xref: /freebsd/sys/geom/part/g_part_gpt.c (revision 9e5787d2284e187abb5b654d924394a65772e004)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/bio.h>
34 #include <sys/diskmbr.h>
35 #include <sys/gsb_crc32.h>
36 #include <sys/endian.h>
37 #include <sys/gpt.h>
38 #include <sys/kernel.h>
39 #include <sys/kobj.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/mutex.h>
44 #include <sys/queue.h>
45 #include <sys/sbuf.h>
46 #include <sys/systm.h>
47 #include <sys/sysctl.h>
48 #include <sys/uuid.h>
49 #include <geom/geom.h>
50 #include <geom/geom_int.h>
51 #include <geom/part/g_part.h>
52 
53 #include "g_part_if.h"
54 
55 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support");
56 
57 SYSCTL_DECL(_kern_geom_part);
58 static SYSCTL_NODE(_kern_geom_part, OID_AUTO, gpt,
59     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
60     "GEOM_PART_GPT GUID Partition Table");
61 
62 static u_int allow_nesting = 0;
63 SYSCTL_UINT(_kern_geom_part_gpt, OID_AUTO, allow_nesting,
64     CTLFLAG_RWTUN, &allow_nesting, 0, "Allow GPT to be nested inside other schemes");
65 
66 CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
67 CTASSERT(sizeof(struct gpt_ent) == 128);
68 
69 #define	EQUUID(a,b)	(memcmp(a, b, sizeof(struct uuid)) == 0)
70 
71 #define	MBRSIZE		512
72 
73 enum gpt_elt {
74 	GPT_ELT_PRIHDR,
75 	GPT_ELT_PRITBL,
76 	GPT_ELT_SECHDR,
77 	GPT_ELT_SECTBL,
78 	GPT_ELT_COUNT
79 };
80 
81 enum gpt_state {
82 	GPT_STATE_UNKNOWN,	/* Not determined. */
83 	GPT_STATE_MISSING,	/* No signature found. */
84 	GPT_STATE_CORRUPT,	/* Checksum mismatch. */
85 	GPT_STATE_INVALID,	/* Nonconformant/invalid. */
86 	GPT_STATE_OK		/* Perfectly fine. */
87 };
88 
89 struct g_part_gpt_table {
90 	struct g_part_table	base;
91 	u_char			mbr[MBRSIZE];
92 	struct gpt_hdr		*hdr;
93 	quad_t			lba[GPT_ELT_COUNT];
94 	enum gpt_state		state[GPT_ELT_COUNT];
95 	int			bootcamp;
96 };
97 
98 struct g_part_gpt_entry {
99 	struct g_part_entry	base;
100 	struct gpt_ent		ent;
101 };
102 
103 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
104 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
105 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *);
106 
107 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
108     struct g_part_parms *);
109 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
110 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
111 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
112 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
113     struct sbuf *, const char *);
114 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
115 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,
116     struct g_part_parms *);
117 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
118     char *, size_t);
119 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
120 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
121 static int g_part_gpt_setunset(struct g_part_table *table,
122     struct g_part_entry *baseentry, const char *attrib, unsigned int set);
123 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
124     char *, size_t);
125 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
126 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *,
127     struct g_part_parms *);
128 static int g_part_gpt_recover(struct g_part_table *);
129 
130 static kobj_method_t g_part_gpt_methods[] = {
131 	KOBJMETHOD(g_part_add,		g_part_gpt_add),
132 	KOBJMETHOD(g_part_bootcode,	g_part_gpt_bootcode),
133 	KOBJMETHOD(g_part_create,	g_part_gpt_create),
134 	KOBJMETHOD(g_part_destroy,	g_part_gpt_destroy),
135 	KOBJMETHOD(g_part_dumpconf,	g_part_gpt_dumpconf),
136 	KOBJMETHOD(g_part_dumpto,	g_part_gpt_dumpto),
137 	KOBJMETHOD(g_part_modify,	g_part_gpt_modify),
138 	KOBJMETHOD(g_part_resize,	g_part_gpt_resize),
139 	KOBJMETHOD(g_part_name,		g_part_gpt_name),
140 	KOBJMETHOD(g_part_probe,	g_part_gpt_probe),
141 	KOBJMETHOD(g_part_read,		g_part_gpt_read),
142 	KOBJMETHOD(g_part_recover,	g_part_gpt_recover),
143 	KOBJMETHOD(g_part_setunset,	g_part_gpt_setunset),
144 	KOBJMETHOD(g_part_type,		g_part_gpt_type),
145 	KOBJMETHOD(g_part_write,	g_part_gpt_write),
146 	{ 0, 0 }
147 };
148 
149 static struct g_part_scheme g_part_gpt_scheme = {
150 	"GPT",
151 	g_part_gpt_methods,
152 	sizeof(struct g_part_gpt_table),
153 	.gps_entrysz = sizeof(struct g_part_gpt_entry),
154 	.gps_minent = 128,
155 	.gps_maxent = 4096,
156 	.gps_bootcodesz = MBRSIZE,
157 };
158 G_PART_SCHEME_DECLARE(g_part_gpt);
159 MODULE_VERSION(geom_part_gpt, 0);
160 
161 static struct uuid gpt_uuid_apple_apfs = GPT_ENT_TYPE_APPLE_APFS;
162 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT;
163 static struct uuid gpt_uuid_apple_core_storage =
164     GPT_ENT_TYPE_APPLE_CORE_STORAGE;
165 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
166 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL;
167 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID;
168 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE;
169 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY;
170 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS;
171 static struct uuid gpt_uuid_apple_zfs = GPT_ENT_TYPE_APPLE_ZFS;
172 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT;
173 static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE;
174 static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL;
175 static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED;
176 static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT;
177 static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD;
178 static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER;
179 static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2;
180 static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32;
181 static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64;
182 static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY;
183 static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP;
184 static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1;
185 static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM;
186 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
187 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
188 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
189 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
190 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
191 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
192 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
193 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
194 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
195 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM;
196 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID;
197 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
198 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
199 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
200 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA;
201 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA;
202 static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY;
203 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED;
204 static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES;
205 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD;
206 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD;
207 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS;
208 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS;
209 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID;
210 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP;
211 static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA;
212 static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT;
213 static struct uuid gpt_uuid_solaris_boot = GPT_ENT_TYPE_SOLARIS_BOOT;
214 static struct uuid gpt_uuid_solaris_root = GPT_ENT_TYPE_SOLARIS_ROOT;
215 static struct uuid gpt_uuid_solaris_swap = GPT_ENT_TYPE_SOLARIS_SWAP;
216 static struct uuid gpt_uuid_solaris_backup = GPT_ENT_TYPE_SOLARIS_BACKUP;
217 static struct uuid gpt_uuid_solaris_var = GPT_ENT_TYPE_SOLARIS_VAR;
218 static struct uuid gpt_uuid_solaris_home = GPT_ENT_TYPE_SOLARIS_HOME;
219 static struct uuid gpt_uuid_solaris_altsec = GPT_ENT_TYPE_SOLARIS_ALTSEC;
220 static struct uuid gpt_uuid_solaris_reserved = GPT_ENT_TYPE_SOLARIS_RESERVED;
221 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
222 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS;
223 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG;
224 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED;
225 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR;
226 
227 static struct g_part_uuid_alias {
228 	struct uuid *uuid;
229 	int alias;
230 	int mbrtype;
231 } gpt_uuid_alias_match[] = {
232 	{ &gpt_uuid_apple_apfs,		G_PART_ALIAS_APPLE_APFS,	 0 },
233 	{ &gpt_uuid_apple_boot,		G_PART_ALIAS_APPLE_BOOT,	 0xab },
234 	{ &gpt_uuid_apple_core_storage,	G_PART_ALIAS_APPLE_CORE_STORAGE, 0 },
235 	{ &gpt_uuid_apple_hfs,		G_PART_ALIAS_APPLE_HFS,		 0xaf },
236 	{ &gpt_uuid_apple_label,	G_PART_ALIAS_APPLE_LABEL,	 0 },
237 	{ &gpt_uuid_apple_raid,		G_PART_ALIAS_APPLE_RAID,	 0 },
238 	{ &gpt_uuid_apple_raid_offline,	G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 },
239 	{ &gpt_uuid_apple_tv_recovery,	G_PART_ALIAS_APPLE_TV_RECOVERY,	 0 },
240 	{ &gpt_uuid_apple_ufs,		G_PART_ALIAS_APPLE_UFS,		 0 },
241 	{ &gpt_uuid_apple_zfs,		G_PART_ALIAS_APPLE_ZFS,		 0 },
242 	{ &gpt_uuid_bios_boot,		G_PART_ALIAS_BIOS_BOOT,		 0 },
243 	{ &gpt_uuid_chromeos_firmware,	G_PART_ALIAS_CHROMEOS_FIRMWARE,	 0 },
244 	{ &gpt_uuid_chromeos_kernel,	G_PART_ALIAS_CHROMEOS_KERNEL,	 0 },
245 	{ &gpt_uuid_chromeos_reserved,	G_PART_ALIAS_CHROMEOS_RESERVED,	 0 },
246 	{ &gpt_uuid_chromeos_root,	G_PART_ALIAS_CHROMEOS_ROOT,	 0 },
247 	{ &gpt_uuid_dfbsd_ccd,		G_PART_ALIAS_DFBSD_CCD,		 0 },
248 	{ &gpt_uuid_dfbsd_hammer,	G_PART_ALIAS_DFBSD_HAMMER,	 0 },
249 	{ &gpt_uuid_dfbsd_hammer2,	G_PART_ALIAS_DFBSD_HAMMER2,	 0 },
250 	{ &gpt_uuid_dfbsd_label32,	G_PART_ALIAS_DFBSD,		 0xa5 },
251 	{ &gpt_uuid_dfbsd_label64,	G_PART_ALIAS_DFBSD64,		 0xa5 },
252 	{ &gpt_uuid_dfbsd_legacy,	G_PART_ALIAS_DFBSD_LEGACY,	 0 },
253 	{ &gpt_uuid_dfbsd_swap,		G_PART_ALIAS_DFBSD_SWAP,	 0 },
254 	{ &gpt_uuid_dfbsd_ufs1,		G_PART_ALIAS_DFBSD_UFS,		 0 },
255 	{ &gpt_uuid_dfbsd_vinum,	G_PART_ALIAS_DFBSD_VINUM,	 0 },
256 	{ &gpt_uuid_efi, 		G_PART_ALIAS_EFI,		 0xee },
257 	{ &gpt_uuid_freebsd,		G_PART_ALIAS_FREEBSD,		 0xa5 },
258 	{ &gpt_uuid_freebsd_boot, 	G_PART_ALIAS_FREEBSD_BOOT,	 0 },
259 	{ &gpt_uuid_freebsd_nandfs, 	G_PART_ALIAS_FREEBSD_NANDFS,	 0 },
260 	{ &gpt_uuid_freebsd_swap,	G_PART_ALIAS_FREEBSD_SWAP,	 0 },
261 	{ &gpt_uuid_freebsd_ufs,	G_PART_ALIAS_FREEBSD_UFS,	 0 },
262 	{ &gpt_uuid_freebsd_vinum,	G_PART_ALIAS_FREEBSD_VINUM,	 0 },
263 	{ &gpt_uuid_freebsd_zfs,	G_PART_ALIAS_FREEBSD_ZFS,	 0 },
264 	{ &gpt_uuid_linux_data,		G_PART_ALIAS_LINUX_DATA,	 0x0b },
265 	{ &gpt_uuid_linux_lvm,		G_PART_ALIAS_LINUX_LVM,		 0 },
266 	{ &gpt_uuid_linux_raid,		G_PART_ALIAS_LINUX_RAID,	 0 },
267 	{ &gpt_uuid_linux_swap,		G_PART_ALIAS_LINUX_SWAP,	 0 },
268 	{ &gpt_uuid_mbr,		G_PART_ALIAS_MBR,		 0 },
269 	{ &gpt_uuid_ms_basic_data,	G_PART_ALIAS_MS_BASIC_DATA,	 0x0b },
270 	{ &gpt_uuid_ms_ldm_data,	G_PART_ALIAS_MS_LDM_DATA,	 0 },
271 	{ &gpt_uuid_ms_ldm_metadata,	G_PART_ALIAS_MS_LDM_METADATA,	 0 },
272 	{ &gpt_uuid_ms_recovery,	G_PART_ALIAS_MS_RECOVERY,	 0 },
273 	{ &gpt_uuid_ms_reserved,	G_PART_ALIAS_MS_RESERVED,	 0 },
274 	{ &gpt_uuid_ms_spaces,		G_PART_ALIAS_MS_SPACES,		 0 },
275 	{ &gpt_uuid_netbsd_ccd,		G_PART_ALIAS_NETBSD_CCD,	 0 },
276 	{ &gpt_uuid_netbsd_cgd,		G_PART_ALIAS_NETBSD_CGD,	 0 },
277 	{ &gpt_uuid_netbsd_ffs,		G_PART_ALIAS_NETBSD_FFS,	 0 },
278 	{ &gpt_uuid_netbsd_lfs,		G_PART_ALIAS_NETBSD_LFS,	 0 },
279 	{ &gpt_uuid_netbsd_raid,	G_PART_ALIAS_NETBSD_RAID,	 0 },
280 	{ &gpt_uuid_netbsd_swap,	G_PART_ALIAS_NETBSD_SWAP,	 0 },
281 	{ &gpt_uuid_openbsd_data,	G_PART_ALIAS_OPENBSD_DATA,	 0 },
282 	{ &gpt_uuid_prep_boot,		G_PART_ALIAS_PREP_BOOT,		 0x41 },
283 	{ &gpt_uuid_solaris_boot,	G_PART_ALIAS_SOLARIS_BOOT,	 0 },
284 	{ &gpt_uuid_solaris_root,	G_PART_ALIAS_SOLARIS_ROOT,	 0 },
285 	{ &gpt_uuid_solaris_swap,	G_PART_ALIAS_SOLARIS_SWAP,	 0 },
286 	{ &gpt_uuid_solaris_backup,	G_PART_ALIAS_SOLARIS_BACKUP,	 0 },
287 	{ &gpt_uuid_solaris_var,	G_PART_ALIAS_SOLARIS_VAR,	 0 },
288 	{ &gpt_uuid_solaris_home,	G_PART_ALIAS_SOLARIS_HOME,	 0 },
289 	{ &gpt_uuid_solaris_altsec,	G_PART_ALIAS_SOLARIS_ALTSEC,	 0 },
290 	{ &gpt_uuid_solaris_reserved,	G_PART_ALIAS_SOLARIS_RESERVED,	 0 },
291 	{ &gpt_uuid_vmfs,		G_PART_ALIAS_VMFS,		 0 },
292 	{ &gpt_uuid_vmkdiag,		G_PART_ALIAS_VMKDIAG,		 0 },
293 	{ &gpt_uuid_vmreserved,		G_PART_ALIAS_VMRESERVED,	 0 },
294 	{ &gpt_uuid_vmvsanhdr,		G_PART_ALIAS_VMVSANHDR,		 0 },
295 	{ NULL, 0, 0 }
296 };
297 
298 static int
299 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start,
300     quad_t end)
301 {
302 
303 	if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX)
304 		return (EINVAL);
305 
306 	mbr += DOSPARTOFF + idx * DOSPARTSIZE;
307 	mbr[0] = 0;
308 	if (start == 1) {
309 		/*
310 		 * Treat the PMBR partition specially to maximize
311 		 * interoperability with BIOSes.
312 		 */
313 		mbr[1] = mbr[3] = 0;
314 		mbr[2] = 2;
315 	} else
316 		mbr[1] = mbr[2] = mbr[3] = 0xff;
317 	mbr[4] = typ;
318 	mbr[5] = mbr[6] = mbr[7] = 0xff;
319 	le32enc(mbr + 8, (uint32_t)start);
320 	le32enc(mbr + 12, (uint32_t)(end - start + 1));
321 	return (0);
322 }
323 
324 static int
325 gpt_map_type(struct uuid *t)
326 {
327 	struct g_part_uuid_alias *uap;
328 
329 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
330 		if (EQUUID(t, uap->uuid))
331 			return (uap->mbrtype);
332 	}
333 	return (0);
334 }
335 
336 static void
337 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp)
338 {
339 
340 	bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
341 	gpt_write_mbr_entry(table->mbr, 0, 0xee, 1,
342 	    MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
343 	le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
344 }
345 
346 /*
347  * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the
348  * whole disk anymore. Rather, it covers the GPT table and the EFI
349  * system partition only. This way the HFS+ partition and any FAT
350  * partitions can be added to the MBR without creating an overlap.
351  */
352 static int
353 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname)
354 {
355 	uint8_t *p;
356 
357 	p = table->mbr + DOSPARTOFF;
358 	if (p[4] != 0xee || le32dec(p + 8) != 1)
359 		return (0);
360 
361 	p += DOSPARTSIZE;
362 	if (p[4] != 0xaf)
363 		return (0);
364 
365 	printf("GEOM: %s: enabling Boot Camp\n", provname);
366 	return (1);
367 }
368 
369 static void
370 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp)
371 {
372 	struct g_part_entry *baseentry;
373 	struct g_part_gpt_entry *entry;
374 	struct g_part_gpt_table *table;
375 	int bootable, error, index, slices, typ;
376 
377 	table = (struct g_part_gpt_table *)basetable;
378 
379 	bootable = -1;
380 	for (index = 0; index < NDOSPART; index++) {
381 		if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index])
382 			bootable = index;
383 	}
384 
385 	bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
386 	slices = 0;
387 	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
388 		if (baseentry->gpe_deleted)
389 			continue;
390 		index = baseentry->gpe_index - 1;
391 		if (index >= NDOSPART)
392 			continue;
393 
394 		entry = (struct g_part_gpt_entry *)baseentry;
395 
396 		switch (index) {
397 		case 0:	/* This must be the EFI system partition. */
398 			if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi))
399 				goto disable;
400 			error = gpt_write_mbr_entry(table->mbr, index, 0xee,
401 			    1ull, entry->ent.ent_lba_end);
402 			break;
403 		case 1:	/* This must be the HFS+ partition. */
404 			if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs))
405 				goto disable;
406 			error = gpt_write_mbr_entry(table->mbr, index, 0xaf,
407 			    entry->ent.ent_lba_start, entry->ent.ent_lba_end);
408 			break;
409 		default:
410 			typ = gpt_map_type(&entry->ent.ent_type);
411 			error = gpt_write_mbr_entry(table->mbr, index, typ,
412 			    entry->ent.ent_lba_start, entry->ent.ent_lba_end);
413 			break;
414 		}
415 		if (error)
416 			continue;
417 
418 		if (index == bootable)
419 			table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80;
420 		slices |= 1 << index;
421 	}
422 	if ((slices & 3) == 3)
423 		return;
424 
425  disable:
426 	table->bootcamp = 0;
427 	gpt_create_pmbr(table, pp);
428 }
429 
430 static struct gpt_hdr *
431 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
432     enum gpt_elt elt)
433 {
434 	struct gpt_hdr *buf, *hdr;
435 	struct g_provider *pp;
436 	quad_t lba, last;
437 	int error;
438 	uint32_t crc, sz;
439 
440 	pp = cp->provider;
441 	last = (pp->mediasize / pp->sectorsize) - 1;
442 	table->state[elt] = GPT_STATE_MISSING;
443 	/*
444 	 * If the primary header is valid look for secondary
445 	 * header in AlternateLBA, otherwise in the last medium's LBA.
446 	 */
447 	if (elt == GPT_ELT_SECHDR) {
448 		if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK)
449 			table->lba[elt] = last;
450 	} else
451 		table->lba[elt] = 1;
452 	buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
453 	    &error);
454 	if (buf == NULL)
455 		return (NULL);
456 	hdr = NULL;
457 	if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0)
458 		goto fail;
459 
460 	table->state[elt] = GPT_STATE_CORRUPT;
461 	sz = le32toh(buf->hdr_size);
462 	if (sz < 92 || sz > pp->sectorsize)
463 		goto fail;
464 
465 	hdr = g_malloc(sz, M_WAITOK | M_ZERO);
466 	bcopy(buf, hdr, sz);
467 	hdr->hdr_size = sz;
468 
469 	crc = le32toh(buf->hdr_crc_self);
470 	buf->hdr_crc_self = 0;
471 	if (crc32(buf, sz) != crc)
472 		goto fail;
473 	hdr->hdr_crc_self = crc;
474 
475 	table->state[elt] = GPT_STATE_INVALID;
476 	hdr->hdr_revision = le32toh(buf->hdr_revision);
477 	if (hdr->hdr_revision < GPT_HDR_REVISION)
478 		goto fail;
479 	hdr->hdr_lba_self = le64toh(buf->hdr_lba_self);
480 	if (hdr->hdr_lba_self != table->lba[elt])
481 		goto fail;
482 	hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt);
483 	if (hdr->hdr_lba_alt == hdr->hdr_lba_self ||
484 	    hdr->hdr_lba_alt > last)
485 		goto fail;
486 
487 	/* Check the managed area. */
488 	hdr->hdr_lba_start = le64toh(buf->hdr_lba_start);
489 	if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
490 		goto fail;
491 	hdr->hdr_lba_end = le64toh(buf->hdr_lba_end);
492 	if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
493 		goto fail;
494 
495 	/* Check the table location and size of the table. */
496 	hdr->hdr_entries = le32toh(buf->hdr_entries);
497 	hdr->hdr_entsz = le32toh(buf->hdr_entsz);
498 	if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
499 	    (hdr->hdr_entsz & 7) != 0)
500 		goto fail;
501 	hdr->hdr_lba_table = le64toh(buf->hdr_lba_table);
502 	if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
503 		goto fail;
504 	if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
505 	    hdr->hdr_lba_table <= hdr->hdr_lba_end)
506 		goto fail;
507 	lba = hdr->hdr_lba_table +
508 	    howmany(hdr->hdr_entries * hdr->hdr_entsz, pp->sectorsize) - 1;
509 	if (lba >= last)
510 		goto fail;
511 	if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
512 		goto fail;
513 
514 	table->state[elt] = GPT_STATE_OK;
515 	le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid);
516 	hdr->hdr_crc_table = le32toh(buf->hdr_crc_table);
517 
518 	/* save LBA for secondary header */
519 	if (elt == GPT_ELT_PRIHDR)
520 		table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt;
521 
522 	g_free(buf);
523 	return (hdr);
524 
525  fail:
526 	if (hdr != NULL)
527 		g_free(hdr);
528 	g_free(buf);
529 	return (NULL);
530 }
531 
532 static struct gpt_ent *
533 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
534     enum gpt_elt elt, struct gpt_hdr *hdr)
535 {
536 	struct g_provider *pp;
537 	struct gpt_ent *ent, *tbl;
538 	char *buf, *p;
539 	unsigned int idx, sectors, tblsz, size;
540 	int error;
541 
542 	if (hdr == NULL)
543 		return (NULL);
544 
545 	pp = cp->provider;
546 	table->lba[elt] = hdr->hdr_lba_table;
547 
548 	table->state[elt] = GPT_STATE_MISSING;
549 	tblsz = hdr->hdr_entries * hdr->hdr_entsz;
550 	sectors = howmany(tblsz, pp->sectorsize);
551 	buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO);
552 	for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) {
553 		size = (sectors - idx > MAXPHYS / pp->sectorsize) ?  MAXPHYS:
554 		    (sectors - idx) * pp->sectorsize;
555 		p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize,
556 		    size, &error);
557 		if (p == NULL) {
558 			g_free(buf);
559 			return (NULL);
560 		}
561 		bcopy(p, buf + idx * pp->sectorsize, size);
562 		g_free(p);
563 	}
564 	table->state[elt] = GPT_STATE_CORRUPT;
565 	if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
566 		g_free(buf);
567 		return (NULL);
568 	}
569 
570 	table->state[elt] = GPT_STATE_OK;
571 	tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
572 	    M_WAITOK | M_ZERO);
573 
574 	for (idx = 0, ent = tbl, p = buf;
575 	     idx < hdr->hdr_entries;
576 	     idx++, ent++, p += hdr->hdr_entsz) {
577 		le_uuid_dec(p, &ent->ent_type);
578 		le_uuid_dec(p + 16, &ent->ent_uuid);
579 		ent->ent_lba_start = le64dec(p + 32);
580 		ent->ent_lba_end = le64dec(p + 40);
581 		ent->ent_attr = le64dec(p + 48);
582 		/* Keep UTF-16 in little-endian. */
583 		bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
584 	}
585 
586 	g_free(buf);
587 	return (tbl);
588 }
589 
590 static int
591 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
592 {
593 
594 	if (pri == NULL || sec == NULL)
595 		return (0);
596 
597 	if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
598 		return (0);
599 	return ((pri->hdr_revision == sec->hdr_revision &&
600 	    pri->hdr_size == sec->hdr_size &&
601 	    pri->hdr_lba_start == sec->hdr_lba_start &&
602 	    pri->hdr_lba_end == sec->hdr_lba_end &&
603 	    pri->hdr_entries == sec->hdr_entries &&
604 	    pri->hdr_entsz == sec->hdr_entsz &&
605 	    pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
606 }
607 
608 static int
609 gpt_parse_type(const char *type, struct uuid *uuid)
610 {
611 	struct uuid tmp;
612 	const char *alias;
613 	int error;
614 	struct g_part_uuid_alias *uap;
615 
616 	if (type[0] == '!') {
617 		error = parse_uuid(type + 1, &tmp);
618 		if (error)
619 			return (error);
620 		if (EQUUID(&tmp, &gpt_uuid_unused))
621 			return (EINVAL);
622 		*uuid = tmp;
623 		return (0);
624 	}
625 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
626 		alias = g_part_alias_name(uap->alias);
627 		if (!strcasecmp(type, alias)) {
628 			*uuid = *uap->uuid;
629 			return (0);
630 		}
631 	}
632 	return (EINVAL);
633 }
634 
635 static int
636 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
637     struct g_part_parms *gpp)
638 {
639 	struct g_part_gpt_entry *entry;
640 	int error;
641 
642 	entry = (struct g_part_gpt_entry *)baseentry;
643 	error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
644 	if (error)
645 		return (error);
646 	kern_uuidgen(&entry->ent.ent_uuid, 1);
647 	entry->ent.ent_lba_start = baseentry->gpe_start;
648 	entry->ent.ent_lba_end = baseentry->gpe_end;
649 	if (baseentry->gpe_deleted) {
650 		entry->ent.ent_attr = 0;
651 		bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
652 	}
653 	if (gpp->gpp_parms & G_PART_PARM_LABEL)
654 		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
655 		    sizeof(entry->ent.ent_name) /
656 		    sizeof(entry->ent.ent_name[0]));
657 	return (0);
658 }
659 
660 static int
661 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
662 {
663 	struct g_part_gpt_table *table;
664 	size_t codesz;
665 
666 	codesz = DOSPARTOFF;
667 	table = (struct g_part_gpt_table *)basetable;
668 	bzero(table->mbr, codesz);
669 	codesz = MIN(codesz, gpp->gpp_codesize);
670 	if (codesz > 0)
671 		bcopy(gpp->gpp_codeptr, table->mbr, codesz);
672 	return (0);
673 }
674 
675 static int
676 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
677 {
678 	struct g_provider *pp;
679 	struct g_part_gpt_table *table;
680 	size_t tblsz;
681 
682 	/* Our depth should be 0 unless nesting was explicitly enabled. */
683 	if (!allow_nesting && basetable->gpt_depth != 0)
684 		return (ENXIO);
685 
686 	table = (struct g_part_gpt_table *)basetable;
687 	pp = gpp->gpp_provider;
688 	tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent),
689 	    pp->sectorsize);
690 	if (pp->sectorsize < MBRSIZE ||
691 	    pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
692 	    pp->sectorsize)
693 		return (ENOSPC);
694 
695 	gpt_create_pmbr(table, pp);
696 
697 	/* Allocate space for the header */
698 	table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO);
699 
700 	bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
701 	table->hdr->hdr_revision = GPT_HDR_REVISION;
702 	table->hdr->hdr_size = offsetof(struct gpt_hdr, padding);
703 	kern_uuidgen(&table->hdr->hdr_uuid, 1);
704 	table->hdr->hdr_entries = basetable->gpt_entries;
705 	table->hdr->hdr_entsz = sizeof(struct gpt_ent);
706 
707 	g_gpt_set_defaults(basetable, pp);
708 	return (0);
709 }
710 
711 static int
712 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
713 {
714 	struct g_part_gpt_table *table;
715 	struct g_provider *pp;
716 
717 	table = (struct g_part_gpt_table *)basetable;
718 	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
719 	g_free(table->hdr);
720 	table->hdr = NULL;
721 
722 	/*
723 	 * Wipe the first 2 sectors and last one to clear the partitioning.
724 	 * Wipe sectors only if they have valid metadata.
725 	 */
726 	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK)
727 		basetable->gpt_smhead |= 3;
728 	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
729 	    table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1)
730 		basetable->gpt_smtail |= 1;
731 	return (0);
732 }
733 
734 static void
735 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry,
736     struct sbuf *sb, const char *indent)
737 {
738 	struct g_part_gpt_entry *entry;
739 
740 	entry = (struct g_part_gpt_entry *)baseentry;
741 	if (indent == NULL) {
742 		/* conftxt: libdisk compatibility */
743 		sbuf_cat(sb, " xs GPT xt ");
744 		sbuf_printf_uuid(sb, &entry->ent.ent_type);
745 	} else if (entry != NULL) {
746 		/* confxml: partition entry information */
747 		sbuf_printf(sb, "%s<label>", indent);
748 		g_gpt_printf_utf16(sb, entry->ent.ent_name,
749 		    sizeof(entry->ent.ent_name) >> 1);
750 		sbuf_cat(sb, "</label>\n");
751 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)
752 			sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent);
753 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) {
754 			sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n",
755 			    indent);
756 		}
757 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) {
758 			sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n",
759 			    indent);
760 		}
761 		sbuf_printf(sb, "%s<rawtype>", indent);
762 		sbuf_printf_uuid(sb, &entry->ent.ent_type);
763 		sbuf_cat(sb, "</rawtype>\n");
764 		sbuf_printf(sb, "%s<rawuuid>", indent);
765 		sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
766 		sbuf_cat(sb, "</rawuuid>\n");
767 		sbuf_printf(sb, "%s<efimedia>", indent);
768 		sbuf_printf(sb, "HD(%d,GPT,", entry->base.gpe_index);
769 		sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
770 		sbuf_printf(sb, ",%#jx,%#jx)", (intmax_t)entry->base.gpe_start,
771 		    (intmax_t)(entry->base.gpe_end - entry->base.gpe_start + 1));
772 		sbuf_cat(sb, "</efimedia>\n");
773 	} else {
774 		/* confxml: scheme information */
775 	}
776 }
777 
778 static int
779 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
780 {
781 	struct g_part_gpt_entry *entry;
782 
783 	entry = (struct g_part_gpt_entry *)baseentry;
784 	return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
785 	    EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) ||
786 	    EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0);
787 }
788 
789 static int
790 g_part_gpt_modify(struct g_part_table *basetable,
791     struct g_part_entry *baseentry, struct g_part_parms *gpp)
792 {
793 	struct g_part_gpt_entry *entry;
794 	int error;
795 
796 	entry = (struct g_part_gpt_entry *)baseentry;
797 	if (gpp->gpp_parms & G_PART_PARM_TYPE) {
798 		error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
799 		if (error)
800 			return (error);
801 	}
802 	if (gpp->gpp_parms & G_PART_PARM_LABEL)
803 		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
804 		    sizeof(entry->ent.ent_name) /
805 		    sizeof(entry->ent.ent_name[0]));
806 	return (0);
807 }
808 
809 static int
810 g_part_gpt_resize(struct g_part_table *basetable,
811     struct g_part_entry *baseentry, struct g_part_parms *gpp)
812 {
813 	struct g_part_gpt_entry *entry;
814 
815 	if (baseentry == NULL)
816 		return (g_part_gpt_recover(basetable));
817 
818 	entry = (struct g_part_gpt_entry *)baseentry;
819 	baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
820 	entry->ent.ent_lba_end = baseentry->gpe_end;
821 
822 	return (0);
823 }
824 
825 static const char *
826 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
827     char *buf, size_t bufsz)
828 {
829 	struct g_part_gpt_entry *entry;
830 	char c;
831 
832 	entry = (struct g_part_gpt_entry *)baseentry;
833 	c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
834 	snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
835 	return (buf);
836 }
837 
838 static int
839 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
840 {
841 	struct g_provider *pp;
842 	u_char *buf;
843 	int error, index, pri, res;
844 
845 	/* Our depth should be 0 unless nesting was explicitly enabled. */
846 	if (!allow_nesting && table->gpt_depth != 0)
847 		return (ENXIO);
848 
849 	pp = cp->provider;
850 
851 	/*
852 	 * Sanity-check the provider. Since the first sector on the provider
853 	 * must be a PMBR and a PMBR is 512 bytes large, the sector size
854 	 * must be at least 512 bytes.  Also, since the theoretical minimum
855 	 * number of sectors needed by GPT is 6, any medium that has less
856 	 * than 6 sectors is never going to be able to hold a GPT. The
857 	 * number 6 comes from:
858 	 *	1 sector for the PMBR
859 	 *	2 sectors for the GPT headers (each 1 sector)
860 	 *	2 sectors for the GPT tables (each 1 sector)
861 	 *	1 sector for an actual partition
862 	 * It's better to catch this pathological case early than behaving
863 	 * pathologically later on...
864 	 */
865 	if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
866 		return (ENOSPC);
867 
868 	/*
869 	 * Check that there's a MBR or a PMBR. If it's a PMBR, we return
870 	 * as the highest priority on a match, otherwise we assume some
871 	 * GPT-unaware tool has destroyed the GPT by recreating a MBR and
872 	 * we really want the MBR scheme to take precedence.
873 	 */
874 	buf = g_read_data(cp, 0L, pp->sectorsize, &error);
875 	if (buf == NULL)
876 		return (error);
877 	res = le16dec(buf + DOSMAGICOFFSET);
878 	pri = G_PART_PROBE_PRI_LOW;
879 	if (res == DOSMAGIC) {
880 		for (index = 0; index < NDOSPART; index++) {
881 			if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee)
882 				pri = G_PART_PROBE_PRI_HIGH;
883 		}
884 		g_free(buf);
885 
886 		/* Check that there's a primary header. */
887 		buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
888 		if (buf == NULL)
889 			return (error);
890 		res = memcmp(buf, GPT_HDR_SIG, 8);
891 		g_free(buf);
892 		if (res == 0)
893 			return (pri);
894 	} else
895 		g_free(buf);
896 
897 	/* No primary? Check that there's a secondary. */
898 	buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
899 	    &error);
900 	if (buf == NULL)
901 		return (error);
902 	res = memcmp(buf, GPT_HDR_SIG, 8);
903 	g_free(buf);
904 	return ((res == 0) ? pri : ENXIO);
905 }
906 
907 static int
908 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
909 {
910 	struct gpt_hdr *prihdr, *sechdr;
911 	struct gpt_ent *tbl, *pritbl, *sectbl;
912 	struct g_provider *pp;
913 	struct g_part_gpt_table *table;
914 	struct g_part_gpt_entry *entry;
915 	u_char *buf;
916 	uint64_t last;
917 	int error, index;
918 
919 	table = (struct g_part_gpt_table *)basetable;
920 	pp = cp->provider;
921 	last = (pp->mediasize / pp->sectorsize) - 1;
922 
923 	/* Read the PMBR */
924 	buf = g_read_data(cp, 0, pp->sectorsize, &error);
925 	if (buf == NULL)
926 		return (error);
927 	bcopy(buf, table->mbr, MBRSIZE);
928 	g_free(buf);
929 
930 	/* Read the primary header and table. */
931 	prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR);
932 	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
933 		pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr);
934 	} else {
935 		table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
936 		pritbl = NULL;
937 	}
938 
939 	/* Read the secondary header and table. */
940 	sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR);
941 	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
942 		sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr);
943 	} else {
944 		table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
945 		sectbl = NULL;
946 	}
947 
948 	/* Fail if we haven't got any good tables at all. */
949 	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
950 	    table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
951 		printf("GEOM: %s: corrupt or invalid GPT detected.\n",
952 		    pp->name);
953 		printf("GEOM: %s: GPT rejected -- may not be recoverable.\n",
954 		    pp->name);
955 		if (prihdr != NULL)
956 			g_free(prihdr);
957 		if (pritbl != NULL)
958 			g_free(pritbl);
959 		if (sechdr != NULL)
960 			g_free(sechdr);
961 		if (sectbl != NULL)
962 			g_free(sectbl);
963 		return (EINVAL);
964 	}
965 
966 	/*
967 	 * If both headers are good but they disagree with each other,
968 	 * then invalidate one. We prefer to keep the primary header,
969 	 * unless the primary table is corrupt.
970 	 */
971 	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
972 	    table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
973 	    !gpt_matched_hdrs(prihdr, sechdr)) {
974 		if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
975 			table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
976 			table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
977 			g_free(sechdr);
978 			sechdr = NULL;
979 		} else {
980 			table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
981 			table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
982 			g_free(prihdr);
983 			prihdr = NULL;
984 		}
985 	}
986 
987 	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
988 		printf("GEOM: %s: the primary GPT table is corrupt or "
989 		    "invalid.\n", pp->name);
990 		printf("GEOM: %s: using the secondary instead -- recovery "
991 		    "strongly advised.\n", pp->name);
992 		table->hdr = sechdr;
993 		basetable->gpt_corrupt = 1;
994 		if (prihdr != NULL)
995 			g_free(prihdr);
996 		tbl = sectbl;
997 		if (pritbl != NULL)
998 			g_free(pritbl);
999 	} else {
1000 		if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
1001 			printf("GEOM: %s: the secondary GPT table is corrupt "
1002 			    "or invalid.\n", pp->name);
1003 			printf("GEOM: %s: using the primary only -- recovery "
1004 			    "suggested.\n", pp->name);
1005 			basetable->gpt_corrupt = 1;
1006 		} else if (table->lba[GPT_ELT_SECHDR] != last) {
1007 			printf( "GEOM: %s: the secondary GPT header is not in "
1008 			    "the last LBA.\n", pp->name);
1009 			basetable->gpt_corrupt = 1;
1010 		}
1011 		table->hdr = prihdr;
1012 		if (sechdr != NULL)
1013 			g_free(sechdr);
1014 		tbl = pritbl;
1015 		if (sectbl != NULL)
1016 			g_free(sectbl);
1017 	}
1018 
1019 	basetable->gpt_first = table->hdr->hdr_lba_start;
1020 	basetable->gpt_last = table->hdr->hdr_lba_end;
1021 	basetable->gpt_entries = table->hdr->hdr_entries;
1022 
1023 	for (index = basetable->gpt_entries - 1; index >= 0; index--) {
1024 		if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
1025 			continue;
1026 		entry = (struct g_part_gpt_entry *)g_part_new_entry(
1027 		    basetable, index + 1, tbl[index].ent_lba_start,
1028 		    tbl[index].ent_lba_end);
1029 		entry->ent = tbl[index];
1030 	}
1031 
1032 	g_free(tbl);
1033 
1034 	/*
1035 	 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions
1036 	 * if (and only if) any FAT32 or FAT16 partitions have been
1037 	 * created. This happens irrespective of whether Boot Camp is
1038 	 * used/enabled, though it's generally understood to be done
1039 	 * to support legacy Windows under Boot Camp. We refer to this
1040 	 * mirroring simply as Boot Camp. We try to detect Boot Camp
1041 	 * so that we can update the MBR if and when GPT changes have
1042 	 * been made. Note that we do not enable Boot Camp if not
1043 	 * previously enabled because we can't assume that we're on a
1044 	 * Mac alongside Mac OS X.
1045 	 */
1046 	table->bootcamp = gpt_is_bootcamp(table, pp->name);
1047 
1048 	return (0);
1049 }
1050 
1051 static int
1052 g_part_gpt_recover(struct g_part_table *basetable)
1053 {
1054 	struct g_part_gpt_table *table;
1055 	struct g_provider *pp;
1056 
1057 	table = (struct g_part_gpt_table *)basetable;
1058 	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
1059 	gpt_create_pmbr(table, pp);
1060 	g_gpt_set_defaults(basetable, pp);
1061 	basetable->gpt_corrupt = 0;
1062 	return (0);
1063 }
1064 
1065 static int
1066 g_part_gpt_setunset(struct g_part_table *basetable,
1067     struct g_part_entry *baseentry, const char *attrib, unsigned int set)
1068 {
1069 	struct g_part_gpt_entry *entry;
1070 	struct g_part_gpt_table *table;
1071 	struct g_provider *pp;
1072 	uint8_t *p;
1073 	uint64_t attr;
1074 	int i;
1075 
1076 	table = (struct g_part_gpt_table *)basetable;
1077 	entry = (struct g_part_gpt_entry *)baseentry;
1078 
1079 	if (strcasecmp(attrib, "active") == 0) {
1080 		if (table->bootcamp) {
1081 			/* The active flag must be set on a valid entry. */
1082 			if (entry == NULL)
1083 				return (ENXIO);
1084 			if (baseentry->gpe_index > NDOSPART)
1085 				return (EINVAL);
1086 			for (i = 0; i < NDOSPART; i++) {
1087 				p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
1088 				p[0] = (i == baseentry->gpe_index - 1)
1089 				    ? ((set) ? 0x80 : 0) : 0;
1090 			}
1091 		} else {
1092 			/* The PMBR is marked as active without an entry. */
1093 			if (entry != NULL)
1094 				return (ENXIO);
1095 			for (i = 0; i < NDOSPART; i++) {
1096 				p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
1097 				p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0;
1098 			}
1099 		}
1100 		return (0);
1101 	} else if (strcasecmp(attrib, "lenovofix") == 0) {
1102 		/*
1103 		 * Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR.
1104 		 * This workaround allows Lenovo X220, T420, T520, etc to boot
1105 		 * from GPT Partitions in BIOS mode.
1106 		 */
1107 
1108 		if (entry != NULL)
1109 			return (ENXIO);
1110 
1111 		pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
1112 		bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
1113 		gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1,
1114 		    MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
1115 		return (0);
1116 	}
1117 
1118 	if (entry == NULL)
1119 		return (ENODEV);
1120 
1121 	attr = 0;
1122 	if (strcasecmp(attrib, "bootme") == 0) {
1123 		attr |= GPT_ENT_ATTR_BOOTME;
1124 	} else if (strcasecmp(attrib, "bootonce") == 0) {
1125 		attr |= GPT_ENT_ATTR_BOOTONCE;
1126 		if (set)
1127 			attr |= GPT_ENT_ATTR_BOOTME;
1128 	} else if (strcasecmp(attrib, "bootfailed") == 0) {
1129 		/*
1130 		 * It should only be possible to unset BOOTFAILED, but it might
1131 		 * be useful for test purposes to also be able to set it.
1132 		 */
1133 		attr |= GPT_ENT_ATTR_BOOTFAILED;
1134 	}
1135 	if (attr == 0)
1136 		return (EINVAL);
1137 
1138 	if (set)
1139 		attr = entry->ent.ent_attr | attr;
1140 	else
1141 		attr = entry->ent.ent_attr & ~attr;
1142 	if (attr != entry->ent.ent_attr) {
1143 		entry->ent.ent_attr = attr;
1144 		if (!baseentry->gpe_created)
1145 			baseentry->gpe_modified = 1;
1146 	}
1147 	return (0);
1148 }
1149 
1150 static const char *
1151 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
1152     char *buf, size_t bufsz)
1153 {
1154 	struct g_part_gpt_entry *entry;
1155 	struct uuid *type;
1156 	struct g_part_uuid_alias *uap;
1157 
1158 	entry = (struct g_part_gpt_entry *)baseentry;
1159 	type = &entry->ent.ent_type;
1160 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++)
1161 		if (EQUUID(type, uap->uuid))
1162 			return (g_part_alias_name(uap->alias));
1163 	buf[0] = '!';
1164 	snprintf_uuid(buf + 1, bufsz - 1, type);
1165 
1166 	return (buf);
1167 }
1168 
1169 static int
1170 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
1171 {
1172 	unsigned char *buf, *bp;
1173 	struct g_provider *pp;
1174 	struct g_part_entry *baseentry;
1175 	struct g_part_gpt_entry *entry;
1176 	struct g_part_gpt_table *table;
1177 	size_t tblsz;
1178 	uint32_t crc;
1179 	int error, index;
1180 
1181 	pp = cp->provider;
1182 	table = (struct g_part_gpt_table *)basetable;
1183 	tblsz = howmany(table->hdr->hdr_entries * table->hdr->hdr_entsz,
1184 	    pp->sectorsize);
1185 
1186 	/* Reconstruct the MBR from the GPT if under Boot Camp. */
1187 	if (table->bootcamp)
1188 		gpt_update_bootcamp(basetable, pp);
1189 
1190 	/* Write the PMBR */
1191 	buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
1192 	bcopy(table->mbr, buf, MBRSIZE);
1193 	error = g_write_data(cp, 0, buf, pp->sectorsize);
1194 	g_free(buf);
1195 	if (error)
1196 		return (error);
1197 
1198 	/* Allocate space for the header and entries. */
1199 	buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
1200 
1201 	memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
1202 	le32enc(buf + 8, table->hdr->hdr_revision);
1203 	le32enc(buf + 12, table->hdr->hdr_size);
1204 	le64enc(buf + 40, table->hdr->hdr_lba_start);
1205 	le64enc(buf + 48, table->hdr->hdr_lba_end);
1206 	le_uuid_enc(buf + 56, &table->hdr->hdr_uuid);
1207 	le32enc(buf + 80, table->hdr->hdr_entries);
1208 	le32enc(buf + 84, table->hdr->hdr_entsz);
1209 
1210 	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1211 		if (baseentry->gpe_deleted)
1212 			continue;
1213 		entry = (struct g_part_gpt_entry *)baseentry;
1214 		index = baseentry->gpe_index - 1;
1215 		bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index;
1216 		le_uuid_enc(bp, &entry->ent.ent_type);
1217 		le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
1218 		le64enc(bp + 32, entry->ent.ent_lba_start);
1219 		le64enc(bp + 40, entry->ent.ent_lba_end);
1220 		le64enc(bp + 48, entry->ent.ent_attr);
1221 		memcpy(bp + 56, entry->ent.ent_name,
1222 		    sizeof(entry->ent.ent_name));
1223 	}
1224 
1225 	crc = crc32(buf + pp->sectorsize,
1226 	    table->hdr->hdr_entries * table->hdr->hdr_entsz);
1227 	le32enc(buf + 88, crc);
1228 
1229 	/* Write primary meta-data. */
1230 	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1231 	le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_self. */
1232 	le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_alt. */
1233 	le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]);	/* hdr_lba_table. */
1234 	crc = crc32(buf, table->hdr->hdr_size);
1235 	le32enc(buf + 16, crc);
1236 
1237 	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1238 		error = g_write_data(cp,
1239 		    (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize,
1240 		    buf + (index + 1) * pp->sectorsize,
1241 		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1242 		    (tblsz - index) * pp->sectorsize);
1243 		if (error)
1244 			goto out;
1245 	}
1246 	error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
1247 	    buf, pp->sectorsize);
1248 	if (error)
1249 		goto out;
1250 
1251 	/* Write secondary meta-data. */
1252 	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1253 	le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_self. */
1254 	le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_alt. */
1255 	le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]);	/* hdr_lba_table. */
1256 	crc = crc32(buf, table->hdr->hdr_size);
1257 	le32enc(buf + 16, crc);
1258 
1259 	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1260 		error = g_write_data(cp,
1261 		    (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize,
1262 		    buf + (index + 1) * pp->sectorsize,
1263 		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1264 		    (tblsz - index) * pp->sectorsize);
1265 		if (error)
1266 			goto out;
1267 	}
1268 	error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
1269 	    buf, pp->sectorsize);
1270 
1271  out:
1272 	g_free(buf);
1273 	return (error);
1274 }
1275 
1276 static void
1277 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp)
1278 {
1279 	struct g_part_entry *baseentry;
1280 	struct g_part_gpt_entry *entry;
1281 	struct g_part_gpt_table *table;
1282 	quad_t start, end, min, max;
1283 	quad_t lba, last;
1284 	size_t spb, tblsz;
1285 
1286 	table = (struct g_part_gpt_table *)basetable;
1287 	last = pp->mediasize / pp->sectorsize - 1;
1288 	tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent),
1289 	    pp->sectorsize);
1290 
1291 	table->lba[GPT_ELT_PRIHDR] = 1;
1292 	table->lba[GPT_ELT_PRITBL] = 2;
1293 	table->lba[GPT_ELT_SECHDR] = last;
1294 	table->lba[GPT_ELT_SECTBL] = last - tblsz;
1295 	table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK;
1296 	table->state[GPT_ELT_PRITBL] = GPT_STATE_OK;
1297 	table->state[GPT_ELT_SECHDR] = GPT_STATE_OK;
1298 	table->state[GPT_ELT_SECTBL] = GPT_STATE_OK;
1299 
1300 	max = start = 2 + tblsz;
1301 	min = end = last - tblsz - 1;
1302 	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1303 		if (baseentry->gpe_deleted)
1304 			continue;
1305 		entry = (struct g_part_gpt_entry *)baseentry;
1306 		if (entry->ent.ent_lba_start < min)
1307 			min = entry->ent.ent_lba_start;
1308 		if (entry->ent.ent_lba_end > max)
1309 			max = entry->ent.ent_lba_end;
1310 	}
1311 	spb = 4096 / pp->sectorsize;
1312 	if (spb > 1) {
1313 		lba = start + ((start % spb) ? spb - start % spb : 0);
1314 		if (lba <= min)
1315 			start = lba;
1316 		lba = end - (end + 1) % spb;
1317 		if (max <= lba)
1318 			end = lba;
1319 	}
1320 	table->hdr->hdr_lba_start = start;
1321 	table->hdr->hdr_lba_end = end;
1322 
1323 	basetable->gpt_first = start;
1324 	basetable->gpt_last = end;
1325 }
1326 
1327 static void
1328 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
1329 {
1330 	u_int bo;
1331 	uint32_t ch;
1332 	uint16_t c;
1333 
1334 	bo = LITTLE_ENDIAN;	/* GPT is little-endian */
1335 	while (len > 0 && *str != 0) {
1336 		ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
1337 		str++, len--;
1338 		if ((ch & 0xf800) == 0xd800) {
1339 			if (len > 0) {
1340 				c = (bo == BIG_ENDIAN) ? be16toh(*str)
1341 				    : le16toh(*str);
1342 				str++, len--;
1343 			} else
1344 				c = 0xfffd;
1345 			if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
1346 				ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
1347 				ch += 0x10000;
1348 			} else
1349 				ch = 0xfffd;
1350 		} else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
1351 			bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
1352 			continue;
1353 		} else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
1354 			continue;
1355 
1356 		/* Write the Unicode character in UTF-8 */
1357 		if (ch < 0x80)
1358 			g_conf_printf_escaped(sb, "%c", ch);
1359 		else if (ch < 0x800)
1360 			g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6),
1361 			    0x80 | (ch & 0x3f));
1362 		else if (ch < 0x10000)
1363 			g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12),
1364 			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1365 		else if (ch < 0x200000)
1366 			g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 |
1367 			    (ch >> 18), 0x80 | ((ch >> 12) & 0x3f),
1368 			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1369 	}
1370 }
1371 
1372 static void
1373 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
1374 {
1375 	size_t s16idx, s8idx;
1376 	uint32_t utfchar;
1377 	unsigned int c, utfbytes;
1378 
1379 	s8idx = s16idx = 0;
1380 	utfchar = 0;
1381 	utfbytes = 0;
1382 	bzero(s16, s16len << 1);
1383 	while (s8[s8idx] != 0 && s16idx < s16len) {
1384 		c = s8[s8idx++];
1385 		if ((c & 0xc0) != 0x80) {
1386 			/* Initial characters. */
1387 			if (utfbytes != 0) {
1388 				/* Incomplete encoding of previous char. */
1389 				s16[s16idx++] = htole16(0xfffd);
1390 			}
1391 			if ((c & 0xf8) == 0xf0) {
1392 				utfchar = c & 0x07;
1393 				utfbytes = 3;
1394 			} else if ((c & 0xf0) == 0xe0) {
1395 				utfchar = c & 0x0f;
1396 				utfbytes = 2;
1397 			} else if ((c & 0xe0) == 0xc0) {
1398 				utfchar = c & 0x1f;
1399 				utfbytes = 1;
1400 			} else {
1401 				utfchar = c & 0x7f;
1402 				utfbytes = 0;
1403 			}
1404 		} else {
1405 			/* Followup characters. */
1406 			if (utfbytes > 0) {
1407 				utfchar = (utfchar << 6) + (c & 0x3f);
1408 				utfbytes--;
1409 			} else if (utfbytes == 0)
1410 				utfbytes = ~0;
1411 		}
1412 		/*
1413 		 * Write the complete Unicode character as UTF-16 when we
1414 		 * have all the UTF-8 charactars collected.
1415 		 */
1416 		if (utfbytes == 0) {
1417 			/*
1418 			 * If we need to write 2 UTF-16 characters, but
1419 			 * we only have room for 1, then we truncate the
1420 			 * string by writing a 0 instead.
1421 			 */
1422 			if (utfchar >= 0x10000 && s16idx < s16len - 1) {
1423 				s16[s16idx++] =
1424 				    htole16(0xd800 | ((utfchar >> 10) - 0x40));
1425 				s16[s16idx++] =
1426 				    htole16(0xdc00 | (utfchar & 0x3ff));
1427 			} else
1428 				s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
1429 				    htole16(utfchar);
1430 		}
1431 	}
1432 	/*
1433 	 * If our input string was truncated, append an invalid encoding
1434 	 * character to the output string.
1435 	 */
1436 	if (utfbytes != 0 && s16idx < s16len)
1437 		s16[s16idx++] = htole16(0xfffd);
1438 }
1439