1 /*- 2 * Copyright (c) 2002, 2005, 2006, 2007 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/bio.h> 32 #include <sys/diskmbr.h> 33 #include <sys/endian.h> 34 #include <sys/gpt.h> 35 #include <sys/kernel.h> 36 #include <sys/kobj.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/malloc.h> 40 #include <sys/mutex.h> 41 #include <sys/queue.h> 42 #include <sys/sbuf.h> 43 #include <sys/systm.h> 44 #include <sys/uuid.h> 45 #include <geom/geom.h> 46 #include <geom/part/g_part.h> 47 48 #include "g_part_if.h" 49 50 CTASSERT(offsetof(struct gpt_hdr, padding) == 92); 51 CTASSERT(sizeof(struct gpt_ent) == 128); 52 53 #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) 54 55 #define MBRSIZE 512 56 57 enum gpt_elt { 58 GPT_ELT_PRIHDR, 59 GPT_ELT_PRITBL, 60 GPT_ELT_SECHDR, 61 GPT_ELT_SECTBL, 62 GPT_ELT_COUNT 63 }; 64 65 enum gpt_state { 66 GPT_STATE_UNKNOWN, /* Not determined. */ 67 GPT_STATE_MISSING, /* No signature found. */ 68 GPT_STATE_CORRUPT, /* Checksum mismatch. */ 69 GPT_STATE_INVALID, /* Nonconformant/invalid. */ 70 GPT_STATE_OK /* Perfectly fine. */ 71 }; 72 73 struct g_part_gpt_table { 74 struct g_part_table base; 75 u_char mbr[MBRSIZE]; 76 struct gpt_hdr *hdr; 77 quad_t lba[GPT_ELT_COUNT]; 78 enum gpt_state state[GPT_ELT_COUNT]; 79 }; 80 81 struct g_part_gpt_entry { 82 struct g_part_entry base; 83 struct gpt_ent ent; 84 }; 85 86 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); 87 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); 88 89 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, 90 struct g_part_parms *); 91 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); 92 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); 93 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); 94 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, 95 struct sbuf *, const char *); 96 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); 97 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, 98 struct g_part_parms *); 99 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, 100 char *, size_t); 101 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); 102 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); 103 static int g_part_gpt_setunset(struct g_part_table *table, 104 struct g_part_entry *baseentry, const char *attrib, unsigned int set); 105 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, 106 char *, size_t); 107 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); 108 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, 109 struct g_part_parms *); 110 static int g_part_gpt_recover(struct g_part_table *); 111 112 static kobj_method_t g_part_gpt_methods[] = { 113 KOBJMETHOD(g_part_add, g_part_gpt_add), 114 KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), 115 KOBJMETHOD(g_part_create, g_part_gpt_create), 116 KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), 117 KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), 118 KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), 119 KOBJMETHOD(g_part_modify, g_part_gpt_modify), 120 KOBJMETHOD(g_part_resize, g_part_gpt_resize), 121 KOBJMETHOD(g_part_name, g_part_gpt_name), 122 KOBJMETHOD(g_part_probe, g_part_gpt_probe), 123 KOBJMETHOD(g_part_read, g_part_gpt_read), 124 KOBJMETHOD(g_part_recover, g_part_gpt_recover), 125 KOBJMETHOD(g_part_setunset, g_part_gpt_setunset), 126 KOBJMETHOD(g_part_type, g_part_gpt_type), 127 KOBJMETHOD(g_part_write, g_part_gpt_write), 128 { 0, 0 } 129 }; 130 131 static struct g_part_scheme g_part_gpt_scheme = { 132 "GPT", 133 g_part_gpt_methods, 134 sizeof(struct g_part_gpt_table), 135 .gps_entrysz = sizeof(struct g_part_gpt_entry), 136 .gps_minent = 128, 137 .gps_maxent = INT_MAX, 138 .gps_bootcodesz = MBRSIZE, 139 }; 140 G_PART_SCHEME_DECLARE(g_part_gpt); 141 142 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; 143 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; 144 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; 145 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; 146 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; 147 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; 148 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; 149 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; 150 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; 151 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; 152 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; 153 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; 154 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; 155 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; 156 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; 157 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; 158 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; 159 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; 160 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; 161 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; 162 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; 163 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; 164 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; 165 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; 166 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; 167 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; 168 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; 169 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; 170 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; 171 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; 172 173 static struct g_part_uuid_alias { 174 struct uuid *uuid; 175 int alias; 176 } gpt_uuid_alias_match[] = { 177 { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT }, 178 { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS }, 179 { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL }, 180 { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID }, 181 { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE }, 182 { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY }, 183 { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS }, 184 { &gpt_uuid_efi, G_PART_ALIAS_EFI }, 185 { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD }, 186 { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT }, 187 { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP }, 188 { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS }, 189 { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM }, 190 { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS }, 191 { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA }, 192 { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM }, 193 { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID }, 194 { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP }, 195 { &gpt_uuid_mbr, G_PART_ALIAS_MBR }, 196 { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA }, 197 { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA }, 198 { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA }, 199 { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED }, 200 { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD }, 201 { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD }, 202 { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS }, 203 { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS }, 204 { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID }, 205 { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP }, 206 207 { NULL, 0 } 208 }; 209 210 static struct gpt_hdr * 211 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, 212 enum gpt_elt elt) 213 { 214 struct gpt_hdr *buf, *hdr; 215 struct g_provider *pp; 216 quad_t lba, last; 217 int error; 218 uint32_t crc, sz; 219 220 pp = cp->provider; 221 last = (pp->mediasize / pp->sectorsize) - 1; 222 table->state[elt] = GPT_STATE_MISSING; 223 /* 224 * If the primary header is valid look for secondary 225 * header in AlternateLBA, otherwise in the last medium's LBA. 226 */ 227 if (elt == GPT_ELT_SECHDR) { 228 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK) 229 table->lba[elt] = last; 230 } else 231 table->lba[elt] = 1; 232 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, 233 &error); 234 if (buf == NULL) 235 return (NULL); 236 hdr = NULL; 237 if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) 238 goto fail; 239 240 table->state[elt] = GPT_STATE_CORRUPT; 241 sz = le32toh(buf->hdr_size); 242 if (sz < 92 || sz > pp->sectorsize) 243 goto fail; 244 245 hdr = g_malloc(sz, M_WAITOK | M_ZERO); 246 bcopy(buf, hdr, sz); 247 hdr->hdr_size = sz; 248 249 crc = le32toh(buf->hdr_crc_self); 250 buf->hdr_crc_self = 0; 251 if (crc32(buf, sz) != crc) 252 goto fail; 253 hdr->hdr_crc_self = crc; 254 255 table->state[elt] = GPT_STATE_INVALID; 256 hdr->hdr_revision = le32toh(buf->hdr_revision); 257 if (hdr->hdr_revision < GPT_HDR_REVISION) 258 goto fail; 259 hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); 260 if (hdr->hdr_lba_self != table->lba[elt]) 261 goto fail; 262 hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); 263 if (hdr->hdr_lba_alt == hdr->hdr_lba_self || 264 hdr->hdr_lba_alt > last) 265 goto fail; 266 267 /* Check the managed area. */ 268 hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); 269 if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) 270 goto fail; 271 hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); 272 if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) 273 goto fail; 274 275 /* Check the table location and size of the table. */ 276 hdr->hdr_entries = le32toh(buf->hdr_entries); 277 hdr->hdr_entsz = le32toh(buf->hdr_entsz); 278 if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || 279 (hdr->hdr_entsz & 7) != 0) 280 goto fail; 281 hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); 282 if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) 283 goto fail; 284 if (hdr->hdr_lba_table >= hdr->hdr_lba_start && 285 hdr->hdr_lba_table <= hdr->hdr_lba_end) 286 goto fail; 287 lba = hdr->hdr_lba_table + 288 (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) / 289 pp->sectorsize - 1; 290 if (lba >= last) 291 goto fail; 292 if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) 293 goto fail; 294 295 table->state[elt] = GPT_STATE_OK; 296 le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); 297 hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); 298 299 /* save LBA for secondary header */ 300 if (elt == GPT_ELT_PRIHDR) 301 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt; 302 303 g_free(buf); 304 return (hdr); 305 306 fail: 307 if (hdr != NULL) 308 g_free(hdr); 309 g_free(buf); 310 return (NULL); 311 } 312 313 static struct gpt_ent * 314 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, 315 enum gpt_elt elt, struct gpt_hdr *hdr) 316 { 317 struct g_provider *pp; 318 struct gpt_ent *ent, *tbl; 319 char *buf, *p; 320 unsigned int idx, sectors, tblsz; 321 int error; 322 323 if (hdr == NULL) 324 return (NULL); 325 326 pp = cp->provider; 327 table->lba[elt] = hdr->hdr_lba_table; 328 329 table->state[elt] = GPT_STATE_MISSING; 330 tblsz = hdr->hdr_entries * hdr->hdr_entsz; 331 sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize; 332 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, 333 sectors * pp->sectorsize, &error); 334 if (buf == NULL) 335 return (NULL); 336 337 table->state[elt] = GPT_STATE_CORRUPT; 338 if (crc32(buf, tblsz) != hdr->hdr_crc_table) { 339 g_free(buf); 340 return (NULL); 341 } 342 343 table->state[elt] = GPT_STATE_OK; 344 tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), 345 M_WAITOK | M_ZERO); 346 347 for (idx = 0, ent = tbl, p = buf; 348 idx < hdr->hdr_entries; 349 idx++, ent++, p += hdr->hdr_entsz) { 350 le_uuid_dec(p, &ent->ent_type); 351 le_uuid_dec(p + 16, &ent->ent_uuid); 352 ent->ent_lba_start = le64dec(p + 32); 353 ent->ent_lba_end = le64dec(p + 40); 354 ent->ent_attr = le64dec(p + 48); 355 /* Keep UTF-16 in little-endian. */ 356 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); 357 } 358 359 g_free(buf); 360 return (tbl); 361 } 362 363 static int 364 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) 365 { 366 367 if (pri == NULL || sec == NULL) 368 return (0); 369 370 if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) 371 return (0); 372 return ((pri->hdr_revision == sec->hdr_revision && 373 pri->hdr_size == sec->hdr_size && 374 pri->hdr_lba_start == sec->hdr_lba_start && 375 pri->hdr_lba_end == sec->hdr_lba_end && 376 pri->hdr_entries == sec->hdr_entries && 377 pri->hdr_entsz == sec->hdr_entsz && 378 pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); 379 } 380 381 static int 382 gpt_parse_type(const char *type, struct uuid *uuid) 383 { 384 struct uuid tmp; 385 const char *alias; 386 int error; 387 struct g_part_uuid_alias *uap; 388 389 if (type[0] == '!') { 390 error = parse_uuid(type + 1, &tmp); 391 if (error) 392 return (error); 393 if (EQUUID(&tmp, &gpt_uuid_unused)) 394 return (EINVAL); 395 *uuid = tmp; 396 return (0); 397 } 398 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 399 alias = g_part_alias_name(uap->alias); 400 if (!strcasecmp(type, alias)) { 401 *uuid = *uap->uuid; 402 return (0); 403 } 404 } 405 return (EINVAL); 406 } 407 408 static int 409 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, 410 struct g_part_parms *gpp) 411 { 412 struct g_part_gpt_entry *entry; 413 int error; 414 415 entry = (struct g_part_gpt_entry *)baseentry; 416 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 417 if (error) 418 return (error); 419 kern_uuidgen(&entry->ent.ent_uuid, 1); 420 entry->ent.ent_lba_start = baseentry->gpe_start; 421 entry->ent.ent_lba_end = baseentry->gpe_end; 422 if (baseentry->gpe_deleted) { 423 entry->ent.ent_attr = 0; 424 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); 425 } 426 if (gpp->gpp_parms & G_PART_PARM_LABEL) 427 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 428 sizeof(entry->ent.ent_name)); 429 return (0); 430 } 431 432 static int 433 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) 434 { 435 struct g_part_gpt_table *table; 436 size_t codesz; 437 438 codesz = DOSPARTOFF; 439 table = (struct g_part_gpt_table *)basetable; 440 bzero(table->mbr, codesz); 441 codesz = MIN(codesz, gpp->gpp_codesize); 442 if (codesz > 0) 443 bcopy(gpp->gpp_codeptr, table->mbr, codesz); 444 445 /* Mark the PMBR active since some BIOS require it */ 446 table->mbr[DOSPARTOFF] = 0x80; /* status */ 447 return (0); 448 } 449 450 static int 451 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) 452 { 453 struct g_provider *pp; 454 struct g_part_gpt_table *table; 455 quad_t last; 456 size_t tblsz; 457 458 /* We don't nest, which means that our depth should be 0. */ 459 if (basetable->gpt_depth != 0) 460 return (ENXIO); 461 462 table = (struct g_part_gpt_table *)basetable; 463 pp = gpp->gpp_provider; 464 tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) + 465 pp->sectorsize - 1) / pp->sectorsize; 466 if (pp->sectorsize < MBRSIZE || 467 pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * 468 pp->sectorsize) 469 return (ENOSPC); 470 471 last = (pp->mediasize / pp->sectorsize) - 1; 472 473 le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); 474 table->mbr[DOSPARTOFF + 1] = 0x01; /* shd */ 475 table->mbr[DOSPARTOFF + 2] = 0x01; /* ssect */ 476 table->mbr[DOSPARTOFF + 3] = 0x00; /* scyl */ 477 table->mbr[DOSPARTOFF + 4] = 0xee; /* typ */ 478 table->mbr[DOSPARTOFF + 5] = 0xff; /* ehd */ 479 table->mbr[DOSPARTOFF + 6] = 0xff; /* esect */ 480 table->mbr[DOSPARTOFF + 7] = 0xff; /* ecyl */ 481 le32enc(table->mbr + DOSPARTOFF + 8, 1); /* start */ 482 le32enc(table->mbr + DOSPARTOFF + 12, MIN(last, 0xffffffffLL)); 483 484 table->lba[GPT_ELT_PRIHDR] = 1; 485 table->lba[GPT_ELT_PRITBL] = 2; 486 table->lba[GPT_ELT_SECHDR] = last; 487 table->lba[GPT_ELT_SECTBL] = last - tblsz; 488 489 /* Allocate space for the header */ 490 table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); 491 492 bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 493 table->hdr->hdr_revision = GPT_HDR_REVISION; 494 table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); 495 table->hdr->hdr_lba_start = 2 + tblsz; 496 table->hdr->hdr_lba_end = last - tblsz - 1; 497 kern_uuidgen(&table->hdr->hdr_uuid, 1); 498 table->hdr->hdr_entries = basetable->gpt_entries; 499 table->hdr->hdr_entsz = sizeof(struct gpt_ent); 500 501 basetable->gpt_first = table->hdr->hdr_lba_start; 502 basetable->gpt_last = table->hdr->hdr_lba_end; 503 return (0); 504 } 505 506 static int 507 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) 508 { 509 struct g_part_gpt_table *table; 510 struct g_provider *pp; 511 512 table = (struct g_part_gpt_table *)basetable; 513 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 514 g_free(table->hdr); 515 table->hdr = NULL; 516 517 /* 518 * Wipe the first 2 sectors to clear the partitioning. Wipe the last 519 * sector only if it has valid secondary header. 520 */ 521 basetable->gpt_smhead |= 3; 522 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 523 table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1) 524 basetable->gpt_smtail |= 1; 525 return (0); 526 } 527 528 static void 529 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 530 struct sbuf *sb, const char *indent) 531 { 532 struct g_part_gpt_entry *entry; 533 534 entry = (struct g_part_gpt_entry *)baseentry; 535 if (indent == NULL) { 536 /* conftxt: libdisk compatibility */ 537 sbuf_printf(sb, " xs GPT xt "); 538 sbuf_printf_uuid(sb, &entry->ent.ent_type); 539 } else if (entry != NULL) { 540 /* confxml: partition entry information */ 541 sbuf_printf(sb, "%s<label>", indent); 542 g_gpt_printf_utf16(sb, entry->ent.ent_name, 543 sizeof(entry->ent.ent_name) >> 1); 544 sbuf_printf(sb, "</label>\n"); 545 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME) 546 sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent); 547 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) { 548 sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n", 549 indent); 550 } 551 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) { 552 sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n", 553 indent); 554 } 555 sbuf_printf(sb, "%s<rawtype>", indent); 556 sbuf_printf_uuid(sb, &entry->ent.ent_type); 557 sbuf_printf(sb, "</rawtype>\n"); 558 sbuf_printf(sb, "%s<rawuuid>", indent); 559 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 560 sbuf_printf(sb, "</rawuuid>\n"); 561 } else { 562 /* confxml: scheme information */ 563 } 564 } 565 566 static int 567 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) 568 { 569 struct g_part_gpt_entry *entry; 570 571 entry = (struct g_part_gpt_entry *)baseentry; 572 return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || 573 EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap)) ? 1 : 0); 574 } 575 576 static int 577 g_part_gpt_modify(struct g_part_table *basetable, 578 struct g_part_entry *baseentry, struct g_part_parms *gpp) 579 { 580 struct g_part_gpt_entry *entry; 581 int error; 582 583 entry = (struct g_part_gpt_entry *)baseentry; 584 if (gpp->gpp_parms & G_PART_PARM_TYPE) { 585 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 586 if (error) 587 return (error); 588 } 589 if (gpp->gpp_parms & G_PART_PARM_LABEL) 590 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 591 sizeof(entry->ent.ent_name)); 592 return (0); 593 } 594 595 static int 596 g_part_gpt_resize(struct g_part_table *basetable, 597 struct g_part_entry *baseentry, struct g_part_parms *gpp) 598 { 599 struct g_part_gpt_entry *entry; 600 entry = (struct g_part_gpt_entry *)baseentry; 601 602 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; 603 entry->ent.ent_lba_end = baseentry->gpe_end; 604 605 return (0); 606 } 607 608 static const char * 609 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, 610 char *buf, size_t bufsz) 611 { 612 struct g_part_gpt_entry *entry; 613 char c; 614 615 entry = (struct g_part_gpt_entry *)baseentry; 616 c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; 617 snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); 618 return (buf); 619 } 620 621 static int 622 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) 623 { 624 struct g_provider *pp; 625 char *buf; 626 int error, res; 627 628 /* We don't nest, which means that our depth should be 0. */ 629 if (table->gpt_depth != 0) 630 return (ENXIO); 631 632 pp = cp->provider; 633 634 /* 635 * Sanity-check the provider. Since the first sector on the provider 636 * must be a PMBR and a PMBR is 512 bytes large, the sector size 637 * must be at least 512 bytes. Also, since the theoretical minimum 638 * number of sectors needed by GPT is 6, any medium that has less 639 * than 6 sectors is never going to be able to hold a GPT. The 640 * number 6 comes from: 641 * 1 sector for the PMBR 642 * 2 sectors for the GPT headers (each 1 sector) 643 * 2 sectors for the GPT tables (each 1 sector) 644 * 1 sector for an actual partition 645 * It's better to catch this pathological case early than behaving 646 * pathologically later on... 647 */ 648 if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) 649 return (ENOSPC); 650 651 /* Check that there's a MBR. */ 652 buf = g_read_data(cp, 0L, pp->sectorsize, &error); 653 if (buf == NULL) 654 return (error); 655 res = le16dec(buf + DOSMAGICOFFSET); 656 g_free(buf); 657 if (res != DOSMAGIC) 658 return (ENXIO); 659 660 /* Check that there's a primary header. */ 661 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); 662 if (buf == NULL) 663 return (error); 664 res = memcmp(buf, GPT_HDR_SIG, 8); 665 g_free(buf); 666 if (res == 0) 667 return (G_PART_PROBE_PRI_HIGH); 668 669 /* No primary? Check that there's a secondary. */ 670 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 671 &error); 672 if (buf == NULL) 673 return (error); 674 res = memcmp(buf, GPT_HDR_SIG, 8); 675 g_free(buf); 676 return ((res == 0) ? G_PART_PROBE_PRI_HIGH : ENXIO); 677 } 678 679 static int 680 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) 681 { 682 struct gpt_hdr *prihdr, *sechdr; 683 struct gpt_ent *tbl, *pritbl, *sectbl; 684 struct g_provider *pp; 685 struct g_part_gpt_table *table; 686 struct g_part_gpt_entry *entry; 687 u_char *buf; 688 uint64_t last; 689 int error, index; 690 691 table = (struct g_part_gpt_table *)basetable; 692 pp = cp->provider; 693 last = (pp->mediasize / pp->sectorsize) - 1; 694 695 /* Read the PMBR */ 696 buf = g_read_data(cp, 0, pp->sectorsize, &error); 697 if (buf == NULL) 698 return (error); 699 bcopy(buf, table->mbr, MBRSIZE); 700 g_free(buf); 701 702 /* Read the primary header and table. */ 703 prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); 704 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { 705 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); 706 } else { 707 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 708 pritbl = NULL; 709 } 710 711 /* Read the secondary header and table. */ 712 sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); 713 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { 714 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); 715 } else { 716 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 717 sectbl = NULL; 718 } 719 720 /* Fail if we haven't got any good tables at all. */ 721 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && 722 table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 723 printf("GEOM: %s: corrupt or invalid GPT detected.\n", 724 pp->name); 725 printf("GEOM: %s: GPT rejected -- may not be recoverable.\n", 726 pp->name); 727 return (EINVAL); 728 } 729 730 /* 731 * If both headers are good but they disagree with each other, 732 * then invalidate one. We prefer to keep the primary header, 733 * unless the primary table is corrupt. 734 */ 735 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && 736 table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 737 !gpt_matched_hdrs(prihdr, sechdr)) { 738 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { 739 table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; 740 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 741 g_free(sechdr); 742 sechdr = NULL; 743 } else { 744 table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; 745 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 746 g_free(prihdr); 747 prihdr = NULL; 748 } 749 } 750 751 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { 752 printf("GEOM: %s: the primary GPT table is corrupt or " 753 "invalid.\n", pp->name); 754 printf("GEOM: %s: using the secondary instead -- recovery " 755 "strongly advised.\n", pp->name); 756 table->hdr = sechdr; 757 basetable->gpt_corrupt = 1; 758 if (prihdr != NULL) 759 g_free(prihdr); 760 tbl = sectbl; 761 if (pritbl != NULL) 762 g_free(pritbl); 763 } else { 764 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 765 printf("GEOM: %s: the secondary GPT table is corrupt " 766 "or invalid.\n", pp->name); 767 printf("GEOM: %s: using the primary only -- recovery " 768 "suggested.\n", pp->name); 769 basetable->gpt_corrupt = 1; 770 } else if (table->lba[GPT_ELT_SECHDR] != last) { 771 printf( "GEOM: %s: the secondary GPT header is not in " 772 "the last LBA.\n", pp->name); 773 basetable->gpt_corrupt = 1; 774 } 775 table->hdr = prihdr; 776 if (sechdr != NULL) 777 g_free(sechdr); 778 tbl = pritbl; 779 if (sectbl != NULL) 780 g_free(sectbl); 781 } 782 783 basetable->gpt_first = table->hdr->hdr_lba_start; 784 basetable->gpt_last = table->hdr->hdr_lba_end; 785 basetable->gpt_entries = table->hdr->hdr_entries; 786 787 for (index = basetable->gpt_entries - 1; index >= 0; index--) { 788 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) 789 continue; 790 entry = (struct g_part_gpt_entry *)g_part_new_entry( 791 basetable, index + 1, tbl[index].ent_lba_start, 792 tbl[index].ent_lba_end); 793 entry->ent = tbl[index]; 794 } 795 796 g_free(tbl); 797 return (0); 798 } 799 800 static int 801 g_part_gpt_recover(struct g_part_table *basetable) 802 { 803 struct g_part_gpt_table *table; 804 struct g_provider *pp; 805 uint64_t last; 806 size_t tblsz; 807 808 table = (struct g_part_gpt_table *)basetable; 809 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 810 last = pp->mediasize / pp->sectorsize - 1; 811 tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz + 812 pp->sectorsize - 1) / pp->sectorsize; 813 814 table->lba[GPT_ELT_PRIHDR] = 1; 815 table->lba[GPT_ELT_PRITBL] = 2; 816 table->lba[GPT_ELT_SECHDR] = last; 817 table->lba[GPT_ELT_SECTBL] = last - tblsz; 818 table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK; 819 table->state[GPT_ELT_PRITBL] = GPT_STATE_OK; 820 table->state[GPT_ELT_SECHDR] = GPT_STATE_OK; 821 table->state[GPT_ELT_SECTBL] = GPT_STATE_OK; 822 table->hdr->hdr_lba_start = 2 + tblsz; 823 table->hdr->hdr_lba_end = last - tblsz - 1; 824 825 basetable->gpt_first = table->hdr->hdr_lba_start; 826 basetable->gpt_last = table->hdr->hdr_lba_end; 827 basetable->gpt_corrupt = 0; 828 829 return (0); 830 } 831 832 static int 833 g_part_gpt_setunset(struct g_part_table *table, struct g_part_entry *baseentry, 834 const char *attrib, unsigned int set) 835 { 836 struct g_part_entry *iter; 837 struct g_part_gpt_entry *entry; 838 int changed, bootme, bootonce, bootfailed; 839 840 bootme = bootonce = bootfailed = 0; 841 if (strcasecmp(attrib, "bootme") == 0) { 842 bootme = 1; 843 } else if (strcasecmp(attrib, "bootonce") == 0) { 844 /* BOOTME is set automatically with BOOTONCE, but not unset. */ 845 bootonce = 1; 846 if (set) 847 bootme = 1; 848 } else if (strcasecmp(attrib, "bootfailed") == 0) { 849 /* 850 * It should only be possible to unset BOOTFAILED, but it might 851 * be useful for test purposes to also be able to set it. 852 */ 853 bootfailed = 1; 854 } 855 if (!bootme && !bootonce && !bootfailed) 856 return (EINVAL); 857 858 LIST_FOREACH(iter, &table->gpt_entry, gpe_entry) { 859 if (iter->gpe_deleted) 860 continue; 861 if (iter != baseentry) 862 continue; 863 changed = 0; 864 entry = (struct g_part_gpt_entry *)iter; 865 if (set) { 866 if (bootme && 867 !(entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)) { 868 entry->ent.ent_attr |= GPT_ENT_ATTR_BOOTME; 869 changed = 1; 870 } 871 if (bootonce && 872 !(entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE)) { 873 entry->ent.ent_attr |= GPT_ENT_ATTR_BOOTONCE; 874 changed = 1; 875 } 876 if (bootfailed && 877 !(entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED)) { 878 entry->ent.ent_attr |= GPT_ENT_ATTR_BOOTFAILED; 879 changed = 1; 880 } 881 } else { 882 if (bootme && 883 (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)) { 884 entry->ent.ent_attr &= ~GPT_ENT_ATTR_BOOTME; 885 changed = 1; 886 } 887 if (bootonce && 888 (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE)) { 889 entry->ent.ent_attr &= ~GPT_ENT_ATTR_BOOTONCE; 890 changed = 1; 891 } 892 if (bootfailed && 893 (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED)) { 894 entry->ent.ent_attr &= ~GPT_ENT_ATTR_BOOTFAILED; 895 changed = 1; 896 } 897 } 898 if (changed && !iter->gpe_created) 899 iter->gpe_modified = 1; 900 } 901 return (0); 902 } 903 904 static const char * 905 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 906 char *buf, size_t bufsz) 907 { 908 struct g_part_gpt_entry *entry; 909 struct uuid *type; 910 struct g_part_uuid_alias *uap; 911 912 entry = (struct g_part_gpt_entry *)baseentry; 913 type = &entry->ent.ent_type; 914 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) 915 if (EQUUID(type, uap->uuid)) 916 return (g_part_alias_name(uap->alias)); 917 buf[0] = '!'; 918 snprintf_uuid(buf + 1, bufsz - 1, type); 919 920 return (buf); 921 } 922 923 static int 924 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) 925 { 926 unsigned char *buf, *bp; 927 struct g_provider *pp; 928 struct g_part_entry *baseentry; 929 struct g_part_gpt_entry *entry; 930 struct g_part_gpt_table *table; 931 size_t tblsz; 932 uint32_t crc; 933 int error, index; 934 935 pp = cp->provider; 936 table = (struct g_part_gpt_table *)basetable; 937 tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz + 938 pp->sectorsize - 1) / pp->sectorsize; 939 940 /* Write the PMBR */ 941 buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); 942 bcopy(table->mbr, buf, MBRSIZE); 943 error = g_write_data(cp, 0, buf, pp->sectorsize); 944 g_free(buf); 945 if (error) 946 return (error); 947 948 /* Allocate space for the header and entries. */ 949 buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); 950 951 memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 952 le32enc(buf + 8, table->hdr->hdr_revision); 953 le32enc(buf + 12, table->hdr->hdr_size); 954 le64enc(buf + 40, table->hdr->hdr_lba_start); 955 le64enc(buf + 48, table->hdr->hdr_lba_end); 956 le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); 957 le32enc(buf + 80, table->hdr->hdr_entries); 958 le32enc(buf + 84, table->hdr->hdr_entsz); 959 960 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 961 if (baseentry->gpe_deleted) 962 continue; 963 entry = (struct g_part_gpt_entry *)baseentry; 964 index = baseentry->gpe_index - 1; 965 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; 966 le_uuid_enc(bp, &entry->ent.ent_type); 967 le_uuid_enc(bp + 16, &entry->ent.ent_uuid); 968 le64enc(bp + 32, entry->ent.ent_lba_start); 969 le64enc(bp + 40, entry->ent.ent_lba_end); 970 le64enc(bp + 48, entry->ent.ent_attr); 971 memcpy(bp + 56, entry->ent.ent_name, 972 sizeof(entry->ent.ent_name)); 973 } 974 975 crc = crc32(buf + pp->sectorsize, 976 table->hdr->hdr_entries * table->hdr->hdr_entsz); 977 le32enc(buf + 88, crc); 978 979 /* Write primary meta-data. */ 980 le32enc(buf + 16, 0); /* hdr_crc_self. */ 981 le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ 982 le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ 983 le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ 984 crc = crc32(buf, table->hdr->hdr_size); 985 le32enc(buf + 16, crc); 986 987 error = g_write_data(cp, table->lba[GPT_ELT_PRITBL] * pp->sectorsize, 988 buf + pp->sectorsize, tblsz * pp->sectorsize); 989 if (error) 990 goto out; 991 error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, 992 buf, pp->sectorsize); 993 if (error) 994 goto out; 995 996 /* Write secondary meta-data. */ 997 le32enc(buf + 16, 0); /* hdr_crc_self. */ 998 le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ 999 le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ 1000 le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ 1001 crc = crc32(buf, table->hdr->hdr_size); 1002 le32enc(buf + 16, crc); 1003 1004 error = g_write_data(cp, table->lba[GPT_ELT_SECTBL] * pp->sectorsize, 1005 buf + pp->sectorsize, tblsz * pp->sectorsize); 1006 if (error) 1007 goto out; 1008 error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, 1009 buf, pp->sectorsize); 1010 1011 out: 1012 g_free(buf); 1013 return (error); 1014 } 1015 1016 static void 1017 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) 1018 { 1019 u_int bo; 1020 uint32_t ch; 1021 uint16_t c; 1022 1023 bo = LITTLE_ENDIAN; /* GPT is little-endian */ 1024 while (len > 0 && *str != 0) { 1025 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); 1026 str++, len--; 1027 if ((ch & 0xf800) == 0xd800) { 1028 if (len > 0) { 1029 c = (bo == BIG_ENDIAN) ? be16toh(*str) 1030 : le16toh(*str); 1031 str++, len--; 1032 } else 1033 c = 0xfffd; 1034 if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { 1035 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); 1036 ch += 0x10000; 1037 } else 1038 ch = 0xfffd; 1039 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ 1040 bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; 1041 continue; 1042 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ 1043 continue; 1044 1045 /* Write the Unicode character in UTF-8 */ 1046 if (ch < 0x80) 1047 sbuf_printf(sb, "%c", ch); 1048 else if (ch < 0x800) 1049 sbuf_printf(sb, "%c%c", 0xc0 | (ch >> 6), 1050 0x80 | (ch & 0x3f)); 1051 else if (ch < 0x10000) 1052 sbuf_printf(sb, "%c%c%c", 0xe0 | (ch >> 12), 1053 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1054 else if (ch < 0x200000) 1055 sbuf_printf(sb, "%c%c%c%c", 0xf0 | (ch >> 18), 1056 0x80 | ((ch >> 12) & 0x3f), 1057 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1058 } 1059 } 1060 1061 static void 1062 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) 1063 { 1064 size_t s16idx, s8idx; 1065 uint32_t utfchar; 1066 unsigned int c, utfbytes; 1067 1068 s8idx = s16idx = 0; 1069 utfchar = 0; 1070 utfbytes = 0; 1071 bzero(s16, s16len << 1); 1072 while (s8[s8idx] != 0 && s16idx < s16len) { 1073 c = s8[s8idx++]; 1074 if ((c & 0xc0) != 0x80) { 1075 /* Initial characters. */ 1076 if (utfbytes != 0) { 1077 /* Incomplete encoding of previous char. */ 1078 s16[s16idx++] = htole16(0xfffd); 1079 } 1080 if ((c & 0xf8) == 0xf0) { 1081 utfchar = c & 0x07; 1082 utfbytes = 3; 1083 } else if ((c & 0xf0) == 0xe0) { 1084 utfchar = c & 0x0f; 1085 utfbytes = 2; 1086 } else if ((c & 0xe0) == 0xc0) { 1087 utfchar = c & 0x1f; 1088 utfbytes = 1; 1089 } else { 1090 utfchar = c & 0x7f; 1091 utfbytes = 0; 1092 } 1093 } else { 1094 /* Followup characters. */ 1095 if (utfbytes > 0) { 1096 utfchar = (utfchar << 6) + (c & 0x3f); 1097 utfbytes--; 1098 } else if (utfbytes == 0) 1099 utfbytes = ~0; 1100 } 1101 /* 1102 * Write the complete Unicode character as UTF-16 when we 1103 * have all the UTF-8 charactars collected. 1104 */ 1105 if (utfbytes == 0) { 1106 /* 1107 * If we need to write 2 UTF-16 characters, but 1108 * we only have room for 1, then we truncate the 1109 * string by writing a 0 instead. 1110 */ 1111 if (utfchar >= 0x10000 && s16idx < s16len - 1) { 1112 s16[s16idx++] = 1113 htole16(0xd800 | ((utfchar >> 10) - 0x40)); 1114 s16[s16idx++] = 1115 htole16(0xdc00 | (utfchar & 0x3ff)); 1116 } else 1117 s16[s16idx++] = (utfchar >= 0x10000) ? 0 : 1118 htole16(utfchar); 1119 } 1120 } 1121 /* 1122 * If our input string was truncated, append an invalid encoding 1123 * character to the output string. 1124 */ 1125 if (utfbytes != 0 && s16idx < s16len) 1126 s16[s16idx++] = htole16(0xfffd); 1127 } 1128