xref: /freebsd/sys/geom/part/g_part_gpt.c (revision a3cf0ef5a295c885c895fabfd56470c0d1db322d)
1 /*-
2  * Copyright (c) 2002, 2005, 2006, 2007 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/bio.h>
32 #include <sys/diskmbr.h>
33 #include <sys/endian.h>
34 #include <sys/gpt.h>
35 #include <sys/kernel.h>
36 #include <sys/kobj.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mutex.h>
41 #include <sys/queue.h>
42 #include <sys/sbuf.h>
43 #include <sys/systm.h>
44 #include <sys/uuid.h>
45 #include <geom/geom.h>
46 #include <geom/part/g_part.h>
47 
48 #include "g_part_if.h"
49 
50 CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
51 CTASSERT(sizeof(struct gpt_ent) == 128);
52 
53 #define	EQUUID(a,b)	(memcmp(a, b, sizeof(struct uuid)) == 0)
54 
55 #define	MBRSIZE		512
56 
57 enum gpt_elt {
58 	GPT_ELT_PRIHDR,
59 	GPT_ELT_PRITBL,
60 	GPT_ELT_SECHDR,
61 	GPT_ELT_SECTBL,
62 	GPT_ELT_COUNT
63 };
64 
65 enum gpt_state {
66 	GPT_STATE_UNKNOWN,	/* Not determined. */
67 	GPT_STATE_MISSING,	/* No signature found. */
68 	GPT_STATE_CORRUPT,	/* Checksum mismatch. */
69 	GPT_STATE_INVALID,	/* Nonconformant/invalid. */
70 	GPT_STATE_OK		/* Perfectly fine. */
71 };
72 
73 struct g_part_gpt_table {
74 	struct g_part_table	base;
75 	u_char			mbr[MBRSIZE];
76 	struct gpt_hdr		*hdr;
77 	quad_t			lba[GPT_ELT_COUNT];
78 	enum gpt_state		state[GPT_ELT_COUNT];
79 };
80 
81 struct g_part_gpt_entry {
82 	struct g_part_entry	base;
83 	struct gpt_ent		ent;
84 };
85 
86 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
87 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
88 
89 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
90     struct g_part_parms *);
91 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
92 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
93 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
94 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
95     struct sbuf *, const char *);
96 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
97 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,
98     struct g_part_parms *);
99 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
100     char *, size_t);
101 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
102 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
103 static int g_part_gpt_setunset(struct g_part_table *table,
104     struct g_part_entry *baseentry, const char *attrib, unsigned int set);
105 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
106     char *, size_t);
107 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
108 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *,
109     struct g_part_parms *);
110 static int g_part_gpt_recover(struct g_part_table *);
111 
112 static kobj_method_t g_part_gpt_methods[] = {
113 	KOBJMETHOD(g_part_add,		g_part_gpt_add),
114 	KOBJMETHOD(g_part_bootcode,	g_part_gpt_bootcode),
115 	KOBJMETHOD(g_part_create,	g_part_gpt_create),
116 	KOBJMETHOD(g_part_destroy,	g_part_gpt_destroy),
117 	KOBJMETHOD(g_part_dumpconf,	g_part_gpt_dumpconf),
118 	KOBJMETHOD(g_part_dumpto,	g_part_gpt_dumpto),
119 	KOBJMETHOD(g_part_modify,	g_part_gpt_modify),
120 	KOBJMETHOD(g_part_resize,	g_part_gpt_resize),
121 	KOBJMETHOD(g_part_name,		g_part_gpt_name),
122 	KOBJMETHOD(g_part_probe,	g_part_gpt_probe),
123 	KOBJMETHOD(g_part_read,		g_part_gpt_read),
124 	KOBJMETHOD(g_part_recover,	g_part_gpt_recover),
125 	KOBJMETHOD(g_part_setunset,	g_part_gpt_setunset),
126 	KOBJMETHOD(g_part_type,		g_part_gpt_type),
127 	KOBJMETHOD(g_part_write,	g_part_gpt_write),
128 	{ 0, 0 }
129 };
130 
131 static struct g_part_scheme g_part_gpt_scheme = {
132 	"GPT",
133 	g_part_gpt_methods,
134 	sizeof(struct g_part_gpt_table),
135 	.gps_entrysz = sizeof(struct g_part_gpt_entry),
136 	.gps_minent = 128,
137 	.gps_maxent = INT_MAX,
138 	.gps_bootcodesz = MBRSIZE,
139 };
140 G_PART_SCHEME_DECLARE(g_part_gpt);
141 
142 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT;
143 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
144 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL;
145 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID;
146 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE;
147 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY;
148 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS;
149 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
150 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
151 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
152 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
153 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
154 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
155 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
156 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
157 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM;
158 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID;
159 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
160 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
161 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED;
162 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA;
163 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA;
164 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD;
165 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD;
166 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS;
167 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS;
168 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID;
169 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP;
170 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
171 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
172 
173 static struct g_part_uuid_alias {
174 	struct uuid *uuid;
175 	int alias;
176 } gpt_uuid_alias_match[] = {
177 	{ &gpt_uuid_apple_boot,		G_PART_ALIAS_APPLE_BOOT },
178 	{ &gpt_uuid_apple_hfs,		G_PART_ALIAS_APPLE_HFS },
179 	{ &gpt_uuid_apple_label,	G_PART_ALIAS_APPLE_LABEL },
180 	{ &gpt_uuid_apple_raid,		G_PART_ALIAS_APPLE_RAID },
181 	{ &gpt_uuid_apple_raid_offline,	G_PART_ALIAS_APPLE_RAID_OFFLINE },
182 	{ &gpt_uuid_apple_tv_recovery,	G_PART_ALIAS_APPLE_TV_RECOVERY },
183 	{ &gpt_uuid_apple_ufs,		G_PART_ALIAS_APPLE_UFS },
184 	{ &gpt_uuid_efi, 		G_PART_ALIAS_EFI },
185 	{ &gpt_uuid_freebsd,		G_PART_ALIAS_FREEBSD },
186 	{ &gpt_uuid_freebsd_boot, 	G_PART_ALIAS_FREEBSD_BOOT },
187 	{ &gpt_uuid_freebsd_swap,	G_PART_ALIAS_FREEBSD_SWAP },
188 	{ &gpt_uuid_freebsd_ufs,	G_PART_ALIAS_FREEBSD_UFS },
189 	{ &gpt_uuid_freebsd_vinum,	G_PART_ALIAS_FREEBSD_VINUM },
190 	{ &gpt_uuid_freebsd_zfs,	G_PART_ALIAS_FREEBSD_ZFS },
191 	{ &gpt_uuid_linux_data,		G_PART_ALIAS_LINUX_DATA },
192 	{ &gpt_uuid_linux_lvm,		G_PART_ALIAS_LINUX_LVM },
193 	{ &gpt_uuid_linux_raid,		G_PART_ALIAS_LINUX_RAID },
194 	{ &gpt_uuid_linux_swap,		G_PART_ALIAS_LINUX_SWAP },
195 	{ &gpt_uuid_mbr,		G_PART_ALIAS_MBR },
196 	{ &gpt_uuid_ms_basic_data,	G_PART_ALIAS_MS_BASIC_DATA },
197 	{ &gpt_uuid_ms_ldm_data,	G_PART_ALIAS_MS_LDM_DATA },
198 	{ &gpt_uuid_ms_ldm_metadata,	G_PART_ALIAS_MS_LDM_METADATA },
199 	{ &gpt_uuid_ms_reserved,	G_PART_ALIAS_MS_RESERVED },
200 	{ &gpt_uuid_netbsd_ccd,		G_PART_ALIAS_NETBSD_CCD },
201 	{ &gpt_uuid_netbsd_cgd,		G_PART_ALIAS_NETBSD_CGD },
202 	{ &gpt_uuid_netbsd_ffs,		G_PART_ALIAS_NETBSD_FFS },
203 	{ &gpt_uuid_netbsd_lfs,		G_PART_ALIAS_NETBSD_LFS },
204 	{ &gpt_uuid_netbsd_raid,	G_PART_ALIAS_NETBSD_RAID },
205 	{ &gpt_uuid_netbsd_swap,	G_PART_ALIAS_NETBSD_SWAP },
206 
207 	{ NULL, 0 }
208 };
209 
210 static struct gpt_hdr *
211 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
212     enum gpt_elt elt)
213 {
214 	struct gpt_hdr *buf, *hdr;
215 	struct g_provider *pp;
216 	quad_t lba, last;
217 	int error;
218 	uint32_t crc, sz;
219 
220 	pp = cp->provider;
221 	last = (pp->mediasize / pp->sectorsize) - 1;
222 	table->state[elt] = GPT_STATE_MISSING;
223 	/*
224 	 * If the primary header is valid look for secondary
225 	 * header in AlternateLBA, otherwise in the last medium's LBA.
226 	 */
227 	if (elt == GPT_ELT_SECHDR) {
228 		if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK)
229 			table->lba[elt] = last;
230 	} else
231 		table->lba[elt] = 1;
232 	buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
233 	    &error);
234 	if (buf == NULL)
235 		return (NULL);
236 	hdr = NULL;
237 	if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0)
238 		goto fail;
239 
240 	table->state[elt] = GPT_STATE_CORRUPT;
241 	sz = le32toh(buf->hdr_size);
242 	if (sz < 92 || sz > pp->sectorsize)
243 		goto fail;
244 
245 	hdr = g_malloc(sz, M_WAITOK | M_ZERO);
246 	bcopy(buf, hdr, sz);
247 	hdr->hdr_size = sz;
248 
249 	crc = le32toh(buf->hdr_crc_self);
250 	buf->hdr_crc_self = 0;
251 	if (crc32(buf, sz) != crc)
252 		goto fail;
253 	hdr->hdr_crc_self = crc;
254 
255 	table->state[elt] = GPT_STATE_INVALID;
256 	hdr->hdr_revision = le32toh(buf->hdr_revision);
257 	if (hdr->hdr_revision < GPT_HDR_REVISION)
258 		goto fail;
259 	hdr->hdr_lba_self = le64toh(buf->hdr_lba_self);
260 	if (hdr->hdr_lba_self != table->lba[elt])
261 		goto fail;
262 	hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt);
263 	if (hdr->hdr_lba_alt == hdr->hdr_lba_self ||
264 	    hdr->hdr_lba_alt > last)
265 		goto fail;
266 
267 	/* Check the managed area. */
268 	hdr->hdr_lba_start = le64toh(buf->hdr_lba_start);
269 	if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
270 		goto fail;
271 	hdr->hdr_lba_end = le64toh(buf->hdr_lba_end);
272 	if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
273 		goto fail;
274 
275 	/* Check the table location and size of the table. */
276 	hdr->hdr_entries = le32toh(buf->hdr_entries);
277 	hdr->hdr_entsz = le32toh(buf->hdr_entsz);
278 	if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
279 	    (hdr->hdr_entsz & 7) != 0)
280 		goto fail;
281 	hdr->hdr_lba_table = le64toh(buf->hdr_lba_table);
282 	if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
283 		goto fail;
284 	if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
285 	    hdr->hdr_lba_table <= hdr->hdr_lba_end)
286 		goto fail;
287 	lba = hdr->hdr_lba_table +
288 	    (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) /
289 	    pp->sectorsize - 1;
290 	if (lba >= last)
291 		goto fail;
292 	if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
293 		goto fail;
294 
295 	table->state[elt] = GPT_STATE_OK;
296 	le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid);
297 	hdr->hdr_crc_table = le32toh(buf->hdr_crc_table);
298 
299 	/* save LBA for secondary header */
300 	if (elt == GPT_ELT_PRIHDR)
301 		table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt;
302 
303 	g_free(buf);
304 	return (hdr);
305 
306  fail:
307 	if (hdr != NULL)
308 		g_free(hdr);
309 	g_free(buf);
310 	return (NULL);
311 }
312 
313 static struct gpt_ent *
314 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
315     enum gpt_elt elt, struct gpt_hdr *hdr)
316 {
317 	struct g_provider *pp;
318 	struct gpt_ent *ent, *tbl;
319 	char *buf, *p;
320 	unsigned int idx, sectors, tblsz;
321 	int error;
322 
323 	if (hdr == NULL)
324 		return (NULL);
325 
326 	pp = cp->provider;
327 	table->lba[elt] = hdr->hdr_lba_table;
328 
329 	table->state[elt] = GPT_STATE_MISSING;
330 	tblsz = hdr->hdr_entries * hdr->hdr_entsz;
331 	sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize;
332 	buf = g_read_data(cp, table->lba[elt] * pp->sectorsize,
333 	    sectors * pp->sectorsize, &error);
334 	if (buf == NULL)
335 		return (NULL);
336 
337 	table->state[elt] = GPT_STATE_CORRUPT;
338 	if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
339 		g_free(buf);
340 		return (NULL);
341 	}
342 
343 	table->state[elt] = GPT_STATE_OK;
344 	tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
345 	    M_WAITOK | M_ZERO);
346 
347 	for (idx = 0, ent = tbl, p = buf;
348 	     idx < hdr->hdr_entries;
349 	     idx++, ent++, p += hdr->hdr_entsz) {
350 		le_uuid_dec(p, &ent->ent_type);
351 		le_uuid_dec(p + 16, &ent->ent_uuid);
352 		ent->ent_lba_start = le64dec(p + 32);
353 		ent->ent_lba_end = le64dec(p + 40);
354 		ent->ent_attr = le64dec(p + 48);
355 		/* Keep UTF-16 in little-endian. */
356 		bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
357 	}
358 
359 	g_free(buf);
360 	return (tbl);
361 }
362 
363 static int
364 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
365 {
366 
367 	if (pri == NULL || sec == NULL)
368 		return (0);
369 
370 	if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
371 		return (0);
372 	return ((pri->hdr_revision == sec->hdr_revision &&
373 	    pri->hdr_size == sec->hdr_size &&
374 	    pri->hdr_lba_start == sec->hdr_lba_start &&
375 	    pri->hdr_lba_end == sec->hdr_lba_end &&
376 	    pri->hdr_entries == sec->hdr_entries &&
377 	    pri->hdr_entsz == sec->hdr_entsz &&
378 	    pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
379 }
380 
381 static int
382 gpt_parse_type(const char *type, struct uuid *uuid)
383 {
384 	struct uuid tmp;
385 	const char *alias;
386 	int error;
387 	struct g_part_uuid_alias *uap;
388 
389 	if (type[0] == '!') {
390 		error = parse_uuid(type + 1, &tmp);
391 		if (error)
392 			return (error);
393 		if (EQUUID(&tmp, &gpt_uuid_unused))
394 			return (EINVAL);
395 		*uuid = tmp;
396 		return (0);
397 	}
398 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
399 		alias = g_part_alias_name(uap->alias);
400 		if (!strcasecmp(type, alias)) {
401 			*uuid = *uap->uuid;
402 			return (0);
403 		}
404 	}
405 	return (EINVAL);
406 }
407 
408 static int
409 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
410     struct g_part_parms *gpp)
411 {
412 	struct g_part_gpt_entry *entry;
413 	int error;
414 
415 	entry = (struct g_part_gpt_entry *)baseentry;
416 	error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
417 	if (error)
418 		return (error);
419 	kern_uuidgen(&entry->ent.ent_uuid, 1);
420 	entry->ent.ent_lba_start = baseentry->gpe_start;
421 	entry->ent.ent_lba_end = baseentry->gpe_end;
422 	if (baseentry->gpe_deleted) {
423 		entry->ent.ent_attr = 0;
424 		bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
425 	}
426 	if (gpp->gpp_parms & G_PART_PARM_LABEL)
427 		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
428 		    sizeof(entry->ent.ent_name));
429 	return (0);
430 }
431 
432 static int
433 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
434 {
435 	struct g_part_gpt_table *table;
436 	size_t codesz;
437 
438 	codesz = DOSPARTOFF;
439 	table = (struct g_part_gpt_table *)basetable;
440 	bzero(table->mbr, codesz);
441 	codesz = MIN(codesz, gpp->gpp_codesize);
442 	if (codesz > 0)
443 		bcopy(gpp->gpp_codeptr, table->mbr, codesz);
444 
445 	/* Mark the PMBR active since some BIOS require it */
446 	table->mbr[DOSPARTOFF] = 0x80;		/* status */
447 	return (0);
448 }
449 
450 static int
451 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
452 {
453 	struct g_provider *pp;
454 	struct g_part_gpt_table *table;
455 	quad_t last;
456 	size_t tblsz;
457 
458 	/* We don't nest, which means that our depth should be 0. */
459 	if (basetable->gpt_depth != 0)
460 		return (ENXIO);
461 
462 	table = (struct g_part_gpt_table *)basetable;
463 	pp = gpp->gpp_provider;
464 	tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
465 	    pp->sectorsize - 1) / pp->sectorsize;
466 	if (pp->sectorsize < MBRSIZE ||
467 	    pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
468 	    pp->sectorsize)
469 		return (ENOSPC);
470 
471 	last = (pp->mediasize / pp->sectorsize) - 1;
472 
473 	le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
474 	table->mbr[DOSPARTOFF + 1] = 0x01;		/* shd */
475 	table->mbr[DOSPARTOFF + 2] = 0x01;		/* ssect */
476 	table->mbr[DOSPARTOFF + 3] = 0x00;		/* scyl */
477 	table->mbr[DOSPARTOFF + 4] = 0xee;		/* typ */
478 	table->mbr[DOSPARTOFF + 5] = 0xff;		/* ehd */
479 	table->mbr[DOSPARTOFF + 6] = 0xff;		/* esect */
480 	table->mbr[DOSPARTOFF + 7] = 0xff;		/* ecyl */
481 	le32enc(table->mbr + DOSPARTOFF + 8, 1);	/* start */
482 	le32enc(table->mbr + DOSPARTOFF + 12, MIN(last, 0xffffffffLL));
483 
484 	table->lba[GPT_ELT_PRIHDR] = 1;
485 	table->lba[GPT_ELT_PRITBL] = 2;
486 	table->lba[GPT_ELT_SECHDR] = last;
487 	table->lba[GPT_ELT_SECTBL] = last - tblsz;
488 
489 	/* Allocate space for the header */
490 	table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO);
491 
492 	bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
493 	table->hdr->hdr_revision = GPT_HDR_REVISION;
494 	table->hdr->hdr_size = offsetof(struct gpt_hdr, padding);
495 	table->hdr->hdr_lba_start = 2 + tblsz;
496 	table->hdr->hdr_lba_end = last - tblsz - 1;
497 	kern_uuidgen(&table->hdr->hdr_uuid, 1);
498 	table->hdr->hdr_entries = basetable->gpt_entries;
499 	table->hdr->hdr_entsz = sizeof(struct gpt_ent);
500 
501 	basetable->gpt_first = table->hdr->hdr_lba_start;
502 	basetable->gpt_last = table->hdr->hdr_lba_end;
503 	return (0);
504 }
505 
506 static int
507 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
508 {
509 	struct g_part_gpt_table *table;
510 	struct g_provider *pp;
511 
512 	table = (struct g_part_gpt_table *)basetable;
513 	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
514 	g_free(table->hdr);
515 	table->hdr = NULL;
516 
517 	/*
518 	 * Wipe the first 2 sectors to clear the partitioning. Wipe the last
519 	 * sector only if it has valid secondary header.
520 	 */
521 	basetable->gpt_smhead |= 3;
522 	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
523 	    table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1)
524 		basetable->gpt_smtail |= 1;
525 	return (0);
526 }
527 
528 static void
529 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry,
530     struct sbuf *sb, const char *indent)
531 {
532 	struct g_part_gpt_entry *entry;
533 
534 	entry = (struct g_part_gpt_entry *)baseentry;
535 	if (indent == NULL) {
536 		/* conftxt: libdisk compatibility */
537 		sbuf_printf(sb, " xs GPT xt ");
538 		sbuf_printf_uuid(sb, &entry->ent.ent_type);
539 	} else if (entry != NULL) {
540 		/* confxml: partition entry information */
541 		sbuf_printf(sb, "%s<label>", indent);
542 		g_gpt_printf_utf16(sb, entry->ent.ent_name,
543 		    sizeof(entry->ent.ent_name) >> 1);
544 		sbuf_printf(sb, "</label>\n");
545 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)
546 			sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent);
547 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) {
548 			sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n",
549 			    indent);
550 		}
551 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) {
552 			sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n",
553 			    indent);
554 		}
555 		sbuf_printf(sb, "%s<rawtype>", indent);
556 		sbuf_printf_uuid(sb, &entry->ent.ent_type);
557 		sbuf_printf(sb, "</rawtype>\n");
558 		sbuf_printf(sb, "%s<rawuuid>", indent);
559 		sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
560 		sbuf_printf(sb, "</rawuuid>\n");
561 	} else {
562 		/* confxml: scheme information */
563 	}
564 }
565 
566 static int
567 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
568 {
569 	struct g_part_gpt_entry *entry;
570 
571 	entry = (struct g_part_gpt_entry *)baseentry;
572 	return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
573 	    EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap)) ? 1 : 0);
574 }
575 
576 static int
577 g_part_gpt_modify(struct g_part_table *basetable,
578     struct g_part_entry *baseentry, struct g_part_parms *gpp)
579 {
580 	struct g_part_gpt_entry *entry;
581 	int error;
582 
583 	entry = (struct g_part_gpt_entry *)baseentry;
584 	if (gpp->gpp_parms & G_PART_PARM_TYPE) {
585 		error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
586 		if (error)
587 			return (error);
588 	}
589 	if (gpp->gpp_parms & G_PART_PARM_LABEL)
590 		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
591 		    sizeof(entry->ent.ent_name));
592 	return (0);
593 }
594 
595 static int
596 g_part_gpt_resize(struct g_part_table *basetable,
597     struct g_part_entry *baseentry, struct g_part_parms *gpp)
598 {
599 	struct g_part_gpt_entry *entry;
600 	entry = (struct g_part_gpt_entry *)baseentry;
601 
602 	baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
603 	entry->ent.ent_lba_end = baseentry->gpe_end;
604 
605 	return (0);
606 }
607 
608 static const char *
609 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
610     char *buf, size_t bufsz)
611 {
612 	struct g_part_gpt_entry *entry;
613 	char c;
614 
615 	entry = (struct g_part_gpt_entry *)baseentry;
616 	c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
617 	snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
618 	return (buf);
619 }
620 
621 static int
622 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
623 {
624 	struct g_provider *pp;
625 	char *buf;
626 	int error, res;
627 
628 	/* We don't nest, which means that our depth should be 0. */
629 	if (table->gpt_depth != 0)
630 		return (ENXIO);
631 
632 	pp = cp->provider;
633 
634 	/*
635 	 * Sanity-check the provider. Since the first sector on the provider
636 	 * must be a PMBR and a PMBR is 512 bytes large, the sector size
637 	 * must be at least 512 bytes.  Also, since the theoretical minimum
638 	 * number of sectors needed by GPT is 6, any medium that has less
639 	 * than 6 sectors is never going to be able to hold a GPT. The
640 	 * number 6 comes from:
641 	 *	1 sector for the PMBR
642 	 *	2 sectors for the GPT headers (each 1 sector)
643 	 *	2 sectors for the GPT tables (each 1 sector)
644 	 *	1 sector for an actual partition
645 	 * It's better to catch this pathological case early than behaving
646 	 * pathologically later on...
647 	 */
648 	if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
649 		return (ENOSPC);
650 
651 	/* Check that there's a MBR. */
652 	buf = g_read_data(cp, 0L, pp->sectorsize, &error);
653 	if (buf == NULL)
654 		return (error);
655 	res = le16dec(buf + DOSMAGICOFFSET);
656 	g_free(buf);
657 	if (res != DOSMAGIC)
658 		return (ENXIO);
659 
660 	/* Check that there's a primary header. */
661 	buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
662 	if (buf == NULL)
663 		return (error);
664 	res = memcmp(buf, GPT_HDR_SIG, 8);
665 	g_free(buf);
666 	if (res == 0)
667 		return (G_PART_PROBE_PRI_HIGH);
668 
669 	/* No primary? Check that there's a secondary. */
670 	buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
671 	    &error);
672 	if (buf == NULL)
673 		return (error);
674 	res = memcmp(buf, GPT_HDR_SIG, 8);
675 	g_free(buf);
676 	return ((res == 0) ? G_PART_PROBE_PRI_HIGH : ENXIO);
677 }
678 
679 static int
680 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
681 {
682 	struct gpt_hdr *prihdr, *sechdr;
683 	struct gpt_ent *tbl, *pritbl, *sectbl;
684 	struct g_provider *pp;
685 	struct g_part_gpt_table *table;
686 	struct g_part_gpt_entry *entry;
687 	u_char *buf;
688 	uint64_t last;
689 	int error, index;
690 
691 	table = (struct g_part_gpt_table *)basetable;
692 	pp = cp->provider;
693 	last = (pp->mediasize / pp->sectorsize) - 1;
694 
695 	/* Read the PMBR */
696 	buf = g_read_data(cp, 0, pp->sectorsize, &error);
697 	if (buf == NULL)
698 		return (error);
699 	bcopy(buf, table->mbr, MBRSIZE);
700 	g_free(buf);
701 
702 	/* Read the primary header and table. */
703 	prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR);
704 	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
705 		pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr);
706 	} else {
707 		table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
708 		pritbl = NULL;
709 	}
710 
711 	/* Read the secondary header and table. */
712 	sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR);
713 	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
714 		sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr);
715 	} else {
716 		table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
717 		sectbl = NULL;
718 	}
719 
720 	/* Fail if we haven't got any good tables at all. */
721 	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
722 	    table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
723 		printf("GEOM: %s: corrupt or invalid GPT detected.\n",
724 		    pp->name);
725 		printf("GEOM: %s: GPT rejected -- may not be recoverable.\n",
726 		    pp->name);
727 		return (EINVAL);
728 	}
729 
730 	/*
731 	 * If both headers are good but they disagree with each other,
732 	 * then invalidate one. We prefer to keep the primary header,
733 	 * unless the primary table is corrupt.
734 	 */
735 	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
736 	    table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
737 	    !gpt_matched_hdrs(prihdr, sechdr)) {
738 		if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
739 			table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
740 			table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
741 			g_free(sechdr);
742 			sechdr = NULL;
743 		} else {
744 			table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
745 			table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
746 			g_free(prihdr);
747 			prihdr = NULL;
748 		}
749 	}
750 
751 	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
752 		printf("GEOM: %s: the primary GPT table is corrupt or "
753 		    "invalid.\n", pp->name);
754 		printf("GEOM: %s: using the secondary instead -- recovery "
755 		    "strongly advised.\n", pp->name);
756 		table->hdr = sechdr;
757 		basetable->gpt_corrupt = 1;
758 		if (prihdr != NULL)
759 			g_free(prihdr);
760 		tbl = sectbl;
761 		if (pritbl != NULL)
762 			g_free(pritbl);
763 	} else {
764 		if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
765 			printf("GEOM: %s: the secondary GPT table is corrupt "
766 			    "or invalid.\n", pp->name);
767 			printf("GEOM: %s: using the primary only -- recovery "
768 			    "suggested.\n", pp->name);
769 			basetable->gpt_corrupt = 1;
770 		} else if (table->lba[GPT_ELT_SECHDR] != last) {
771 			printf( "GEOM: %s: the secondary GPT header is not in "
772 			    "the last LBA.\n", pp->name);
773 			basetable->gpt_corrupt = 1;
774 		}
775 		table->hdr = prihdr;
776 		if (sechdr != NULL)
777 			g_free(sechdr);
778 		tbl = pritbl;
779 		if (sectbl != NULL)
780 			g_free(sectbl);
781 	}
782 
783 	basetable->gpt_first = table->hdr->hdr_lba_start;
784 	basetable->gpt_last = table->hdr->hdr_lba_end;
785 	basetable->gpt_entries = table->hdr->hdr_entries;
786 
787 	for (index = basetable->gpt_entries - 1; index >= 0; index--) {
788 		if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
789 			continue;
790 		entry = (struct g_part_gpt_entry *)g_part_new_entry(
791 		    basetable, index + 1, tbl[index].ent_lba_start,
792 		    tbl[index].ent_lba_end);
793 		entry->ent = tbl[index];
794 	}
795 
796 	g_free(tbl);
797 	return (0);
798 }
799 
800 static int
801 g_part_gpt_recover(struct g_part_table *basetable)
802 {
803 	struct g_part_gpt_table *table;
804 	struct g_provider *pp;
805 	uint64_t last;
806 	size_t tblsz;
807 
808 	table = (struct g_part_gpt_table *)basetable;
809 	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
810 	last = pp->mediasize / pp->sectorsize - 1;
811 	tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz +
812 	    pp->sectorsize - 1) / pp->sectorsize;
813 
814 	table->lba[GPT_ELT_PRIHDR] = 1;
815 	table->lba[GPT_ELT_PRITBL] = 2;
816 	table->lba[GPT_ELT_SECHDR] = last;
817 	table->lba[GPT_ELT_SECTBL] = last - tblsz;
818 	table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK;
819 	table->state[GPT_ELT_PRITBL] = GPT_STATE_OK;
820 	table->state[GPT_ELT_SECHDR] = GPT_STATE_OK;
821 	table->state[GPT_ELT_SECTBL] = GPT_STATE_OK;
822 	table->hdr->hdr_lba_start = 2 + tblsz;
823 	table->hdr->hdr_lba_end = last - tblsz - 1;
824 
825 	basetable->gpt_first = table->hdr->hdr_lba_start;
826 	basetable->gpt_last = table->hdr->hdr_lba_end;
827 	basetable->gpt_corrupt = 0;
828 
829 	return (0);
830 }
831 
832 static int
833 g_part_gpt_setunset(struct g_part_table *table, struct g_part_entry *baseentry,
834     const char *attrib, unsigned int set)
835 {
836 	struct g_part_entry *iter;
837 	struct g_part_gpt_entry *entry;
838 	int changed, bootme, bootonce, bootfailed;
839 
840 	bootme = bootonce = bootfailed = 0;
841 	if (strcasecmp(attrib, "bootme") == 0) {
842 		bootme = 1;
843 	} else if (strcasecmp(attrib, "bootonce") == 0) {
844 		/* BOOTME is set automatically with BOOTONCE, but not unset. */
845 		bootonce = 1;
846 		if (set)
847 			bootme = 1;
848 	} else if (strcasecmp(attrib, "bootfailed") == 0) {
849 		/*
850 		 * It should only be possible to unset BOOTFAILED, but it might
851 		 * be useful for test purposes to also be able to set it.
852 		 */
853 		bootfailed = 1;
854 	}
855 	if (!bootme && !bootonce && !bootfailed)
856 		return (EINVAL);
857 
858 	LIST_FOREACH(iter, &table->gpt_entry, gpe_entry) {
859 		if (iter->gpe_deleted)
860 			continue;
861 		if (iter != baseentry)
862 			continue;
863 		changed = 0;
864 		entry = (struct g_part_gpt_entry *)iter;
865 		if (set) {
866 			if (bootme &&
867 			    !(entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)) {
868 				entry->ent.ent_attr |= GPT_ENT_ATTR_BOOTME;
869 				changed = 1;
870 			}
871 			if (bootonce &&
872 			    !(entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE)) {
873 				entry->ent.ent_attr |= GPT_ENT_ATTR_BOOTONCE;
874 				changed = 1;
875 			}
876 			if (bootfailed &&
877 			    !(entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED)) {
878 				entry->ent.ent_attr |= GPT_ENT_ATTR_BOOTFAILED;
879 				changed = 1;
880 			}
881 		} else {
882 			if (bootme &&
883 			    (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)) {
884 				entry->ent.ent_attr &= ~GPT_ENT_ATTR_BOOTME;
885 				changed = 1;
886 			}
887 			if (bootonce &&
888 			    (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE)) {
889 				entry->ent.ent_attr &= ~GPT_ENT_ATTR_BOOTONCE;
890 				changed = 1;
891 			}
892 			if (bootfailed &&
893 			    (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED)) {
894 				entry->ent.ent_attr &= ~GPT_ENT_ATTR_BOOTFAILED;
895 				changed = 1;
896 			}
897 		}
898 		if (changed && !iter->gpe_created)
899 			iter->gpe_modified = 1;
900 	}
901 	return (0);
902 }
903 
904 static const char *
905 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
906     char *buf, size_t bufsz)
907 {
908 	struct g_part_gpt_entry *entry;
909 	struct uuid *type;
910 	struct g_part_uuid_alias *uap;
911 
912 	entry = (struct g_part_gpt_entry *)baseentry;
913 	type = &entry->ent.ent_type;
914 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++)
915 		if (EQUUID(type, uap->uuid))
916 			return (g_part_alias_name(uap->alias));
917 	buf[0] = '!';
918 	snprintf_uuid(buf + 1, bufsz - 1, type);
919 
920 	return (buf);
921 }
922 
923 static int
924 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
925 {
926 	unsigned char *buf, *bp;
927 	struct g_provider *pp;
928 	struct g_part_entry *baseentry;
929 	struct g_part_gpt_entry *entry;
930 	struct g_part_gpt_table *table;
931 	size_t tblsz;
932 	uint32_t crc;
933 	int error, index;
934 
935 	pp = cp->provider;
936 	table = (struct g_part_gpt_table *)basetable;
937 	tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz +
938 	    pp->sectorsize - 1) / pp->sectorsize;
939 
940 	/* Write the PMBR */
941 	buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
942 	bcopy(table->mbr, buf, MBRSIZE);
943 	error = g_write_data(cp, 0, buf, pp->sectorsize);
944 	g_free(buf);
945 	if (error)
946 		return (error);
947 
948 	/* Allocate space for the header and entries. */
949 	buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
950 
951 	memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
952 	le32enc(buf + 8, table->hdr->hdr_revision);
953 	le32enc(buf + 12, table->hdr->hdr_size);
954 	le64enc(buf + 40, table->hdr->hdr_lba_start);
955 	le64enc(buf + 48, table->hdr->hdr_lba_end);
956 	le_uuid_enc(buf + 56, &table->hdr->hdr_uuid);
957 	le32enc(buf + 80, table->hdr->hdr_entries);
958 	le32enc(buf + 84, table->hdr->hdr_entsz);
959 
960 	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
961 		if (baseentry->gpe_deleted)
962 			continue;
963 		entry = (struct g_part_gpt_entry *)baseentry;
964 		index = baseentry->gpe_index - 1;
965 		bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index;
966 		le_uuid_enc(bp, &entry->ent.ent_type);
967 		le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
968 		le64enc(bp + 32, entry->ent.ent_lba_start);
969 		le64enc(bp + 40, entry->ent.ent_lba_end);
970 		le64enc(bp + 48, entry->ent.ent_attr);
971 		memcpy(bp + 56, entry->ent.ent_name,
972 		    sizeof(entry->ent.ent_name));
973 	}
974 
975 	crc = crc32(buf + pp->sectorsize,
976 	    table->hdr->hdr_entries * table->hdr->hdr_entsz);
977 	le32enc(buf + 88, crc);
978 
979 	/* Write primary meta-data. */
980 	le32enc(buf + 16, 0);	/* hdr_crc_self. */
981 	le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_self. */
982 	le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_alt. */
983 	le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]);	/* hdr_lba_table. */
984 	crc = crc32(buf, table->hdr->hdr_size);
985 	le32enc(buf + 16, crc);
986 
987 	error = g_write_data(cp, table->lba[GPT_ELT_PRITBL] * pp->sectorsize,
988 	    buf + pp->sectorsize, tblsz * pp->sectorsize);
989 	if (error)
990 		goto out;
991 	error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
992 	    buf, pp->sectorsize);
993 	if (error)
994 		goto out;
995 
996 	/* Write secondary meta-data. */
997 	le32enc(buf + 16, 0);	/* hdr_crc_self. */
998 	le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_self. */
999 	le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_alt. */
1000 	le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]);	/* hdr_lba_table. */
1001 	crc = crc32(buf, table->hdr->hdr_size);
1002 	le32enc(buf + 16, crc);
1003 
1004 	error = g_write_data(cp, table->lba[GPT_ELT_SECTBL] * pp->sectorsize,
1005 	    buf + pp->sectorsize, tblsz * pp->sectorsize);
1006 	if (error)
1007 		goto out;
1008 	error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
1009 	    buf, pp->sectorsize);
1010 
1011  out:
1012 	g_free(buf);
1013 	return (error);
1014 }
1015 
1016 static void
1017 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
1018 {
1019 	u_int bo;
1020 	uint32_t ch;
1021 	uint16_t c;
1022 
1023 	bo = LITTLE_ENDIAN;	/* GPT is little-endian */
1024 	while (len > 0 && *str != 0) {
1025 		ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
1026 		str++, len--;
1027 		if ((ch & 0xf800) == 0xd800) {
1028 			if (len > 0) {
1029 				c = (bo == BIG_ENDIAN) ? be16toh(*str)
1030 				    : le16toh(*str);
1031 				str++, len--;
1032 			} else
1033 				c = 0xfffd;
1034 			if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
1035 				ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
1036 				ch += 0x10000;
1037 			} else
1038 				ch = 0xfffd;
1039 		} else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
1040 			bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
1041 			continue;
1042 		} else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
1043 			continue;
1044 
1045 		/* Write the Unicode character in UTF-8 */
1046 		if (ch < 0x80)
1047 			sbuf_printf(sb, "%c", ch);
1048 		else if (ch < 0x800)
1049 			sbuf_printf(sb, "%c%c", 0xc0 | (ch >> 6),
1050 			    0x80 | (ch & 0x3f));
1051 		else if (ch < 0x10000)
1052 			sbuf_printf(sb, "%c%c%c", 0xe0 | (ch >> 12),
1053 			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1054 		else if (ch < 0x200000)
1055 			sbuf_printf(sb, "%c%c%c%c", 0xf0 | (ch >> 18),
1056 			    0x80 | ((ch >> 12) & 0x3f),
1057 			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1058 	}
1059 }
1060 
1061 static void
1062 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
1063 {
1064 	size_t s16idx, s8idx;
1065 	uint32_t utfchar;
1066 	unsigned int c, utfbytes;
1067 
1068 	s8idx = s16idx = 0;
1069 	utfchar = 0;
1070 	utfbytes = 0;
1071 	bzero(s16, s16len << 1);
1072 	while (s8[s8idx] != 0 && s16idx < s16len) {
1073 		c = s8[s8idx++];
1074 		if ((c & 0xc0) != 0x80) {
1075 			/* Initial characters. */
1076 			if (utfbytes != 0) {
1077 				/* Incomplete encoding of previous char. */
1078 				s16[s16idx++] = htole16(0xfffd);
1079 			}
1080 			if ((c & 0xf8) == 0xf0) {
1081 				utfchar = c & 0x07;
1082 				utfbytes = 3;
1083 			} else if ((c & 0xf0) == 0xe0) {
1084 				utfchar = c & 0x0f;
1085 				utfbytes = 2;
1086 			} else if ((c & 0xe0) == 0xc0) {
1087 				utfchar = c & 0x1f;
1088 				utfbytes = 1;
1089 			} else {
1090 				utfchar = c & 0x7f;
1091 				utfbytes = 0;
1092 			}
1093 		} else {
1094 			/* Followup characters. */
1095 			if (utfbytes > 0) {
1096 				utfchar = (utfchar << 6) + (c & 0x3f);
1097 				utfbytes--;
1098 			} else if (utfbytes == 0)
1099 				utfbytes = ~0;
1100 		}
1101 		/*
1102 		 * Write the complete Unicode character as UTF-16 when we
1103 		 * have all the UTF-8 charactars collected.
1104 		 */
1105 		if (utfbytes == 0) {
1106 			/*
1107 			 * If we need to write 2 UTF-16 characters, but
1108 			 * we only have room for 1, then we truncate the
1109 			 * string by writing a 0 instead.
1110 			 */
1111 			if (utfchar >= 0x10000 && s16idx < s16len - 1) {
1112 				s16[s16idx++] =
1113 				    htole16(0xd800 | ((utfchar >> 10) - 0x40));
1114 				s16[s16idx++] =
1115 				    htole16(0xdc00 | (utfchar & 0x3ff));
1116 			} else
1117 				s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
1118 				    htole16(utfchar);
1119 		}
1120 	}
1121 	/*
1122 	 * If our input string was truncated, append an invalid encoding
1123 	 * character to the output string.
1124 	 */
1125 	if (utfbytes != 0 && s16idx < s16len)
1126 		s16[s16idx++] = htole16(0xfffd);
1127 }
1128