xref: /freebsd/sys/geom/part/g_part_gpt.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 2002, 2005, 2006, 2007 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/bio.h>
32 #include <sys/diskmbr.h>
33 #include <sys/endian.h>
34 #include <sys/gpt.h>
35 #include <sys/kernel.h>
36 #include <sys/kobj.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mutex.h>
41 #include <sys/queue.h>
42 #include <sys/sbuf.h>
43 #include <sys/systm.h>
44 #include <sys/sysctl.h>
45 #include <sys/uuid.h>
46 #include <geom/geom.h>
47 #include <geom/part/g_part.h>
48 
49 #include "g_part_if.h"
50 
51 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support");
52 
53 CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
54 CTASSERT(sizeof(struct gpt_ent) == 128);
55 
56 #define	EQUUID(a,b)	(memcmp(a, b, sizeof(struct uuid)) == 0)
57 
58 #define	MBRSIZE		512
59 
60 enum gpt_elt {
61 	GPT_ELT_PRIHDR,
62 	GPT_ELT_PRITBL,
63 	GPT_ELT_SECHDR,
64 	GPT_ELT_SECTBL,
65 	GPT_ELT_COUNT
66 };
67 
68 enum gpt_state {
69 	GPT_STATE_UNKNOWN,	/* Not determined. */
70 	GPT_STATE_MISSING,	/* No signature found. */
71 	GPT_STATE_CORRUPT,	/* Checksum mismatch. */
72 	GPT_STATE_INVALID,	/* Nonconformant/invalid. */
73 	GPT_STATE_OK		/* Perfectly fine. */
74 };
75 
76 struct g_part_gpt_table {
77 	struct g_part_table	base;
78 	u_char			mbr[MBRSIZE];
79 	struct gpt_hdr		*hdr;
80 	quad_t			lba[GPT_ELT_COUNT];
81 	enum gpt_state		state[GPT_ELT_COUNT];
82 };
83 
84 struct g_part_gpt_entry {
85 	struct g_part_entry	base;
86 	struct gpt_ent		ent;
87 };
88 
89 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
90 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
91 
92 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
93     struct g_part_parms *);
94 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
95 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
96 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
97 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
98     struct sbuf *, const char *);
99 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
100 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,
101     struct g_part_parms *);
102 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
103     char *, size_t);
104 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
105 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
106 static int g_part_gpt_setunset(struct g_part_table *table,
107     struct g_part_entry *baseentry, const char *attrib, unsigned int set);
108 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
109     char *, size_t);
110 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
111 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *,
112     struct g_part_parms *);
113 static int g_part_gpt_recover(struct g_part_table *);
114 
115 static kobj_method_t g_part_gpt_methods[] = {
116 	KOBJMETHOD(g_part_add,		g_part_gpt_add),
117 	KOBJMETHOD(g_part_bootcode,	g_part_gpt_bootcode),
118 	KOBJMETHOD(g_part_create,	g_part_gpt_create),
119 	KOBJMETHOD(g_part_destroy,	g_part_gpt_destroy),
120 	KOBJMETHOD(g_part_dumpconf,	g_part_gpt_dumpconf),
121 	KOBJMETHOD(g_part_dumpto,	g_part_gpt_dumpto),
122 	KOBJMETHOD(g_part_modify,	g_part_gpt_modify),
123 	KOBJMETHOD(g_part_resize,	g_part_gpt_resize),
124 	KOBJMETHOD(g_part_name,		g_part_gpt_name),
125 	KOBJMETHOD(g_part_probe,	g_part_gpt_probe),
126 	KOBJMETHOD(g_part_read,		g_part_gpt_read),
127 	KOBJMETHOD(g_part_recover,	g_part_gpt_recover),
128 	KOBJMETHOD(g_part_setunset,	g_part_gpt_setunset),
129 	KOBJMETHOD(g_part_type,		g_part_gpt_type),
130 	KOBJMETHOD(g_part_write,	g_part_gpt_write),
131 	{ 0, 0 }
132 };
133 
134 static struct g_part_scheme g_part_gpt_scheme = {
135 	"GPT",
136 	g_part_gpt_methods,
137 	sizeof(struct g_part_gpt_table),
138 	.gps_entrysz = sizeof(struct g_part_gpt_entry),
139 	.gps_minent = 128,
140 	.gps_maxent = 4096,
141 	.gps_bootcodesz = MBRSIZE,
142 };
143 G_PART_SCHEME_DECLARE(g_part_gpt);
144 
145 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT;
146 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
147 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL;
148 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID;
149 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE;
150 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY;
151 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS;
152 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT;
153 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
154 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
155 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
156 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
157 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
158 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
159 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
160 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
161 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM;
162 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID;
163 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
164 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
165 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED;
166 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA;
167 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA;
168 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD;
169 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD;
170 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS;
171 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS;
172 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID;
173 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP;
174 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
175 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
176 
177 static struct g_part_uuid_alias {
178 	struct uuid *uuid;
179 	int alias;
180 } gpt_uuid_alias_match[] = {
181 	{ &gpt_uuid_apple_boot,		G_PART_ALIAS_APPLE_BOOT },
182 	{ &gpt_uuid_apple_hfs,		G_PART_ALIAS_APPLE_HFS },
183 	{ &gpt_uuid_apple_label,	G_PART_ALIAS_APPLE_LABEL },
184 	{ &gpt_uuid_apple_raid,		G_PART_ALIAS_APPLE_RAID },
185 	{ &gpt_uuid_apple_raid_offline,	G_PART_ALIAS_APPLE_RAID_OFFLINE },
186 	{ &gpt_uuid_apple_tv_recovery,	G_PART_ALIAS_APPLE_TV_RECOVERY },
187 	{ &gpt_uuid_apple_ufs,		G_PART_ALIAS_APPLE_UFS },
188 	{ &gpt_uuid_bios_boot,		G_PART_ALIAS_BIOS_BOOT },
189 	{ &gpt_uuid_efi, 		G_PART_ALIAS_EFI },
190 	{ &gpt_uuid_freebsd,		G_PART_ALIAS_FREEBSD },
191 	{ &gpt_uuid_freebsd_boot, 	G_PART_ALIAS_FREEBSD_BOOT },
192 	{ &gpt_uuid_freebsd_swap,	G_PART_ALIAS_FREEBSD_SWAP },
193 	{ &gpt_uuid_freebsd_ufs,	G_PART_ALIAS_FREEBSD_UFS },
194 	{ &gpt_uuid_freebsd_vinum,	G_PART_ALIAS_FREEBSD_VINUM },
195 	{ &gpt_uuid_freebsd_zfs,	G_PART_ALIAS_FREEBSD_ZFS },
196 	{ &gpt_uuid_linux_data,		G_PART_ALIAS_LINUX_DATA },
197 	{ &gpt_uuid_linux_lvm,		G_PART_ALIAS_LINUX_LVM },
198 	{ &gpt_uuid_linux_raid,		G_PART_ALIAS_LINUX_RAID },
199 	{ &gpt_uuid_linux_swap,		G_PART_ALIAS_LINUX_SWAP },
200 	{ &gpt_uuid_mbr,		G_PART_ALIAS_MBR },
201 	{ &gpt_uuid_ms_basic_data,	G_PART_ALIAS_MS_BASIC_DATA },
202 	{ &gpt_uuid_ms_ldm_data,	G_PART_ALIAS_MS_LDM_DATA },
203 	{ &gpt_uuid_ms_ldm_metadata,	G_PART_ALIAS_MS_LDM_METADATA },
204 	{ &gpt_uuid_ms_reserved,	G_PART_ALIAS_MS_RESERVED },
205 	{ &gpt_uuid_netbsd_ccd,		G_PART_ALIAS_NETBSD_CCD },
206 	{ &gpt_uuid_netbsd_cgd,		G_PART_ALIAS_NETBSD_CGD },
207 	{ &gpt_uuid_netbsd_ffs,		G_PART_ALIAS_NETBSD_FFS },
208 	{ &gpt_uuid_netbsd_lfs,		G_PART_ALIAS_NETBSD_LFS },
209 	{ &gpt_uuid_netbsd_raid,	G_PART_ALIAS_NETBSD_RAID },
210 	{ &gpt_uuid_netbsd_swap,	G_PART_ALIAS_NETBSD_SWAP },
211 
212 	{ NULL, 0 }
213 };
214 
215 static struct gpt_hdr *
216 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
217     enum gpt_elt elt)
218 {
219 	struct gpt_hdr *buf, *hdr;
220 	struct g_provider *pp;
221 	quad_t lba, last;
222 	int error;
223 	uint32_t crc, sz;
224 
225 	pp = cp->provider;
226 	last = (pp->mediasize / pp->sectorsize) - 1;
227 	table->state[elt] = GPT_STATE_MISSING;
228 	/*
229 	 * If the primary header is valid look for secondary
230 	 * header in AlternateLBA, otherwise in the last medium's LBA.
231 	 */
232 	if (elt == GPT_ELT_SECHDR) {
233 		if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK)
234 			table->lba[elt] = last;
235 	} else
236 		table->lba[elt] = 1;
237 	buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
238 	    &error);
239 	if (buf == NULL)
240 		return (NULL);
241 	hdr = NULL;
242 	if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0)
243 		goto fail;
244 
245 	table->state[elt] = GPT_STATE_CORRUPT;
246 	sz = le32toh(buf->hdr_size);
247 	if (sz < 92 || sz > pp->sectorsize)
248 		goto fail;
249 
250 	hdr = g_malloc(sz, M_WAITOK | M_ZERO);
251 	bcopy(buf, hdr, sz);
252 	hdr->hdr_size = sz;
253 
254 	crc = le32toh(buf->hdr_crc_self);
255 	buf->hdr_crc_self = 0;
256 	if (crc32(buf, sz) != crc)
257 		goto fail;
258 	hdr->hdr_crc_self = crc;
259 
260 	table->state[elt] = GPT_STATE_INVALID;
261 	hdr->hdr_revision = le32toh(buf->hdr_revision);
262 	if (hdr->hdr_revision < GPT_HDR_REVISION)
263 		goto fail;
264 	hdr->hdr_lba_self = le64toh(buf->hdr_lba_self);
265 	if (hdr->hdr_lba_self != table->lba[elt])
266 		goto fail;
267 	hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt);
268 	if (hdr->hdr_lba_alt == hdr->hdr_lba_self ||
269 	    hdr->hdr_lba_alt > last)
270 		goto fail;
271 
272 	/* Check the managed area. */
273 	hdr->hdr_lba_start = le64toh(buf->hdr_lba_start);
274 	if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
275 		goto fail;
276 	hdr->hdr_lba_end = le64toh(buf->hdr_lba_end);
277 	if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
278 		goto fail;
279 
280 	/* Check the table location and size of the table. */
281 	hdr->hdr_entries = le32toh(buf->hdr_entries);
282 	hdr->hdr_entsz = le32toh(buf->hdr_entsz);
283 	if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
284 	    (hdr->hdr_entsz & 7) != 0)
285 		goto fail;
286 	hdr->hdr_lba_table = le64toh(buf->hdr_lba_table);
287 	if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
288 		goto fail;
289 	if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
290 	    hdr->hdr_lba_table <= hdr->hdr_lba_end)
291 		goto fail;
292 	lba = hdr->hdr_lba_table +
293 	    (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) /
294 	    pp->sectorsize - 1;
295 	if (lba >= last)
296 		goto fail;
297 	if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
298 		goto fail;
299 
300 	table->state[elt] = GPT_STATE_OK;
301 	le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid);
302 	hdr->hdr_crc_table = le32toh(buf->hdr_crc_table);
303 
304 	/* save LBA for secondary header */
305 	if (elt == GPT_ELT_PRIHDR)
306 		table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt;
307 
308 	g_free(buf);
309 	return (hdr);
310 
311  fail:
312 	if (hdr != NULL)
313 		g_free(hdr);
314 	g_free(buf);
315 	return (NULL);
316 }
317 
318 static struct gpt_ent *
319 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
320     enum gpt_elt elt, struct gpt_hdr *hdr)
321 {
322 	struct g_provider *pp;
323 	struct gpt_ent *ent, *tbl;
324 	char *buf, *p;
325 	unsigned int idx, sectors, tblsz, size;
326 	int error;
327 
328 	if (hdr == NULL)
329 		return (NULL);
330 
331 	pp = cp->provider;
332 	table->lba[elt] = hdr->hdr_lba_table;
333 
334 	table->state[elt] = GPT_STATE_MISSING;
335 	tblsz = hdr->hdr_entries * hdr->hdr_entsz;
336 	sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize;
337 	buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO);
338 	for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) {
339 		size = (sectors - idx > MAXPHYS / pp->sectorsize) ?  MAXPHYS:
340 		    (sectors - idx) * pp->sectorsize;
341 		p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize,
342 		    size, &error);
343 		if (p == NULL) {
344 			g_free(buf);
345 			return (NULL);
346 		}
347 		bcopy(p, buf + idx * pp->sectorsize, size);
348 		g_free(p);
349 	}
350 	table->state[elt] = GPT_STATE_CORRUPT;
351 	if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
352 		g_free(buf);
353 		return (NULL);
354 	}
355 
356 	table->state[elt] = GPT_STATE_OK;
357 	tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
358 	    M_WAITOK | M_ZERO);
359 
360 	for (idx = 0, ent = tbl, p = buf;
361 	     idx < hdr->hdr_entries;
362 	     idx++, ent++, p += hdr->hdr_entsz) {
363 		le_uuid_dec(p, &ent->ent_type);
364 		le_uuid_dec(p + 16, &ent->ent_uuid);
365 		ent->ent_lba_start = le64dec(p + 32);
366 		ent->ent_lba_end = le64dec(p + 40);
367 		ent->ent_attr = le64dec(p + 48);
368 		/* Keep UTF-16 in little-endian. */
369 		bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
370 	}
371 
372 	g_free(buf);
373 	return (tbl);
374 }
375 
376 static int
377 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
378 {
379 
380 	if (pri == NULL || sec == NULL)
381 		return (0);
382 
383 	if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
384 		return (0);
385 	return ((pri->hdr_revision == sec->hdr_revision &&
386 	    pri->hdr_size == sec->hdr_size &&
387 	    pri->hdr_lba_start == sec->hdr_lba_start &&
388 	    pri->hdr_lba_end == sec->hdr_lba_end &&
389 	    pri->hdr_entries == sec->hdr_entries &&
390 	    pri->hdr_entsz == sec->hdr_entsz &&
391 	    pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
392 }
393 
394 static int
395 gpt_parse_type(const char *type, struct uuid *uuid)
396 {
397 	struct uuid tmp;
398 	const char *alias;
399 	int error;
400 	struct g_part_uuid_alias *uap;
401 
402 	if (type[0] == '!') {
403 		error = parse_uuid(type + 1, &tmp);
404 		if (error)
405 			return (error);
406 		if (EQUUID(&tmp, &gpt_uuid_unused))
407 			return (EINVAL);
408 		*uuid = tmp;
409 		return (0);
410 	}
411 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
412 		alias = g_part_alias_name(uap->alias);
413 		if (!strcasecmp(type, alias)) {
414 			*uuid = *uap->uuid;
415 			return (0);
416 		}
417 	}
418 	return (EINVAL);
419 }
420 
421 static int
422 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
423     struct g_part_parms *gpp)
424 {
425 	struct g_part_gpt_entry *entry;
426 	int error;
427 
428 	entry = (struct g_part_gpt_entry *)baseentry;
429 	error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
430 	if (error)
431 		return (error);
432 	kern_uuidgen(&entry->ent.ent_uuid, 1);
433 	entry->ent.ent_lba_start = baseentry->gpe_start;
434 	entry->ent.ent_lba_end = baseentry->gpe_end;
435 	if (baseentry->gpe_deleted) {
436 		entry->ent.ent_attr = 0;
437 		bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
438 	}
439 	if (gpp->gpp_parms & G_PART_PARM_LABEL)
440 		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
441 		    sizeof(entry->ent.ent_name) /
442 		    sizeof(entry->ent.ent_name[0]));
443 	return (0);
444 }
445 
446 static int
447 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
448 {
449 	struct g_part_gpt_table *table;
450 	size_t codesz;
451 
452 	codesz = DOSPARTOFF;
453 	table = (struct g_part_gpt_table *)basetable;
454 	bzero(table->mbr, codesz);
455 	codesz = MIN(codesz, gpp->gpp_codesize);
456 	if (codesz > 0)
457 		bcopy(gpp->gpp_codeptr, table->mbr, codesz);
458 
459 	/* Mark the PMBR active since some BIOS require it */
460 	table->mbr[DOSPARTOFF] = 0x80;		/* status */
461 	return (0);
462 }
463 
464 static int
465 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
466 {
467 	struct g_provider *pp;
468 	struct g_part_gpt_table *table;
469 	quad_t last;
470 	size_t tblsz;
471 
472 	/* We don't nest, which means that our depth should be 0. */
473 	if (basetable->gpt_depth != 0)
474 		return (ENXIO);
475 
476 	table = (struct g_part_gpt_table *)basetable;
477 	pp = gpp->gpp_provider;
478 	tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
479 	    pp->sectorsize - 1) / pp->sectorsize;
480 	if (pp->sectorsize < MBRSIZE ||
481 	    pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
482 	    pp->sectorsize)
483 		return (ENOSPC);
484 
485 	last = (pp->mediasize / pp->sectorsize) - 1;
486 
487 	le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
488 	table->mbr[DOSPARTOFF + 1] = 0x01;		/* shd */
489 	table->mbr[DOSPARTOFF + 2] = 0x01;		/* ssect */
490 	table->mbr[DOSPARTOFF + 3] = 0x00;		/* scyl */
491 	table->mbr[DOSPARTOFF + 4] = 0xee;		/* typ */
492 	table->mbr[DOSPARTOFF + 5] = 0xff;		/* ehd */
493 	table->mbr[DOSPARTOFF + 6] = 0xff;		/* esect */
494 	table->mbr[DOSPARTOFF + 7] = 0xff;		/* ecyl */
495 	le32enc(table->mbr + DOSPARTOFF + 8, 1);	/* start */
496 	le32enc(table->mbr + DOSPARTOFF + 12, MIN(last, 0xffffffffLL));
497 
498 	table->lba[GPT_ELT_PRIHDR] = 1;
499 	table->lba[GPT_ELT_PRITBL] = 2;
500 	table->lba[GPT_ELT_SECHDR] = last;
501 	table->lba[GPT_ELT_SECTBL] = last - tblsz;
502 
503 	/* Allocate space for the header */
504 	table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO);
505 
506 	bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
507 	table->hdr->hdr_revision = GPT_HDR_REVISION;
508 	table->hdr->hdr_size = offsetof(struct gpt_hdr, padding);
509 	table->hdr->hdr_lba_start = 2 + tblsz;
510 	table->hdr->hdr_lba_end = last - tblsz - 1;
511 	kern_uuidgen(&table->hdr->hdr_uuid, 1);
512 	table->hdr->hdr_entries = basetable->gpt_entries;
513 	table->hdr->hdr_entsz = sizeof(struct gpt_ent);
514 
515 	basetable->gpt_first = table->hdr->hdr_lba_start;
516 	basetable->gpt_last = table->hdr->hdr_lba_end;
517 	return (0);
518 }
519 
520 static int
521 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
522 {
523 	struct g_part_gpt_table *table;
524 	struct g_provider *pp;
525 
526 	table = (struct g_part_gpt_table *)basetable;
527 	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
528 	g_free(table->hdr);
529 	table->hdr = NULL;
530 
531 	/*
532 	 * Wipe the first 2 sectors to clear the partitioning. Wipe the last
533 	 * sector only if it has valid secondary header.
534 	 */
535 	basetable->gpt_smhead |= 3;
536 	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
537 	    table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1)
538 		basetable->gpt_smtail |= 1;
539 	return (0);
540 }
541 
542 static void
543 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry,
544     struct sbuf *sb, const char *indent)
545 {
546 	struct g_part_gpt_entry *entry;
547 
548 	entry = (struct g_part_gpt_entry *)baseentry;
549 	if (indent == NULL) {
550 		/* conftxt: libdisk compatibility */
551 		sbuf_printf(sb, " xs GPT xt ");
552 		sbuf_printf_uuid(sb, &entry->ent.ent_type);
553 	} else if (entry != NULL) {
554 		/* confxml: partition entry information */
555 		sbuf_printf(sb, "%s<label>", indent);
556 		g_gpt_printf_utf16(sb, entry->ent.ent_name,
557 		    sizeof(entry->ent.ent_name) >> 1);
558 		sbuf_printf(sb, "</label>\n");
559 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)
560 			sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent);
561 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) {
562 			sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n",
563 			    indent);
564 		}
565 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) {
566 			sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n",
567 			    indent);
568 		}
569 		sbuf_printf(sb, "%s<rawtype>", indent);
570 		sbuf_printf_uuid(sb, &entry->ent.ent_type);
571 		sbuf_printf(sb, "</rawtype>\n");
572 		sbuf_printf(sb, "%s<rawuuid>", indent);
573 		sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
574 		sbuf_printf(sb, "</rawuuid>\n");
575 	} else {
576 		/* confxml: scheme information */
577 	}
578 }
579 
580 static int
581 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
582 {
583 	struct g_part_gpt_entry *entry;
584 
585 	entry = (struct g_part_gpt_entry *)baseentry;
586 	return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
587 	    EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap)) ? 1 : 0);
588 }
589 
590 static int
591 g_part_gpt_modify(struct g_part_table *basetable,
592     struct g_part_entry *baseentry, struct g_part_parms *gpp)
593 {
594 	struct g_part_gpt_entry *entry;
595 	int error;
596 
597 	entry = (struct g_part_gpt_entry *)baseentry;
598 	if (gpp->gpp_parms & G_PART_PARM_TYPE) {
599 		error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
600 		if (error)
601 			return (error);
602 	}
603 	if (gpp->gpp_parms & G_PART_PARM_LABEL)
604 		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
605 		    sizeof(entry->ent.ent_name) /
606 		    sizeof(entry->ent.ent_name[0]));
607 	return (0);
608 }
609 
610 static int
611 g_part_gpt_resize(struct g_part_table *basetable,
612     struct g_part_entry *baseentry, struct g_part_parms *gpp)
613 {
614 	struct g_part_gpt_entry *entry;
615 	entry = (struct g_part_gpt_entry *)baseentry;
616 
617 	baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
618 	entry->ent.ent_lba_end = baseentry->gpe_end;
619 
620 	return (0);
621 }
622 
623 static const char *
624 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
625     char *buf, size_t bufsz)
626 {
627 	struct g_part_gpt_entry *entry;
628 	char c;
629 
630 	entry = (struct g_part_gpt_entry *)baseentry;
631 	c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
632 	snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
633 	return (buf);
634 }
635 
636 static int
637 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
638 {
639 	struct g_provider *pp;
640 	char *buf;
641 	int error, res;
642 
643 	/* We don't nest, which means that our depth should be 0. */
644 	if (table->gpt_depth != 0)
645 		return (ENXIO);
646 
647 	pp = cp->provider;
648 
649 	/*
650 	 * Sanity-check the provider. Since the first sector on the provider
651 	 * must be a PMBR and a PMBR is 512 bytes large, the sector size
652 	 * must be at least 512 bytes.  Also, since the theoretical minimum
653 	 * number of sectors needed by GPT is 6, any medium that has less
654 	 * than 6 sectors is never going to be able to hold a GPT. The
655 	 * number 6 comes from:
656 	 *	1 sector for the PMBR
657 	 *	2 sectors for the GPT headers (each 1 sector)
658 	 *	2 sectors for the GPT tables (each 1 sector)
659 	 *	1 sector for an actual partition
660 	 * It's better to catch this pathological case early than behaving
661 	 * pathologically later on...
662 	 */
663 	if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
664 		return (ENOSPC);
665 
666 	/* Check that there's a MBR. */
667 	buf = g_read_data(cp, 0L, pp->sectorsize, &error);
668 	if (buf == NULL)
669 		return (error);
670 	res = le16dec(buf + DOSMAGICOFFSET);
671 	g_free(buf);
672 	if (res != DOSMAGIC)
673 		return (ENXIO);
674 
675 	/* Check that there's a primary header. */
676 	buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
677 	if (buf == NULL)
678 		return (error);
679 	res = memcmp(buf, GPT_HDR_SIG, 8);
680 	g_free(buf);
681 	if (res == 0)
682 		return (G_PART_PROBE_PRI_HIGH);
683 
684 	/* No primary? Check that there's a secondary. */
685 	buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
686 	    &error);
687 	if (buf == NULL)
688 		return (error);
689 	res = memcmp(buf, GPT_HDR_SIG, 8);
690 	g_free(buf);
691 	return ((res == 0) ? G_PART_PROBE_PRI_HIGH : ENXIO);
692 }
693 
694 static int
695 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
696 {
697 	struct gpt_hdr *prihdr, *sechdr;
698 	struct gpt_ent *tbl, *pritbl, *sectbl;
699 	struct g_provider *pp;
700 	struct g_part_gpt_table *table;
701 	struct g_part_gpt_entry *entry;
702 	u_char *buf;
703 	uint64_t last;
704 	int error, index;
705 
706 	table = (struct g_part_gpt_table *)basetable;
707 	pp = cp->provider;
708 	last = (pp->mediasize / pp->sectorsize) - 1;
709 
710 	/* Read the PMBR */
711 	buf = g_read_data(cp, 0, pp->sectorsize, &error);
712 	if (buf == NULL)
713 		return (error);
714 	bcopy(buf, table->mbr, MBRSIZE);
715 	g_free(buf);
716 
717 	/* Read the primary header and table. */
718 	prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR);
719 	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
720 		pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr);
721 	} else {
722 		table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
723 		pritbl = NULL;
724 	}
725 
726 	/* Read the secondary header and table. */
727 	sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR);
728 	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
729 		sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr);
730 	} else {
731 		table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
732 		sectbl = NULL;
733 	}
734 
735 	/* Fail if we haven't got any good tables at all. */
736 	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
737 	    table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
738 		printf("GEOM: %s: corrupt or invalid GPT detected.\n",
739 		    pp->name);
740 		printf("GEOM: %s: GPT rejected -- may not be recoverable.\n",
741 		    pp->name);
742 		return (EINVAL);
743 	}
744 
745 	/*
746 	 * If both headers are good but they disagree with each other,
747 	 * then invalidate one. We prefer to keep the primary header,
748 	 * unless the primary table is corrupt.
749 	 */
750 	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
751 	    table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
752 	    !gpt_matched_hdrs(prihdr, sechdr)) {
753 		if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
754 			table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
755 			table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
756 			g_free(sechdr);
757 			sechdr = NULL;
758 		} else {
759 			table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
760 			table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
761 			g_free(prihdr);
762 			prihdr = NULL;
763 		}
764 	}
765 
766 	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
767 		printf("GEOM: %s: the primary GPT table is corrupt or "
768 		    "invalid.\n", pp->name);
769 		printf("GEOM: %s: using the secondary instead -- recovery "
770 		    "strongly advised.\n", pp->name);
771 		table->hdr = sechdr;
772 		basetable->gpt_corrupt = 1;
773 		if (prihdr != NULL)
774 			g_free(prihdr);
775 		tbl = sectbl;
776 		if (pritbl != NULL)
777 			g_free(pritbl);
778 	} else {
779 		if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
780 			printf("GEOM: %s: the secondary GPT table is corrupt "
781 			    "or invalid.\n", pp->name);
782 			printf("GEOM: %s: using the primary only -- recovery "
783 			    "suggested.\n", pp->name);
784 			basetable->gpt_corrupt = 1;
785 		} else if (table->lba[GPT_ELT_SECHDR] != last) {
786 			printf( "GEOM: %s: the secondary GPT header is not in "
787 			    "the last LBA.\n", pp->name);
788 			basetable->gpt_corrupt = 1;
789 		}
790 		table->hdr = prihdr;
791 		if (sechdr != NULL)
792 			g_free(sechdr);
793 		tbl = pritbl;
794 		if (sectbl != NULL)
795 			g_free(sectbl);
796 	}
797 
798 	basetable->gpt_first = table->hdr->hdr_lba_start;
799 	basetable->gpt_last = table->hdr->hdr_lba_end;
800 	basetable->gpt_entries = table->hdr->hdr_entries;
801 
802 	for (index = basetable->gpt_entries - 1; index >= 0; index--) {
803 		if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
804 			continue;
805 		entry = (struct g_part_gpt_entry *)g_part_new_entry(
806 		    basetable, index + 1, tbl[index].ent_lba_start,
807 		    tbl[index].ent_lba_end);
808 		entry->ent = tbl[index];
809 	}
810 
811 	g_free(tbl);
812 	return (0);
813 }
814 
815 static int
816 g_part_gpt_recover(struct g_part_table *basetable)
817 {
818 	struct g_part_gpt_table *table;
819 	struct g_provider *pp;
820 	uint64_t last;
821 	size_t tblsz;
822 
823 	table = (struct g_part_gpt_table *)basetable;
824 	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
825 	last = pp->mediasize / pp->sectorsize - 1;
826 	tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz +
827 	    pp->sectorsize - 1) / pp->sectorsize;
828 
829 	table->lba[GPT_ELT_PRIHDR] = 1;
830 	table->lba[GPT_ELT_PRITBL] = 2;
831 	table->lba[GPT_ELT_SECHDR] = last;
832 	table->lba[GPT_ELT_SECTBL] = last - tblsz;
833 	table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK;
834 	table->state[GPT_ELT_PRITBL] = GPT_STATE_OK;
835 	table->state[GPT_ELT_SECHDR] = GPT_STATE_OK;
836 	table->state[GPT_ELT_SECTBL] = GPT_STATE_OK;
837 	table->hdr->hdr_lba_start = 2 + tblsz;
838 	table->hdr->hdr_lba_end = last - tblsz - 1;
839 
840 	basetable->gpt_first = table->hdr->hdr_lba_start;
841 	basetable->gpt_last = table->hdr->hdr_lba_end;
842 	basetable->gpt_corrupt = 0;
843 
844 	return (0);
845 }
846 
847 static int
848 g_part_gpt_setunset(struct g_part_table *table, struct g_part_entry *baseentry,
849     const char *attrib, unsigned int set)
850 {
851 	struct g_part_entry *iter;
852 	struct g_part_gpt_entry *entry;
853 	int changed, bootme, bootonce, bootfailed;
854 
855 	bootme = bootonce = bootfailed = 0;
856 	if (strcasecmp(attrib, "bootme") == 0) {
857 		bootme = 1;
858 	} else if (strcasecmp(attrib, "bootonce") == 0) {
859 		/* BOOTME is set automatically with BOOTONCE, but not unset. */
860 		bootonce = 1;
861 		if (set)
862 			bootme = 1;
863 	} else if (strcasecmp(attrib, "bootfailed") == 0) {
864 		/*
865 		 * It should only be possible to unset BOOTFAILED, but it might
866 		 * be useful for test purposes to also be able to set it.
867 		 */
868 		bootfailed = 1;
869 	}
870 	if (!bootme && !bootonce && !bootfailed)
871 		return (EINVAL);
872 
873 	LIST_FOREACH(iter, &table->gpt_entry, gpe_entry) {
874 		if (iter->gpe_deleted)
875 			continue;
876 		if (iter != baseentry)
877 			continue;
878 		changed = 0;
879 		entry = (struct g_part_gpt_entry *)iter;
880 		if (set) {
881 			if (bootme &&
882 			    !(entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)) {
883 				entry->ent.ent_attr |= GPT_ENT_ATTR_BOOTME;
884 				changed = 1;
885 			}
886 			if (bootonce &&
887 			    !(entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE)) {
888 				entry->ent.ent_attr |= GPT_ENT_ATTR_BOOTONCE;
889 				changed = 1;
890 			}
891 			if (bootfailed &&
892 			    !(entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED)) {
893 				entry->ent.ent_attr |= GPT_ENT_ATTR_BOOTFAILED;
894 				changed = 1;
895 			}
896 		} else {
897 			if (bootme &&
898 			    (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)) {
899 				entry->ent.ent_attr &= ~GPT_ENT_ATTR_BOOTME;
900 				changed = 1;
901 			}
902 			if (bootonce &&
903 			    (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE)) {
904 				entry->ent.ent_attr &= ~GPT_ENT_ATTR_BOOTONCE;
905 				changed = 1;
906 			}
907 			if (bootfailed &&
908 			    (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED)) {
909 				entry->ent.ent_attr &= ~GPT_ENT_ATTR_BOOTFAILED;
910 				changed = 1;
911 			}
912 		}
913 		if (changed && !iter->gpe_created)
914 			iter->gpe_modified = 1;
915 	}
916 	return (0);
917 }
918 
919 static const char *
920 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
921     char *buf, size_t bufsz)
922 {
923 	struct g_part_gpt_entry *entry;
924 	struct uuid *type;
925 	struct g_part_uuid_alias *uap;
926 
927 	entry = (struct g_part_gpt_entry *)baseentry;
928 	type = &entry->ent.ent_type;
929 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++)
930 		if (EQUUID(type, uap->uuid))
931 			return (g_part_alias_name(uap->alias));
932 	buf[0] = '!';
933 	snprintf_uuid(buf + 1, bufsz - 1, type);
934 
935 	return (buf);
936 }
937 
938 static int
939 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
940 {
941 	unsigned char *buf, *bp;
942 	struct g_provider *pp;
943 	struct g_part_entry *baseentry;
944 	struct g_part_gpt_entry *entry;
945 	struct g_part_gpt_table *table;
946 	size_t tblsz;
947 	uint32_t crc;
948 	int error, index;
949 
950 	pp = cp->provider;
951 	table = (struct g_part_gpt_table *)basetable;
952 	tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz +
953 	    pp->sectorsize - 1) / pp->sectorsize;
954 
955 	/* Write the PMBR */
956 	buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
957 	bcopy(table->mbr, buf, MBRSIZE);
958 	error = g_write_data(cp, 0, buf, pp->sectorsize);
959 	g_free(buf);
960 	if (error)
961 		return (error);
962 
963 	/* Allocate space for the header and entries. */
964 	buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
965 
966 	memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
967 	le32enc(buf + 8, table->hdr->hdr_revision);
968 	le32enc(buf + 12, table->hdr->hdr_size);
969 	le64enc(buf + 40, table->hdr->hdr_lba_start);
970 	le64enc(buf + 48, table->hdr->hdr_lba_end);
971 	le_uuid_enc(buf + 56, &table->hdr->hdr_uuid);
972 	le32enc(buf + 80, table->hdr->hdr_entries);
973 	le32enc(buf + 84, table->hdr->hdr_entsz);
974 
975 	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
976 		if (baseentry->gpe_deleted)
977 			continue;
978 		entry = (struct g_part_gpt_entry *)baseentry;
979 		index = baseentry->gpe_index - 1;
980 		bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index;
981 		le_uuid_enc(bp, &entry->ent.ent_type);
982 		le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
983 		le64enc(bp + 32, entry->ent.ent_lba_start);
984 		le64enc(bp + 40, entry->ent.ent_lba_end);
985 		le64enc(bp + 48, entry->ent.ent_attr);
986 		memcpy(bp + 56, entry->ent.ent_name,
987 		    sizeof(entry->ent.ent_name));
988 	}
989 
990 	crc = crc32(buf + pp->sectorsize,
991 	    table->hdr->hdr_entries * table->hdr->hdr_entsz);
992 	le32enc(buf + 88, crc);
993 
994 	/* Write primary meta-data. */
995 	le32enc(buf + 16, 0);	/* hdr_crc_self. */
996 	le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_self. */
997 	le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_alt. */
998 	le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]);	/* hdr_lba_table. */
999 	crc = crc32(buf, table->hdr->hdr_size);
1000 	le32enc(buf + 16, crc);
1001 
1002 	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1003 		error = g_write_data(cp,
1004 		    (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize,
1005 		    buf + (index + 1) * pp->sectorsize,
1006 		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1007 		    (tblsz - index) * pp->sectorsize);
1008 		if (error)
1009 			goto out;
1010 	}
1011 	error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
1012 	    buf, pp->sectorsize);
1013 	if (error)
1014 		goto out;
1015 
1016 	/* Write secondary meta-data. */
1017 	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1018 	le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_self. */
1019 	le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_alt. */
1020 	le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]);	/* hdr_lba_table. */
1021 	crc = crc32(buf, table->hdr->hdr_size);
1022 	le32enc(buf + 16, crc);
1023 
1024 	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1025 		error = g_write_data(cp,
1026 		    (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize,
1027 		    buf + (index + 1) * pp->sectorsize,
1028 		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1029 		    (tblsz - index) * pp->sectorsize);
1030 		if (error)
1031 			goto out;
1032 	}
1033 	error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
1034 	    buf, pp->sectorsize);
1035 
1036  out:
1037 	g_free(buf);
1038 	return (error);
1039 }
1040 
1041 static void
1042 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
1043 {
1044 	u_int bo;
1045 	uint32_t ch;
1046 	uint16_t c;
1047 
1048 	bo = LITTLE_ENDIAN;	/* GPT is little-endian */
1049 	while (len > 0 && *str != 0) {
1050 		ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
1051 		str++, len--;
1052 		if ((ch & 0xf800) == 0xd800) {
1053 			if (len > 0) {
1054 				c = (bo == BIG_ENDIAN) ? be16toh(*str)
1055 				    : le16toh(*str);
1056 				str++, len--;
1057 			} else
1058 				c = 0xfffd;
1059 			if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
1060 				ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
1061 				ch += 0x10000;
1062 			} else
1063 				ch = 0xfffd;
1064 		} else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
1065 			bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
1066 			continue;
1067 		} else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
1068 			continue;
1069 
1070 		/* Write the Unicode character in UTF-8 */
1071 		if (ch < 0x80)
1072 			sbuf_printf(sb, "%c", ch);
1073 		else if (ch < 0x800)
1074 			sbuf_printf(sb, "%c%c", 0xc0 | (ch >> 6),
1075 			    0x80 | (ch & 0x3f));
1076 		else if (ch < 0x10000)
1077 			sbuf_printf(sb, "%c%c%c", 0xe0 | (ch >> 12),
1078 			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1079 		else if (ch < 0x200000)
1080 			sbuf_printf(sb, "%c%c%c%c", 0xf0 | (ch >> 18),
1081 			    0x80 | ((ch >> 12) & 0x3f),
1082 			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1083 	}
1084 }
1085 
1086 static void
1087 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
1088 {
1089 	size_t s16idx, s8idx;
1090 	uint32_t utfchar;
1091 	unsigned int c, utfbytes;
1092 
1093 	s8idx = s16idx = 0;
1094 	utfchar = 0;
1095 	utfbytes = 0;
1096 	bzero(s16, s16len << 1);
1097 	while (s8[s8idx] != 0 && s16idx < s16len) {
1098 		c = s8[s8idx++];
1099 		if ((c & 0xc0) != 0x80) {
1100 			/* Initial characters. */
1101 			if (utfbytes != 0) {
1102 				/* Incomplete encoding of previous char. */
1103 				s16[s16idx++] = htole16(0xfffd);
1104 			}
1105 			if ((c & 0xf8) == 0xf0) {
1106 				utfchar = c & 0x07;
1107 				utfbytes = 3;
1108 			} else if ((c & 0xf0) == 0xe0) {
1109 				utfchar = c & 0x0f;
1110 				utfbytes = 2;
1111 			} else if ((c & 0xe0) == 0xc0) {
1112 				utfchar = c & 0x1f;
1113 				utfbytes = 1;
1114 			} else {
1115 				utfchar = c & 0x7f;
1116 				utfbytes = 0;
1117 			}
1118 		} else {
1119 			/* Followup characters. */
1120 			if (utfbytes > 0) {
1121 				utfchar = (utfchar << 6) + (c & 0x3f);
1122 				utfbytes--;
1123 			} else if (utfbytes == 0)
1124 				utfbytes = ~0;
1125 		}
1126 		/*
1127 		 * Write the complete Unicode character as UTF-16 when we
1128 		 * have all the UTF-8 charactars collected.
1129 		 */
1130 		if (utfbytes == 0) {
1131 			/*
1132 			 * If we need to write 2 UTF-16 characters, but
1133 			 * we only have room for 1, then we truncate the
1134 			 * string by writing a 0 instead.
1135 			 */
1136 			if (utfchar >= 0x10000 && s16idx < s16len - 1) {
1137 				s16[s16idx++] =
1138 				    htole16(0xd800 | ((utfchar >> 10) - 0x40));
1139 				s16[s16idx++] =
1140 				    htole16(0xdc00 | (utfchar & 0x3ff));
1141 			} else
1142 				s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
1143 				    htole16(utfchar);
1144 		}
1145 	}
1146 	/*
1147 	 * If our input string was truncated, append an invalid encoding
1148 	 * character to the output string.
1149 	 */
1150 	if (utfbytes != 0 && s16idx < s16len)
1151 		s16[s16idx++] = htole16(0xfffd);
1152 }
1153