1 /*- 2 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/bio.h> 32 #include <sys/diskmbr.h> 33 #include <sys/endian.h> 34 #include <sys/gpt.h> 35 #include <sys/kernel.h> 36 #include <sys/kobj.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/malloc.h> 40 #include <sys/mutex.h> 41 #include <sys/queue.h> 42 #include <sys/sbuf.h> 43 #include <sys/systm.h> 44 #include <sys/sysctl.h> 45 #include <sys/uuid.h> 46 #include <geom/geom.h> 47 #include <geom/part/g_part.h> 48 49 #include "g_part_if.h" 50 51 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support"); 52 53 CTASSERT(offsetof(struct gpt_hdr, padding) == 92); 54 CTASSERT(sizeof(struct gpt_ent) == 128); 55 56 #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) 57 58 #define MBRSIZE 512 59 60 enum gpt_elt { 61 GPT_ELT_PRIHDR, 62 GPT_ELT_PRITBL, 63 GPT_ELT_SECHDR, 64 GPT_ELT_SECTBL, 65 GPT_ELT_COUNT 66 }; 67 68 enum gpt_state { 69 GPT_STATE_UNKNOWN, /* Not determined. */ 70 GPT_STATE_MISSING, /* No signature found. */ 71 GPT_STATE_CORRUPT, /* Checksum mismatch. */ 72 GPT_STATE_INVALID, /* Nonconformant/invalid. */ 73 GPT_STATE_OK /* Perfectly fine. */ 74 }; 75 76 struct g_part_gpt_table { 77 struct g_part_table base; 78 u_char mbr[MBRSIZE]; 79 struct gpt_hdr *hdr; 80 quad_t lba[GPT_ELT_COUNT]; 81 enum gpt_state state[GPT_ELT_COUNT]; 82 int bootcamp; 83 }; 84 85 struct g_part_gpt_entry { 86 struct g_part_entry base; 87 struct gpt_ent ent; 88 }; 89 90 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); 91 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); 92 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *); 93 94 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, 95 struct g_part_parms *); 96 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); 97 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); 98 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); 99 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, 100 struct sbuf *, const char *); 101 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); 102 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, 103 struct g_part_parms *); 104 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, 105 char *, size_t); 106 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); 107 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); 108 static int g_part_gpt_setunset(struct g_part_table *table, 109 struct g_part_entry *baseentry, const char *attrib, unsigned int set); 110 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, 111 char *, size_t); 112 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); 113 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, 114 struct g_part_parms *); 115 static int g_part_gpt_recover(struct g_part_table *); 116 117 static kobj_method_t g_part_gpt_methods[] = { 118 KOBJMETHOD(g_part_add, g_part_gpt_add), 119 KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), 120 KOBJMETHOD(g_part_create, g_part_gpt_create), 121 KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), 122 KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), 123 KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), 124 KOBJMETHOD(g_part_modify, g_part_gpt_modify), 125 KOBJMETHOD(g_part_resize, g_part_gpt_resize), 126 KOBJMETHOD(g_part_name, g_part_gpt_name), 127 KOBJMETHOD(g_part_probe, g_part_gpt_probe), 128 KOBJMETHOD(g_part_read, g_part_gpt_read), 129 KOBJMETHOD(g_part_recover, g_part_gpt_recover), 130 KOBJMETHOD(g_part_setunset, g_part_gpt_setunset), 131 KOBJMETHOD(g_part_type, g_part_gpt_type), 132 KOBJMETHOD(g_part_write, g_part_gpt_write), 133 { 0, 0 } 134 }; 135 136 static struct g_part_scheme g_part_gpt_scheme = { 137 "GPT", 138 g_part_gpt_methods, 139 sizeof(struct g_part_gpt_table), 140 .gps_entrysz = sizeof(struct g_part_gpt_entry), 141 .gps_minent = 128, 142 .gps_maxent = 4096, 143 .gps_bootcodesz = MBRSIZE, 144 }; 145 G_PART_SCHEME_DECLARE(g_part_gpt); 146 147 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; 148 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; 149 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; 150 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; 151 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; 152 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; 153 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; 154 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT; 155 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; 156 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; 157 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; 158 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS; 159 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; 160 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; 161 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; 162 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; 163 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; 164 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; 165 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; 166 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; 167 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS; 168 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG; 169 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED; 170 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; 171 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; 172 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; 173 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; 174 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; 175 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; 176 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; 177 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; 178 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; 179 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; 180 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; 181 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; 182 183 static struct g_part_uuid_alias { 184 struct uuid *uuid; 185 int alias; 186 int mbrtype; 187 } gpt_uuid_alias_match[] = { 188 { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab }, 189 { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf }, 190 { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 }, 191 { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 }, 192 { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 }, 193 { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 }, 194 { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 }, 195 { &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 }, 196 { &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee }, 197 { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 }, 198 { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 }, 199 { &gpt_uuid_freebsd_nandfs, G_PART_ALIAS_FREEBSD_NANDFS, 0 }, 200 { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 }, 201 { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 }, 202 { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 }, 203 { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 }, 204 { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b }, 205 { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 }, 206 { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 }, 207 { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 }, 208 { &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 }, 209 { &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 }, 210 { &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 }, 211 { &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 }, 212 { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b }, 213 { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 }, 214 { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 }, 215 { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 }, 216 { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 }, 217 { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 }, 218 { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 }, 219 { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 }, 220 { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 }, 221 { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 }, 222 { NULL, 0, 0 } 223 }; 224 225 static int 226 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start, 227 quad_t end) 228 { 229 230 if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX) 231 return (EINVAL); 232 233 mbr += DOSPARTOFF + idx * DOSPARTSIZE; 234 mbr[0] = 0; 235 if (start == 1) { 236 /* 237 * Treat the PMBR partition specially to maximize 238 * interoperability with BIOSes. 239 */ 240 mbr[1] = mbr[3] = 0; 241 mbr[2] = 2; 242 } else 243 mbr[1] = mbr[2] = mbr[3] = 0xff; 244 mbr[4] = typ; 245 mbr[5] = mbr[6] = mbr[7] = 0xff; 246 le32enc(mbr + 8, (uint32_t)start); 247 le32enc(mbr + 12, (uint32_t)(end - start + 1)); 248 return (0); 249 } 250 251 static int 252 gpt_map_type(struct uuid *t) 253 { 254 struct g_part_uuid_alias *uap; 255 256 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 257 if (EQUUID(t, uap->uuid)) 258 return (uap->mbrtype); 259 } 260 return (0); 261 } 262 263 static void 264 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp) 265 { 266 267 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 268 gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, 269 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 270 le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); 271 } 272 273 /* 274 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the 275 * whole disk anymore. Rather, it covers the GPT table and the EFI 276 * system partition only. This way the HFS+ partition and any FAT 277 * partitions can be added to the MBR without creating an overlap. 278 */ 279 static int 280 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname) 281 { 282 uint8_t *p; 283 284 p = table->mbr + DOSPARTOFF; 285 if (p[4] != 0xee || le32dec(p + 8) != 1) 286 return (0); 287 288 p += DOSPARTSIZE; 289 if (p[4] != 0xaf) 290 return (0); 291 292 printf("GEOM: %s: enabling Boot Camp\n", provname); 293 return (1); 294 } 295 296 static void 297 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp) 298 { 299 struct g_part_entry *baseentry; 300 struct g_part_gpt_entry *entry; 301 struct g_part_gpt_table *table; 302 int bootable, error, index, slices, typ; 303 304 table = (struct g_part_gpt_table *)basetable; 305 306 bootable = -1; 307 for (index = 0; index < NDOSPART; index++) { 308 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index]) 309 bootable = index; 310 } 311 312 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 313 slices = 0; 314 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 315 if (baseentry->gpe_deleted) 316 continue; 317 index = baseentry->gpe_index - 1; 318 if (index >= NDOSPART) 319 continue; 320 321 entry = (struct g_part_gpt_entry *)baseentry; 322 323 switch (index) { 324 case 0: /* This must be the EFI system partition. */ 325 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi)) 326 goto disable; 327 error = gpt_write_mbr_entry(table->mbr, index, 0xee, 328 1ull, entry->ent.ent_lba_end); 329 break; 330 case 1: /* This must be the HFS+ partition. */ 331 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs)) 332 goto disable; 333 error = gpt_write_mbr_entry(table->mbr, index, 0xaf, 334 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 335 break; 336 default: 337 typ = gpt_map_type(&entry->ent.ent_type); 338 error = gpt_write_mbr_entry(table->mbr, index, typ, 339 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 340 break; 341 } 342 if (error) 343 continue; 344 345 if (index == bootable) 346 table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80; 347 slices |= 1 << index; 348 } 349 if ((slices & 3) == 3) 350 return; 351 352 disable: 353 table->bootcamp = 0; 354 gpt_create_pmbr(table, pp); 355 } 356 357 static struct gpt_hdr * 358 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, 359 enum gpt_elt elt) 360 { 361 struct gpt_hdr *buf, *hdr; 362 struct g_provider *pp; 363 quad_t lba, last; 364 int error; 365 uint32_t crc, sz; 366 367 pp = cp->provider; 368 last = (pp->mediasize / pp->sectorsize) - 1; 369 table->state[elt] = GPT_STATE_MISSING; 370 /* 371 * If the primary header is valid look for secondary 372 * header in AlternateLBA, otherwise in the last medium's LBA. 373 */ 374 if (elt == GPT_ELT_SECHDR) { 375 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK) 376 table->lba[elt] = last; 377 } else 378 table->lba[elt] = 1; 379 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, 380 &error); 381 if (buf == NULL) 382 return (NULL); 383 hdr = NULL; 384 if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) 385 goto fail; 386 387 table->state[elt] = GPT_STATE_CORRUPT; 388 sz = le32toh(buf->hdr_size); 389 if (sz < 92 || sz > pp->sectorsize) 390 goto fail; 391 392 hdr = g_malloc(sz, M_WAITOK | M_ZERO); 393 bcopy(buf, hdr, sz); 394 hdr->hdr_size = sz; 395 396 crc = le32toh(buf->hdr_crc_self); 397 buf->hdr_crc_self = 0; 398 if (crc32(buf, sz) != crc) 399 goto fail; 400 hdr->hdr_crc_self = crc; 401 402 table->state[elt] = GPT_STATE_INVALID; 403 hdr->hdr_revision = le32toh(buf->hdr_revision); 404 if (hdr->hdr_revision < GPT_HDR_REVISION) 405 goto fail; 406 hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); 407 if (hdr->hdr_lba_self != table->lba[elt]) 408 goto fail; 409 hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); 410 if (hdr->hdr_lba_alt == hdr->hdr_lba_self || 411 hdr->hdr_lba_alt > last) 412 goto fail; 413 414 /* Check the managed area. */ 415 hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); 416 if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) 417 goto fail; 418 hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); 419 if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) 420 goto fail; 421 422 /* Check the table location and size of the table. */ 423 hdr->hdr_entries = le32toh(buf->hdr_entries); 424 hdr->hdr_entsz = le32toh(buf->hdr_entsz); 425 if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || 426 (hdr->hdr_entsz & 7) != 0) 427 goto fail; 428 hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); 429 if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) 430 goto fail; 431 if (hdr->hdr_lba_table >= hdr->hdr_lba_start && 432 hdr->hdr_lba_table <= hdr->hdr_lba_end) 433 goto fail; 434 lba = hdr->hdr_lba_table + 435 (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) / 436 pp->sectorsize - 1; 437 if (lba >= last) 438 goto fail; 439 if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) 440 goto fail; 441 442 table->state[elt] = GPT_STATE_OK; 443 le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); 444 hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); 445 446 /* save LBA for secondary header */ 447 if (elt == GPT_ELT_PRIHDR) 448 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt; 449 450 g_free(buf); 451 return (hdr); 452 453 fail: 454 if (hdr != NULL) 455 g_free(hdr); 456 g_free(buf); 457 return (NULL); 458 } 459 460 static struct gpt_ent * 461 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, 462 enum gpt_elt elt, struct gpt_hdr *hdr) 463 { 464 struct g_provider *pp; 465 struct gpt_ent *ent, *tbl; 466 char *buf, *p; 467 unsigned int idx, sectors, tblsz, size; 468 int error; 469 470 if (hdr == NULL) 471 return (NULL); 472 473 pp = cp->provider; 474 table->lba[elt] = hdr->hdr_lba_table; 475 476 table->state[elt] = GPT_STATE_MISSING; 477 tblsz = hdr->hdr_entries * hdr->hdr_entsz; 478 sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize; 479 buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO); 480 for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) { 481 size = (sectors - idx > MAXPHYS / pp->sectorsize) ? MAXPHYS: 482 (sectors - idx) * pp->sectorsize; 483 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize, 484 size, &error); 485 if (p == NULL) { 486 g_free(buf); 487 return (NULL); 488 } 489 bcopy(p, buf + idx * pp->sectorsize, size); 490 g_free(p); 491 } 492 table->state[elt] = GPT_STATE_CORRUPT; 493 if (crc32(buf, tblsz) != hdr->hdr_crc_table) { 494 g_free(buf); 495 return (NULL); 496 } 497 498 table->state[elt] = GPT_STATE_OK; 499 tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), 500 M_WAITOK | M_ZERO); 501 502 for (idx = 0, ent = tbl, p = buf; 503 idx < hdr->hdr_entries; 504 idx++, ent++, p += hdr->hdr_entsz) { 505 le_uuid_dec(p, &ent->ent_type); 506 le_uuid_dec(p + 16, &ent->ent_uuid); 507 ent->ent_lba_start = le64dec(p + 32); 508 ent->ent_lba_end = le64dec(p + 40); 509 ent->ent_attr = le64dec(p + 48); 510 /* Keep UTF-16 in little-endian. */ 511 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); 512 } 513 514 g_free(buf); 515 return (tbl); 516 } 517 518 static int 519 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) 520 { 521 522 if (pri == NULL || sec == NULL) 523 return (0); 524 525 if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) 526 return (0); 527 return ((pri->hdr_revision == sec->hdr_revision && 528 pri->hdr_size == sec->hdr_size && 529 pri->hdr_lba_start == sec->hdr_lba_start && 530 pri->hdr_lba_end == sec->hdr_lba_end && 531 pri->hdr_entries == sec->hdr_entries && 532 pri->hdr_entsz == sec->hdr_entsz && 533 pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); 534 } 535 536 static int 537 gpt_parse_type(const char *type, struct uuid *uuid) 538 { 539 struct uuid tmp; 540 const char *alias; 541 int error; 542 struct g_part_uuid_alias *uap; 543 544 if (type[0] == '!') { 545 error = parse_uuid(type + 1, &tmp); 546 if (error) 547 return (error); 548 if (EQUUID(&tmp, &gpt_uuid_unused)) 549 return (EINVAL); 550 *uuid = tmp; 551 return (0); 552 } 553 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 554 alias = g_part_alias_name(uap->alias); 555 if (!strcasecmp(type, alias)) { 556 *uuid = *uap->uuid; 557 return (0); 558 } 559 } 560 return (EINVAL); 561 } 562 563 static int 564 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, 565 struct g_part_parms *gpp) 566 { 567 struct g_part_gpt_entry *entry; 568 int error; 569 570 entry = (struct g_part_gpt_entry *)baseentry; 571 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 572 if (error) 573 return (error); 574 kern_uuidgen(&entry->ent.ent_uuid, 1); 575 entry->ent.ent_lba_start = baseentry->gpe_start; 576 entry->ent.ent_lba_end = baseentry->gpe_end; 577 if (baseentry->gpe_deleted) { 578 entry->ent.ent_attr = 0; 579 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); 580 } 581 if (gpp->gpp_parms & G_PART_PARM_LABEL) 582 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 583 sizeof(entry->ent.ent_name) / 584 sizeof(entry->ent.ent_name[0])); 585 return (0); 586 } 587 588 static int 589 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) 590 { 591 struct g_part_gpt_table *table; 592 size_t codesz; 593 594 codesz = DOSPARTOFF; 595 table = (struct g_part_gpt_table *)basetable; 596 bzero(table->mbr, codesz); 597 codesz = MIN(codesz, gpp->gpp_codesize); 598 if (codesz > 0) 599 bcopy(gpp->gpp_codeptr, table->mbr, codesz); 600 return (0); 601 } 602 603 static int 604 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) 605 { 606 struct g_provider *pp; 607 struct g_part_gpt_table *table; 608 size_t tblsz; 609 610 /* We don't nest, which means that our depth should be 0. */ 611 if (basetable->gpt_depth != 0) 612 return (ENXIO); 613 614 table = (struct g_part_gpt_table *)basetable; 615 pp = gpp->gpp_provider; 616 tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) + 617 pp->sectorsize - 1) / pp->sectorsize; 618 if (pp->sectorsize < MBRSIZE || 619 pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * 620 pp->sectorsize) 621 return (ENOSPC); 622 623 gpt_create_pmbr(table, pp); 624 625 /* Allocate space for the header */ 626 table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); 627 628 bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 629 table->hdr->hdr_revision = GPT_HDR_REVISION; 630 table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); 631 kern_uuidgen(&table->hdr->hdr_uuid, 1); 632 table->hdr->hdr_entries = basetable->gpt_entries; 633 table->hdr->hdr_entsz = sizeof(struct gpt_ent); 634 635 g_gpt_set_defaults(basetable, pp); 636 return (0); 637 } 638 639 static int 640 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) 641 { 642 struct g_part_gpt_table *table; 643 struct g_provider *pp; 644 645 table = (struct g_part_gpt_table *)basetable; 646 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 647 g_free(table->hdr); 648 table->hdr = NULL; 649 650 /* 651 * Wipe the first 2 sectors to clear the partitioning. Wipe the last 652 * sector only if it has valid secondary header. 653 */ 654 basetable->gpt_smhead |= 3; 655 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 656 table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1) 657 basetable->gpt_smtail |= 1; 658 return (0); 659 } 660 661 static void 662 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 663 struct sbuf *sb, const char *indent) 664 { 665 struct g_part_gpt_entry *entry; 666 667 entry = (struct g_part_gpt_entry *)baseentry; 668 if (indent == NULL) { 669 /* conftxt: libdisk compatibility */ 670 sbuf_printf(sb, " xs GPT xt "); 671 sbuf_printf_uuid(sb, &entry->ent.ent_type); 672 } else if (entry != NULL) { 673 /* confxml: partition entry information */ 674 sbuf_printf(sb, "%s<label>", indent); 675 g_gpt_printf_utf16(sb, entry->ent.ent_name, 676 sizeof(entry->ent.ent_name) >> 1); 677 sbuf_printf(sb, "</label>\n"); 678 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME) 679 sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent); 680 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) { 681 sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n", 682 indent); 683 } 684 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) { 685 sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n", 686 indent); 687 } 688 sbuf_printf(sb, "%s<rawtype>", indent); 689 sbuf_printf_uuid(sb, &entry->ent.ent_type); 690 sbuf_printf(sb, "</rawtype>\n"); 691 sbuf_printf(sb, "%s<rawuuid>", indent); 692 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 693 sbuf_printf(sb, "</rawuuid>\n"); 694 } else { 695 /* confxml: scheme information */ 696 } 697 } 698 699 static int 700 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) 701 { 702 struct g_part_gpt_entry *entry; 703 704 entry = (struct g_part_gpt_entry *)baseentry; 705 return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || 706 EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap)) ? 1 : 0); 707 } 708 709 static int 710 g_part_gpt_modify(struct g_part_table *basetable, 711 struct g_part_entry *baseentry, struct g_part_parms *gpp) 712 { 713 struct g_part_gpt_entry *entry; 714 int error; 715 716 entry = (struct g_part_gpt_entry *)baseentry; 717 if (gpp->gpp_parms & G_PART_PARM_TYPE) { 718 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 719 if (error) 720 return (error); 721 } 722 if (gpp->gpp_parms & G_PART_PARM_LABEL) 723 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 724 sizeof(entry->ent.ent_name) / 725 sizeof(entry->ent.ent_name[0])); 726 return (0); 727 } 728 729 static int 730 g_part_gpt_resize(struct g_part_table *basetable, 731 struct g_part_entry *baseentry, struct g_part_parms *gpp) 732 { 733 struct g_part_gpt_entry *entry; 734 entry = (struct g_part_gpt_entry *)baseentry; 735 736 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; 737 entry->ent.ent_lba_end = baseentry->gpe_end; 738 739 return (0); 740 } 741 742 static const char * 743 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, 744 char *buf, size_t bufsz) 745 { 746 struct g_part_gpt_entry *entry; 747 char c; 748 749 entry = (struct g_part_gpt_entry *)baseentry; 750 c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; 751 snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); 752 return (buf); 753 } 754 755 static int 756 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) 757 { 758 struct g_provider *pp; 759 char *buf; 760 int error, res; 761 762 /* We don't nest, which means that our depth should be 0. */ 763 if (table->gpt_depth != 0) 764 return (ENXIO); 765 766 pp = cp->provider; 767 768 /* 769 * Sanity-check the provider. Since the first sector on the provider 770 * must be a PMBR and a PMBR is 512 bytes large, the sector size 771 * must be at least 512 bytes. Also, since the theoretical minimum 772 * number of sectors needed by GPT is 6, any medium that has less 773 * than 6 sectors is never going to be able to hold a GPT. The 774 * number 6 comes from: 775 * 1 sector for the PMBR 776 * 2 sectors for the GPT headers (each 1 sector) 777 * 2 sectors for the GPT tables (each 1 sector) 778 * 1 sector for an actual partition 779 * It's better to catch this pathological case early than behaving 780 * pathologically later on... 781 */ 782 if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) 783 return (ENOSPC); 784 785 /* Check that there's a MBR. */ 786 buf = g_read_data(cp, 0L, pp->sectorsize, &error); 787 if (buf == NULL) 788 return (error); 789 res = le16dec(buf + DOSMAGICOFFSET); 790 g_free(buf); 791 if (res != DOSMAGIC) 792 return (ENXIO); 793 794 /* Check that there's a primary header. */ 795 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); 796 if (buf == NULL) 797 return (error); 798 res = memcmp(buf, GPT_HDR_SIG, 8); 799 g_free(buf); 800 if (res == 0) 801 return (G_PART_PROBE_PRI_HIGH); 802 803 /* No primary? Check that there's a secondary. */ 804 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 805 &error); 806 if (buf == NULL) 807 return (error); 808 res = memcmp(buf, GPT_HDR_SIG, 8); 809 g_free(buf); 810 return ((res == 0) ? G_PART_PROBE_PRI_HIGH : ENXIO); 811 } 812 813 static int 814 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) 815 { 816 struct gpt_hdr *prihdr, *sechdr; 817 struct gpt_ent *tbl, *pritbl, *sectbl; 818 struct g_provider *pp; 819 struct g_part_gpt_table *table; 820 struct g_part_gpt_entry *entry; 821 u_char *buf; 822 uint64_t last; 823 int error, index; 824 825 table = (struct g_part_gpt_table *)basetable; 826 pp = cp->provider; 827 last = (pp->mediasize / pp->sectorsize) - 1; 828 829 /* Read the PMBR */ 830 buf = g_read_data(cp, 0, pp->sectorsize, &error); 831 if (buf == NULL) 832 return (error); 833 bcopy(buf, table->mbr, MBRSIZE); 834 g_free(buf); 835 836 /* Read the primary header and table. */ 837 prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); 838 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { 839 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); 840 } else { 841 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 842 pritbl = NULL; 843 } 844 845 /* Read the secondary header and table. */ 846 sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); 847 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { 848 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); 849 } else { 850 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 851 sectbl = NULL; 852 } 853 854 /* Fail if we haven't got any good tables at all. */ 855 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && 856 table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 857 printf("GEOM: %s: corrupt or invalid GPT detected.\n", 858 pp->name); 859 printf("GEOM: %s: GPT rejected -- may not be recoverable.\n", 860 pp->name); 861 return (EINVAL); 862 } 863 864 /* 865 * If both headers are good but they disagree with each other, 866 * then invalidate one. We prefer to keep the primary header, 867 * unless the primary table is corrupt. 868 */ 869 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && 870 table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 871 !gpt_matched_hdrs(prihdr, sechdr)) { 872 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { 873 table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; 874 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 875 g_free(sechdr); 876 sechdr = NULL; 877 } else { 878 table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; 879 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 880 g_free(prihdr); 881 prihdr = NULL; 882 } 883 } 884 885 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { 886 printf("GEOM: %s: the primary GPT table is corrupt or " 887 "invalid.\n", pp->name); 888 printf("GEOM: %s: using the secondary instead -- recovery " 889 "strongly advised.\n", pp->name); 890 table->hdr = sechdr; 891 basetable->gpt_corrupt = 1; 892 if (prihdr != NULL) 893 g_free(prihdr); 894 tbl = sectbl; 895 if (pritbl != NULL) 896 g_free(pritbl); 897 } else { 898 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 899 printf("GEOM: %s: the secondary GPT table is corrupt " 900 "or invalid.\n", pp->name); 901 printf("GEOM: %s: using the primary only -- recovery " 902 "suggested.\n", pp->name); 903 basetable->gpt_corrupt = 1; 904 } else if (table->lba[GPT_ELT_SECHDR] != last) { 905 printf( "GEOM: %s: the secondary GPT header is not in " 906 "the last LBA.\n", pp->name); 907 basetable->gpt_corrupt = 1; 908 } 909 table->hdr = prihdr; 910 if (sechdr != NULL) 911 g_free(sechdr); 912 tbl = pritbl; 913 if (sectbl != NULL) 914 g_free(sectbl); 915 } 916 917 basetable->gpt_first = table->hdr->hdr_lba_start; 918 basetable->gpt_last = table->hdr->hdr_lba_end; 919 basetable->gpt_entries = table->hdr->hdr_entries; 920 921 for (index = basetable->gpt_entries - 1; index >= 0; index--) { 922 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) 923 continue; 924 entry = (struct g_part_gpt_entry *)g_part_new_entry( 925 basetable, index + 1, tbl[index].ent_lba_start, 926 tbl[index].ent_lba_end); 927 entry->ent = tbl[index]; 928 } 929 930 g_free(tbl); 931 932 /* 933 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions 934 * if (and only if) any FAT32 or FAT16 partitions have been 935 * created. This happens irrespective of whether Boot Camp is 936 * used/enabled, though it's generally understood to be done 937 * to support legacy Windows under Boot Camp. We refer to this 938 * mirroring simply as Boot Camp. We try to detect Boot Camp 939 * so that we can update the MBR if and when GPT changes have 940 * been made. Note that we do not enable Boot Camp if not 941 * previously enabled because we can't assume that we're on a 942 * Mac alongside Mac OS X. 943 */ 944 table->bootcamp = gpt_is_bootcamp(table, pp->name); 945 946 return (0); 947 } 948 949 static int 950 g_part_gpt_recover(struct g_part_table *basetable) 951 { 952 struct g_part_gpt_table *table; 953 struct g_provider *pp; 954 955 table = (struct g_part_gpt_table *)basetable; 956 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 957 gpt_create_pmbr(table, pp); 958 g_gpt_set_defaults(basetable, pp); 959 basetable->gpt_corrupt = 0; 960 return (0); 961 } 962 963 static int 964 g_part_gpt_setunset(struct g_part_table *basetable, 965 struct g_part_entry *baseentry, const char *attrib, unsigned int set) 966 { 967 struct g_part_gpt_entry *entry; 968 struct g_part_gpt_table *table; 969 uint8_t *p; 970 uint64_t attr; 971 int i; 972 973 table = (struct g_part_gpt_table *)basetable; 974 entry = (struct g_part_gpt_entry *)baseentry; 975 976 if (strcasecmp(attrib, "active") == 0) { 977 if (table->bootcamp) { 978 /* The active flag must be set on a valid entry. */ 979 if (entry == NULL) 980 return (ENXIO); 981 if (baseentry->gpe_index > NDOSPART) 982 return (EINVAL); 983 for (i = 0; i < NDOSPART; i++) { 984 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 985 p[0] = (i == baseentry->gpe_index - 1) 986 ? ((set) ? 0x80 : 0) : 0; 987 } 988 } else { 989 /* The PMBR is marked as active without an entry. */ 990 if (entry != NULL) 991 return (ENXIO); 992 for (i = 0; i < NDOSPART; i++) { 993 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 994 p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0; 995 } 996 } 997 return (0); 998 } 999 1000 if (entry == NULL) 1001 return (ENODEV); 1002 1003 attr = 0; 1004 if (strcasecmp(attrib, "bootme") == 0) { 1005 attr |= GPT_ENT_ATTR_BOOTME; 1006 } else if (strcasecmp(attrib, "bootonce") == 0) { 1007 attr |= GPT_ENT_ATTR_BOOTONCE; 1008 if (set) 1009 attr |= GPT_ENT_ATTR_BOOTME; 1010 } else if (strcasecmp(attrib, "bootfailed") == 0) { 1011 /* 1012 * It should only be possible to unset BOOTFAILED, but it might 1013 * be useful for test purposes to also be able to set it. 1014 */ 1015 attr |= GPT_ENT_ATTR_BOOTFAILED; 1016 } 1017 if (attr == 0) 1018 return (EINVAL); 1019 1020 if (set) 1021 attr = entry->ent.ent_attr | attr; 1022 else 1023 attr = entry->ent.ent_attr & ~attr; 1024 if (attr != entry->ent.ent_attr) { 1025 entry->ent.ent_attr = attr; 1026 if (!baseentry->gpe_created) 1027 baseentry->gpe_modified = 1; 1028 } 1029 return (0); 1030 } 1031 1032 static const char * 1033 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 1034 char *buf, size_t bufsz) 1035 { 1036 struct g_part_gpt_entry *entry; 1037 struct uuid *type; 1038 struct g_part_uuid_alias *uap; 1039 1040 entry = (struct g_part_gpt_entry *)baseentry; 1041 type = &entry->ent.ent_type; 1042 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) 1043 if (EQUUID(type, uap->uuid)) 1044 return (g_part_alias_name(uap->alias)); 1045 buf[0] = '!'; 1046 snprintf_uuid(buf + 1, bufsz - 1, type); 1047 1048 return (buf); 1049 } 1050 1051 static int 1052 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) 1053 { 1054 unsigned char *buf, *bp; 1055 struct g_provider *pp; 1056 struct g_part_entry *baseentry; 1057 struct g_part_gpt_entry *entry; 1058 struct g_part_gpt_table *table; 1059 size_t tblsz; 1060 uint32_t crc; 1061 int error, index; 1062 1063 pp = cp->provider; 1064 table = (struct g_part_gpt_table *)basetable; 1065 tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz + 1066 pp->sectorsize - 1) / pp->sectorsize; 1067 1068 /* Reconstruct the MBR from the GPT if under Boot Camp. */ 1069 if (table->bootcamp) 1070 gpt_update_bootcamp(basetable, pp); 1071 1072 /* Write the PMBR */ 1073 buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); 1074 bcopy(table->mbr, buf, MBRSIZE); 1075 error = g_write_data(cp, 0, buf, pp->sectorsize); 1076 g_free(buf); 1077 if (error) 1078 return (error); 1079 1080 /* Allocate space for the header and entries. */ 1081 buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); 1082 1083 memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 1084 le32enc(buf + 8, table->hdr->hdr_revision); 1085 le32enc(buf + 12, table->hdr->hdr_size); 1086 le64enc(buf + 40, table->hdr->hdr_lba_start); 1087 le64enc(buf + 48, table->hdr->hdr_lba_end); 1088 le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); 1089 le32enc(buf + 80, table->hdr->hdr_entries); 1090 le32enc(buf + 84, table->hdr->hdr_entsz); 1091 1092 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1093 if (baseentry->gpe_deleted) 1094 continue; 1095 entry = (struct g_part_gpt_entry *)baseentry; 1096 index = baseentry->gpe_index - 1; 1097 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; 1098 le_uuid_enc(bp, &entry->ent.ent_type); 1099 le_uuid_enc(bp + 16, &entry->ent.ent_uuid); 1100 le64enc(bp + 32, entry->ent.ent_lba_start); 1101 le64enc(bp + 40, entry->ent.ent_lba_end); 1102 le64enc(bp + 48, entry->ent.ent_attr); 1103 memcpy(bp + 56, entry->ent.ent_name, 1104 sizeof(entry->ent.ent_name)); 1105 } 1106 1107 crc = crc32(buf + pp->sectorsize, 1108 table->hdr->hdr_entries * table->hdr->hdr_entsz); 1109 le32enc(buf + 88, crc); 1110 1111 /* Write primary meta-data. */ 1112 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1113 le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ 1114 le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ 1115 le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ 1116 crc = crc32(buf, table->hdr->hdr_size); 1117 le32enc(buf + 16, crc); 1118 1119 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1120 error = g_write_data(cp, 1121 (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize, 1122 buf + (index + 1) * pp->sectorsize, 1123 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1124 (tblsz - index) * pp->sectorsize); 1125 if (error) 1126 goto out; 1127 } 1128 error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, 1129 buf, pp->sectorsize); 1130 if (error) 1131 goto out; 1132 1133 /* Write secondary meta-data. */ 1134 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1135 le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ 1136 le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ 1137 le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ 1138 crc = crc32(buf, table->hdr->hdr_size); 1139 le32enc(buf + 16, crc); 1140 1141 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1142 error = g_write_data(cp, 1143 (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize, 1144 buf + (index + 1) * pp->sectorsize, 1145 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1146 (tblsz - index) * pp->sectorsize); 1147 if (error) 1148 goto out; 1149 } 1150 error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, 1151 buf, pp->sectorsize); 1152 1153 out: 1154 g_free(buf); 1155 return (error); 1156 } 1157 1158 static void 1159 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp) 1160 { 1161 struct g_part_gpt_table *table; 1162 quad_t last; 1163 size_t tblsz; 1164 1165 table = (struct g_part_gpt_table *)basetable; 1166 last = pp->mediasize / pp->sectorsize - 1; 1167 tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) + 1168 pp->sectorsize - 1) / pp->sectorsize; 1169 1170 table->lba[GPT_ELT_PRIHDR] = 1; 1171 table->lba[GPT_ELT_PRITBL] = 2; 1172 table->lba[GPT_ELT_SECHDR] = last; 1173 table->lba[GPT_ELT_SECTBL] = last - tblsz; 1174 table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK; 1175 table->state[GPT_ELT_PRITBL] = GPT_STATE_OK; 1176 table->state[GPT_ELT_SECHDR] = GPT_STATE_OK; 1177 table->state[GPT_ELT_SECTBL] = GPT_STATE_OK; 1178 1179 table->hdr->hdr_lba_start = 2 + tblsz; 1180 table->hdr->hdr_lba_end = last - tblsz - 1; 1181 1182 basetable->gpt_first = table->hdr->hdr_lba_start; 1183 basetable->gpt_last = table->hdr->hdr_lba_end; 1184 } 1185 1186 static void 1187 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) 1188 { 1189 u_int bo; 1190 uint32_t ch; 1191 uint16_t c; 1192 1193 bo = LITTLE_ENDIAN; /* GPT is little-endian */ 1194 while (len > 0 && *str != 0) { 1195 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); 1196 str++, len--; 1197 if ((ch & 0xf800) == 0xd800) { 1198 if (len > 0) { 1199 c = (bo == BIG_ENDIAN) ? be16toh(*str) 1200 : le16toh(*str); 1201 str++, len--; 1202 } else 1203 c = 0xfffd; 1204 if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { 1205 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); 1206 ch += 0x10000; 1207 } else 1208 ch = 0xfffd; 1209 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ 1210 bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; 1211 continue; 1212 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ 1213 continue; 1214 1215 /* Write the Unicode character in UTF-8 */ 1216 if (ch < 0x80) 1217 sbuf_printf(sb, "%c", ch); 1218 else if (ch < 0x800) 1219 sbuf_printf(sb, "%c%c", 0xc0 | (ch >> 6), 1220 0x80 | (ch & 0x3f)); 1221 else if (ch < 0x10000) 1222 sbuf_printf(sb, "%c%c%c", 0xe0 | (ch >> 12), 1223 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1224 else if (ch < 0x200000) 1225 sbuf_printf(sb, "%c%c%c%c", 0xf0 | (ch >> 18), 1226 0x80 | ((ch >> 12) & 0x3f), 1227 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1228 } 1229 } 1230 1231 static void 1232 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) 1233 { 1234 size_t s16idx, s8idx; 1235 uint32_t utfchar; 1236 unsigned int c, utfbytes; 1237 1238 s8idx = s16idx = 0; 1239 utfchar = 0; 1240 utfbytes = 0; 1241 bzero(s16, s16len << 1); 1242 while (s8[s8idx] != 0 && s16idx < s16len) { 1243 c = s8[s8idx++]; 1244 if ((c & 0xc0) != 0x80) { 1245 /* Initial characters. */ 1246 if (utfbytes != 0) { 1247 /* Incomplete encoding of previous char. */ 1248 s16[s16idx++] = htole16(0xfffd); 1249 } 1250 if ((c & 0xf8) == 0xf0) { 1251 utfchar = c & 0x07; 1252 utfbytes = 3; 1253 } else if ((c & 0xf0) == 0xe0) { 1254 utfchar = c & 0x0f; 1255 utfbytes = 2; 1256 } else if ((c & 0xe0) == 0xc0) { 1257 utfchar = c & 0x1f; 1258 utfbytes = 1; 1259 } else { 1260 utfchar = c & 0x7f; 1261 utfbytes = 0; 1262 } 1263 } else { 1264 /* Followup characters. */ 1265 if (utfbytes > 0) { 1266 utfchar = (utfchar << 6) + (c & 0x3f); 1267 utfbytes--; 1268 } else if (utfbytes == 0) 1269 utfbytes = ~0; 1270 } 1271 /* 1272 * Write the complete Unicode character as UTF-16 when we 1273 * have all the UTF-8 charactars collected. 1274 */ 1275 if (utfbytes == 0) { 1276 /* 1277 * If we need to write 2 UTF-16 characters, but 1278 * we only have room for 1, then we truncate the 1279 * string by writing a 0 instead. 1280 */ 1281 if (utfchar >= 0x10000 && s16idx < s16len - 1) { 1282 s16[s16idx++] = 1283 htole16(0xd800 | ((utfchar >> 10) - 0x40)); 1284 s16[s16idx++] = 1285 htole16(0xdc00 | (utfchar & 0x3ff)); 1286 } else 1287 s16[s16idx++] = (utfchar >= 0x10000) ? 0 : 1288 htole16(utfchar); 1289 } 1290 } 1291 /* 1292 * If our input string was truncated, append an invalid encoding 1293 * character to the output string. 1294 */ 1295 if (utfbytes != 0 && s16idx < s16len) 1296 s16[s16idx++] = htole16(0xfffd); 1297 } 1298