->ent_lba_start = le64dec(p + 32);
534 		ent->ent_lba_end = le64dec(p + 40);
535 		ent->ent_attr = le64dec(p + 48);
536 		/* Keep UTF-16 in little-endian. */
537 		bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
538 	}
539 
540 	g_free(buf);
541 	return (tbl);
542 }
543 
544 static int
545 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
546 {
547 
548 	if (pri == NULL || sec == NULL)
549 		return (0);
550 
551 	if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
552 		return (0);
553 	return ((pri->hdr_revision == sec->hdr_revision &&
554 	    pri->hdr_size == sec->hdr_size &&
555 	    pri->hdr_lba_start == sec->hdr_lba_start &&
556 	    pri->hdr_lba_end == sec->hdr_lba_end &&
557 	    pri->hdr_entries == sec->hdr_entries &&
558 	    pri->hdr_entsz == sec->hdr_entsz &&
559 	    pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
560 }
561 
562 static int
563 gpt_parse_type(const char *type, struct uuid *uuid)
564 {
565 	struct uuid tmp;
566 	const char *alias;
567 	int error;
568 	struct g_part_uuid_alias *uap;
569 
570 	if (type[0] == '!') {
571 		error = parse_uuid(type + 1, &tmp);
572 		if (error)
573 			return (error);
574 		if (EQUUID(&tmp, &gpt_uuid_unused))
575 			return (EINVAL);
576 		*uuid = tmp;
577 		return (0);
578 	}
579 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
580 		alias = g_part_alias_name(uap->alias);
581 		if (!strcasecmp(type, alias)) {
582 			*uuid = *uap->uuid;
583 			return (0);
584 		}
585 	}
586 	return (EINVAL);
587 }
588 
589 static int
590 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
591     struct g_part_parms *gpp)
592 {
593 	struct g_part_gpt_entry *entry;
594 	int error;
595 
596 	entry = (struct g_part_gpt_entry *)baseentry;
597 	error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
598 	if (error)
599 		return (error);
600 	kern_uuidgen(&entry->ent.ent_uuid, 1);
601 	entry->ent.ent_lba_start = baseentry->gpe_start;
602 	entry->ent.ent_lba_end = baseentry->gpe_end;
603 	if (baseentry->gpe_deleted) {
604 		entry->ent.ent_attr = 0;
605 		bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
606 	}
607 	if (gpp->gpp_parms & G_PART_PARM_LABEL)
608 		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
609 		    sizeof(entry->ent.ent_name) /
610 		    sizeof(entry->ent.ent_name[0]));
611 	return (0);
612 }
613 
614 static int
615 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
616 {
617 	struct g_part_gpt_table *table;
618 	size_t codesz;
619 
620 	codesz = DOSPARTOFF;
621 	table = (struct g_part_gpt_table *)basetable;
622 	bzero(table->mbr, codesz);
623 	codesz = MIN(codesz, gpp->gpp_codesize);
624 	if (codesz > 0)
625 		bcopy(gpp->gpp_codeptr, table->mbr, codesz);
626 	return (0);
627 }
628 
629 static int
630 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
631 {
632 	struct g_provider *pp;
633 	struct g_part_gpt_table *table;
634 	size_t tblsz;
635 
636 	/* We don't nest, which means that our depth should be 0. */
637 	if (basetable->gpt_depth != 0)
638 		return (ENXIO);
639 
640 	table = (struct g_part_gpt_table *)basetable;
641 	pp = gpp->gpp_provider;
642 	tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
643 	    pp->sectorsize - 1) / pp->sectorsize;
644 	if (pp->sectorsize < MBRSIZE ||
645 	    pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
646 	    pp->sectorsize)
647 		return (ENOSPC);
648 
649 	gpt_create_pmbr(table, pp);
650 
651 	/* Allocate space for the header */
652 	table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO);
653 
654 	bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
655 	table->hdr->hdr_revision = GPT_HDR_REVISION;
656 	table->hdr->hdr_size = offsetof(struct gpt_hdr, padding);
657 	kern_uuidgen(&table->hdr->hdr_uuid, 1);
658 	table->hdr->hdr_entries = basetable->gpt_entries;
659 	table->hdr->hdr_entsz = sizeof(struct gpt_ent);
660 
661 	g_gpt_set_defaults(basetable, pp);
662 	return (0);
663 }
664 
665 static int
666 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
667 {
668 	struct g_part_gpt_table *table;
669 	struct g_provider *pp;
670 
671 	table = (struct g_part_gpt_table *)basetable;
672 	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
673 	g_free(table->hdr);
674 	table->hdr = NULL;
675 
676 	/*
677 	 * Wipe the first 2 sectors to clear the partitioning. Wipe the last
678 	 * sector only if it has valid secondary header.
679 	 */
680 	basetable->gpt_smhead |= 3;
681 	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
682 	    table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1)
683 		basetable->gpt_smtail |= 1;
684 	return (0);
685 }
686 
687 static void
688 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry,
689     struct sbuf *sb, const char *indent)
690 {
691 	struct g_part_gpt_entry *entry;
692 
693 	entry = (struct g_part_gpt_entry *)baseentry;
694 	if (indent == NULL) {
695 		/* conftxt: libdisk compatibility */
696 		sbuf_printf(sb, " xs GPT xt ");
697 		sbuf_printf_uuid(sb, &entry->ent.ent_type);
698 	} else if (entry != NULL) {
699 		/* confxml: partition entry information */
700 		sbuf_printf(sb, "%s<label>", indent);
701 		g_gpt_printf_utf16(sb, entry->ent.ent_name,
702 		    sizeof(entry->ent.ent_name) >> 1);
703 		sbuf_printf(sb, "</label>\n");
704 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)
705 			sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent);
706 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) {
707 			sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n",
708 			    indent);
709 		}
710 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) {
711 			sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n",
712 			    indent);
713 		}
714 		sbuf_printf(sb, "%s<rawtype>", indent);
715 		sbuf_printf_uuid(sb, &entry->ent.ent_type);
716 		sbuf_printf(sb, "</rawtype>\n");
717 		sbuf_printf(sb, "%s<rawuuid>", indent);
718 		sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
719 		sbuf_printf(sb, "</rawuuid>\n");
720 	} else {
721 		/* confxml: scheme information */
722 	}
723 }
724 
725 static int
726 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
727 {
728 	struct g_part_gpt_entry *entry;
729 
730 	entry = (struct g_part_gpt_entry *)baseentry;
731 	return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
732 	    EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) ||
733 	    EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0);
734 }
735 
736 static int
737 g_part_gpt_modify(struct g_part_table *basetable,
738     struct g_part_entry *baseentry, struct g_part_parms *gpp)
739 {
740 	struct g_part_gpt_entry *entry;
741 	int error;
742 
743 	entry = (struct g_part_gpt_entry *)baseentry;
744 	if (gpp->gpp_parms & G_PART_PARM_TYPE) {
745 		error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
746 		if (error)
747 			return (error);
748 	}
749 	if (gpp->gpp_parms & G_PART_PARM_LABEL)
750 		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
751 		    sizeof(entry->ent.ent_name) /
752 		    sizeof(entry->ent.ent_name[0]));
753 	return (0);
754 }
755 
756 static int
757 g_part_gpt_resize(struct g_part_table *basetable,
758     struct g_part_entry *baseentry, struct g_part_parms *gpp)
759 {
760 	struct g_part_gpt_entry *entry;
761 
762 	if (baseentry == NULL)
763 		return (EOPNOTSUPP);
764 
765 	entry = (struct g_part_gpt_entry *)baseentry;
766 	baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
767 	entry->ent.ent_lba_end = baseentry->gpe_end;
768 
769 	return (0);
770 }
771 
772 static const char *
773 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
774     char *buf, size_t bufsz)
775 {
776 	struct g_part_gpt_entry *entry;
777 	char c;
778 
779 	entry = (struct g_part_gpt_entry *)baseentry;
780 	c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
781 	snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
782 	return (buf);
783 }
784 
785 static int
786 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
787 {
788 	struct g_provider *pp;
789 	u_char *buf;
790 	int error, index, pri, res;
791 
792 	/* We don't nest, which means that our depth should be 0. */
793 	if (table->gpt_depth != 0)
794 		return (ENXIO);
795 
796 	pp = cp->provider;
797 
798 	/*
799 	 * Sanity-check the provider. Since the first sector on the provider
800 	 * must be a PMBR and a PMBR is 512 bytes large, the sector size
801 	 * must be at least 512 bytes.  Also, since the theoretical minimum
802 	 * number of sectors needed by GPT is 6, any medium that has less
803 	 * than 6 sectors is never going to be able to hold a GPT. The
804 	 * number 6 comes from:
805 	 *	1 sector for the PMBR
806 	 *	2 sectors for the GPT headers (each 1 sector)
807 	 *	2 sectors for the GPT tables (each 1 sector)
808 	 *	1 sector for an actual partition
809 	 * It's better to catch this pathological case early than behaving
810 	 * pathologically later on...
811 	 */
812 	if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
813 		return (ENOSPC);
814 
815 	/*
816 	 * Check that there's a MBR or a PMBR. If it's a PMBR, we return
817 	 * as the highest priority on a match, otherwise we assume some
818 	 * GPT-unaware tool has destroyed the GPT by recreating a MBR and
819 	 * we really want the MBR scheme to take precedence.
820 	 */
821 	buf = g_read_data(cp, 0L, pp->sectorsize, &error);
822 	if (buf == NULL)
823 		return (error);
824 	res = le16dec(buf + DOSMAGICOFFSET);
825 	pri = G_PART_PROBE_PRI_LOW;
826 	for (index = 0; index < NDOSPART; index++) {
827 		if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee)
828 			pri = G_PART_PROBE_PRI_HIGH;
829 	}
830 	g_free(buf);
831 	if (res != DOSMAGIC)
832 		return (ENXIO);
833 
834 	/* Check that there's a primary header. */
835 	buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
836 	if (buf == NULL)
837 		return (error);
838 	res = memcmp(buf, GPT_HDR_SIG, 8);
839 	g_free(buf);
840 	if (res == 0)
841 		return (pri);
842 
843 	/* No primary? Check that there's a secondary. */
844 	buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
845 	    &error);
846 	if (buf == NULL)
847 		return (error);
848 	res = memcmp(buf, GPT_HDR_SIG, 8);
849 	g_free(buf);
850 	return ((res == 0) ? pri : ENXIO);
851 }
852 
853 static int
854 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
855 {
856 	struct gpt_hdr *prihdr, *sechdr;
857 	struct gpt_ent *tbl, *pritbl, *sectbl;
858 	struct g_provider *pp;
859 	struct g_part_gpt_table *table;
860 	struct g_part_gpt_entry *entry;
861 	u_char *buf;
862 	uint64_t last;
863 	int error, index;
864 
865 	table = (struct g_part_gpt_table *)basetable;
866 	pp = cp->provider;
867 	last = (pp->mediasize / pp->sectorsize) - 1;
868 
869 	/* Read the PMBR */
870 	buf = g_read_data(cp, 0, pp->sectorsize, &error);
871 	if (buf == NULL)
872 		return (error);
873 	bcopy(buf, table->mbr, MBRSIZE);
874 	g_free(buf);
875 
876 	/* Read the primary header and table. */
877 	prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR);
878 	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
879 		pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr);
880 	} else {
881 		table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
882 		pritbl = NULL;
883 	}
884 
885 	/* Read the secondary header and table. */
886 	sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR);
887 	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
888 		sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr);
889 	} else {
890 		table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
891 		sectbl = NULL;
892 	}
893 
894 	/* Fail if we haven't got any good tables at all. */
895 	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
896 	    table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
897 		printf("GEOM: %s: corrupt or invalid GPT detected.\n",
898 		    pp->name);
899 		printf("GEOM: %s: GPT rejected -- may not be recoverable.\n",
900 		    pp->name);
901 		return (EINVAL);
902 	}
903 
904 	/*
905 	 * If both headers are good but they disagree with each other,
906 	 * then invalidate one. We prefer to keep the primary header,
907 	 * unless the primary table is corrupt.
908 	 */
909 	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
910 	    table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
911 	    !gpt_matched_hdrs(prihdr, sechdr)) {
912 		if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
913 			table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
914 			table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
915 			g_free(sechdr);
916 			sechdr = NULL;
917 		} else {
918 			table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
919 			table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
920 			g_free(prihdr);
921 			prihdr = NULL;
922 		}
923 	}
924 
925 	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
926 		printf("GEOM: %s: the primary GPT table is corrupt or "
927 		    "invalid.\n", pp->name);
928 		printf("GEOM: %s: using the secondary instead -- recovery "
929 		    "strongly advised.\n", pp->name);
930 		table->hdr = sechdr;
931 		basetable->gpt_corrupt = 1;
932 		if (prihdr != NULL)
933 			g_free(prihdr);
934 		tbl = sectbl;
935 		if (pritbl != NULL)
936 			g_free(pritbl);
937 	} else {
938 		if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
939 			printf("GEOM: %s: the secondary GPT table is corrupt "
940 			    "or invalid.\n", pp->name);
941 			printf("GEOM: %s: using the primary only -- recovery "
942 			    "suggested.\n", pp->name);
943 			basetable->gpt_corrupt = 1;
944 		} else if (table->lba[GPT_ELT_SECHDR] != last) {
945 			printf( "GEOM: %s: the secondary GPT header is not in "
946 			    "the last LBA.\n", pp->name);
947 			basetable->gpt_corrupt = 1;
948 		}
949 		table->hdr = prihdr;
950 		if (sechdr != NULL)
951 			g_free(sechdr);
952 		tbl = pritbl;
953 		if (sectbl != NULL)
954 			g_free(sectbl);
955 	}
956 
957 	basetable->gpt_first = table->hdr->hdr_lba_start;
958 	basetable->gpt_last = table->hdr->hdr_lba_end;
959 	basetable->gpt_entries = (table->hdr->hdr_lba_start - 2) *
960 	    pp->sectorsize / table->hdr->hdr_entsz;
961 
962 	for (index = table->hdr->hdr_entries - 1; index >= 0; index--) {
963 		if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
964 			continue;
965 		entry = (struct g_part_gpt_entry *)g_part_new_entry(
966 		    basetable, index + 1, tbl[index].ent_lba_start,
967 		    tbl[index].ent_lba_end);
968 		entry->ent = tbl[index];
969 	}
970 
971 	g_free(tbl);
972 
973 	/*
974 	 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions
975 	 * if (and only if) any FAT32 or FAT16 partitions have been
976 	 * created. This happens irrespective of whether Boot Camp is
977 	 * used/enabled, though it's generally understood to be done
978 	 * to support legacy Windows under Boot Camp. We refer to this
979 	 * mirroring simply as Boot Camp. We try to detect Boot Camp
980 	 * so that we can update the MBR if and when GPT changes have
981 	 * been made. Note that we do not enable Boot Camp if not
982 	 * previously enabled because we can't assume that we're on a
983 	 * Mac alongside Mac OS X.
984 	 */
985 	table->bootcamp = gpt_is_bootcamp(table, pp->name);
986 
987 	return (0);
988 }
989 
990 static int
991 g_part_gpt_recover(struct g_part_table *basetable)
992 {
993 	struct g_part_gpt_table *table;
994 	struct g_provider *pp;
995 
996 	table = (struct g_part_gpt_table *)basetable;
997 	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
998 	gpt_create_pmbr(table, pp);
999 	g_gpt_set_defaults(basetable, pp);
1000 	basetable->gpt_corrupt = 0;
1001 	return (0);
1002 }
1003 
1004 static int
1005 g_part_gpt_setunset(struct g_part_table *basetable,
1006     struct g_part_entry *baseentry, const char *attrib, unsigned int set)
1007 {
1008 	struct g_part_gpt_entry *entry;
1009 	struct g_part_gpt_table *table;
1010 	uint8_t *p;
1011 	uint64_t attr;
1012 	int i;
1013 
1014 	table = (struct g_part_gpt_table *)basetable;
1015 	entry = (struct g_part_gpt_entry *)baseentry;
1016 
1017 	if (strcasecmp(attrib, "active") == 0) {
1018 		if (table->bootcamp) {
1019 			/* The active flag must be set on a valid entry. */
1020 			if (entry == NULL)
1021 				return (ENXIO);
1022 			if (baseentry->gpe_index > NDOSPART)
1023 				return (EINVAL);
1024 			for (i = 0; i < NDOSPART; i++) {
1025 				p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
1026 				p[0] = (i == baseentry->gpe_index - 1)
1027 				    ? ((set) ? 0x80 : 0) : 0;
1028 			}
1029 		} else {
1030 			/* The PMBR is marked as active without an entry. */
1031 			if (entry != NULL)
1032 				return (ENXIO);
1033 			for (i = 0; i < NDOSPART; i++) {
1034 				p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
1035 				p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0;
1036 			}
1037 		}
1038 		return (0);
1039 	}
1040 
1041 	if (entry == NULL)
1042 		return (ENODEV);
1043 
1044 	attr = 0;
1045 	if (strcasecmp(attrib, "bootme") == 0) {
1046 		attr |= GPT_ENT_ATTR_BOOTME;
1047 	} else if (strcasecmp(attrib, "bootonce") == 0) {
1048 		attr |= GPT_ENT_ATTR_BOOTONCE;
1049 		if (set)
1050 			attr |= GPT_ENT_ATTR_BOOTME;
1051 	} else if (strcasecmp(attrib, "bootfailed") == 0) {
1052 		/*
1053 		 * It should only be possible to unset BOOTFAILED, but it might
1054 		 * be useful for test purposes to also be able to set it.
1055 		 */
1056 		attr |= GPT_ENT_ATTR_BOOTFAILED;
1057 	}
1058 	if (attr == 0)
1059 		return (EINVAL);
1060 
1061 	if (set)
1062 		attr = entry->ent.ent_attr | attr;
1063 	else
1064 		attr = entry->ent.ent_attr & ~attr;
1065 	if (attr != entry->ent.ent_attr) {
1066 		entry->ent.ent_attr = attr;
1067 		if (!baseentry->gpe_created)
1068 			baseentry->gpe_modified = 1;
1069 	}
1070 	return (0);
1071 }
1072 
1073 static const char *
1074 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
1075     char *buf, size_t bufsz)
1076 {
1077 	struct g_part_gpt_entry *entry;
1078 	struct uuid *type;
1079 	struct g_part_uuid_alias *uap;
1080 
1081 	entry = (struct g_part_gpt_entry *)baseentry;
1082 	type = &entry->ent.ent_type;
1083 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++)
1084 		if (EQUUID(type, uap->uuid))
1085 			return (g_part_alias_name(uap->alias));
1086 	buf[0] = '!';
1087 	snprintf_uuid(buf + 1, bufsz - 1, type);
1088 
1089 	return (buf);
1090 }
1091 
1092 static int
1093 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
1094 {
1095 	unsigned char *buf, *bp;
1096 	struct g_provider *pp;
1097 	struct g_part_entry *baseentry;
1098 	struct g_part_gpt_entry *entry;
1099 	struct g_part_gpt_table *table;
1100 	size_t tblsz;
1101 	uint32_t crc;
1102 	int error, index;
1103 
1104 	pp = cp->provider;
1105 	table = (struct g_part_gpt_table *)basetable;
1106 	tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz +
1107 	    pp->sectorsize - 1) / pp->sectorsize;
1108 
1109 	/* Reconstruct the MBR from the GPT if under Boot Camp. */
1110 	if (table->bootcamp)
1111 		gpt_update_bootcamp(basetable, pp);
1112 
1113 	/* Write the PMBR */
1114 	buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
1115 	bcopy(table->mbr, buf, MBRSIZE);
1116 	error = g_write_data(cp, 0, buf, pp->sectorsize);
1117 	g_free(buf);
1118 	if (error)
1119 		return (error);
1120 
1121 	/* Allocate space for the header and entries. */
1122 	buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
1123 
1124 	memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
1125 	le32enc(buf + 8, table->hdr->hdr_revision);
1126 	le32enc(buf + 12, table->hdr->hdr_size);
1127 	le64enc(buf + 40, table->hdr->hdr_lba_start);
1128 	le64enc(buf + 48, table->hdr->hdr_lba_end);
1129 	le_uuid_enc(buf + 56, &table->hdr->hdr_uuid);
1130 	le32enc(buf + 80, table->hdr->hdr_entries);
1131 	le32enc(buf + 84, table->hdr->hdr_entsz);
1132 
1133 	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1134 		if (baseentry->gpe_deleted)
1135 			continue;
1136 		entry = (struct g_part_gpt_entry *)baseentry;
1137 		index = baseentry->gpe_index - 1;
1138 		bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index;
1139 		le_uuid_enc(bp, &entry->ent.ent_type);
1140 		le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
1141 		le64enc(bp + 32, entry->ent.ent_lba_start);
1142 		le64enc(bp + 40, entry->ent.ent_lba_end);
1143 		le64enc(bp + 48, entry->ent.ent_attr);
1144 		memcpy(bp + 56, entry->ent.ent_name,
1145 		    sizeof(entry->ent.ent_name));
1146 	}
1147 
1148 	crc = crc32(buf + pp->sectorsize,
1149 	    table->hdr->hdr_entries * table->hdr->hdr_entsz);
1150 	le32enc(buf + 88, crc);
1151 
1152 	/* Write primary meta-data. */
1153 	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1154 	le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_self. */
1155 	le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_alt. */
1156 	le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]);	/* hdr_lba_table. */
1157 	crc = crc32(buf, table->hdr->hdr_size);
1158 	le32enc(buf + 16, crc);
1159 
1160 	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1161 		error = g_write_data(cp,
1162 		    (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize,
1163 		    buf + (index + 1) * pp->sectorsize,
1164 		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1165 		    (tblsz - index) * pp->sectorsize);
1166 		if (error)
1167 			goto out;
1168 	}
1169 	error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
1170 	    buf, pp->sectorsize);
1171 	if (error)
1172 		goto out;
1173 
1174 	/* Write secondary meta-data. */
1175 	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1176 	le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_self. */
1177 	le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_alt. */
1178 	le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]);	/* hdr_lba_table. */
1179 	crc = crc32(buf, table->hdr->hdr_size);
1180 	le32enc(buf + 16, crc);
1181 
1182 	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1183 		error = g_write_data(cp,
1184 		    (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize,
1185 		    buf + (index + 1) * pp->sectorsize,
1186 		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1187 		    (tblsz - index) * pp->sectorsize);
1188 		if (error)
1189 			goto out;
1190 	}
1191 	error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
1192 	    buf, pp->sectorsize);
1193 
1194  out:
1195 	g_free(buf);
1196 	return (error);
1197 }
1198 
1199 static void
1200 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp)
1201 {
1202 	struct g_part_entry *baseentry;
1203 	struct g_part_gpt_entry *entry;
1204 	struct g_part_gpt_table *table;
1205 	quad_t start, end, min, max;
1206 	quad_t lba, last;
1207 	size_t spb, tblsz;
1208 
1209 	table = (struct g_part_gpt_table *)basetable;
1210 	last = pp->mediasize / pp->sectorsize - 1;
1211 	tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
1212 	    pp->sectorsize - 1) / pp->sectorsize;
1213 
1214 	table->lba[GPT_ELT_PRIHDR] = 1;
1215 	table->lba[GPT_ELT_PRITBL] = 2;
1216 	table->lba[GPT_ELT_SECHDR] = last;
1217 	table->lba[GPT_ELT_SECTBL] = last - tblsz;
1218 	table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK;
1219 	table->state[GPT_ELT_PRITBL] = GPT_STATE_OK;
1220 	table->state[GPT_ELT_SECHDR] = GPT_STATE_OK;
1221 	table->state[GPT_ELT_SECTBL] = GPT_STATE_OK;
1222 
1223 	max = start = 2 + tblsz;
1224 	min = end = last - tblsz - 1;
1225 	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1226 		if (baseentry->gpe_deleted)
1227 			continue;
1228 		entry = (struct g_part_gpt_entry *)baseentry;
1229 		if (entry->ent.ent_lba_start < min)
1230 			min = entry->ent.ent_lba_start;
1231 		if (entry->ent.ent_lba_end > max)
1232 			max = entry->ent.ent_lba_end;
1233 	}
1234 	spb = 4096 / pp->sectorsize;
1235 	if (spb > 1) {
1236 		lba = start + ((start % spb) ? spb - start % spb : 0);
1237 		if (lba <= min)
1238 			start = lba;
1239 		lba = end - (end + 1) % spb;
1240 		if (max <= lba)
1241 			end = lba;
1242 	}
1243 	table->hdr->hdr_lba_start = start;
1244 	table->hdr->hdr_lba_end = end;
1245 
1246 	basetable->gpt_first = start;
1247 	basetable->gpt_last = end;
1248 }
1249 
1250 static void
1251 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
1252 {
1253 	u_int bo;
1254 	uint32_t ch;
1255 	uint16_t c;
1256 
1257 	bo = LITTLE_ENDIAN;	/* GPT is little-endian */
1258 	while (len > 0 && *str != 0) {
1259 		ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
1260 		str++, len--;
1261 		if ((ch & 0xf800) == 0xd800) {
1262 			if (len > 0) {
1263 				c = (bo == BIG_ENDIAN) ? be16toh(*str)
1264 				    : le16toh(*str);
1265 				str++, len--;
1266 			} else
1267 				c = 0xfffd;
1268 			if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
1269 				ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
1270 				ch += 0x10000;
1271 			} else
1272 				ch = 0xfffd;
1273 		} else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
1274 			bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
1275 			continue;
1276 		} else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
1277 			continue;
1278 
1279 		/* Write the Unicode character in UTF-8 */
1280 		if (ch < 0x80)
1281 			g_conf_printf_escaped(sb, "%c", ch);
1282 		else if (ch < 0x800)
1283 			g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6),
1284 			    0x80 | (ch & 0x3f));
1285 		else if (ch < 0x10000)
1286 			g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12),
1287 			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1288 		else if (ch < 0x200000)
1289 			g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 |
1290 			    (ch >> 18), 0x80 | ((ch >> 12) & 0x3f),
1291 			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1292 	}
1293 }
1294 
1295 static void
1296 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
1297 {
1298 	size_t s16idx, s8idx;
1299 	uint32_t utfchar;
1300 	unsigned int c, utfbytes;
1301 
1302 	s8idx = s16idx = 0;
1303 	utfchar = 0;
1304 	utfbytes = 0;
1305 	bzero(s16, s16len << 1);
1306 	while (s8[s8idx] != 0 && s16idx < s16len) {
1307 		c = s8[s8idx++];
1308 		if ((c & 0xc0) != 0x80) {
1309 			/* Initial characters. */
1310 			if (utfbytes != 0) {
1311 				/* Incomplete encoding of previous char. */
1312 				s16[s16idx++] = htole16(0xfffd);
1313 			}
1314 			if ((c & 0xf8) == 0xf0) {
1315 				utfchar = c & 0x07;
1316 				utfbytes = 3;
1317 			} else if ((c & 0xf0) == 0xe0) {
1318 				utfchar = c & 0x0f;
1319 				utfbytes = 2;
1320 			} else if ((c & 0xe0) == 0xc0) {
1321 				utfchar = c & 0x1f;
1322 				utfbytes = 1;
1323 			} else {
1324 				utfchar = c & 0x7f;
1325 				utfbytes = 0;
1326 			}
1327 		} else {
1328 			/* Followup characters. */
1329 			if (utfbytes > 0) {
1330 				utfchar = (utfchar << 6) + (c & 0x3f);
1331 				utfbytes--;
1332 			} else if (utfbytes == 0)
1333 				utfbytes = ~0;
1334 		}
1335 		/*
1336 		 * Write the complete Unicode character as UTF-16 when we
1337 		 * have all the UTF-8 charactars collected.
1338 		 */
1339 		if (utfbytes == 0) {
1340 			/*
1341 			 * If we need to write 2 UTF-16 characters, but
1342 			 * we only have room for 1, then we truncate the
1343 			 * string by writing a 0 instead.
1344 			 */
1345 			if (utfchar >= 0x10000 && s16idx < s16len - 1) {
1346 				s16[s16idx++] =
1347 				    htole16(0xd800 | ((utfchar >> 10) - 0x40));
1348 				s16[s16idx++] =
1349 				    htole16(0xdc00 | (utfchar & 0x3ff));
1350 			} else
1351 				s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
1352 				    htole16(utfchar);
1353 		}
1354 	}
1355 	/*
1356 	 * If our input string was truncated, append an invalid encoding
1357 	 * character to the output string.
1358 	 */
1359 	if (utfbytes != 0 && s16idx < s16len)
1360 		s16[s16idx++] = htole16(0xfffd);
1361 }
1362