xref: /freebsd/sys/geom/part/g_part_gpt.c (revision a98ff317388a00b992f1bf8404dee596f9383f5e)
1 /*-
2  * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/bio.h>
32 #include <sys/diskmbr.h>
33 #include <sys/endian.h>
34 #include <sys/gpt.h>
35 #include <sys/kernel.h>
36 #include <sys/kobj.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mutex.h>
41 #include <sys/queue.h>
42 #include <sys/sbuf.h>
43 #include <sys/systm.h>
44 #include <sys/sysctl.h>
45 #include <sys/uuid.h>
46 #include <geom/geom.h>
47 #include <geom/part/g_part.h>
48 
49 #include "g_part_if.h"
50 
51 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support");
52 
53 CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
54 CTASSERT(sizeof(struct gpt_ent) == 128);
55 
56 #define	EQUUID(a,b)	(memcmp(a, b, sizeof(struct uuid)) == 0)
57 
58 #define	MBRSIZE		512
59 
60 enum gpt_elt {
61 	GPT_ELT_PRIHDR,
62 	GPT_ELT_PRITBL,
63 	GPT_ELT_SECHDR,
64 	GPT_ELT_SECTBL,
65 	GPT_ELT_COUNT
66 };
67 
68 enum gpt_state {
69 	GPT_STATE_UNKNOWN,	/* Not determined. */
70 	GPT_STATE_MISSING,	/* No signature found. */
71 	GPT_STATE_CORRUPT,	/* Checksum mismatch. */
72 	GPT_STATE_INVALID,	/* Nonconformant/invalid. */
73 	GPT_STATE_OK		/* Perfectly fine. */
74 };
75 
76 struct g_part_gpt_table {
77 	struct g_part_table	base;
78 	u_char			mbr[MBRSIZE];
79 	struct gpt_hdr		*hdr;
80 	quad_t			lba[GPT_ELT_COUNT];
81 	enum gpt_state		state[GPT_ELT_COUNT];
82 	int			bootcamp;
83 };
84 
85 struct g_part_gpt_entry {
86 	struct g_part_entry	base;
87 	struct gpt_ent		ent;
88 };
89 
90 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
91 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
92 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *);
93 
94 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
95     struct g_part_parms *);
96 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
97 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
98 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
99 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
100     struct sbuf *, const char *);
101 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
102 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,
103     struct g_part_parms *);
104 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
105     char *, size_t);
106 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
107 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
108 static int g_part_gpt_setunset(struct g_part_table *table,
109     struct g_part_entry *baseentry, const char *attrib, unsigned int set);
110 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
111     char *, size_t);
112 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
113 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *,
114     struct g_part_parms *);
115 static int g_part_gpt_recover(struct g_part_table *);
116 
117 static kobj_method_t g_part_gpt_methods[] = {
118 	KOBJMETHOD(g_part_add,		g_part_gpt_add),
119 	KOBJMETHOD(g_part_bootcode,	g_part_gpt_bootcode),
120 	KOBJMETHOD(g_part_create,	g_part_gpt_create),
121 	KOBJMETHOD(g_part_destroy,	g_part_gpt_destroy),
122 	KOBJMETHOD(g_part_dumpconf,	g_part_gpt_dumpconf),
123 	KOBJMETHOD(g_part_dumpto,	g_part_gpt_dumpto),
124 	KOBJMETHOD(g_part_modify,	g_part_gpt_modify),
125 	KOBJMETHOD(g_part_resize,	g_part_gpt_resize),
126 	KOBJMETHOD(g_part_name,		g_part_gpt_name),
127 	KOBJMETHOD(g_part_probe,	g_part_gpt_probe),
128 	KOBJMETHOD(g_part_read,		g_part_gpt_read),
129 	KOBJMETHOD(g_part_recover,	g_part_gpt_recover),
130 	KOBJMETHOD(g_part_setunset,	g_part_gpt_setunset),
131 	KOBJMETHOD(g_part_type,		g_part_gpt_type),
132 	KOBJMETHOD(g_part_write,	g_part_gpt_write),
133 	{ 0, 0 }
134 };
135 
136 static struct g_part_scheme g_part_gpt_scheme = {
137 	"GPT",
138 	g_part_gpt_methods,
139 	sizeof(struct g_part_gpt_table),
140 	.gps_entrysz = sizeof(struct g_part_gpt_entry),
141 	.gps_minent = 128,
142 	.gps_maxent = 4096,
143 	.gps_bootcodesz = MBRSIZE,
144 };
145 G_PART_SCHEME_DECLARE(g_part_gpt);
146 
147 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT;
148 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
149 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL;
150 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID;
151 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE;
152 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY;
153 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS;
154 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT;
155 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
156 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
157 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
158 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
159 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
160 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
161 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
162 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
163 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
164 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM;
165 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID;
166 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
167 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS;
168 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG;
169 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED;
170 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
171 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED;
172 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA;
173 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA;
174 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD;
175 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD;
176 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS;
177 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS;
178 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID;
179 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP;
180 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
181 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
182 
183 static struct g_part_uuid_alias {
184 	struct uuid *uuid;
185 	int alias;
186 	int mbrtype;
187 } gpt_uuid_alias_match[] = {
188 	{ &gpt_uuid_apple_boot,		G_PART_ALIAS_APPLE_BOOT,	 0xab },
189 	{ &gpt_uuid_apple_hfs,		G_PART_ALIAS_APPLE_HFS,		 0xaf },
190 	{ &gpt_uuid_apple_label,	G_PART_ALIAS_APPLE_LABEL,	 0 },
191 	{ &gpt_uuid_apple_raid,		G_PART_ALIAS_APPLE_RAID,	 0 },
192 	{ &gpt_uuid_apple_raid_offline,	G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 },
193 	{ &gpt_uuid_apple_tv_recovery,	G_PART_ALIAS_APPLE_TV_RECOVERY,	 0 },
194 	{ &gpt_uuid_apple_ufs,		G_PART_ALIAS_APPLE_UFS,		 0 },
195 	{ &gpt_uuid_bios_boot,		G_PART_ALIAS_BIOS_BOOT,		 0 },
196 	{ &gpt_uuid_efi, 		G_PART_ALIAS_EFI,		 0xee },
197 	{ &gpt_uuid_freebsd,		G_PART_ALIAS_FREEBSD,		 0xa5 },
198 	{ &gpt_uuid_freebsd_boot, 	G_PART_ALIAS_FREEBSD_BOOT,	 0 },
199 	{ &gpt_uuid_freebsd_nandfs, 	G_PART_ALIAS_FREEBSD_NANDFS,	 0 },
200 	{ &gpt_uuid_freebsd_swap,	G_PART_ALIAS_FREEBSD_SWAP,	 0 },
201 	{ &gpt_uuid_freebsd_ufs,	G_PART_ALIAS_FREEBSD_UFS,	 0 },
202 	{ &gpt_uuid_freebsd_vinum,	G_PART_ALIAS_FREEBSD_VINUM,	 0 },
203 	{ &gpt_uuid_freebsd_zfs,	G_PART_ALIAS_FREEBSD_ZFS,	 0 },
204 	{ &gpt_uuid_linux_data,		G_PART_ALIAS_LINUX_DATA,	 0x0b },
205 	{ &gpt_uuid_linux_lvm,		G_PART_ALIAS_LINUX_LVM,		 0 },
206 	{ &gpt_uuid_linux_raid,		G_PART_ALIAS_LINUX_RAID,	 0 },
207 	{ &gpt_uuid_linux_swap,		G_PART_ALIAS_LINUX_SWAP,	 0 },
208 	{ &gpt_uuid_vmfs,		G_PART_ALIAS_VMFS,		 0 },
209 	{ &gpt_uuid_vmkdiag,		G_PART_ALIAS_VMKDIAG,		 0 },
210 	{ &gpt_uuid_vmreserved,		G_PART_ALIAS_VMRESERVED,	 0 },
211 	{ &gpt_uuid_mbr,		G_PART_ALIAS_MBR,		 0 },
212 	{ &gpt_uuid_ms_basic_data,	G_PART_ALIAS_MS_BASIC_DATA,	 0x0b },
213 	{ &gpt_uuid_ms_ldm_data,	G_PART_ALIAS_MS_LDM_DATA,	 0 },
214 	{ &gpt_uuid_ms_ldm_metadata,	G_PART_ALIAS_MS_LDM_METADATA,	 0 },
215 	{ &gpt_uuid_ms_reserved,	G_PART_ALIAS_MS_RESERVED,	 0 },
216 	{ &gpt_uuid_netbsd_ccd,		G_PART_ALIAS_NETBSD_CCD,	 0 },
217 	{ &gpt_uuid_netbsd_cgd,		G_PART_ALIAS_NETBSD_CGD,	 0 },
218 	{ &gpt_uuid_netbsd_ffs,		G_PART_ALIAS_NETBSD_FFS,	 0 },
219 	{ &gpt_uuid_netbsd_lfs,		G_PART_ALIAS_NETBSD_LFS,	 0 },
220 	{ &gpt_uuid_netbsd_raid,	G_PART_ALIAS_NETBSD_RAID,	 0 },
221 	{ &gpt_uuid_netbsd_swap,	G_PART_ALIAS_NETBSD_SWAP,	 0 },
222 	{ NULL, 0, 0 }
223 };
224 
225 static int
226 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start,
227     quad_t end)
228 {
229 
230 	if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX)
231 		return (EINVAL);
232 
233 	mbr += DOSPARTOFF + idx * DOSPARTSIZE;
234 	mbr[0] = 0;
235 	if (start == 1) {
236 		/*
237 		 * Treat the PMBR partition specially to maximize
238 		 * interoperability with BIOSes.
239 		 */
240 		mbr[1] = mbr[3] = 0;
241 		mbr[2] = 2;
242 	} else
243 		mbr[1] = mbr[2] = mbr[3] = 0xff;
244 	mbr[4] = typ;
245 	mbr[5] = mbr[6] = mbr[7] = 0xff;
246 	le32enc(mbr + 8, (uint32_t)start);
247 	le32enc(mbr + 12, (uint32_t)(end - start + 1));
248 	return (0);
249 }
250 
251 static int
252 gpt_map_type(struct uuid *t)
253 {
254 	struct g_part_uuid_alias *uap;
255 
256 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
257 		if (EQUUID(t, uap->uuid))
258 			return (uap->mbrtype);
259 	}
260 	return (0);
261 }
262 
263 static void
264 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp)
265 {
266 
267 	bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
268 	gpt_write_mbr_entry(table->mbr, 0, 0xee, 1,
269 	    MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
270 	le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
271 }
272 
273 /*
274  * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the
275  * whole disk anymore. Rather, it covers the GPT table and the EFI
276  * system partition only. This way the HFS+ partition and any FAT
277  * partitions can be added to the MBR without creating an overlap.
278  */
279 static int
280 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname)
281 {
282 	uint8_t *p;
283 
284 	p = table->mbr + DOSPARTOFF;
285 	if (p[4] != 0xee || le32dec(p + 8) != 1)
286 		return (0);
287 
288 	p += DOSPARTSIZE;
289 	if (p[4] != 0xaf)
290 		return (0);
291 
292 	printf("GEOM: %s: enabling Boot Camp\n", provname);
293 	return (1);
294 }
295 
296 static void
297 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp)
298 {
299 	struct g_part_entry *baseentry;
300 	struct g_part_gpt_entry *entry;
301 	struct g_part_gpt_table *table;
302 	int bootable, error, index, slices, typ;
303 
304 	table = (struct g_part_gpt_table *)basetable;
305 
306 	bootable = -1;
307 	for (index = 0; index < NDOSPART; index++) {
308 		if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index])
309 			bootable = index;
310 	}
311 
312 	bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
313 	slices = 0;
314 	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
315 		if (baseentry->gpe_deleted)
316 			continue;
317 		index = baseentry->gpe_index - 1;
318 		if (index >= NDOSPART)
319 			continue;
320 
321 		entry = (struct g_part_gpt_entry *)baseentry;
322 
323 		switch (index) {
324 		case 0:	/* This must be the EFI system partition. */
325 			if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi))
326 				goto disable;
327 			error = gpt_write_mbr_entry(table->mbr, index, 0xee,
328 			    1ull, entry->ent.ent_lba_end);
329 			break;
330 		case 1:	/* This must be the HFS+ partition. */
331 			if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs))
332 				goto disable;
333 			error = gpt_write_mbr_entry(table->mbr, index, 0xaf,
334 			    entry->ent.ent_lba_start, entry->ent.ent_lba_end);
335 			break;
336 		default:
337 			typ = gpt_map_type(&entry->ent.ent_type);
338 			error = gpt_write_mbr_entry(table->mbr, index, typ,
339 			    entry->ent.ent_lba_start, entry->ent.ent_lba_end);
340 			break;
341 		}
342 		if (error)
343 			continue;
344 
345 		if (index == bootable)
346 			table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80;
347 		slices |= 1 << index;
348 	}
349 	if ((slices & 3) == 3)
350 		return;
351 
352  disable:
353 	table->bootcamp = 0;
354 	gpt_create_pmbr(table, pp);
355 }
356 
357 static struct gpt_hdr *
358 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
359     enum gpt_elt elt)
360 {
361 	struct gpt_hdr *buf, *hdr;
362 	struct g_provider *pp;
363 	quad_t lba, last;
364 	int error;
365 	uint32_t crc, sz;
366 
367 	pp = cp->provider;
368 	last = (pp->mediasize / pp->sectorsize) - 1;
369 	table->state[elt] = GPT_STATE_MISSING;
370 	/*
371 	 * If the primary header is valid look for secondary
372 	 * header in AlternateLBA, otherwise in the last medium's LBA.
373 	 */
374 	if (elt == GPT_ELT_SECHDR) {
375 		if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK)
376 			table->lba[elt] = last;
377 	} else
378 		table->lba[elt] = 1;
379 	buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
380 	    &error);
381 	if (buf == NULL)
382 		return (NULL);
383 	hdr = NULL;
384 	if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0)
385 		goto fail;
386 
387 	table->state[elt] = GPT_STATE_CORRUPT;
388 	sz = le32toh(buf->hdr_size);
389 	if (sz < 92 || sz > pp->sectorsize)
390 		goto fail;
391 
392 	hdr = g_malloc(sz, M_WAITOK | M_ZERO);
393 	bcopy(buf, hdr, sz);
394 	hdr->hdr_size = sz;
395 
396 	crc = le32toh(buf->hdr_crc_self);
397 	buf->hdr_crc_self = 0;
398 	if (crc32(buf, sz) != crc)
399 		goto fail;
400 	hdr->hdr_crc_self = crc;
401 
402 	table->state[elt] = GPT_STATE_INVALID;
403 	hdr->hdr_revision = le32toh(buf->hdr_revision);
404 	if (hdr->hdr_revision < GPT_HDR_REVISION)
405 		goto fail;
406 	hdr->hdr_lba_self = le64toh(buf->hdr_lba_self);
407 	if (hdr->hdr_lba_self != table->lba[elt])
408 		goto fail;
409 	hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt);
410 	if (hdr->hdr_lba_alt == hdr->hdr_lba_self ||
411 	    hdr->hdr_lba_alt > last)
412 		goto fail;
413 
414 	/* Check the managed area. */
415 	hdr->hdr_lba_start = le64toh(buf->hdr_lba_start);
416 	if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
417 		goto fail;
418 	hdr->hdr_lba_end = le64toh(buf->hdr_lba_end);
419 	if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
420 		goto fail;
421 
422 	/* Check the table location and size of the table. */
423 	hdr->hdr_entries = le32toh(buf->hdr_entries);
424 	hdr->hdr_entsz = le32toh(buf->hdr_entsz);
425 	if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
426 	    (hdr->hdr_entsz & 7) != 0)
427 		goto fail;
428 	hdr->hdr_lba_table = le64toh(buf->hdr_lba_table);
429 	if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
430 		goto fail;
431 	if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
432 	    hdr->hdr_lba_table <= hdr->hdr_lba_end)
433 		goto fail;
434 	lba = hdr->hdr_lba_table +
435 	    (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) /
436 	    pp->sectorsize - 1;
437 	if (lba >= last)
438 		goto fail;
439 	if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
440 		goto fail;
441 
442 	table->state[elt] = GPT_STATE_OK;
443 	le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid);
444 	hdr->hdr_crc_table = le32toh(buf->hdr_crc_table);
445 
446 	/* save LBA for secondary header */
447 	if (elt == GPT_ELT_PRIHDR)
448 		table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt;
449 
450 	g_free(buf);
451 	return (hdr);
452 
453  fail:
454 	if (hdr != NULL)
455 		g_free(hdr);
456 	g_free(buf);
457 	return (NULL);
458 }
459 
460 static struct gpt_ent *
461 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
462     enum gpt_elt elt, struct gpt_hdr *hdr)
463 {
464 	struct g_provider *pp;
465 	struct gpt_ent *ent, *tbl;
466 	char *buf, *p;
467 	unsigned int idx, sectors, tblsz, size;
468 	int error;
469 
470 	if (hdr == NULL)
471 		return (NULL);
472 
473 	pp = cp->provider;
474 	table->lba[elt] = hdr->hdr_lba_table;
475 
476 	table->state[elt] = GPT_STATE_MISSING;
477 	tblsz = hdr->hdr_entries * hdr->hdr_entsz;
478 	sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize;
479 	buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO);
480 	for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) {
481 		size = (sectors - idx > MAXPHYS / pp->sectorsize) ?  MAXPHYS:
482 		    (sectors - idx) * pp->sectorsize;
483 		p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize,
484 		    size, &error);
485 		if (p == NULL) {
486 			g_free(buf);
487 			return (NULL);
488 		}
489 		bcopy(p, buf + idx * pp->sectorsize, size);
490 		g_free(p);
491 	}
492 	table->state[elt] = GPT_STATE_CORRUPT;
493 	if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
494 		g_free(buf);
495 		return (NULL);
496 	}
497 
498 	table->state[elt] = GPT_STATE_OK;
499 	tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
500 	    M_WAITOK | M_ZERO);
501 
502 	for (idx = 0, ent = tbl, p = buf;
503 	     idx < hdr->hdr_entries;
504 	     idx++, ent++, p += hdr->hdr_entsz) {
505 		le_uuid_dec(p, &ent->ent_type);
506 		le_uuid_dec(p + 16, &ent->ent_uuid);
507 		ent->ent_lba_start = le64dec(p + 32);
508 		ent->ent_lba_end = le64dec(p + 40);
509 		ent->ent_attr = le64dec(p + 48);
510 		/* Keep UTF-16 in little-endian. */
511 		bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
512 	}
513 
514 	g_free(buf);
515 	return (tbl);
516 }
517 
518 static int
519 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
520 {
521 
522 	if (pri == NULL || sec == NULL)
523 		return (0);
524 
525 	if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
526 		return (0);
527 	return ((pri->hdr_revision == sec->hdr_revision &&
528 	    pri->hdr_size == sec->hdr_size &&
529 	    pri->hdr_lba_start == sec->hdr_lba_start &&
530 	    pri->hdr_lba_end == sec->hdr_lba_end &&
531 	    pri->hdr_entries == sec->hdr_entries &&
532 	    pri->hdr_entsz == sec->hdr_entsz &&
533 	    pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
534 }
535 
536 static int
537 gpt_parse_type(const char *type, struct uuid *uuid)
538 {
539 	struct uuid tmp;
540 	const char *alias;
541 	int error;
542 	struct g_part_uuid_alias *uap;
543 
544 	if (type[0] == '!') {
545 		error = parse_uuid(type + 1, &tmp);
546 		if (error)
547 			return (error);
548 		if (EQUUID(&tmp, &gpt_uuid_unused))
549 			return (EINVAL);
550 		*uuid = tmp;
551 		return (0);
552 	}
553 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
554 		alias = g_part_alias_name(uap->alias);
555 		if (!strcasecmp(type, alias)) {
556 			*uuid = *uap->uuid;
557 			return (0);
558 		}
559 	}
560 	return (EINVAL);
561 }
562 
563 static int
564 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
565     struct g_part_parms *gpp)
566 {
567 	struct g_part_gpt_entry *entry;
568 	int error;
569 
570 	entry = (struct g_part_gpt_entry *)baseentry;
571 	error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
572 	if (error)
573 		return (error);
574 	kern_uuidgen(&entry->ent.ent_uuid, 1);
575 	entry->ent.ent_lba_start = baseentry->gpe_start;
576 	entry->ent.ent_lba_end = baseentry->gpe_end;
577 	if (baseentry->gpe_deleted) {
578 		entry->ent.ent_attr = 0;
579 		bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
580 	}
581 	if (gpp->gpp_parms & G_PART_PARM_LABEL)
582 		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
583 		    sizeof(entry->ent.ent_name) /
584 		    sizeof(entry->ent.ent_name[0]));
585 	return (0);
586 }
587 
588 static int
589 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
590 {
591 	struct g_part_gpt_table *table;
592 	size_t codesz;
593 
594 	codesz = DOSPARTOFF;
595 	table = (struct g_part_gpt_table *)basetable;
596 	bzero(table->mbr, codesz);
597 	codesz = MIN(codesz, gpp->gpp_codesize);
598 	if (codesz > 0)
599 		bcopy(gpp->gpp_codeptr, table->mbr, codesz);
600 	return (0);
601 }
602 
603 static int
604 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
605 {
606 	struct g_provider *pp;
607 	struct g_part_gpt_table *table;
608 	size_t tblsz;
609 
610 	/* We don't nest, which means that our depth should be 0. */
611 	if (basetable->gpt_depth != 0)
612 		return (ENXIO);
613 
614 	table = (struct g_part_gpt_table *)basetable;
615 	pp = gpp->gpp_provider;
616 	tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
617 	    pp->sectorsize - 1) / pp->sectorsize;
618 	if (pp->sectorsize < MBRSIZE ||
619 	    pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
620 	    pp->sectorsize)
621 		return (ENOSPC);
622 
623 	gpt_create_pmbr(table, pp);
624 
625 	/* Allocate space for the header */
626 	table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO);
627 
628 	bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
629 	table->hdr->hdr_revision = GPT_HDR_REVISION;
630 	table->hdr->hdr_size = offsetof(struct gpt_hdr, padding);
631 	kern_uuidgen(&table->hdr->hdr_uuid, 1);
632 	table->hdr->hdr_entries = basetable->gpt_entries;
633 	table->hdr->hdr_entsz = sizeof(struct gpt_ent);
634 
635 	g_gpt_set_defaults(basetable, pp);
636 	return (0);
637 }
638 
639 static int
640 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
641 {
642 	struct g_part_gpt_table *table;
643 	struct g_provider *pp;
644 
645 	table = (struct g_part_gpt_table *)basetable;
646 	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
647 	g_free(table->hdr);
648 	table->hdr = NULL;
649 
650 	/*
651 	 * Wipe the first 2 sectors to clear the partitioning. Wipe the last
652 	 * sector only if it has valid secondary header.
653 	 */
654 	basetable->gpt_smhead |= 3;
655 	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
656 	    table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1)
657 		basetable->gpt_smtail |= 1;
658 	return (0);
659 }
660 
661 static void
662 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry,
663     struct sbuf *sb, const char *indent)
664 {
665 	struct g_part_gpt_entry *entry;
666 
667 	entry = (struct g_part_gpt_entry *)baseentry;
668 	if (indent == NULL) {
669 		/* conftxt: libdisk compatibility */
670 		sbuf_printf(sb, " xs GPT xt ");
671 		sbuf_printf_uuid(sb, &entry->ent.ent_type);
672 	} else if (entry != NULL) {
673 		/* confxml: partition entry information */
674 		sbuf_printf(sb, "%s<label>", indent);
675 		g_gpt_printf_utf16(sb, entry->ent.ent_name,
676 		    sizeof(entry->ent.ent_name) >> 1);
677 		sbuf_printf(sb, "</label>\n");
678 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)
679 			sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent);
680 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) {
681 			sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n",
682 			    indent);
683 		}
684 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) {
685 			sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n",
686 			    indent);
687 		}
688 		sbuf_printf(sb, "%s<rawtype>", indent);
689 		sbuf_printf_uuid(sb, &entry->ent.ent_type);
690 		sbuf_printf(sb, "</rawtype>\n");
691 		sbuf_printf(sb, "%s<rawuuid>", indent);
692 		sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
693 		sbuf_printf(sb, "</rawuuid>\n");
694 	} else {
695 		/* confxml: scheme information */
696 	}
697 }
698 
699 static int
700 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
701 {
702 	struct g_part_gpt_entry *entry;
703 
704 	entry = (struct g_part_gpt_entry *)baseentry;
705 	return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
706 	    EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap)) ? 1 : 0);
707 }
708 
709 static int
710 g_part_gpt_modify(struct g_part_table *basetable,
711     struct g_part_entry *baseentry, struct g_part_parms *gpp)
712 {
713 	struct g_part_gpt_entry *entry;
714 	int error;
715 
716 	entry = (struct g_part_gpt_entry *)baseentry;
717 	if (gpp->gpp_parms & G_PART_PARM_TYPE) {
718 		error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
719 		if (error)
720 			return (error);
721 	}
722 	if (gpp->gpp_parms & G_PART_PARM_LABEL)
723 		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
724 		    sizeof(entry->ent.ent_name) /
725 		    sizeof(entry->ent.ent_name[0]));
726 	return (0);
727 }
728 
729 static int
730 g_part_gpt_resize(struct g_part_table *basetable,
731     struct g_part_entry *baseentry, struct g_part_parms *gpp)
732 {
733 	struct g_part_gpt_entry *entry;
734 	entry = (struct g_part_gpt_entry *)baseentry;
735 
736 	baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
737 	entry->ent.ent_lba_end = baseentry->gpe_end;
738 
739 	return (0);
740 }
741 
742 static const char *
743 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
744     char *buf, size_t bufsz)
745 {
746 	struct g_part_gpt_entry *entry;
747 	char c;
748 
749 	entry = (struct g_part_gpt_entry *)baseentry;
750 	c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
751 	snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
752 	return (buf);
753 }
754 
755 static int
756 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
757 {
758 	struct g_provider *pp;
759 	char *buf;
760 	int error, res;
761 
762 	/* We don't nest, which means that our depth should be 0. */
763 	if (table->gpt_depth != 0)
764 		return (ENXIO);
765 
766 	pp = cp->provider;
767 
768 	/*
769 	 * Sanity-check the provider. Since the first sector on the provider
770 	 * must be a PMBR and a PMBR is 512 bytes large, the sector size
771 	 * must be at least 512 bytes.  Also, since the theoretical minimum
772 	 * number of sectors needed by GPT is 6, any medium that has less
773 	 * than 6 sectors is never going to be able to hold a GPT. The
774 	 * number 6 comes from:
775 	 *	1 sector for the PMBR
776 	 *	2 sectors for the GPT headers (each 1 sector)
777 	 *	2 sectors for the GPT tables (each 1 sector)
778 	 *	1 sector for an actual partition
779 	 * It's better to catch this pathological case early than behaving
780 	 * pathologically later on...
781 	 */
782 	if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
783 		return (ENOSPC);
784 
785 	/* Check that there's a MBR. */
786 	buf = g_read_data(cp, 0L, pp->sectorsize, &error);
787 	if (buf == NULL)
788 		return (error);
789 	res = le16dec(buf + DOSMAGICOFFSET);
790 	g_free(buf);
791 	if (res != DOSMAGIC)
792 		return (ENXIO);
793 
794 	/* Check that there's a primary header. */
795 	buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
796 	if (buf == NULL)
797 		return (error);
798 	res = memcmp(buf, GPT_HDR_SIG, 8);
799 	g_free(buf);
800 	if (res == 0)
801 		return (G_PART_PROBE_PRI_HIGH);
802 
803 	/* No primary? Check that there's a secondary. */
804 	buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
805 	    &error);
806 	if (buf == NULL)
807 		return (error);
808 	res = memcmp(buf, GPT_HDR_SIG, 8);
809 	g_free(buf);
810 	return ((res == 0) ? G_PART_PROBE_PRI_HIGH : ENXIO);
811 }
812 
813 static int
814 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
815 {
816 	struct gpt_hdr *prihdr, *sechdr;
817 	struct gpt_ent *tbl, *pritbl, *sectbl;
818 	struct g_provider *pp;
819 	struct g_part_gpt_table *table;
820 	struct g_part_gpt_entry *entry;
821 	u_char *buf;
822 	uint64_t last;
823 	int error, index;
824 
825 	table = (struct g_part_gpt_table *)basetable;
826 	pp = cp->provider;
827 	last = (pp->mediasize / pp->sectorsize) - 1;
828 
829 	/* Read the PMBR */
830 	buf = g_read_data(cp, 0, pp->sectorsize, &error);
831 	if (buf == NULL)
832 		return (error);
833 	bcopy(buf, table->mbr, MBRSIZE);
834 	g_free(buf);
835 
836 	/* Read the primary header and table. */
837 	prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR);
838 	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
839 		pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr);
840 	} else {
841 		table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
842 		pritbl = NULL;
843 	}
844 
845 	/* Read the secondary header and table. */
846 	sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR);
847 	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
848 		sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr);
849 	} else {
850 		table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
851 		sectbl = NULL;
852 	}
853 
854 	/* Fail if we haven't got any good tables at all. */
855 	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
856 	    table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
857 		printf("GEOM: %s: corrupt or invalid GPT detected.\n",
858 		    pp->name);
859 		printf("GEOM: %s: GPT rejected -- may not be recoverable.\n",
860 		    pp->name);
861 		return (EINVAL);
862 	}
863 
864 	/*
865 	 * If both headers are good but they disagree with each other,
866 	 * then invalidate one. We prefer to keep the primary header,
867 	 * unless the primary table is corrupt.
868 	 */
869 	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
870 	    table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
871 	    !gpt_matched_hdrs(prihdr, sechdr)) {
872 		if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
873 			table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
874 			table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
875 			g_free(sechdr);
876 			sechdr = NULL;
877 		} else {
878 			table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
879 			table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
880 			g_free(prihdr);
881 			prihdr = NULL;
882 		}
883 	}
884 
885 	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
886 		printf("GEOM: %s: the primary GPT table is corrupt or "
887 		    "invalid.\n", pp->name);
888 		printf("GEOM: %s: using the secondary instead -- recovery "
889 		    "strongly advised.\n", pp->name);
890 		table->hdr = sechdr;
891 		basetable->gpt_corrupt = 1;
892 		if (prihdr != NULL)
893 			g_free(prihdr);
894 		tbl = sectbl;
895 		if (pritbl != NULL)
896 			g_free(pritbl);
897 	} else {
898 		if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
899 			printf("GEOM: %s: the secondary GPT table is corrupt "
900 			    "or invalid.\n", pp->name);
901 			printf("GEOM: %s: using the primary only -- recovery "
902 			    "suggested.\n", pp->name);
903 			basetable->gpt_corrupt = 1;
904 		} else if (table->lba[GPT_ELT_SECHDR] != last) {
905 			printf( "GEOM: %s: the secondary GPT header is not in "
906 			    "the last LBA.\n", pp->name);
907 			basetable->gpt_corrupt = 1;
908 		}
909 		table->hdr = prihdr;
910 		if (sechdr != NULL)
911 			g_free(sechdr);
912 		tbl = pritbl;
913 		if (sectbl != NULL)
914 			g_free(sectbl);
915 	}
916 
917 	basetable->gpt_first = table->hdr->hdr_lba_start;
918 	basetable->gpt_last = table->hdr->hdr_lba_end;
919 	basetable->gpt_entries = table->hdr->hdr_entries;
920 
921 	for (index = basetable->gpt_entries - 1; index >= 0; index--) {
922 		if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
923 			continue;
924 		entry = (struct g_part_gpt_entry *)g_part_new_entry(
925 		    basetable, index + 1, tbl[index].ent_lba_start,
926 		    tbl[index].ent_lba_end);
927 		entry->ent = tbl[index];
928 	}
929 
930 	g_free(tbl);
931 
932 	/*
933 	 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions
934 	 * if (and only if) any FAT32 or FAT16 partitions have been
935 	 * created. This happens irrespective of whether Boot Camp is
936 	 * used/enabled, though it's generally understood to be done
937 	 * to support legacy Windows under Boot Camp. We refer to this
938 	 * mirroring simply as Boot Camp. We try to detect Boot Camp
939 	 * so that we can update the MBR if and when GPT changes have
940 	 * been made. Note that we do not enable Boot Camp if not
941 	 * previously enabled because we can't assume that we're on a
942 	 * Mac alongside Mac OS X.
943 	 */
944 	table->bootcamp = gpt_is_bootcamp(table, pp->name);
945 
946 	return (0);
947 }
948 
949 static int
950 g_part_gpt_recover(struct g_part_table *basetable)
951 {
952 	struct g_part_gpt_table *table;
953 	struct g_provider *pp;
954 
955 	table = (struct g_part_gpt_table *)basetable;
956 	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
957 	gpt_create_pmbr(table, pp);
958 	g_gpt_set_defaults(basetable, pp);
959 	basetable->gpt_corrupt = 0;
960 	return (0);
961 }
962 
963 static int
964 g_part_gpt_setunset(struct g_part_table *basetable,
965     struct g_part_entry *baseentry, const char *attrib, unsigned int set)
966 {
967 	struct g_part_gpt_entry *entry;
968 	struct g_part_gpt_table *table;
969 	uint8_t *p;
970 	uint64_t attr;
971 	int i;
972 
973 	table = (struct g_part_gpt_table *)basetable;
974 	entry = (struct g_part_gpt_entry *)baseentry;
975 
976 	if (strcasecmp(attrib, "active") == 0) {
977 		if (table->bootcamp) {
978 			/* The active flag must be set on a valid entry. */
979 			if (entry == NULL)
980 				return (ENXIO);
981 			if (baseentry->gpe_index > NDOSPART)
982 				return (EINVAL);
983 			for (i = 0; i < NDOSPART; i++) {
984 				p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
985 				p[0] = (i == baseentry->gpe_index - 1)
986 				    ? ((set) ? 0x80 : 0) : 0;
987 			}
988 		} else {
989 			/* The PMBR is marked as active without an entry. */
990 			if (entry != NULL)
991 				return (ENXIO);
992 			for (i = 0; i < NDOSPART; i++) {
993 				p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
994 				p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0;
995 			}
996 		}
997 		return (0);
998 	}
999 
1000 	if (entry == NULL)
1001 		return (ENODEV);
1002 
1003 	attr = 0;
1004 	if (strcasecmp(attrib, "bootme") == 0) {
1005 		attr |= GPT_ENT_ATTR_BOOTME;
1006 	} else if (strcasecmp(attrib, "bootonce") == 0) {
1007 		attr |= GPT_ENT_ATTR_BOOTONCE;
1008 		if (set)
1009 			attr |= GPT_ENT_ATTR_BOOTME;
1010 	} else if (strcasecmp(attrib, "bootfailed") == 0) {
1011 		/*
1012 		 * It should only be possible to unset BOOTFAILED, but it might
1013 		 * be useful for test purposes to also be able to set it.
1014 		 */
1015 		attr |= GPT_ENT_ATTR_BOOTFAILED;
1016 	}
1017 	if (attr == 0)
1018 		return (EINVAL);
1019 
1020 	if (set)
1021 		attr = entry->ent.ent_attr | attr;
1022 	else
1023 		attr = entry->ent.ent_attr & ~attr;
1024 	if (attr != entry->ent.ent_attr) {
1025 		entry->ent.ent_attr = attr;
1026 		if (!baseentry->gpe_created)
1027 			baseentry->gpe_modified = 1;
1028 	}
1029 	return (0);
1030 }
1031 
1032 static const char *
1033 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
1034     char *buf, size_t bufsz)
1035 {
1036 	struct g_part_gpt_entry *entry;
1037 	struct uuid *type;
1038 	struct g_part_uuid_alias *uap;
1039 
1040 	entry = (struct g_part_gpt_entry *)baseentry;
1041 	type = &entry->ent.ent_type;
1042 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++)
1043 		if (EQUUID(type, uap->uuid))
1044 			return (g_part_alias_name(uap->alias));
1045 	buf[0] = '!';
1046 	snprintf_uuid(buf + 1, bufsz - 1, type);
1047 
1048 	return (buf);
1049 }
1050 
1051 static int
1052 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
1053 {
1054 	unsigned char *buf, *bp;
1055 	struct g_provider *pp;
1056 	struct g_part_entry *baseentry;
1057 	struct g_part_gpt_entry *entry;
1058 	struct g_part_gpt_table *table;
1059 	size_t tblsz;
1060 	uint32_t crc;
1061 	int error, index;
1062 
1063 	pp = cp->provider;
1064 	table = (struct g_part_gpt_table *)basetable;
1065 	tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz +
1066 	    pp->sectorsize - 1) / pp->sectorsize;
1067 
1068 	/* Reconstruct the MBR from the GPT if under Boot Camp. */
1069 	if (table->bootcamp)
1070 		gpt_update_bootcamp(basetable, pp);
1071 
1072 	/* Write the PMBR */
1073 	buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
1074 	bcopy(table->mbr, buf, MBRSIZE);
1075 	error = g_write_data(cp, 0, buf, pp->sectorsize);
1076 	g_free(buf);
1077 	if (error)
1078 		return (error);
1079 
1080 	/* Allocate space for the header and entries. */
1081 	buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
1082 
1083 	memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
1084 	le32enc(buf + 8, table->hdr->hdr_revision);
1085 	le32enc(buf + 12, table->hdr->hdr_size);
1086 	le64enc(buf + 40, table->hdr->hdr_lba_start);
1087 	le64enc(buf + 48, table->hdr->hdr_lba_end);
1088 	le_uuid_enc(buf + 56, &table->hdr->hdr_uuid);
1089 	le32enc(buf + 80, table->hdr->hdr_entries);
1090 	le32enc(buf + 84, table->hdr->hdr_entsz);
1091 
1092 	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1093 		if (baseentry->gpe_deleted)
1094 			continue;
1095 		entry = (struct g_part_gpt_entry *)baseentry;
1096 		index = baseentry->gpe_index - 1;
1097 		bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index;
1098 		le_uuid_enc(bp, &entry->ent.ent_type);
1099 		le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
1100 		le64enc(bp + 32, entry->ent.ent_lba_start);
1101 		le64enc(bp + 40, entry->ent.ent_lba_end);
1102 		le64enc(bp + 48, entry->ent.ent_attr);
1103 		memcpy(bp + 56, entry->ent.ent_name,
1104 		    sizeof(entry->ent.ent_name));
1105 	}
1106 
1107 	crc = crc32(buf + pp->sectorsize,
1108 	    table->hdr->hdr_entries * table->hdr->hdr_entsz);
1109 	le32enc(buf + 88, crc);
1110 
1111 	/* Write primary meta-data. */
1112 	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1113 	le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_self. */
1114 	le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_alt. */
1115 	le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]);	/* hdr_lba_table. */
1116 	crc = crc32(buf, table->hdr->hdr_size);
1117 	le32enc(buf + 16, crc);
1118 
1119 	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1120 		error = g_write_data(cp,
1121 		    (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize,
1122 		    buf + (index + 1) * pp->sectorsize,
1123 		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1124 		    (tblsz - index) * pp->sectorsize);
1125 		if (error)
1126 			goto out;
1127 	}
1128 	error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
1129 	    buf, pp->sectorsize);
1130 	if (error)
1131 		goto out;
1132 
1133 	/* Write secondary meta-data. */
1134 	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1135 	le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_self. */
1136 	le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_alt. */
1137 	le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]);	/* hdr_lba_table. */
1138 	crc = crc32(buf, table->hdr->hdr_size);
1139 	le32enc(buf + 16, crc);
1140 
1141 	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1142 		error = g_write_data(cp,
1143 		    (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize,
1144 		    buf + (index + 1) * pp->sectorsize,
1145 		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1146 		    (tblsz - index) * pp->sectorsize);
1147 		if (error)
1148 			goto out;
1149 	}
1150 	error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
1151 	    buf, pp->sectorsize);
1152 
1153  out:
1154 	g_free(buf);
1155 	return (error);
1156 }
1157 
1158 static void
1159 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp)
1160 {
1161 	struct g_part_gpt_table *table;
1162 	quad_t last;
1163 	size_t tblsz;
1164 
1165 	table = (struct g_part_gpt_table *)basetable;
1166 	last = pp->mediasize / pp->sectorsize - 1;
1167 	tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
1168 	    pp->sectorsize - 1) / pp->sectorsize;
1169 
1170 	table->lba[GPT_ELT_PRIHDR] = 1;
1171 	table->lba[GPT_ELT_PRITBL] = 2;
1172 	table->lba[GPT_ELT_SECHDR] = last;
1173 	table->lba[GPT_ELT_SECTBL] = last - tblsz;
1174 	table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK;
1175 	table->state[GPT_ELT_PRITBL] = GPT_STATE_OK;
1176 	table->state[GPT_ELT_SECHDR] = GPT_STATE_OK;
1177 	table->state[GPT_ELT_SECTBL] = GPT_STATE_OK;
1178 
1179 	table->hdr->hdr_lba_start = 2 + tblsz;
1180 	table->hdr->hdr_lba_end = last - tblsz - 1;
1181 
1182 	basetable->gpt_first = table->hdr->hdr_lba_start;
1183 	basetable->gpt_last = table->hdr->hdr_lba_end;
1184 }
1185 
1186 static void
1187 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
1188 {
1189 	u_int bo;
1190 	uint32_t ch;
1191 	uint16_t c;
1192 
1193 	bo = LITTLE_ENDIAN;	/* GPT is little-endian */
1194 	while (len > 0 && *str != 0) {
1195 		ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
1196 		str++, len--;
1197 		if ((ch & 0xf800) == 0xd800) {
1198 			if (len > 0) {
1199 				c = (bo == BIG_ENDIAN) ? be16toh(*str)
1200 				    : le16toh(*str);
1201 				str++, len--;
1202 			} else
1203 				c = 0xfffd;
1204 			if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
1205 				ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
1206 				ch += 0x10000;
1207 			} else
1208 				ch = 0xfffd;
1209 		} else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
1210 			bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
1211 			continue;
1212 		} else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
1213 			continue;
1214 
1215 		/* Write the Unicode character in UTF-8 */
1216 		if (ch < 0x80)
1217 			sbuf_printf(sb, "%c", ch);
1218 		else if (ch < 0x800)
1219 			sbuf_printf(sb, "%c%c", 0xc0 | (ch >> 6),
1220 			    0x80 | (ch & 0x3f));
1221 		else if (ch < 0x10000)
1222 			sbuf_printf(sb, "%c%c%c", 0xe0 | (ch >> 12),
1223 			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1224 		else if (ch < 0x200000)
1225 			sbuf_printf(sb, "%c%c%c%c", 0xf0 | (ch >> 18),
1226 			    0x80 | ((ch >> 12) & 0x3f),
1227 			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1228 	}
1229 }
1230 
1231 static void
1232 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
1233 {
1234 	size_t s16idx, s8idx;
1235 	uint32_t utfchar;
1236 	unsigned int c, utfbytes;
1237 
1238 	s8idx = s16idx = 0;
1239 	utfchar = 0;
1240 	utfbytes = 0;
1241 	bzero(s16, s16len << 1);
1242 	while (s8[s8idx] != 0 && s16idx < s16len) {
1243 		c = s8[s8idx++];
1244 		if ((c & 0xc0) != 0x80) {
1245 			/* Initial characters. */
1246 			if (utfbytes != 0) {
1247 				/* Incomplete encoding of previous char. */
1248 				s16[s16idx++] = htole16(0xfffd);
1249 			}
1250 			if ((c & 0xf8) == 0xf0) {
1251 				utfchar = c & 0x07;
1252 				utfbytes = 3;
1253 			} else if ((c & 0xf0) == 0xe0) {
1254 				utfchar = c & 0x0f;
1255 				utfbytes = 2;
1256 			} else if ((c & 0xe0) == 0xc0) {
1257 				utfchar = c & 0x1f;
1258 				utfbytes = 1;
1259 			} else {
1260 				utfchar = c & 0x7f;
1261 				utfbytes = 0;
1262 			}
1263 		} else {
1264 			/* Followup characters. */
1265 			if (utfbytes > 0) {
1266 				utfchar = (utfchar << 6) + (c & 0x3f);
1267 				utfbytes--;
1268 			} else if (utfbytes == 0)
1269 				utfbytes = ~0;
1270 		}
1271 		/*
1272 		 * Write the complete Unicode character as UTF-16 when we
1273 		 * have all the UTF-8 charactars collected.
1274 		 */
1275 		if (utfbytes == 0) {
1276 			/*
1277 			 * If we need to write 2 UTF-16 characters, but
1278 			 * we only have room for 1, then we truncate the
1279 			 * string by writing a 0 instead.
1280 			 */
1281 			if (utfchar >= 0x10000 && s16idx < s16len - 1) {
1282 				s16[s16idx++] =
1283 				    htole16(0xd800 | ((utfchar >> 10) - 0x40));
1284 				s16[s16idx++] =
1285 				    htole16(0xdc00 | (utfchar & 0x3ff));
1286 			} else
1287 				s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
1288 				    htole16(utfchar);
1289 		}
1290 	}
1291 	/*
1292 	 * If our input string was truncated, append an invalid encoding
1293 	 * character to the output string.
1294 	 */
1295 	if (utfbytes != 0 && s16idx < s16len)
1296 		s16[s16idx++] = htole16(0xfffd);
1297 }
1298