1 /*- 2 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/bio.h> 32 #include <sys/diskmbr.h> 33 #include <sys/endian.h> 34 #include <sys/gpt.h> 35 #include <sys/kernel.h> 36 #include <sys/kobj.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/malloc.h> 40 #include <sys/mutex.h> 41 #include <sys/queue.h> 42 #include <sys/sbuf.h> 43 #include <sys/systm.h> 44 #include <sys/sysctl.h> 45 #include <sys/uuid.h> 46 #include <geom/geom.h> 47 #include <geom/geom_int.h> 48 #include <geom/part/g_part.h> 49 50 #include "g_part_if.h" 51 52 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support"); 53 54 CTASSERT(offsetof(struct gpt_hdr, padding) == 92); 55 CTASSERT(sizeof(struct gpt_ent) == 128); 56 57 #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) 58 59 #define MBRSIZE 512 60 61 enum gpt_elt { 62 GPT_ELT_PRIHDR, 63 GPT_ELT_PRITBL, 64 GPT_ELT_SECHDR, 65 GPT_ELT_SECTBL, 66 GPT_ELT_COUNT 67 }; 68 69 enum gpt_state { 70 GPT_STATE_UNKNOWN, /* Not determined. */ 71 GPT_STATE_MISSING, /* No signature found. */ 72 GPT_STATE_CORRUPT, /* Checksum mismatch. */ 73 GPT_STATE_INVALID, /* Nonconformant/invalid. */ 74 GPT_STATE_OK /* Perfectly fine. */ 75 }; 76 77 struct g_part_gpt_table { 78 struct g_part_table base; 79 u_char mbr[MBRSIZE]; 80 struct gpt_hdr *hdr; 81 quad_t lba[GPT_ELT_COUNT]; 82 enum gpt_state state[GPT_ELT_COUNT]; 83 int bootcamp; 84 }; 85 86 struct g_part_gpt_entry { 87 struct g_part_entry base; 88 struct gpt_ent ent; 89 }; 90 91 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); 92 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); 93 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *); 94 95 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, 96 struct g_part_parms *); 97 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); 98 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); 99 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); 100 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, 101 struct sbuf *, const char *); 102 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); 103 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, 104 struct g_part_parms *); 105 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, 106 char *, size_t); 107 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); 108 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); 109 static int g_part_gpt_setunset(struct g_part_table *table, 110 struct g_part_entry *baseentry, const char *attrib, unsigned int set); 111 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, 112 char *, size_t); 113 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); 114 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, 115 struct g_part_parms *); 116 static int g_part_gpt_recover(struct g_part_table *); 117 118 static kobj_method_t g_part_gpt_methods[] = { 119 KOBJMETHOD(g_part_add, g_part_gpt_add), 120 KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), 121 KOBJMETHOD(g_part_create, g_part_gpt_create), 122 KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), 123 KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), 124 KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), 125 KOBJMETHOD(g_part_modify, g_part_gpt_modify), 126 KOBJMETHOD(g_part_resize, g_part_gpt_resize), 127 KOBJMETHOD(g_part_name, g_part_gpt_name), 128 KOBJMETHOD(g_part_probe, g_part_gpt_probe), 129 KOBJMETHOD(g_part_read, g_part_gpt_read), 130 KOBJMETHOD(g_part_recover, g_part_gpt_recover), 131 KOBJMETHOD(g_part_setunset, g_part_gpt_setunset), 132 KOBJMETHOD(g_part_type, g_part_gpt_type), 133 KOBJMETHOD(g_part_write, g_part_gpt_write), 134 { 0, 0 } 135 }; 136 137 static struct g_part_scheme g_part_gpt_scheme = { 138 "GPT", 139 g_part_gpt_methods, 140 sizeof(struct g_part_gpt_table), 141 .gps_entrysz = sizeof(struct g_part_gpt_entry), 142 .gps_minent = 128, 143 .gps_maxent = 4096, 144 .gps_bootcodesz = MBRSIZE, 145 }; 146 G_PART_SCHEME_DECLARE(g_part_gpt); 147 148 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; 149 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; 150 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; 151 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; 152 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; 153 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; 154 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; 155 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT; 156 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; 157 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; 158 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; 159 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS; 160 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; 161 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; 162 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; 163 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; 164 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; 165 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; 166 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; 167 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; 168 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS; 169 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG; 170 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED; 171 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR; 172 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; 173 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; 174 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; 175 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; 176 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; 177 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; 178 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; 179 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; 180 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; 181 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; 182 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; 183 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; 184 185 static struct g_part_uuid_alias { 186 struct uuid *uuid; 187 int alias; 188 int mbrtype; 189 } gpt_uuid_alias_match[] = { 190 { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab }, 191 { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf }, 192 { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 }, 193 { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 }, 194 { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 }, 195 { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 }, 196 { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 }, 197 { &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 }, 198 { &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee }, 199 { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 }, 200 { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 }, 201 { &gpt_uuid_freebsd_nandfs, G_PART_ALIAS_FREEBSD_NANDFS, 0 }, 202 { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 }, 203 { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 }, 204 { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 }, 205 { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 }, 206 { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b }, 207 { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 }, 208 { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 }, 209 { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 }, 210 { &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 }, 211 { &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 }, 212 { &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 }, 213 { &gpt_uuid_vmvsanhdr, G_PART_ALIAS_VMVSANHDR, 0 }, 214 { &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 }, 215 { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b }, 216 { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 }, 217 { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 }, 218 { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 }, 219 { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 }, 220 { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 }, 221 { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 }, 222 { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 }, 223 { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 }, 224 { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 }, 225 { NULL, 0, 0 } 226 }; 227 228 static int 229 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start, 230 quad_t end) 231 { 232 233 if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX) 234 return (EINVAL); 235 236 mbr += DOSPARTOFF + idx * DOSPARTSIZE; 237 mbr[0] = 0; 238 if (start == 1) { 239 /* 240 * Treat the PMBR partition specially to maximize 241 * interoperability with BIOSes. 242 */ 243 mbr[1] = mbr[3] = 0; 244 mbr[2] = 2; 245 } else 246 mbr[1] = mbr[2] = mbr[3] = 0xff; 247 mbr[4] = typ; 248 mbr[5] = mbr[6] = mbr[7] = 0xff; 249 le32enc(mbr + 8, (uint32_t)start); 250 le32enc(mbr + 12, (uint32_t)(end - start + 1)); 251 return (0); 252 } 253 254 static int 255 gpt_map_type(struct uuid *t) 256 { 257 struct g_part_uuid_alias *uap; 258 259 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 260 if (EQUUID(t, uap->uuid)) 261 return (uap->mbrtype); 262 } 263 return (0); 264 } 265 266 static void 267 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp) 268 { 269 270 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 271 gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, 272 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 273 le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); 274 } 275 276 /* 277 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the 278 * whole disk anymore. Rather, it covers the GPT table and the EFI 279 * system partition only. This way the HFS+ partition and any FAT 280 * partitions can be added to the MBR without creating an overlap. 281 */ 282 static int 283 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname) 284 { 285 uint8_t *p; 286 287 p = table->mbr + DOSPARTOFF; 288 if (p[4] != 0xee || le32dec(p + 8) != 1) 289 return (0); 290 291 p += DOSPARTSIZE; 292 if (p[4] != 0xaf) 293 return (0); 294 295 printf("GEOM: %s: enabling Boot Camp\n", provname); 296 return (1); 297 } 298 299 static void 300 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp) 301 { 302 struct g_part_entry *baseentry; 303 struct g_part_gpt_entry *entry; 304 struct g_part_gpt_table *table; 305 int bootable, error, index, slices, typ; 306 307 table = (struct g_part_gpt_table *)basetable; 308 309 bootable = -1; 310 for (index = 0; index < NDOSPART; index++) { 311 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index]) 312 bootable = index; 313 } 314 315 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 316 slices = 0; 317 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 318 if (baseentry->gpe_deleted) 319 continue; 320 index = baseentry->gpe_index - 1; 321 if (index >= NDOSPART) 322 continue; 323 324 entry = (struct g_part_gpt_entry *)baseentry; 325 326 switch (index) { 327 case 0: /* This must be the EFI system partition. */ 328 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi)) 329 goto disable; 330 error = gpt_write_mbr_entry(table->mbr, index, 0xee, 331 1ull, entry->ent.ent_lba_end); 332 break; 333 case 1: /* This must be the HFS+ partition. */ 334 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs)) 335 goto disable; 336 error = gpt_write_mbr_entry(table->mbr, index, 0xaf, 337 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 338 break; 339 default: 340 typ = gpt_map_type(&entry->ent.ent_type); 341 error = gpt_write_mbr_entry(table->mbr, index, typ, 342 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 343 break; 344 } 345 if (error) 346 continue; 347 348 if (index == bootable) 349 table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80; 350 slices |= 1 << index; 351 } 352 if ((slices & 3) == 3) 353 return; 354 355 disable: 356 table->bootcamp = 0; 357 gpt_create_pmbr(table, pp); 358 } 359 360 static struct gpt_hdr * 361 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, 362 enum gpt_elt elt) 363 { 364 struct gpt_hdr *buf, *hdr; 365 struct g_provider *pp; 366 quad_t lba, last; 367 int error; 368 uint32_t crc, sz; 369 370 pp = cp->provider; 371 last = (pp->mediasize / pp->sectorsize) - 1; 372 table->state[elt] = GPT_STATE_MISSING; 373 /* 374 * If the primary header is valid look for secondary 375 * header in AlternateLBA, otherwise in the last medium's LBA. 376 */ 377 if (elt == GPT_ELT_SECHDR) { 378 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK) 379 table->lba[elt] = last; 380 } else 381 table->lba[elt] = 1; 382 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, 383 &error); 384 if (buf == NULL) 385 return (NULL); 386 hdr = NULL; 387 if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) 388 goto fail; 389 390 table->state[elt] = GPT_STATE_CORRUPT; 391 sz = le32toh(buf->hdr_size); 392 if (sz < 92 || sz > pp->sectorsize) 393 goto fail; 394 395 hdr = g_malloc(sz, M_WAITOK | M_ZERO); 396 bcopy(buf, hdr, sz); 397 hdr->hdr_size = sz; 398 399 crc = le32toh(buf->hdr_crc_self); 400 buf->hdr_crc_self = 0; 401 if (crc32(buf, sz) != crc) 402 goto fail; 403 hdr->hdr_crc_self = crc; 404 405 table->state[elt] = GPT_STATE_INVALID; 406 hdr->hdr_revision = le32toh(buf->hdr_revision); 407 if (hdr->hdr_revision < GPT_HDR_REVISION) 408 goto fail; 409 hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); 410 if (hdr->hdr_lba_self != table->lba[elt]) 411 goto fail; 412 hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); 413 if (hdr->hdr_lba_alt == hdr->hdr_lba_self || 414 hdr->hdr_lba_alt > last) 415 goto fail; 416 417 /* Check the managed area. */ 418 hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); 419 if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) 420 goto fail; 421 hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); 422 if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) 423 goto fail; 424 425 /* Check the table location and size of the table. */ 426 hdr->hdr_entries = le32toh(buf->hdr_entries); 427 hdr->hdr_entsz = le32toh(buf->hdr_entsz); 428 if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || 429 (hdr->hdr_entsz & 7) != 0) 430 goto fail; 431 hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); 432 if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) 433 goto fail; 434 if (hdr->hdr_lba_table >= hdr->hdr_lba_start && 435 hdr->hdr_lba_table <= hdr->hdr_lba_end) 436 goto fail; 437 lba = hdr->hdr_lba_table + 438 (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) / 439 pp->sectorsize - 1; 440 if (lba >= last) 441 goto fail; 442 if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) 443 goto fail; 444 445 table->state[elt] = GPT_STATE_OK; 446 le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); 447 hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); 448 449 /* save LBA for secondary header */ 450 if (elt == GPT_ELT_PRIHDR) 451 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt; 452 453 g_free(buf); 454 return (hdr); 455 456 fail: 457 if (hdr != NULL) 458 g_free(hdr); 459 g_free(buf); 460 return (NULL); 461 } 462 463 static struct gpt_ent * 464 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, 465 enum gpt_elt elt, struct gpt_hdr *hdr) 466 { 467 struct g_provider *pp; 468 struct gpt_ent *ent, *tbl; 469 char *buf, *p; 470 unsigned int idx, sectors, tblsz, size; 471 int error; 472 473 if (hdr == NULL) 474 return (NULL); 475 476 pp = cp->provider; 477 table->lba[elt] = hdr->hdr_lba_table; 478 479 table->state[elt] = GPT_STATE_MISSING; 480 tblsz = hdr->hdr_entries * hdr->hdr_entsz; 481 sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize; 482 buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO); 483 for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) { 484 size = (sectors - idx > MAXPHYS / pp->sectorsize) ? MAXPHYS: 485 (sectors - idx) * pp->sectorsize; 486 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize, 487 size, &error); 488 if (p == NULL) { 489 g_free(buf); 490 return (NULL); 491 } 492 bcopy(p, buf + idx * pp->sectorsize, size); 493 g_free(p); 494 } 495 table->state[elt] = GPT_STATE_CORRUPT; 496 if (crc32(buf, tblsz) != hdr->hdr_crc_table) { 497 g_free(buf); 498 return (NULL); 499 } 500 501 table->state[elt] = GPT_STATE_OK; 502 tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), 503 M_WAITOK | M_ZERO); 504 505 for (idx = 0, ent = tbl, p = buf; 506 idx < hdr->hdr_entries; 507 idx++, ent++, p += hdr->hdr_entsz) { 508 le_uuid_dec(p, &ent->ent_type); 509 le_uuid_dec(p + 16, &ent->ent_uuid); 510 ent->ent_lba_start = le64dec(p + 32); 511 ent->ent_lba_end = le64dec(p + 40); 512 ent->ent_attr = le64dec(p + 48); 513 /* Keep UTF-16 in little-endian. */ 514 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); 515 } 516 517 g_free(buf); 518 return (tbl); 519 } 520 521 static int 522 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) 523 { 524 525 if (pri == NULL || sec == NULL) 526 return (0); 527 528 if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) 529 return (0); 530 return ((pri->hdr_revision == sec->hdr_revision && 531 pri->hdr_size == sec->hdr_size && 532 pri->hdr_lba_start == sec->hdr_lba_start && 533 pri->hdr_lba_end == sec->hdr_lba_end && 534 pri->hdr_entries == sec->hdr_entries && 535 pri->hdr_entsz == sec->hdr_entsz && 536 pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); 537 } 538 539 static int 540 gpt_parse_type(const char *type, struct uuid *uuid) 541 { 542 struct uuid tmp; 543 const char *alias; 544 int error; 545 struct g_part_uuid_alias *uap; 546 547 if (type[0] == '!') { 548 error = parse_uuid(type + 1, &tmp); 549 if (error) 550 return (error); 551 if (EQUUID(&tmp, &gpt_uuid_unused)) 552 return (EINVAL); 553 *uuid = tmp; 554 return (0); 555 } 556 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 557 alias = g_part_alias_name(uap->alias); 558 if (!strcasecmp(type, alias)) { 559 *uuid = *uap->uuid; 560 return (0); 561 } 562 } 563 return (EINVAL); 564 } 565 566 static int 567 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, 568 struct g_part_parms *gpp) 569 { 570 struct g_part_gpt_entry *entry; 571 int error; 572 573 entry = (struct g_part_gpt_entry *)baseentry; 574 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 575 if (error) 576 return (error); 577 kern_uuidgen(&entry->ent.ent_uuid, 1); 578 entry->ent.ent_lba_start = baseentry->gpe_start; 579 entry->ent.ent_lba_end = baseentry->gpe_end; 580 if (baseentry->gpe_deleted) { 581 entry->ent.ent_attr = 0; 582 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); 583 } 584 if (gpp->gpp_parms & G_PART_PARM_LABEL) 585 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 586 sizeof(entry->ent.ent_name) / 587 sizeof(entry->ent.ent_name[0])); 588 return (0); 589 } 590 591 static int 592 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) 593 { 594 struct g_part_gpt_table *table; 595 size_t codesz; 596 597 codesz = DOSPARTOFF; 598 table = (struct g_part_gpt_table *)basetable; 599 bzero(table->mbr, codesz); 600 codesz = MIN(codesz, gpp->gpp_codesize); 601 if (codesz > 0) 602 bcopy(gpp->gpp_codeptr, table->mbr, codesz); 603 return (0); 604 } 605 606 static int 607 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) 608 { 609 struct g_provider *pp; 610 struct g_part_gpt_table *table; 611 size_t tblsz; 612 613 /* We don't nest, which means that our depth should be 0. */ 614 if (basetable->gpt_depth != 0) 615 return (ENXIO); 616 617 table = (struct g_part_gpt_table *)basetable; 618 pp = gpp->gpp_provider; 619 tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) + 620 pp->sectorsize - 1) / pp->sectorsize; 621 if (pp->sectorsize < MBRSIZE || 622 pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * 623 pp->sectorsize) 624 return (ENOSPC); 625 626 gpt_create_pmbr(table, pp); 627 628 /* Allocate space for the header */ 629 table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); 630 631 bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 632 table->hdr->hdr_revision = GPT_HDR_REVISION; 633 table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); 634 kern_uuidgen(&table->hdr->hdr_uuid, 1); 635 table->hdr->hdr_entries = basetable->gpt_entries; 636 table->hdr->hdr_entsz = sizeof(struct gpt_ent); 637 638 g_gpt_set_defaults(basetable, pp); 639 return (0); 640 } 641 642 static int 643 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) 644 { 645 struct g_part_gpt_table *table; 646 struct g_provider *pp; 647 648 table = (struct g_part_gpt_table *)basetable; 649 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 650 g_free(table->hdr); 651 table->hdr = NULL; 652 653 /* 654 * Wipe the first 2 sectors to clear the partitioning. Wipe the last 655 * sector only if it has valid secondary header. 656 */ 657 basetable->gpt_smhead |= 3; 658 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 659 table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1) 660 basetable->gpt_smtail |= 1; 661 return (0); 662 } 663 664 static void 665 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 666 struct sbuf *sb, const char *indent) 667 { 668 struct g_part_gpt_entry *entry; 669 670 entry = (struct g_part_gpt_entry *)baseentry; 671 if (indent == NULL) { 672 /* conftxt: libdisk compatibility */ 673 sbuf_printf(sb, " xs GPT xt "); 674 sbuf_printf_uuid(sb, &entry->ent.ent_type); 675 } else if (entry != NULL) { 676 /* confxml: partition entry information */ 677 sbuf_printf(sb, "%s<label>", indent); 678 g_gpt_printf_utf16(sb, entry->ent.ent_name, 679 sizeof(entry->ent.ent_name) >> 1); 680 sbuf_printf(sb, "</label>\n"); 681 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME) 682 sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent); 683 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) { 684 sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n", 685 indent); 686 } 687 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) { 688 sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n", 689 indent); 690 } 691 sbuf_printf(sb, "%s<rawtype>", indent); 692 sbuf_printf_uuid(sb, &entry->ent.ent_type); 693 sbuf_printf(sb, "</rawtype>\n"); 694 sbuf_printf(sb, "%s<rawuuid>", indent); 695 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 696 sbuf_printf(sb, "</rawuuid>\n"); 697 } else { 698 /* confxml: scheme information */ 699 } 700 } 701 702 static int 703 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) 704 { 705 struct g_part_gpt_entry *entry; 706 707 entry = (struct g_part_gpt_entry *)baseentry; 708 return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || 709 EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap)) ? 1 : 0); 710 } 711 712 static int 713 g_part_gpt_modify(struct g_part_table *basetable, 714 struct g_part_entry *baseentry, struct g_part_parms *gpp) 715 { 716 struct g_part_gpt_entry *entry; 717 int error; 718 719 entry = (struct g_part_gpt_entry *)baseentry; 720 if (gpp->gpp_parms & G_PART_PARM_TYPE) { 721 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 722 if (error) 723 return (error); 724 } 725 if (gpp->gpp_parms & G_PART_PARM_LABEL) 726 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 727 sizeof(entry->ent.ent_name) / 728 sizeof(entry->ent.ent_name[0])); 729 return (0); 730 } 731 732 static int 733 g_part_gpt_resize(struct g_part_table *basetable, 734 struct g_part_entry *baseentry, struct g_part_parms *gpp) 735 { 736 struct g_part_gpt_entry *entry; 737 738 if (baseentry == NULL) 739 return (EOPNOTSUPP); 740 741 entry = (struct g_part_gpt_entry *)baseentry; 742 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; 743 entry->ent.ent_lba_end = baseentry->gpe_end; 744 745 return (0); 746 } 747 748 static const char * 749 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, 750 char *buf, size_t bufsz) 751 { 752 struct g_part_gpt_entry *entry; 753 char c; 754 755 entry = (struct g_part_gpt_entry *)baseentry; 756 c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; 757 snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); 758 return (buf); 759 } 760 761 static int 762 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) 763 { 764 struct g_provider *pp; 765 u_char *buf; 766 int error, index, pri, res; 767 768 /* We don't nest, which means that our depth should be 0. */ 769 if (table->gpt_depth != 0) 770 return (ENXIO); 771 772 pp = cp->provider; 773 774 /* 775 * Sanity-check the provider. Since the first sector on the provider 776 * must be a PMBR and a PMBR is 512 bytes large, the sector size 777 * must be at least 512 bytes. Also, since the theoretical minimum 778 * number of sectors needed by GPT is 6, any medium that has less 779 * than 6 sectors is never going to be able to hold a GPT. The 780 * number 6 comes from: 781 * 1 sector for the PMBR 782 * 2 sectors for the GPT headers (each 1 sector) 783 * 2 sectors for the GPT tables (each 1 sector) 784 * 1 sector for an actual partition 785 * It's better to catch this pathological case early than behaving 786 * pathologically later on... 787 */ 788 if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) 789 return (ENOSPC); 790 791 /* 792 * Check that there's a MBR or a PMBR. If it's a PMBR, we return 793 * as the highest priority on a match, otherwise we assume some 794 * GPT-unaware tool has destroyed the GPT by recreating a MBR and 795 * we really want the MBR scheme to take precedence. 796 */ 797 buf = g_read_data(cp, 0L, pp->sectorsize, &error); 798 if (buf == NULL) 799 return (error); 800 res = le16dec(buf + DOSMAGICOFFSET); 801 pri = G_PART_PROBE_PRI_LOW; 802 for (index = 0; index < NDOSPART; index++) { 803 if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee) 804 pri = G_PART_PROBE_PRI_HIGH; 805 } 806 g_free(buf); 807 if (res != DOSMAGIC) 808 return (ENXIO); 809 810 /* Check that there's a primary header. */ 811 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); 812 if (buf == NULL) 813 return (error); 814 res = memcmp(buf, GPT_HDR_SIG, 8); 815 g_free(buf); 816 if (res == 0) 817 return (pri); 818 819 /* No primary? Check that there's a secondary. */ 820 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 821 &error); 822 if (buf == NULL) 823 return (error); 824 res = memcmp(buf, GPT_HDR_SIG, 8); 825 g_free(buf); 826 return ((res == 0) ? pri : ENXIO); 827 } 828 829 static int 830 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) 831 { 832 struct gpt_hdr *prihdr, *sechdr; 833 struct gpt_ent *tbl, *pritbl, *sectbl; 834 struct g_provider *pp; 835 struct g_part_gpt_table *table; 836 struct g_part_gpt_entry *entry; 837 u_char *buf; 838 uint64_t last; 839 int error, index; 840 841 table = (struct g_part_gpt_table *)basetable; 842 pp = cp->provider; 843 last = (pp->mediasize / pp->sectorsize) - 1; 844 845 /* Read the PMBR */ 846 buf = g_read_data(cp, 0, pp->sectorsize, &error); 847 if (buf == NULL) 848 return (error); 849 bcopy(buf, table->mbr, MBRSIZE); 850 g_free(buf); 851 852 /* Read the primary header and table. */ 853 prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); 854 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { 855 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); 856 } else { 857 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 858 pritbl = NULL; 859 } 860 861 /* Read the secondary header and table. */ 862 sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); 863 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { 864 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); 865 } else { 866 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 867 sectbl = NULL; 868 } 869 870 /* Fail if we haven't got any good tables at all. */ 871 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && 872 table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 873 printf("GEOM: %s: corrupt or invalid GPT detected.\n", 874 pp->name); 875 printf("GEOM: %s: GPT rejected -- may not be recoverable.\n", 876 pp->name); 877 return (EINVAL); 878 } 879 880 /* 881 * If both headers are good but they disagree with each other, 882 * then invalidate one. We prefer to keep the primary header, 883 * unless the primary table is corrupt. 884 */ 885 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && 886 table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 887 !gpt_matched_hdrs(prihdr, sechdr)) { 888 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { 889 table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; 890 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 891 g_free(sechdr); 892 sechdr = NULL; 893 } else { 894 table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; 895 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 896 g_free(prihdr); 897 prihdr = NULL; 898 } 899 } 900 901 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { 902 printf("GEOM: %s: the primary GPT table is corrupt or " 903 "invalid.\n", pp->name); 904 printf("GEOM: %s: using the secondary instead -- recovery " 905 "strongly advised.\n", pp->name); 906 table->hdr = sechdr; 907 basetable->gpt_corrupt = 1; 908 if (prihdr != NULL) 909 g_free(prihdr); 910 tbl = sectbl; 911 if (pritbl != NULL) 912 g_free(pritbl); 913 } else { 914 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 915 printf("GEOM: %s: the secondary GPT table is corrupt " 916 "or invalid.\n", pp->name); 917 printf("GEOM: %s: using the primary only -- recovery " 918 "suggested.\n", pp->name); 919 basetable->gpt_corrupt = 1; 920 } else if (table->lba[GPT_ELT_SECHDR] != last) { 921 printf( "GEOM: %s: the secondary GPT header is not in " 922 "the last LBA.\n", pp->name); 923 basetable->gpt_corrupt = 1; 924 } 925 table->hdr = prihdr; 926 if (sechdr != NULL) 927 g_free(sechdr); 928 tbl = pritbl; 929 if (sectbl != NULL) 930 g_free(sectbl); 931 } 932 933 basetable->gpt_first = table->hdr->hdr_lba_start; 934 basetable->gpt_last = table->hdr->hdr_lba_end; 935 basetable->gpt_entries = (table->hdr->hdr_lba_start - 2) * 936 pp->sectorsize / table->hdr->hdr_entsz; 937 938 for (index = table->hdr->hdr_entries - 1; index >= 0; index--) { 939 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) 940 continue; 941 entry = (struct g_part_gpt_entry *)g_part_new_entry( 942 basetable, index + 1, tbl[index].ent_lba_start, 943 tbl[index].ent_lba_end); 944 entry->ent = tbl[index]; 945 } 946 947 g_free(tbl); 948 949 /* 950 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions 951 * if (and only if) any FAT32 or FAT16 partitions have been 952 * created. This happens irrespective of whether Boot Camp is 953 * used/enabled, though it's generally understood to be done 954 * to support legacy Windows under Boot Camp. We refer to this 955 * mirroring simply as Boot Camp. We try to detect Boot Camp 956 * so that we can update the MBR if and when GPT changes have 957 * been made. Note that we do not enable Boot Camp if not 958 * previously enabled because we can't assume that we're on a 959 * Mac alongside Mac OS X. 960 */ 961 table->bootcamp = gpt_is_bootcamp(table, pp->name); 962 963 return (0); 964 } 965 966 static int 967 g_part_gpt_recover(struct g_part_table *basetable) 968 { 969 struct g_part_gpt_table *table; 970 struct g_provider *pp; 971 972 table = (struct g_part_gpt_table *)basetable; 973 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 974 gpt_create_pmbr(table, pp); 975 g_gpt_set_defaults(basetable, pp); 976 basetable->gpt_corrupt = 0; 977 return (0); 978 } 979 980 static int 981 g_part_gpt_setunset(struct g_part_table *basetable, 982 struct g_part_entry *baseentry, const char *attrib, unsigned int set) 983 { 984 struct g_part_gpt_entry *entry; 985 struct g_part_gpt_table *table; 986 uint8_t *p; 987 uint64_t attr; 988 int i; 989 990 table = (struct g_part_gpt_table *)basetable; 991 entry = (struct g_part_gpt_entry *)baseentry; 992 993 if (strcasecmp(attrib, "active") == 0) { 994 if (table->bootcamp) { 995 /* The active flag must be set on a valid entry. */ 996 if (entry == NULL) 997 return (ENXIO); 998 if (baseentry->gpe_index > NDOSPART) 999 return (EINVAL); 1000 for (i = 0; i < NDOSPART; i++) { 1001 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1002 p[0] = (i == baseentry->gpe_index - 1) 1003 ? ((set) ? 0x80 : 0) : 0; 1004 } 1005 } else { 1006 /* The PMBR is marked as active without an entry. */ 1007 if (entry != NULL) 1008 return (ENXIO); 1009 for (i = 0; i < NDOSPART; i++) { 1010 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1011 p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0; 1012 } 1013 } 1014 return (0); 1015 } 1016 1017 if (entry == NULL) 1018 return (ENODEV); 1019 1020 attr = 0; 1021 if (strcasecmp(attrib, "bootme") == 0) { 1022 attr |= GPT_ENT_ATTR_BOOTME; 1023 } else if (strcasecmp(attrib, "bootonce") == 0) { 1024 attr |= GPT_ENT_ATTR_BOOTONCE; 1025 if (set) 1026 attr |= GPT_ENT_ATTR_BOOTME; 1027 } else if (strcasecmp(attrib, "bootfailed") == 0) { 1028 /* 1029 * It should only be possible to unset BOOTFAILED, but it might 1030 * be useful for test purposes to also be able to set it. 1031 */ 1032 attr |= GPT_ENT_ATTR_BOOTFAILED; 1033 } 1034 if (attr == 0) 1035 return (EINVAL); 1036 1037 if (set) 1038 attr = entry->ent.ent_attr | attr; 1039 else 1040 attr = entry->ent.ent_attr & ~attr; 1041 if (attr != entry->ent.ent_attr) { 1042 entry->ent.ent_attr = attr; 1043 if (!baseentry->gpe_created) 1044 baseentry->gpe_modified = 1; 1045 } 1046 return (0); 1047 } 1048 1049 static const char * 1050 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 1051 char *buf, size_t bufsz) 1052 { 1053 struct g_part_gpt_entry *entry; 1054 struct uuid *type; 1055 struct g_part_uuid_alias *uap; 1056 1057 entry = (struct g_part_gpt_entry *)baseentry; 1058 type = &entry->ent.ent_type; 1059 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) 1060 if (EQUUID(type, uap->uuid)) 1061 return (g_part_alias_name(uap->alias)); 1062 buf[0] = '!'; 1063 snprintf_uuid(buf + 1, bufsz - 1, type); 1064 1065 return (buf); 1066 } 1067 1068 static int 1069 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) 1070 { 1071 unsigned char *buf, *bp; 1072 struct g_provider *pp; 1073 struct g_part_entry *baseentry; 1074 struct g_part_gpt_entry *entry; 1075 struct g_part_gpt_table *table; 1076 size_t tblsz; 1077 uint32_t crc; 1078 int error, index; 1079 1080 pp = cp->provider; 1081 table = (struct g_part_gpt_table *)basetable; 1082 tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz + 1083 pp->sectorsize - 1) / pp->sectorsize; 1084 1085 /* Reconstruct the MBR from the GPT if under Boot Camp. */ 1086 if (table->bootcamp) 1087 gpt_update_bootcamp(basetable, pp); 1088 1089 /* Write the PMBR */ 1090 buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); 1091 bcopy(table->mbr, buf, MBRSIZE); 1092 error = g_write_data(cp, 0, buf, pp->sectorsize); 1093 g_free(buf); 1094 if (error) 1095 return (error); 1096 1097 /* Allocate space for the header and entries. */ 1098 buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); 1099 1100 memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 1101 le32enc(buf + 8, table->hdr->hdr_revision); 1102 le32enc(buf + 12, table->hdr->hdr_size); 1103 le64enc(buf + 40, table->hdr->hdr_lba_start); 1104 le64enc(buf + 48, table->hdr->hdr_lba_end); 1105 le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); 1106 le32enc(buf + 80, table->hdr->hdr_entries); 1107 le32enc(buf + 84, table->hdr->hdr_entsz); 1108 1109 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1110 if (baseentry->gpe_deleted) 1111 continue; 1112 entry = (struct g_part_gpt_entry *)baseentry; 1113 index = baseentry->gpe_index - 1; 1114 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; 1115 le_uuid_enc(bp, &entry->ent.ent_type); 1116 le_uuid_enc(bp + 16, &entry->ent.ent_uuid); 1117 le64enc(bp + 32, entry->ent.ent_lba_start); 1118 le64enc(bp + 40, entry->ent.ent_lba_end); 1119 le64enc(bp + 48, entry->ent.ent_attr); 1120 memcpy(bp + 56, entry->ent.ent_name, 1121 sizeof(entry->ent.ent_name)); 1122 } 1123 1124 crc = crc32(buf + pp->sectorsize, 1125 table->hdr->hdr_entries * table->hdr->hdr_entsz); 1126 le32enc(buf + 88, crc); 1127 1128 /* Write primary meta-data. */ 1129 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1130 le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ 1131 le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ 1132 le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ 1133 crc = crc32(buf, table->hdr->hdr_size); 1134 le32enc(buf + 16, crc); 1135 1136 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1137 error = g_write_data(cp, 1138 (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize, 1139 buf + (index + 1) * pp->sectorsize, 1140 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1141 (tblsz - index) * pp->sectorsize); 1142 if (error) 1143 goto out; 1144 } 1145 error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, 1146 buf, pp->sectorsize); 1147 if (error) 1148 goto out; 1149 1150 /* Write secondary meta-data. */ 1151 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1152 le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ 1153 le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ 1154 le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ 1155 crc = crc32(buf, table->hdr->hdr_size); 1156 le32enc(buf + 16, crc); 1157 1158 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1159 error = g_write_data(cp, 1160 (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize, 1161 buf + (index + 1) * pp->sectorsize, 1162 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1163 (tblsz - index) * pp->sectorsize); 1164 if (error) 1165 goto out; 1166 } 1167 error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, 1168 buf, pp->sectorsize); 1169 1170 out: 1171 g_free(buf); 1172 return (error); 1173 } 1174 1175 static void 1176 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp) 1177 { 1178 struct g_part_entry *baseentry; 1179 struct g_part_gpt_entry *entry; 1180 struct g_part_gpt_table *table; 1181 quad_t start, end, min, max; 1182 quad_t lba, last; 1183 size_t spb, tblsz; 1184 1185 table = (struct g_part_gpt_table *)basetable; 1186 last = pp->mediasize / pp->sectorsize - 1; 1187 tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) + 1188 pp->sectorsize - 1) / pp->sectorsize; 1189 1190 table->lba[GPT_ELT_PRIHDR] = 1; 1191 table->lba[GPT_ELT_PRITBL] = 2; 1192 table->lba[GPT_ELT_SECHDR] = last; 1193 table->lba[GPT_ELT_SECTBL] = last - tblsz; 1194 table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK; 1195 table->state[GPT_ELT_PRITBL] = GPT_STATE_OK; 1196 table->state[GPT_ELT_SECHDR] = GPT_STATE_OK; 1197 table->state[GPT_ELT_SECTBL] = GPT_STATE_OK; 1198 1199 max = start = 2 + tblsz; 1200 min = end = last - tblsz - 1; 1201 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1202 if (baseentry->gpe_deleted) 1203 continue; 1204 entry = (struct g_part_gpt_entry *)baseentry; 1205 if (entry->ent.ent_lba_start < min) 1206 min = entry->ent.ent_lba_start; 1207 if (entry->ent.ent_lba_end > max) 1208 max = entry->ent.ent_lba_end; 1209 } 1210 spb = 4096 / pp->sectorsize; 1211 if (spb > 1) { 1212 lba = start + ((start % spb) ? spb - start % spb : 0); 1213 if (lba <= min) 1214 start = lba; 1215 lba = end - (end + 1) % spb; 1216 if (max <= lba) 1217 end = lba; 1218 } 1219 table->hdr->hdr_lba_start = start; 1220 table->hdr->hdr_lba_end = end; 1221 1222 basetable->gpt_first = start; 1223 basetable->gpt_last = end; 1224 } 1225 1226 static void 1227 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) 1228 { 1229 u_int bo; 1230 uint32_t ch; 1231 uint16_t c; 1232 1233 bo = LITTLE_ENDIAN; /* GPT is little-endian */ 1234 while (len > 0 && *str != 0) { 1235 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); 1236 str++, len--; 1237 if ((ch & 0xf800) == 0xd800) { 1238 if (len > 0) { 1239 c = (bo == BIG_ENDIAN) ? be16toh(*str) 1240 : le16toh(*str); 1241 str++, len--; 1242 } else 1243 c = 0xfffd; 1244 if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { 1245 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); 1246 ch += 0x10000; 1247 } else 1248 ch = 0xfffd; 1249 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ 1250 bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; 1251 continue; 1252 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ 1253 continue; 1254 1255 /* Write the Unicode character in UTF-8 */ 1256 if (ch < 0x80) 1257 g_conf_printf_escaped(sb, "%c", ch); 1258 else if (ch < 0x800) 1259 g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6), 1260 0x80 | (ch & 0x3f)); 1261 else if (ch < 0x10000) 1262 g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12), 1263 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1264 else if (ch < 0x200000) 1265 g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 | 1266 (ch >> 18), 0x80 | ((ch >> 12) & 0x3f), 1267 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1268 } 1269 } 1270 1271 static void 1272 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) 1273 { 1274 size_t s16idx, s8idx; 1275 uint32_t utfchar; 1276 unsigned int c, utfbytes; 1277 1278 s8idx = s16idx = 0; 1279 utfchar = 0; 1280 utfbytes = 0; 1281 bzero(s16, s16len << 1); 1282 while (s8[s8idx] != 0 && s16idx < s16len) { 1283 c = s8[s8idx++]; 1284 if ((c & 0xc0) != 0x80) { 1285 /* Initial characters. */ 1286 if (utfbytes != 0) { 1287 /* Incomplete encoding of previous char. */ 1288 s16[s16idx++] = htole16(0xfffd); 1289 } 1290 if ((c & 0xf8) == 0xf0) { 1291 utfchar = c & 0x07; 1292 utfbytes = 3; 1293 } else if ((c & 0xf0) == 0xe0) { 1294 utfchar = c & 0x0f; 1295 utfbytes = 2; 1296 } else if ((c & 0xe0) == 0xc0) { 1297 utfchar = c & 0x1f; 1298 utfbytes = 1; 1299 } else { 1300 utfchar = c & 0x7f; 1301 utfbytes = 0; 1302 } 1303 } else { 1304 /* Followup characters. */ 1305 if (utfbytes > 0) { 1306 utfchar = (utfchar << 6) + (c & 0x3f); 1307 utfbytes--; 1308 } else if (utfbytes == 0) 1309 utfbytes = ~0; 1310 } 1311 /* 1312 * Write the complete Unicode character as UTF-16 when we 1313 * have all the UTF-8 charactars collected. 1314 */ 1315 if (utfbytes == 0) { 1316 /* 1317 * If we need to write 2 UTF-16 characters, but 1318 * we only have room for 1, then we truncate the 1319 * string by writing a 0 instead. 1320 */ 1321 if (utfchar >= 0x10000 && s16idx < s16len - 1) { 1322 s16[s16idx++] = 1323 htole16(0xd800 | ((utfchar >> 10) - 0x40)); 1324 s16[s16idx++] = 1325 htole16(0xdc00 | (utfchar & 0x3ff)); 1326 } else 1327 s16[s16idx++] = (utfchar >= 0x10000) ? 0 : 1328 htole16(utfchar); 1329 } 1330 } 1331 /* 1332 * If our input string was truncated, append an invalid encoding 1333 * character to the output string. 1334 */ 1335 if (utfbytes != 0 && s16idx < s16len) 1336 s16[s16idx++] = htole16(0xfffd); 1337 } 1338