1 /*- 2 * Copyright (c) 2002, 2005, 2006, 2007 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/bio.h> 32 #include <sys/diskmbr.h> 33 #include <sys/endian.h> 34 #include <sys/gpt.h> 35 #include <sys/kernel.h> 36 #include <sys/kobj.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/malloc.h> 40 #include <sys/mutex.h> 41 #include <sys/queue.h> 42 #include <sys/sbuf.h> 43 #include <sys/systm.h> 44 #include <sys/uuid.h> 45 #include <geom/geom.h> 46 #include <geom/part/g_part.h> 47 48 #include "g_part_if.h" 49 50 CTASSERT(offsetof(struct gpt_hdr, padding) == 92); 51 CTASSERT(sizeof(struct gpt_ent) == 128); 52 53 #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) 54 55 #define MBRSIZE 512 56 57 enum gpt_elt { 58 GPT_ELT_PRIHDR, 59 GPT_ELT_PRITBL, 60 GPT_ELT_SECHDR, 61 GPT_ELT_SECTBL, 62 GPT_ELT_COUNT 63 }; 64 65 enum gpt_state { 66 GPT_STATE_UNKNOWN, /* Not determined. */ 67 GPT_STATE_MISSING, /* No signature found. */ 68 GPT_STATE_CORRUPT, /* Checksum mismatch. */ 69 GPT_STATE_INVALID, /* Nonconformant/invalid. */ 70 GPT_STATE_OK /* Perfectly fine. */ 71 }; 72 73 struct g_part_gpt_table { 74 struct g_part_table base; 75 u_char mbr[MBRSIZE]; 76 struct gpt_hdr *hdr; 77 quad_t lba[GPT_ELT_COUNT]; 78 enum gpt_state state[GPT_ELT_COUNT]; 79 }; 80 81 struct g_part_gpt_entry { 82 struct g_part_entry base; 83 struct gpt_ent ent; 84 }; 85 86 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); 87 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); 88 89 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, 90 struct g_part_parms *); 91 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); 92 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); 93 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); 94 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, 95 struct sbuf *, const char *); 96 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); 97 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, 98 struct g_part_parms *); 99 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, 100 char *, size_t); 101 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); 102 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); 103 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, 104 char *, size_t); 105 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); 106 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, 107 struct g_part_parms *); 108 109 static kobj_method_t g_part_gpt_methods[] = { 110 KOBJMETHOD(g_part_add, g_part_gpt_add), 111 KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), 112 KOBJMETHOD(g_part_create, g_part_gpt_create), 113 KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), 114 KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), 115 KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), 116 KOBJMETHOD(g_part_modify, g_part_gpt_modify), 117 KOBJMETHOD(g_part_resize, g_part_gpt_resize), 118 KOBJMETHOD(g_part_name, g_part_gpt_name), 119 KOBJMETHOD(g_part_probe, g_part_gpt_probe), 120 KOBJMETHOD(g_part_read, g_part_gpt_read), 121 KOBJMETHOD(g_part_type, g_part_gpt_type), 122 KOBJMETHOD(g_part_write, g_part_gpt_write), 123 { 0, 0 } 124 }; 125 126 static struct g_part_scheme g_part_gpt_scheme = { 127 "GPT", 128 g_part_gpt_methods, 129 sizeof(struct g_part_gpt_table), 130 .gps_entrysz = sizeof(struct g_part_gpt_entry), 131 .gps_minent = 128, 132 .gps_maxent = INT_MAX, 133 .gps_bootcodesz = MBRSIZE, 134 }; 135 G_PART_SCHEME_DECLARE(g_part_gpt); 136 137 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; 138 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; 139 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; 140 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; 141 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; 142 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; 143 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; 144 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; 145 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; 146 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; 147 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; 148 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; 149 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; 150 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; 151 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; 152 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; 153 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; 154 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; 155 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; 156 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; 157 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; 158 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; 159 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; 160 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; 161 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; 162 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; 163 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; 164 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; 165 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; 166 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; 167 168 static struct g_part_uuid_alias { 169 struct uuid *uuid; 170 int alias; 171 } gpt_uuid_alias_match[] = { 172 { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT }, 173 { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS }, 174 { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL }, 175 { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID }, 176 { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE }, 177 { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY }, 178 { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS }, 179 { &gpt_uuid_efi, G_PART_ALIAS_EFI }, 180 { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD }, 181 { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT }, 182 { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP }, 183 { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS }, 184 { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM }, 185 { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS }, 186 { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA }, 187 { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM }, 188 { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID }, 189 { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP }, 190 { &gpt_uuid_mbr, G_PART_ALIAS_MBR }, 191 { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA }, 192 { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA }, 193 { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA }, 194 { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED }, 195 { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD }, 196 { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD }, 197 { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS }, 198 { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS }, 199 { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID }, 200 { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP }, 201 202 { NULL, 0 } 203 }; 204 205 static struct gpt_hdr * 206 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, 207 enum gpt_elt elt) 208 { 209 struct gpt_hdr *buf, *hdr; 210 struct g_provider *pp; 211 quad_t lba, last; 212 int error; 213 uint32_t crc, sz; 214 215 pp = cp->provider; 216 last = (pp->mediasize / pp->sectorsize) - 1; 217 table->lba[elt] = (elt == GPT_ELT_PRIHDR) ? 1 : last; 218 table->state[elt] = GPT_STATE_MISSING; 219 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, 220 &error); 221 if (buf == NULL) 222 return (NULL); 223 hdr = NULL; 224 if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) 225 goto fail; 226 227 table->state[elt] = GPT_STATE_CORRUPT; 228 sz = le32toh(buf->hdr_size); 229 if (sz < 92 || sz > pp->sectorsize) 230 goto fail; 231 232 hdr = g_malloc(sz, M_WAITOK | M_ZERO); 233 bcopy(buf, hdr, sz); 234 hdr->hdr_size = sz; 235 236 crc = le32toh(buf->hdr_crc_self); 237 buf->hdr_crc_self = 0; 238 if (crc32(buf, sz) != crc) 239 goto fail; 240 hdr->hdr_crc_self = crc; 241 242 table->state[elt] = GPT_STATE_INVALID; 243 hdr->hdr_revision = le32toh(buf->hdr_revision); 244 if (hdr->hdr_revision < 0x00010000) 245 goto fail; 246 hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); 247 if (hdr->hdr_lba_self != table->lba[elt]) 248 goto fail; 249 hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); 250 251 /* Check the managed area. */ 252 hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); 253 if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) 254 goto fail; 255 hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); 256 if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) 257 goto fail; 258 259 /* Check the table location and size of the table. */ 260 hdr->hdr_entries = le32toh(buf->hdr_entries); 261 hdr->hdr_entsz = le32toh(buf->hdr_entsz); 262 if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || 263 (hdr->hdr_entsz & 7) != 0) 264 goto fail; 265 hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); 266 if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) 267 goto fail; 268 if (hdr->hdr_lba_table >= hdr->hdr_lba_start && 269 hdr->hdr_lba_table <= hdr->hdr_lba_end) 270 goto fail; 271 lba = hdr->hdr_lba_table + 272 (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) / 273 pp->sectorsize - 1; 274 if (lba >= last) 275 goto fail; 276 if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) 277 goto fail; 278 279 table->state[elt] = GPT_STATE_OK; 280 le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); 281 hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); 282 283 g_free(buf); 284 return (hdr); 285 286 fail: 287 if (hdr != NULL) 288 g_free(hdr); 289 g_free(buf); 290 return (NULL); 291 } 292 293 static struct gpt_ent * 294 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, 295 enum gpt_elt elt, struct gpt_hdr *hdr) 296 { 297 struct g_provider *pp; 298 struct gpt_ent *ent, *tbl; 299 char *buf, *p; 300 unsigned int idx, sectors, tblsz; 301 int error; 302 303 if (hdr == NULL) 304 return (NULL); 305 306 pp = cp->provider; 307 table->lba[elt] = hdr->hdr_lba_table; 308 309 table->state[elt] = GPT_STATE_MISSING; 310 tblsz = hdr->hdr_entries * hdr->hdr_entsz; 311 sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize; 312 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, 313 sectors * pp->sectorsize, &error); 314 if (buf == NULL) 315 return (NULL); 316 317 table->state[elt] = GPT_STATE_CORRUPT; 318 if (crc32(buf, tblsz) != hdr->hdr_crc_table) { 319 g_free(buf); 320 return (NULL); 321 } 322 323 table->state[elt] = GPT_STATE_OK; 324 tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), 325 M_WAITOK | M_ZERO); 326 327 for (idx = 0, ent = tbl, p = buf; 328 idx < hdr->hdr_entries; 329 idx++, ent++, p += hdr->hdr_entsz) { 330 le_uuid_dec(p, &ent->ent_type); 331 le_uuid_dec(p + 16, &ent->ent_uuid); 332 ent->ent_lba_start = le64dec(p + 32); 333 ent->ent_lba_end = le64dec(p + 40); 334 ent->ent_attr = le64dec(p + 48); 335 /* Keep UTF-16 in little-endian. */ 336 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); 337 } 338 339 g_free(buf); 340 return (tbl); 341 } 342 343 static int 344 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) 345 { 346 347 if (pri == NULL || sec == NULL) 348 return (0); 349 350 if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) 351 return (0); 352 return ((pri->hdr_revision == sec->hdr_revision && 353 pri->hdr_size == sec->hdr_size && 354 pri->hdr_lba_start == sec->hdr_lba_start && 355 pri->hdr_lba_end == sec->hdr_lba_end && 356 pri->hdr_entries == sec->hdr_entries && 357 pri->hdr_entsz == sec->hdr_entsz && 358 pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); 359 } 360 361 static int 362 gpt_parse_type(const char *type, struct uuid *uuid) 363 { 364 struct uuid tmp; 365 const char *alias; 366 int error; 367 struct g_part_uuid_alias *uap; 368 369 if (type[0] == '!') { 370 error = parse_uuid(type + 1, &tmp); 371 if (error) 372 return (error); 373 if (EQUUID(&tmp, &gpt_uuid_unused)) 374 return (EINVAL); 375 *uuid = tmp; 376 return (0); 377 } 378 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 379 alias = g_part_alias_name(uap->alias); 380 if (!strcasecmp(type, alias)) { 381 *uuid = *uap->uuid; 382 return (0); 383 } 384 } 385 return (EINVAL); 386 } 387 388 static int 389 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, 390 struct g_part_parms *gpp) 391 { 392 struct g_part_gpt_entry *entry; 393 int error; 394 395 entry = (struct g_part_gpt_entry *)baseentry; 396 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 397 if (error) 398 return (error); 399 kern_uuidgen(&entry->ent.ent_uuid, 1); 400 entry->ent.ent_lba_start = baseentry->gpe_start; 401 entry->ent.ent_lba_end = baseentry->gpe_end; 402 if (baseentry->gpe_deleted) { 403 entry->ent.ent_attr = 0; 404 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); 405 } 406 if (gpp->gpp_parms & G_PART_PARM_LABEL) 407 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 408 sizeof(entry->ent.ent_name)); 409 return (0); 410 } 411 412 static int 413 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) 414 { 415 struct g_part_gpt_table *table; 416 size_t codesz; 417 418 codesz = DOSPARTOFF; 419 table = (struct g_part_gpt_table *)basetable; 420 bzero(table->mbr, codesz); 421 codesz = MIN(codesz, gpp->gpp_codesize); 422 if (codesz > 0) 423 bcopy(gpp->gpp_codeptr, table->mbr, codesz); 424 425 /* Mark the PMBR active since some BIOS require it */ 426 table->mbr[DOSPARTOFF] = 0x80; /* status */ 427 return (0); 428 } 429 430 static int 431 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) 432 { 433 struct g_provider *pp; 434 struct g_part_gpt_table *table; 435 quad_t last; 436 size_t tblsz; 437 438 /* We don't nest, which means that our depth should be 0. */ 439 if (basetable->gpt_depth != 0) 440 return (ENXIO); 441 442 table = (struct g_part_gpt_table *)basetable; 443 pp = gpp->gpp_provider; 444 tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) + 445 pp->sectorsize - 1) / pp->sectorsize; 446 if (pp->sectorsize < MBRSIZE || 447 pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * 448 pp->sectorsize) 449 return (ENOSPC); 450 451 last = (pp->mediasize / pp->sectorsize) - 1; 452 453 le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); 454 table->mbr[DOSPARTOFF + 1] = 0x01; /* shd */ 455 table->mbr[DOSPARTOFF + 2] = 0x01; /* ssect */ 456 table->mbr[DOSPARTOFF + 3] = 0x00; /* scyl */ 457 table->mbr[DOSPARTOFF + 4] = 0xee; /* typ */ 458 table->mbr[DOSPARTOFF + 5] = 0xff; /* ehd */ 459 table->mbr[DOSPARTOFF + 6] = 0xff; /* esect */ 460 table->mbr[DOSPARTOFF + 7] = 0xff; /* ecyl */ 461 le32enc(table->mbr + DOSPARTOFF + 8, 1); /* start */ 462 le32enc(table->mbr + DOSPARTOFF + 12, MIN(last, 0xffffffffLL)); 463 464 table->lba[GPT_ELT_PRIHDR] = 1; 465 table->lba[GPT_ELT_PRITBL] = 2; 466 table->lba[GPT_ELT_SECHDR] = last; 467 table->lba[GPT_ELT_SECTBL] = last - tblsz; 468 469 /* Allocate space for the header */ 470 table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); 471 472 bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 473 table->hdr->hdr_revision = GPT_HDR_REVISION; 474 table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); 475 table->hdr->hdr_lba_start = 2 + tblsz; 476 table->hdr->hdr_lba_end = last - tblsz - 1; 477 kern_uuidgen(&table->hdr->hdr_uuid, 1); 478 table->hdr->hdr_entries = basetable->gpt_entries; 479 table->hdr->hdr_entsz = sizeof(struct gpt_ent); 480 481 basetable->gpt_first = table->hdr->hdr_lba_start; 482 basetable->gpt_last = table->hdr->hdr_lba_end; 483 return (0); 484 } 485 486 static int 487 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) 488 { 489 struct g_part_gpt_table *table; 490 491 table = (struct g_part_gpt_table *)basetable; 492 if (table->hdr != NULL) 493 g_free(table->hdr); 494 table->hdr = NULL; 495 496 /* 497 * Wipe the first 2 sectors as well as the last to clear the 498 * partitioning. 499 */ 500 basetable->gpt_smhead |= 3; 501 basetable->gpt_smtail |= 1; 502 return (0); 503 } 504 505 static void 506 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 507 struct sbuf *sb, const char *indent) 508 { 509 struct g_part_gpt_entry *entry; 510 511 entry = (struct g_part_gpt_entry *)baseentry; 512 if (indent == NULL) { 513 /* conftxt: libdisk compatibility */ 514 sbuf_printf(sb, " xs GPT xt "); 515 sbuf_printf_uuid(sb, &entry->ent.ent_type); 516 } else if (entry != NULL) { 517 /* confxml: partition entry information */ 518 sbuf_printf(sb, "%s<label>", indent); 519 g_gpt_printf_utf16(sb, entry->ent.ent_name, 520 sizeof(entry->ent.ent_name) >> 1); 521 sbuf_printf(sb, "</label>\n"); 522 sbuf_printf(sb, "%s<rawtype>", indent); 523 sbuf_printf_uuid(sb, &entry->ent.ent_type); 524 sbuf_printf(sb, "</rawtype>\n"); 525 sbuf_printf(sb, "%s<rawuuid>", indent); 526 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 527 sbuf_printf(sb, "</rawuuid>\n"); 528 } else { 529 /* confxml: scheme information */ 530 } 531 } 532 533 static int 534 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) 535 { 536 struct g_part_gpt_entry *entry; 537 538 entry = (struct g_part_gpt_entry *)baseentry; 539 return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || 540 EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap)) ? 1 : 0); 541 } 542 543 static int 544 g_part_gpt_modify(struct g_part_table *basetable, 545 struct g_part_entry *baseentry, struct g_part_parms *gpp) 546 { 547 struct g_part_gpt_entry *entry; 548 int error; 549 550 entry = (struct g_part_gpt_entry *)baseentry; 551 if (gpp->gpp_parms & G_PART_PARM_TYPE) { 552 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 553 if (error) 554 return (error); 555 } 556 if (gpp->gpp_parms & G_PART_PARM_LABEL) 557 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 558 sizeof(entry->ent.ent_name)); 559 return (0); 560 } 561 562 static int 563 g_part_gpt_resize(struct g_part_table *basetable, 564 struct g_part_entry *baseentry, struct g_part_parms *gpp) 565 { 566 struct g_part_gpt_entry *entry; 567 entry = (struct g_part_gpt_entry *)baseentry; 568 569 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; 570 entry->ent.ent_lba_end = baseentry->gpe_end; 571 572 return (0); 573 } 574 575 static const char * 576 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, 577 char *buf, size_t bufsz) 578 { 579 struct g_part_gpt_entry *entry; 580 char c; 581 582 entry = (struct g_part_gpt_entry *)baseentry; 583 c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; 584 snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); 585 return (buf); 586 } 587 588 static int 589 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) 590 { 591 struct g_provider *pp; 592 char *buf; 593 int error, res; 594 595 /* We don't nest, which means that our depth should be 0. */ 596 if (table->gpt_depth != 0) 597 return (ENXIO); 598 599 pp = cp->provider; 600 601 /* 602 * Sanity-check the provider. Since the first sector on the provider 603 * must be a PMBR and a PMBR is 512 bytes large, the sector size 604 * must be at least 512 bytes. Also, since the theoretical minimum 605 * number of sectors needed by GPT is 6, any medium that has less 606 * than 6 sectors is never going to be able to hold a GPT. The 607 * number 6 comes from: 608 * 1 sector for the PMBR 609 * 2 sectors for the GPT headers (each 1 sector) 610 * 2 sectors for the GPT tables (each 1 sector) 611 * 1 sector for an actual partition 612 * It's better to catch this pathological case early than behaving 613 * pathologically later on... 614 */ 615 if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) 616 return (ENOSPC); 617 618 /* Check that there's a MBR. */ 619 buf = g_read_data(cp, 0L, pp->sectorsize, &error); 620 if (buf == NULL) 621 return (error); 622 res = le16dec(buf + DOSMAGICOFFSET); 623 g_free(buf); 624 if (res != DOSMAGIC) 625 return (ENXIO); 626 627 /* Check that there's a primary header. */ 628 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); 629 if (buf == NULL) 630 return (error); 631 res = memcmp(buf, GPT_HDR_SIG, 8); 632 g_free(buf); 633 if (res == 0) 634 return (G_PART_PROBE_PRI_HIGH); 635 636 /* No primary? Check that there's a secondary. */ 637 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 638 &error); 639 if (buf == NULL) 640 return (error); 641 res = memcmp(buf, GPT_HDR_SIG, 8); 642 g_free(buf); 643 return ((res == 0) ? G_PART_PROBE_PRI_HIGH : ENXIO); 644 } 645 646 static int 647 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) 648 { 649 struct gpt_hdr *prihdr, *sechdr; 650 struct gpt_ent *tbl, *pritbl, *sectbl; 651 struct g_provider *pp; 652 struct g_part_gpt_table *table; 653 struct g_part_gpt_entry *entry; 654 u_char *buf; 655 int error, index; 656 657 table = (struct g_part_gpt_table *)basetable; 658 pp = cp->provider; 659 660 /* Read the PMBR */ 661 buf = g_read_data(cp, 0, pp->sectorsize, &error); 662 if (buf == NULL) 663 return (error); 664 bcopy(buf, table->mbr, MBRSIZE); 665 g_free(buf); 666 667 /* Read the primary header and table. */ 668 prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); 669 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { 670 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); 671 } else { 672 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 673 pritbl = NULL; 674 } 675 676 /* Read the secondary header and table. */ 677 sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); 678 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { 679 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); 680 } else { 681 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 682 sectbl = NULL; 683 } 684 685 /* Fail if we haven't got any good tables at all. */ 686 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && 687 table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 688 printf("GEOM: %s: corrupt or invalid GPT detected.\n", 689 pp->name); 690 printf("GEOM: %s: GPT rejected -- may not be recoverable.\n", 691 pp->name); 692 return (EINVAL); 693 } 694 695 /* 696 * If both headers are good but they disagree with each other, 697 * then invalidate one. We prefer to keep the primary header, 698 * unless the primary table is corrupt. 699 */ 700 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && 701 table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 702 !gpt_matched_hdrs(prihdr, sechdr)) { 703 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { 704 table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; 705 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 706 g_free(sechdr); 707 sechdr = NULL; 708 } else { 709 table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; 710 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 711 g_free(prihdr); 712 prihdr = NULL; 713 } 714 } 715 716 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { 717 printf("GEOM: %s: the primary GPT table is corrupt or " 718 "invalid.\n", pp->name); 719 printf("GEOM: %s: using the secondary instead -- recovery " 720 "strongly advised.\n", pp->name); 721 table->hdr = sechdr; 722 if (prihdr != NULL) 723 g_free(prihdr); 724 tbl = sectbl; 725 if (pritbl != NULL) 726 g_free(pritbl); 727 } else { 728 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 729 printf("GEOM: %s: the secondary GPT table is corrupt " 730 "or invalid.\n", pp->name); 731 printf("GEOM: %s: using the primary only -- recovery " 732 "suggested.\n", pp->name); 733 } 734 table->hdr = prihdr; 735 if (sechdr != NULL) 736 g_free(sechdr); 737 tbl = pritbl; 738 if (sectbl != NULL) 739 g_free(sectbl); 740 } 741 742 basetable->gpt_first = table->hdr->hdr_lba_start; 743 basetable->gpt_last = table->hdr->hdr_lba_end; 744 basetable->gpt_entries = table->hdr->hdr_entries; 745 746 for (index = basetable->gpt_entries - 1; index >= 0; index--) { 747 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) 748 continue; 749 entry = (struct g_part_gpt_entry *)g_part_new_entry(basetable, 750 index+1, tbl[index].ent_lba_start, tbl[index].ent_lba_end); 751 entry->ent = tbl[index]; 752 } 753 754 g_free(tbl); 755 return (0); 756 } 757 758 static const char * 759 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 760 char *buf, size_t bufsz) 761 { 762 struct g_part_gpt_entry *entry; 763 struct uuid *type; 764 struct g_part_uuid_alias *uap; 765 766 entry = (struct g_part_gpt_entry *)baseentry; 767 type = &entry->ent.ent_type; 768 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) 769 if (EQUUID(type, uap->uuid)) 770 return (g_part_alias_name(uap->alias)); 771 buf[0] = '!'; 772 snprintf_uuid(buf + 1, bufsz - 1, type); 773 774 return (buf); 775 } 776 777 static int 778 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) 779 { 780 unsigned char *buf, *bp; 781 struct g_provider *pp; 782 struct g_part_entry *baseentry; 783 struct g_part_gpt_entry *entry; 784 struct g_part_gpt_table *table; 785 size_t tlbsz; 786 uint32_t crc; 787 int error, index; 788 789 pp = cp->provider; 790 table = (struct g_part_gpt_table *)basetable; 791 tlbsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz + 792 pp->sectorsize - 1) / pp->sectorsize; 793 794 /* Write the PMBR */ 795 buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); 796 bcopy(table->mbr, buf, MBRSIZE); 797 error = g_write_data(cp, 0, buf, pp->sectorsize); 798 g_free(buf); 799 if (error) 800 return (error); 801 802 /* Allocate space for the header and entries. */ 803 buf = g_malloc((tlbsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); 804 805 memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 806 le32enc(buf + 8, table->hdr->hdr_revision); 807 le32enc(buf + 12, table->hdr->hdr_size); 808 le64enc(buf + 40, table->hdr->hdr_lba_start); 809 le64enc(buf + 48, table->hdr->hdr_lba_end); 810 le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); 811 le32enc(buf + 80, table->hdr->hdr_entries); 812 le32enc(buf + 84, table->hdr->hdr_entsz); 813 814 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 815 if (baseentry->gpe_deleted) 816 continue; 817 entry = (struct g_part_gpt_entry *)baseentry; 818 index = baseentry->gpe_index - 1; 819 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; 820 le_uuid_enc(bp, &entry->ent.ent_type); 821 le_uuid_enc(bp + 16, &entry->ent.ent_uuid); 822 le64enc(bp + 32, entry->ent.ent_lba_start); 823 le64enc(bp + 40, entry->ent.ent_lba_end); 824 le64enc(bp + 48, entry->ent.ent_attr); 825 memcpy(bp + 56, entry->ent.ent_name, 826 sizeof(entry->ent.ent_name)); 827 } 828 829 crc = crc32(buf + pp->sectorsize, 830 table->hdr->hdr_entries * table->hdr->hdr_entsz); 831 le32enc(buf + 88, crc); 832 833 /* Write primary meta-data. */ 834 le32enc(buf + 16, 0); /* hdr_crc_self. */ 835 le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ 836 le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ 837 le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ 838 crc = crc32(buf, table->hdr->hdr_size); 839 le32enc(buf + 16, crc); 840 841 error = g_write_data(cp, table->lba[GPT_ELT_PRITBL] * pp->sectorsize, 842 buf + pp->sectorsize, tlbsz * pp->sectorsize); 843 if (error) 844 goto out; 845 error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, 846 buf, pp->sectorsize); 847 if (error) 848 goto out; 849 850 /* Write secondary meta-data. */ 851 le32enc(buf + 16, 0); /* hdr_crc_self. */ 852 le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ 853 le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ 854 le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ 855 crc = crc32(buf, table->hdr->hdr_size); 856 le32enc(buf + 16, crc); 857 858 error = g_write_data(cp, table->lba[GPT_ELT_SECTBL] * pp->sectorsize, 859 buf + pp->sectorsize, tlbsz * pp->sectorsize); 860 if (error) 861 goto out; 862 error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, 863 buf, pp->sectorsize); 864 865 out: 866 g_free(buf); 867 return (error); 868 } 869 870 static void 871 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) 872 { 873 u_int bo; 874 uint32_t ch; 875 uint16_t c; 876 877 bo = LITTLE_ENDIAN; /* GPT is little-endian */ 878 while (len > 0 && *str != 0) { 879 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); 880 str++, len--; 881 if ((ch & 0xf800) == 0xd800) { 882 if (len > 0) { 883 c = (bo == BIG_ENDIAN) ? be16toh(*str) 884 : le16toh(*str); 885 str++, len--; 886 } else 887 c = 0xfffd; 888 if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { 889 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); 890 ch += 0x10000; 891 } else 892 ch = 0xfffd; 893 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ 894 bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; 895 continue; 896 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ 897 continue; 898 899 /* Write the Unicode character in UTF-8 */ 900 if (ch < 0x80) 901 sbuf_printf(sb, "%c", ch); 902 else if (ch < 0x800) 903 sbuf_printf(sb, "%c%c", 0xc0 | (ch >> 6), 904 0x80 | (ch & 0x3f)); 905 else if (ch < 0x10000) 906 sbuf_printf(sb, "%c%c%c", 0xe0 | (ch >> 12), 907 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 908 else if (ch < 0x200000) 909 sbuf_printf(sb, "%c%c%c%c", 0xf0 | (ch >> 18), 910 0x80 | ((ch >> 12) & 0x3f), 911 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 912 } 913 } 914 915 static void 916 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) 917 { 918 size_t s16idx, s8idx; 919 uint32_t utfchar; 920 unsigned int c, utfbytes; 921 922 s8idx = s16idx = 0; 923 utfchar = 0; 924 utfbytes = 0; 925 bzero(s16, s16len << 1); 926 while (s8[s8idx] != 0 && s16idx < s16len) { 927 c = s8[s8idx++]; 928 if ((c & 0xc0) != 0x80) { 929 /* Initial characters. */ 930 if (utfbytes != 0) { 931 /* Incomplete encoding of previous char. */ 932 s16[s16idx++] = htole16(0xfffd); 933 } 934 if ((c & 0xf8) == 0xf0) { 935 utfchar = c & 0x07; 936 utfbytes = 3; 937 } else if ((c & 0xf0) == 0xe0) { 938 utfchar = c & 0x0f; 939 utfbytes = 2; 940 } else if ((c & 0xe0) == 0xc0) { 941 utfchar = c & 0x1f; 942 utfbytes = 1; 943 } else { 944 utfchar = c & 0x7f; 945 utfbytes = 0; 946 } 947 } else { 948 /* Followup characters. */ 949 if (utfbytes > 0) { 950 utfchar = (utfchar << 6) + (c & 0x3f); 951 utfbytes--; 952 } else if (utfbytes == 0) 953 utfbytes = ~0; 954 } 955 /* 956 * Write the complete Unicode character as UTF-16 when we 957 * have all the UTF-8 charactars collected. 958 */ 959 if (utfbytes == 0) { 960 /* 961 * If we need to write 2 UTF-16 characters, but 962 * we only have room for 1, then we truncate the 963 * string by writing a 0 instead. 964 */ 965 if (utfchar >= 0x10000 && s16idx < s16len - 1) { 966 s16[s16idx++] = 967 htole16(0xd800 | ((utfchar >> 10) - 0x40)); 968 s16[s16idx++] = 969 htole16(0xdc00 | (utfchar & 0x3ff)); 970 } else 971 s16[s16idx++] = (utfchar >= 0x10000) ? 0 : 972 htole16(utfchar); 973 } 974 } 975 /* 976 * If our input string was truncated, append an invalid encoding 977 * character to the output string. 978 */ 979 if (utfbytes != 0 && s16idx < s16len) 980 s16[s16idx++] = htole16(0xfffd); 981 } 982