1 /*- 2 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/bio.h> 32 #include <sys/diskmbr.h> 33 #include <sys/endian.h> 34 #include <sys/gpt.h> 35 #include <sys/kernel.h> 36 #include <sys/kobj.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/malloc.h> 40 #include <sys/mutex.h> 41 #include <sys/queue.h> 42 #include <sys/sbuf.h> 43 #include <sys/systm.h> 44 #include <sys/sysctl.h> 45 #include <sys/uuid.h> 46 #include <geom/geom.h> 47 #include <geom/geom_int.h> 48 #include <geom/part/g_part.h> 49 50 #include "g_part_if.h" 51 52 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support"); 53 54 CTASSERT(offsetof(struct gpt_hdr, padding) == 92); 55 CTASSERT(sizeof(struct gpt_ent) == 128); 56 57 #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) 58 59 #define MBRSIZE 512 60 61 enum gpt_elt { 62 GPT_ELT_PRIHDR, 63 GPT_ELT_PRITBL, 64 GPT_ELT_SECHDR, 65 GPT_ELT_SECTBL, 66 GPT_ELT_COUNT 67 }; 68 69 enum gpt_state { 70 GPT_STATE_UNKNOWN, /* Not determined. */ 71 GPT_STATE_MISSING, /* No signature found. */ 72 GPT_STATE_CORRUPT, /* Checksum mismatch. */ 73 GPT_STATE_INVALID, /* Nonconformant/invalid. */ 74 GPT_STATE_OK /* Perfectly fine. */ 75 }; 76 77 struct g_part_gpt_table { 78 struct g_part_table base; 79 u_char mbr[MBRSIZE]; 80 struct gpt_hdr *hdr; 81 quad_t lba[GPT_ELT_COUNT]; 82 enum gpt_state state[GPT_ELT_COUNT]; 83 int bootcamp; 84 }; 85 86 struct g_part_gpt_entry { 87 struct g_part_entry base; 88 struct gpt_ent ent; 89 }; 90 91 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); 92 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); 93 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *); 94 95 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, 96 struct g_part_parms *); 97 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); 98 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); 99 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); 100 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, 101 struct sbuf *, const char *); 102 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); 103 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, 104 struct g_part_parms *); 105 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, 106 char *, size_t); 107 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); 108 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); 109 static int g_part_gpt_setunset(struct g_part_table *table, 110 struct g_part_entry *baseentry, const char *attrib, unsigned int set); 111 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, 112 char *, size_t); 113 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); 114 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, 115 struct g_part_parms *); 116 static int g_part_gpt_recover(struct g_part_table *); 117 118 static kobj_method_t g_part_gpt_methods[] = { 119 KOBJMETHOD(g_part_add, g_part_gpt_add), 120 KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), 121 KOBJMETHOD(g_part_create, g_part_gpt_create), 122 KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), 123 KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), 124 KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), 125 KOBJMETHOD(g_part_modify, g_part_gpt_modify), 126 KOBJMETHOD(g_part_resize, g_part_gpt_resize), 127 KOBJMETHOD(g_part_name, g_part_gpt_name), 128 KOBJMETHOD(g_part_probe, g_part_gpt_probe), 129 KOBJMETHOD(g_part_read, g_part_gpt_read), 130 KOBJMETHOD(g_part_recover, g_part_gpt_recover), 131 KOBJMETHOD(g_part_setunset, g_part_gpt_setunset), 132 KOBJMETHOD(g_part_type, g_part_gpt_type), 133 KOBJMETHOD(g_part_write, g_part_gpt_write), 134 { 0, 0 } 135 }; 136 137 static struct g_part_scheme g_part_gpt_scheme = { 138 "GPT", 139 g_part_gpt_methods, 140 sizeof(struct g_part_gpt_table), 141 .gps_entrysz = sizeof(struct g_part_gpt_entry), 142 .gps_minent = 128, 143 .gps_maxent = 4096, 144 .gps_bootcodesz = MBRSIZE, 145 }; 146 G_PART_SCHEME_DECLARE(g_part_gpt); 147 148 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; 149 static struct uuid gpt_uuid_apple_core_storage = 150 GPT_ENT_TYPE_APPLE_CORE_STORAGE; 151 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; 152 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; 153 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; 154 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; 155 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; 156 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; 157 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT; 158 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; 159 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; 160 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; 161 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS; 162 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; 163 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; 164 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; 165 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; 166 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; 167 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; 168 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; 169 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; 170 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS; 171 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG; 172 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED; 173 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR; 174 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; 175 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; 176 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; 177 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; 178 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; 179 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; 180 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; 181 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; 182 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; 183 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; 184 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; 185 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; 186 static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP; 187 static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1; 188 static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM; 189 static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD; 190 static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY; 191 static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER; 192 static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2; 193 static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32; 194 static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64; 195 static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT; 196 197 static struct g_part_uuid_alias { 198 struct uuid *uuid; 199 int alias; 200 int mbrtype; 201 } gpt_uuid_alias_match[] = { 202 { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab }, 203 { &gpt_uuid_apple_core_storage, G_PART_ALIAS_APPLE_CORE_STORAGE, 0 }, 204 { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf }, 205 { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 }, 206 { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 }, 207 { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 }, 208 { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 }, 209 { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 }, 210 { &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 }, 211 { &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee }, 212 { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 }, 213 { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 }, 214 { &gpt_uuid_freebsd_nandfs, G_PART_ALIAS_FREEBSD_NANDFS, 0 }, 215 { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 }, 216 { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 }, 217 { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 }, 218 { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 }, 219 { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b }, 220 { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 }, 221 { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 }, 222 { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 }, 223 { &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 }, 224 { &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 }, 225 { &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 }, 226 { &gpt_uuid_vmvsanhdr, G_PART_ALIAS_VMVSANHDR, 0 }, 227 { &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 }, 228 { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b }, 229 { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 }, 230 { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 }, 231 { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 }, 232 { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 }, 233 { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 }, 234 { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 }, 235 { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 }, 236 { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 }, 237 { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 }, 238 { &gpt_uuid_dfbsd_swap, G_PART_ALIAS_DFBSD_SWAP, 0 }, 239 { &gpt_uuid_dfbsd_ufs1, G_PART_ALIAS_DFBSD_UFS, 0 }, 240 { &gpt_uuid_dfbsd_vinum, G_PART_ALIAS_DFBSD_VINUM, 0 }, 241 { &gpt_uuid_dfbsd_ccd, G_PART_ALIAS_DFBSD_CCD, 0 }, 242 { &gpt_uuid_dfbsd_legacy, G_PART_ALIAS_DFBSD_LEGACY, 0 }, 243 { &gpt_uuid_dfbsd_hammer, G_PART_ALIAS_DFBSD_HAMMER, 0 }, 244 { &gpt_uuid_dfbsd_hammer2, G_PART_ALIAS_DFBSD_HAMMER2, 0 }, 245 { &gpt_uuid_dfbsd_label32, G_PART_ALIAS_DFBSD, 0xa5 }, 246 { &gpt_uuid_dfbsd_label64, G_PART_ALIAS_DFBSD64, 0xa5 }, 247 { &gpt_uuid_prep_boot, G_PART_ALIAS_PREP_BOOT, 0x41 }, 248 { NULL, 0, 0 } 249 }; 250 251 static int 252 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start, 253 quad_t end) 254 { 255 256 if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX) 257 return (EINVAL); 258 259 mbr += DOSPARTOFF + idx * DOSPARTSIZE; 260 mbr[0] = 0; 261 if (start == 1) { 262 /* 263 * Treat the PMBR partition specially to maximize 264 * interoperability with BIOSes. 265 */ 266 mbr[1] = mbr[3] = 0; 267 mbr[2] = 2; 268 } else 269 mbr[1] = mbr[2] = mbr[3] = 0xff; 270 mbr[4] = typ; 271 mbr[5] = mbr[6] = mbr[7] = 0xff; 272 le32enc(mbr + 8, (uint32_t)start); 273 le32enc(mbr + 12, (uint32_t)(end - start + 1)); 274 return (0); 275 } 276 277 static int 278 gpt_map_type(struct uuid *t) 279 { 280 struct g_part_uuid_alias *uap; 281 282 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 283 if (EQUUID(t, uap->uuid)) 284 return (uap->mbrtype); 285 } 286 return (0); 287 } 288 289 static void 290 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp) 291 { 292 293 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 294 gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, 295 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 296 le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); 297 } 298 299 /* 300 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the 301 * whole disk anymore. Rather, it covers the GPT table and the EFI 302 * system partition only. This way the HFS+ partition and any FAT 303 * partitions can be added to the MBR without creating an overlap. 304 */ 305 static int 306 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname) 307 { 308 uint8_t *p; 309 310 p = table->mbr + DOSPARTOFF; 311 if (p[4] != 0xee || le32dec(p + 8) != 1) 312 return (0); 313 314 p += DOSPARTSIZE; 315 if (p[4] != 0xaf) 316 return (0); 317 318 printf("GEOM: %s: enabling Boot Camp\n", provname); 319 return (1); 320 } 321 322 static void 323 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp) 324 { 325 struct g_part_entry *baseentry; 326 struct g_part_gpt_entry *entry; 327 struct g_part_gpt_table *table; 328 int bootable, error, index, slices, typ; 329 330 table = (struct g_part_gpt_table *)basetable; 331 332 bootable = -1; 333 for (index = 0; index < NDOSPART; index++) { 334 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index]) 335 bootable = index; 336 } 337 338 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 339 slices = 0; 340 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 341 if (baseentry->gpe_deleted) 342 continue; 343 index = baseentry->gpe_index - 1; 344 if (index >= NDOSPART) 345 continue; 346 347 entry = (struct g_part_gpt_entry *)baseentry; 348 349 switch (index) { 350 case 0: /* This must be the EFI system partition. */ 351 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi)) 352 goto disable; 353 error = gpt_write_mbr_entry(table->mbr, index, 0xee, 354 1ull, entry->ent.ent_lba_end); 355 break; 356 case 1: /* This must be the HFS+ partition. */ 357 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs)) 358 goto disable; 359 error = gpt_write_mbr_entry(table->mbr, index, 0xaf, 360 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 361 break; 362 default: 363 typ = gpt_map_type(&entry->ent.ent_type); 364 error = gpt_write_mbr_entry(table->mbr, index, typ, 365 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 366 break; 367 } 368 if (error) 369 continue; 370 371 if (index == bootable) 372 table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80; 373 slices |= 1 << index; 374 } 375 if ((slices & 3) == 3) 376 return; 377 378 disable: 379 table->bootcamp = 0; 380 gpt_create_pmbr(table, pp); 381 } 382 383 static struct gpt_hdr * 384 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, 385 enum gpt_elt elt) 386 { 387 struct gpt_hdr *buf, *hdr; 388 struct g_provider *pp; 389 quad_t lba, last; 390 int error; 391 uint32_t crc, sz; 392 393 pp = cp->provider; 394 last = (pp->mediasize / pp->sectorsize) - 1; 395 table->state[elt] = GPT_STATE_MISSING; 396 /* 397 * If the primary header is valid look for secondary 398 * header in AlternateLBA, otherwise in the last medium's LBA. 399 */ 400 if (elt == GPT_ELT_SECHDR) { 401 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK) 402 table->lba[elt] = last; 403 } else 404 table->lba[elt] = 1; 405 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, 406 &error); 407 if (buf == NULL) 408 return (NULL); 409 hdr = NULL; 410 if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) 411 goto fail; 412 413 table->state[elt] = GPT_STATE_CORRUPT; 414 sz = le32toh(buf->hdr_size); 415 if (sz < 92 || sz > pp->sectorsize) 416 goto fail; 417 418 hdr = g_malloc(sz, M_WAITOK | M_ZERO); 419 bcopy(buf, hdr, sz); 420 hdr->hdr_size = sz; 421 422 crc = le32toh(buf->hdr_crc_self); 423 buf->hdr_crc_self = 0; 424 if (crc32(buf, sz) != crc) 425 goto fail; 426 hdr->hdr_crc_self = crc; 427 428 table->state[elt] = GPT_STATE_INVALID; 429 hdr->hdr_revision = le32toh(buf->hdr_revision); 430 if (hdr->hdr_revision < GPT_HDR_REVISION) 431 goto fail; 432 hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); 433 if (hdr->hdr_lba_self != table->lba[elt]) 434 goto fail; 435 hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); 436 if (hdr->hdr_lba_alt == hdr->hdr_lba_self || 437 hdr->hdr_lba_alt > last) 438 goto fail; 439 440 /* Check the managed area. */ 441 hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); 442 if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) 443 goto fail; 444 hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); 445 if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) 446 goto fail; 447 448 /* Check the table location and size of the table. */ 449 hdr->hdr_entries = le32toh(buf->hdr_entries); 450 hdr->hdr_entsz = le32toh(buf->hdr_entsz); 451 if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || 452 (hdr->hdr_entsz & 7) != 0) 453 goto fail; 454 hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); 455 if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) 456 goto fail; 457 if (hdr->hdr_lba_table >= hdr->hdr_lba_start && 458 hdr->hdr_lba_table <= hdr->hdr_lba_end) 459 goto fail; 460 lba = hdr->hdr_lba_table + 461 (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) / 462 pp->sectorsize - 1; 463 if (lba >= last) 464 goto fail; 465 if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) 466 goto fail; 467 468 table->state[elt] = GPT_STATE_OK; 469 le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); 470 hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); 471 472 /* save LBA for secondary header */ 473 if (elt == GPT_ELT_PRIHDR) 474 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt; 475 476 g_free(buf); 477 return (hdr); 478 479 fail: 480 if (hdr != NULL) 481 g_free(hdr); 482 g_free(buf); 483 return (NULL); 484 } 485 486 static struct gpt_ent * 487 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, 488 enum gpt_elt elt, struct gpt_hdr *hdr) 489 { 490 struct g_provider *pp; 491 struct gpt_ent *ent, *tbl; 492 char *buf, *p; 493 unsigned int idx, sectors, tblsz, size; 494 int error; 495 496 if (hdr == NULL) 497 return (NULL); 498 499 pp = cp->provider; 500 table->lba[elt] = hdr->hdr_lba_table; 501 502 table->state[elt] = GPT_STATE_MISSING; 503 tblsz = hdr->hdr_entries * hdr->hdr_entsz; 504 sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize; 505 buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO); 506 for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) { 507 size = (sectors - idx > MAXPHYS / pp->sectorsize) ? MAXPHYS: 508 (sectors - idx) * pp->sectorsize; 509 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize, 510 size, &error); 511 if (p == NULL) { 512 g_free(buf); 513 return (NULL); 514 } 515 bcopy(p, buf + idx * pp->sectorsize, size); 516 g_free(p); 517 } 518 table->state[elt] = GPT_STATE_CORRUPT; 519 if (crc32(buf, tblsz) != hdr->hdr_crc_table) { 520 g_free(buf); 521 return (NULL); 522 } 523 524 table->state[elt] = GPT_STATE_OK; 525 tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), 526 M_WAITOK | M_ZERO); 527 528 for (idx = 0, ent = tbl, p = buf; 529 idx < hdr->hdr_entries; 530 idx++, ent++, p += hdr->hdr_entsz) { 531 le_uuid_dec(p, &ent->ent_type); 532 le_uuid_dec(p + 16, &ent->ent_uuid); 533 ent->ent_lba_start = le64dec(p + 32); 534 ent->ent_lba_end = le64dec(p + 40); 535 ent->ent_attr = le64dec(p + 48); 536 /* Keep UTF-16 in little-endian. */ 537 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); 538 } 539 540 g_free(buf); 541 return (tbl); 542 } 543 544 static int 545 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) 546 { 547 548 if (pri == NULL || sec == NULL) 549 return (0); 550 551 if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) 552 return (0); 553 return ((pri->hdr_revision == sec->hdr_revision && 554 pri->hdr_size == sec->hdr_size && 555 pri->hdr_lba_start == sec->hdr_lba_start && 556 pri->hdr_lba_end == sec->hdr_lba_end && 557 pri->hdr_entries == sec->hdr_entries && 558 pri->hdr_entsz == sec->hdr_entsz && 559 pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); 560 } 561 562 static int 563 gpt_parse_type(const char *type, struct uuid *uuid) 564 { 565 struct uuid tmp; 566 const char *alias; 567 int error; 568 struct g_part_uuid_alias *uap; 569 570 if (type[0] == '!') { 571 error = parse_uuid(type + 1, &tmp); 572 if (error) 573 return (error); 574 if (EQUUID(&tmp, &gpt_uuid_unused)) 575 return (EINVAL); 576 *uuid = tmp; 577 return (0); 578 } 579 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 580 alias = g_part_alias_name(uap->alias); 581 if (!strcasecmp(type, alias)) { 582 *uuid = *uap->uuid; 583 return (0); 584 } 585 } 586 return (EINVAL); 587 } 588 589 static int 590 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, 591 struct g_part_parms *gpp) 592 { 593 struct g_part_gpt_entry *entry; 594 int error; 595 596 entry = (struct g_part_gpt_entry *)baseentry; 597 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 598 if (error) 599 return (error); 600 kern_uuidgen(&entry->ent.ent_uuid, 1); 601 entry->ent.ent_lba_start = baseentry->gpe_start; 602 entry->ent.ent_lba_end = baseentry->gpe_end; 603 if (baseentry->gpe_deleted) { 604 entry->ent.ent_attr = 0; 605 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); 606 } 607 if (gpp->gpp_parms & G_PART_PARM_LABEL) 608 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 609 sizeof(entry->ent.ent_name) / 610 sizeof(entry->ent.ent_name[0])); 611 return (0); 612 } 613 614 static int 615 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) 616 { 617 struct g_part_gpt_table *table; 618 size_t codesz; 619 620 codesz = DOSPARTOFF; 621 table = (struct g_part_gpt_table *)basetable; 622 bzero(table->mbr, codesz); 623 codesz = MIN(codesz, gpp->gpp_codesize); 624 if (codesz > 0) 625 bcopy(gpp->gpp_codeptr, table->mbr, codesz); 626 return (0); 627 } 628 629 static int 630 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) 631 { 632 struct g_provider *pp; 633 struct g_part_gpt_table *table; 634 size_t tblsz; 635 636 /* We don't nest, which means that our depth should be 0. */ 637 if (basetable->gpt_depth != 0) 638 return (ENXIO); 639 640 table = (struct g_part_gpt_table *)basetable; 641 pp = gpp->gpp_provider; 642 tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) + 643 pp->sectorsize - 1) / pp->sectorsize; 644 if (pp->sectorsize < MBRSIZE || 645 pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * 646 pp->sectorsize) 647 return (ENOSPC); 648 649 gpt_create_pmbr(table, pp); 650 651 /* Allocate space for the header */ 652 table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); 653 654 bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 655 table->hdr->hdr_revision = GPT_HDR_REVISION; 656 table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); 657 kern_uuidgen(&table->hdr->hdr_uuid, 1); 658 table->hdr->hdr_entries = basetable->gpt_entries; 659 table->hdr->hdr_entsz = sizeof(struct gpt_ent); 660 661 g_gpt_set_defaults(basetable, pp); 662 return (0); 663 } 664 665 static int 666 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) 667 { 668 struct g_part_gpt_table *table; 669 struct g_provider *pp; 670 671 table = (struct g_part_gpt_table *)basetable; 672 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 673 g_free(table->hdr); 674 table->hdr = NULL; 675 676 /* 677 * Wipe the first 2 sectors to clear the partitioning. Wipe the last 678 * sector only if it has valid secondary header. 679 */ 680 basetable->gpt_smhead |= 3; 681 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 682 table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1) 683 basetable->gpt_smtail |= 1; 684 return (0); 685 } 686 687 static void 688 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 689 struct sbuf *sb, const char *indent) 690 { 691 struct g_part_gpt_entry *entry; 692 693 entry = (struct g_part_gpt_entry *)baseentry; 694 if (indent == NULL) { 695 /* conftxt: libdisk compatibility */ 696 sbuf_printf(sb, " xs GPT xt "); 697 sbuf_printf_uuid(sb, &entry->ent.ent_type); 698 } else if (entry != NULL) { 699 /* confxml: partition entry information */ 700 sbuf_printf(sb, "%s<label>", indent); 701 g_gpt_printf_utf16(sb, entry->ent.ent_name, 702 sizeof(entry->ent.ent_name) >> 1); 703 sbuf_printf(sb, "</label>\n"); 704 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME) 705 sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent); 706 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) { 707 sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n", 708 indent); 709 } 710 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) { 711 sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n", 712 indent); 713 } 714 sbuf_printf(sb, "%s<rawtype>", indent); 715 sbuf_printf_uuid(sb, &entry->ent.ent_type); 716 sbuf_printf(sb, "</rawtype>\n"); 717 sbuf_printf(sb, "%s<rawuuid>", indent); 718 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 719 sbuf_printf(sb, "</rawuuid>\n"); 720 } else { 721 /* confxml: scheme information */ 722 } 723 } 724 725 static int 726 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) 727 { 728 struct g_part_gpt_entry *entry; 729 730 entry = (struct g_part_gpt_entry *)baseentry; 731 return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || 732 EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) || 733 EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0); 734 } 735 736 static int 737 g_part_gpt_modify(struct g_part_table *basetable, 738 struct g_part_entry *baseentry, struct g_part_parms *gpp) 739 { 740 struct g_part_gpt_entry *entry; 741 int error; 742 743 entry = (struct g_part_gpt_entry *)baseentry; 744 if (gpp->gpp_parms & G_PART_PARM_TYPE) { 745 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 746 if (error) 747 return (error); 748 } 749 if (gpp->gpp_parms & G_PART_PARM_LABEL) 750 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 751 sizeof(entry->ent.ent_name) / 752 sizeof(entry->ent.ent_name[0])); 753 return (0); 754 } 755 756 static int 757 g_part_gpt_resize(struct g_part_table *basetable, 758 struct g_part_entry *baseentry, struct g_part_parms *gpp) 759 { 760 struct g_part_gpt_entry *entry; 761 762 if (baseentry == NULL) 763 return (EOPNOTSUPP); 764 765 entry = (struct g_part_gpt_entry *)baseentry; 766 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; 767 entry->ent.ent_lba_end = baseentry->gpe_end; 768 769 return (0); 770 } 771 772 static const char * 773 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, 774 char *buf, size_t bufsz) 775 { 776 struct g_part_gpt_entry *entry; 777 char c; 778 779 entry = (struct g_part_gpt_entry *)baseentry; 780 c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; 781 snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); 782 return (buf); 783 } 784 785 static int 786 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) 787 { 788 struct g_provider *pp; 789 u_char *buf; 790 int error, index, pri, res; 791 792 /* We don't nest, which means that our depth should be 0. */ 793 if (table->gpt_depth != 0) 794 return (ENXIO); 795 796 pp = cp->provider; 797 798 /* 799 * Sanity-check the provider. Since the first sector on the provider 800 * must be a PMBR and a PMBR is 512 bytes large, the sector size 801 * must be at least 512 bytes. Also, since the theoretical minimum 802 * number of sectors needed by GPT is 6, any medium that has less 803 * than 6 sectors is never going to be able to hold a GPT. The 804 * number 6 comes from: 805 * 1 sector for the PMBR 806 * 2 sectors for the GPT headers (each 1 sector) 807 * 2 sectors for the GPT tables (each 1 sector) 808 * 1 sector for an actual partition 809 * It's better to catch this pathological case early than behaving 810 * pathologically later on... 811 */ 812 if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) 813 return (ENOSPC); 814 815 /* 816 * Check that there's a MBR or a PMBR. If it's a PMBR, we return 817 * as the highest priority on a match, otherwise we assume some 818 * GPT-unaware tool has destroyed the GPT by recreating a MBR and 819 * we really want the MBR scheme to take precedence. 820 */ 821 buf = g_read_data(cp, 0L, pp->sectorsize, &error); 822 if (buf == NULL) 823 return (error); 824 res = le16dec(buf + DOSMAGICOFFSET); 825 pri = G_PART_PROBE_PRI_LOW; 826 for (index = 0; index < NDOSPART; index++) { 827 if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee) 828 pri = G_PART_PROBE_PRI_HIGH; 829 } 830 g_free(buf); 831 if (res != DOSMAGIC) 832 return (ENXIO); 833 834 /* Check that there's a primary header. */ 835 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); 836 if (buf == NULL) 837 return (error); 838 res = memcmp(buf, GPT_HDR_SIG, 8); 839 g_free(buf); 840 if (res == 0) 841 return (pri); 842 843 /* No primary? Check that there's a secondary. */ 844 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 845 &error); 846 if (buf == NULL) 847 return (error); 848 res = memcmp(buf, GPT_HDR_SIG, 8); 849 g_free(buf); 850 return ((res == 0) ? pri : ENXIO); 851 } 852 853 static int 854 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) 855 { 856 struct gpt_hdr *prihdr, *sechdr; 857 struct gpt_ent *tbl, *pritbl, *sectbl; 858 struct g_provider *pp; 859 struct g_part_gpt_table *table; 860 struct g_part_gpt_entry *entry; 861 u_char *buf; 862 uint64_t last; 863 int error, index; 864 865 table = (struct g_part_gpt_table *)basetable; 866 pp = cp->provider; 867 last = (pp->mediasize / pp->sectorsize) - 1; 868 869 /* Read the PMBR */ 870 buf = g_read_data(cp, 0, pp->sectorsize, &error); 871 if (buf == NULL) 872 return (error); 873 bcopy(buf, table->mbr, MBRSIZE); 874 g_free(buf); 875 876 /* Read the primary header and table. */ 877 prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); 878 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { 879 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); 880 } else { 881 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 882 pritbl = NULL; 883 } 884 885 /* Read the secondary header and table. */ 886 sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); 887 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { 888 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); 889 } else { 890 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 891 sectbl = NULL; 892 } 893 894 /* Fail if we haven't got any good tables at all. */ 895 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && 896 table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 897 printf("GEOM: %s: corrupt or invalid GPT detected.\n", 898 pp->name); 899 printf("GEOM: %s: GPT rejected -- may not be recoverable.\n", 900 pp->name); 901 return (EINVAL); 902 } 903 904 /* 905 * If both headers are good but they disagree with each other, 906 * then invalidate one. We prefer to keep the primary header, 907 * unless the primary table is corrupt. 908 */ 909 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && 910 table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 911 !gpt_matched_hdrs(prihdr, sechdr)) { 912 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { 913 table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; 914 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 915 g_free(sechdr); 916 sechdr = NULL; 917 } else { 918 table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; 919 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 920 g_free(prihdr); 921 prihdr = NULL; 922 } 923 } 924 925 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { 926 printf("GEOM: %s: the primary GPT table is corrupt or " 927 "invalid.\n", pp->name); 928 printf("GEOM: %s: using the secondary instead -- recovery " 929 "strongly advised.\n", pp->name); 930 table->hdr = sechdr; 931 basetable->gpt_corrupt = 1; 932 if (prihdr != NULL) 933 g_free(prihdr); 934 tbl = sectbl; 935 if (pritbl != NULL) 936 g_free(pritbl); 937 } else { 938 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 939 printf("GEOM: %s: the secondary GPT table is corrupt " 940 "or invalid.\n", pp->name); 941 printf("GEOM: %s: using the primary only -- recovery " 942 "suggested.\n", pp->name); 943 basetable->gpt_corrupt = 1; 944 } else if (table->lba[GPT_ELT_SECHDR] != last) { 945 printf( "GEOM: %s: the secondary GPT header is not in " 946 "the last LBA.\n", pp->name); 947 basetable->gpt_corrupt = 1; 948 } 949 table->hdr = prihdr; 950 if (sechdr != NULL) 951 g_free(sechdr); 952 tbl = pritbl; 953 if (sectbl != NULL) 954 g_free(sectbl); 955 } 956 957 basetable->gpt_first = table->hdr->hdr_lba_start; 958 basetable->gpt_last = table->hdr->hdr_lba_end; 959 basetable->gpt_entries = (table->hdr->hdr_lba_start - 2) * 960 pp->sectorsize / table->hdr->hdr_entsz; 961 962 for (index = table->hdr->hdr_entries - 1; index >= 0; index--) { 963 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) 964 continue; 965 entry = (struct g_part_gpt_entry *)g_part_new_entry( 966 basetable, index + 1, tbl[index].ent_lba_start, 967 tbl[index].ent_lba_end); 968 entry->ent = tbl[index]; 969 } 970 971 g_free(tbl); 972 973 /* 974 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions 975 * if (and only if) any FAT32 or FAT16 partitions have been 976 * created. This happens irrespective of whether Boot Camp is 977 * used/enabled, though it's generally understood to be done 978 * to support legacy Windows under Boot Camp. We refer to this 979 * mirroring simply as Boot Camp. We try to detect Boot Camp 980 * so that we can update the MBR if and when GPT changes have 981 * been made. Note that we do not enable Boot Camp if not 982 * previously enabled because we can't assume that we're on a 983 * Mac alongside Mac OS X. 984 */ 985 table->bootcamp = gpt_is_bootcamp(table, pp->name); 986 987 return (0); 988 } 989 990 static int 991 g_part_gpt_recover(struct g_part_table *basetable) 992 { 993 struct g_part_gpt_table *table; 994 struct g_provider *pp; 995 996 table = (struct g_part_gpt_table *)basetable; 997 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 998 gpt_create_pmbr(table, pp); 999 g_gpt_set_defaults(basetable, pp); 1000 basetable->gpt_corrupt = 0; 1001 return (0); 1002 } 1003 1004 static int 1005 g_part_gpt_setunset(struct g_part_table *basetable, 1006 struct g_part_entry *baseentry, const char *attrib, unsigned int set) 1007 { 1008 struct g_part_gpt_entry *entry; 1009 struct g_part_gpt_table *table; 1010 uint8_t *p; 1011 uint64_t attr; 1012 int i; 1013 1014 table = (struct g_part_gpt_table *)basetable; 1015 entry = (struct g_part_gpt_entry *)baseentry; 1016 1017 if (strcasecmp(attrib, "active") == 0) { 1018 if (table->bootcamp) { 1019 /* The active flag must be set on a valid entry. */ 1020 if (entry == NULL) 1021 return (ENXIO); 1022 if (baseentry->gpe_index > NDOSPART) 1023 return (EINVAL); 1024 for (i = 0; i < NDOSPART; i++) { 1025 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1026 p[0] = (i == baseentry->gpe_index - 1) 1027 ? ((set) ? 0x80 : 0) : 0; 1028 } 1029 } else { 1030 /* The PMBR is marked as active without an entry. */ 1031 if (entry != NULL) 1032 return (ENXIO); 1033 for (i = 0; i < NDOSPART; i++) { 1034 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1035 p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0; 1036 } 1037 } 1038 return (0); 1039 } 1040 1041 if (entry == NULL) 1042 return (ENODEV); 1043 1044 attr = 0; 1045 if (strcasecmp(attrib, "bootme") == 0) { 1046 attr |= GPT_ENT_ATTR_BOOTME; 1047 } else if (strcasecmp(attrib, "bootonce") == 0) { 1048 attr |= GPT_ENT_ATTR_BOOTONCE; 1049 if (set) 1050 attr |= GPT_ENT_ATTR_BOOTME; 1051 } else if (strcasecmp(attrib, "bootfailed") == 0) { 1052 /* 1053 * It should only be possible to unset BOOTFAILED, but it might 1054 * be useful for test purposes to also be able to set it. 1055 */ 1056 attr |= GPT_ENT_ATTR_BOOTFAILED; 1057 } 1058 if (attr == 0) 1059 return (EINVAL); 1060 1061 if (set) 1062 attr = entry->ent.ent_attr | attr; 1063 else 1064 attr = entry->ent.ent_attr & ~attr; 1065 if (attr != entry->ent.ent_attr) { 1066 entry->ent.ent_attr = attr; 1067 if (!baseentry->gpe_created) 1068 baseentry->gpe_modified = 1; 1069 } 1070 return (0); 1071 } 1072 1073 static const char * 1074 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 1075 char *buf, size_t bufsz) 1076 { 1077 struct g_part_gpt_entry *entry; 1078 struct uuid *type; 1079 struct g_part_uuid_alias *uap; 1080 1081 entry = (struct g_part_gpt_entry *)baseentry; 1082 type = &entry->ent.ent_type; 1083 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) 1084 if (EQUUID(type, uap->uuid)) 1085 return (g_part_alias_name(uap->alias)); 1086 buf[0] = '!'; 1087 snprintf_uuid(buf + 1, bufsz - 1, type); 1088 1089 return (buf); 1090 } 1091 1092 static int 1093 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) 1094 { 1095 unsigned char *buf, *bp; 1096 struct g_provider *pp; 1097 struct g_part_entry *baseentry; 1098 struct g_part_gpt_entry *entry; 1099 struct g_part_gpt_table *table; 1100 size_t tblsz; 1101 uint32_t crc; 1102 int error, index; 1103 1104 pp = cp->provider; 1105 table = (struct g_part_gpt_table *)basetable; 1106 tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz + 1107 pp->sectorsize - 1) / pp->sectorsize; 1108 1109 /* Reconstruct the MBR from the GPT if under Boot Camp. */ 1110 if (table->bootcamp) 1111 gpt_update_bootcamp(basetable, pp); 1112 1113 /* Write the PMBR */ 1114 buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); 1115 bcopy(table->mbr, buf, MBRSIZE); 1116 error = g_write_data(cp, 0, buf, pp->sectorsize); 1117 g_free(buf); 1118 if (error) 1119 return (error); 1120 1121 /* Allocate space for the header and entries. */ 1122 buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); 1123 1124 memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 1125 le32enc(buf + 8, table->hdr->hdr_revision); 1126 le32enc(buf + 12, table->hdr->hdr_size); 1127 le64enc(buf + 40, table->hdr->hdr_lba_start); 1128 le64enc(buf + 48, table->hdr->hdr_lba_end); 1129 le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); 1130 le32enc(buf + 80, table->hdr->hdr_entries); 1131 le32enc(buf + 84, table->hdr->hdr_entsz); 1132 1133 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1134 if (baseentry->gpe_deleted) 1135 continue; 1136 entry = (struct g_part_gpt_entry *)baseentry; 1137 index = baseentry->gpe_index - 1; 1138 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; 1139 le_uuid_enc(bp, &entry->ent.ent_type); 1140 le_uuid_enc(bp + 16, &entry->ent.ent_uuid); 1141 le64enc(bp + 32, entry->ent.ent_lba_start); 1142 le64enc(bp + 40, entry->ent.ent_lba_end); 1143 le64enc(bp + 48, entry->ent.ent_attr); 1144 memcpy(bp + 56, entry->ent.ent_name, 1145 sizeof(entry->ent.ent_name)); 1146 } 1147 1148 crc = crc32(buf + pp->sectorsize, 1149 table->hdr->hdr_entries * table->hdr->hdr_entsz); 1150 le32enc(buf + 88, crc); 1151 1152 /* Write primary meta-data. */ 1153 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1154 le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ 1155 le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ 1156 le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ 1157 crc = crc32(buf, table->hdr->hdr_size); 1158 le32enc(buf + 16, crc); 1159 1160 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1161 error = g_write_data(cp, 1162 (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize, 1163 buf + (index + 1) * pp->sectorsize, 1164 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1165 (tblsz - index) * pp->sectorsize); 1166 if (error) 1167 goto out; 1168 } 1169 error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, 1170 buf, pp->sectorsize); 1171 if (error) 1172 goto out; 1173 1174 /* Write secondary meta-data. */ 1175 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1176 le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ 1177 le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ 1178 le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ 1179 crc = crc32(buf, table->hdr->hdr_size); 1180 le32enc(buf + 16, crc); 1181 1182 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1183 error = g_write_data(cp, 1184 (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize, 1185 buf + (index + 1) * pp->sectorsize, 1186 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1187 (tblsz - index) * pp->sectorsize); 1188 if (error) 1189 goto out; 1190 } 1191 error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, 1192 buf, pp->sectorsize); 1193 1194 out: 1195 g_free(buf); 1196 return (error); 1197 } 1198 1199 static void 1200 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp) 1201 { 1202 struct g_part_entry *baseentry; 1203 struct g_part_gpt_entry *entry; 1204 struct g_part_gpt_table *table; 1205 quad_t start, end, min, max; 1206 quad_t lba, last; 1207 size_t spb, tblsz; 1208 1209 table = (struct g_part_gpt_table *)basetable; 1210 last = pp->mediasize / pp->sectorsize - 1; 1211 tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) + 1212 pp->sectorsize - 1) / pp->sectorsize; 1213 1214 table->lba[GPT_ELT_PRIHDR] = 1; 1215 table->lba[GPT_ELT_PRITBL] = 2; 1216 table->lba[GPT_ELT_SECHDR] = last; 1217 table->lba[GPT_ELT_SECTBL] = last - tblsz; 1218 table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK; 1219 table->state[GPT_ELT_PRITBL] = GPT_STATE_OK; 1220 table->state[GPT_ELT_SECHDR] = GPT_STATE_OK; 1221 table->state[GPT_ELT_SECTBL] = GPT_STATE_OK; 1222 1223 max = start = 2 + tblsz; 1224 min = end = last - tblsz - 1; 1225 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1226 if (baseentry->gpe_deleted) 1227 continue; 1228 entry = (struct g_part_gpt_entry *)baseentry; 1229 if (entry->ent.ent_lba_start < min) 1230 min = entry->ent.ent_lba_start; 1231 if (entry->ent.ent_lba_end > max) 1232 max = entry->ent.ent_lba_end; 1233 } 1234 spb = 4096 / pp->sectorsize; 1235 if (spb > 1) { 1236 lba = start + ((start % spb) ? spb - start % spb : 0); 1237 if (lba <= min) 1238 start = lba; 1239 lba = end - (end + 1) % spb; 1240 if (max <= lba) 1241 end = lba; 1242 } 1243 table->hdr->hdr_lba_start = start; 1244 table->hdr->hdr_lba_end = end; 1245 1246 basetable->gpt_first = start; 1247 basetable->gpt_last = end; 1248 } 1249 1250 static void 1251 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) 1252 { 1253 u_int bo; 1254 uint32_t ch; 1255 uint16_t c; 1256 1257 bo = LITTLE_ENDIAN; /* GPT is little-endian */ 1258 while (len > 0 && *str != 0) { 1259 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); 1260 str++, len--; 1261 if ((ch & 0xf800) == 0xd800) { 1262 if (len > 0) { 1263 c = (bo == BIG_ENDIAN) ? be16toh(*str) 1264 : le16toh(*str); 1265 str++, len--; 1266 } else 1267 c = 0xfffd; 1268 if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { 1269 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); 1270 ch += 0x10000; 1271 } else 1272 ch = 0xfffd; 1273 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ 1274 bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; 1275 continue; 1276 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ 1277 continue; 1278 1279 /* Write the Unicode character in UTF-8 */ 1280 if (ch < 0x80) 1281 g_conf_printf_escaped(sb, "%c", ch); 1282 else if (ch < 0x800) 1283 g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6), 1284 0x80 | (ch & 0x3f)); 1285 else if (ch < 0x10000) 1286 g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12), 1287 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1288 else if (ch < 0x200000) 1289 g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 | 1290 (ch >> 18), 0x80 | ((ch >> 12) & 0x3f), 1291 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1292 } 1293 } 1294 1295 static void 1296 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) 1297 { 1298 size_t s16idx, s8idx; 1299 uint32_t utfchar; 1300 unsigned int c, utfbytes; 1301 1302 s8idx = s16idx = 0; 1303 utfchar = 0; 1304 utfbytes = 0; 1305 bzero(s16, s16len << 1); 1306 while (s8[s8idx] != 0 && s16idx < s16len) { 1307 c = s8[s8idx++]; 1308 if ((c & 0xc0) != 0x80) { 1309 /* Initial characters. */ 1310 if (utfbytes != 0) { 1311 /* Incomplete encoding of previous char. */ 1312 s16[s16idx++] = htole16(0xfffd); 1313 } 1314 if ((c & 0xf8) == 0xf0) { 1315 utfchar = c & 0x07; 1316 utfbytes = 3; 1317 } else if ((c & 0xf0) == 0xe0) { 1318 utfchar = c & 0x0f; 1319 utfbytes = 2; 1320 } else if ((c & 0xe0) == 0xc0) { 1321 utfchar = c & 0x1f; 1322 utfbytes = 1; 1323 } else { 1324 utfchar = c & 0x7f; 1325 utfbytes = 0; 1326 } 1327 } else { 1328 /* Followup characters. */ 1329 if (utfbytes > 0) { 1330 utfchar = (utfchar << 6) + (c & 0x3f); 1331 utfbytes--; 1332 } else if (utfbytes == 0) 1333 utfbytes = ~0; 1334 } 1335 /* 1336 * Write the complete Unicode character as UTF-16 when we 1337 * have all the UTF-8 charactars collected. 1338 */ 1339 if (utfbytes == 0) { 1340 /* 1341 * If we need to write 2 UTF-16 characters, but 1342 * we only have room for 1, then we truncate the 1343 * string by writing a 0 instead. 1344 */ 1345 if (utfchar >= 0x10000 && s16idx < s16len - 1) { 1346 s16[s16idx++] = 1347 htole16(0xd800 | ((utfchar >> 10) - 0x40)); 1348 s16[s16idx++] = 1349 htole16(0xdc00 | (utfchar & 0x3ff)); 1350 } else 1351 s16[s16idx++] = (utfchar >= 0x10000) ? 0 : 1352 htole16(utfchar); 1353 } 1354 } 1355 /* 1356 * If our input string was truncated, append an invalid encoding 1357 * character to the output string. 1358 */ 1359 if (utfbytes != 0 && s16idx < s16len) 1360 s16[s16idx++] = htole16(0xfffd); 1361 } 1362