1 /*- 2 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/bio.h> 32 #include <sys/diskmbr.h> 33 #include <sys/endian.h> 34 #include <sys/gpt.h> 35 #include <sys/kernel.h> 36 #include <sys/kobj.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/malloc.h> 40 #include <sys/mutex.h> 41 #include <sys/queue.h> 42 #include <sys/sbuf.h> 43 #include <sys/systm.h> 44 #include <sys/sysctl.h> 45 #include <sys/uuid.h> 46 #include <geom/geom.h> 47 #include <geom/part/g_part.h> 48 49 #include "g_part_if.h" 50 51 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support"); 52 53 CTASSERT(offsetof(struct gpt_hdr, padding) == 92); 54 CTASSERT(sizeof(struct gpt_ent) == 128); 55 56 #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) 57 58 #define MBRSIZE 512 59 60 enum gpt_elt { 61 GPT_ELT_PRIHDR, 62 GPT_ELT_PRITBL, 63 GPT_ELT_SECHDR, 64 GPT_ELT_SECTBL, 65 GPT_ELT_COUNT 66 }; 67 68 enum gpt_state { 69 GPT_STATE_UNKNOWN, /* Not determined. */ 70 GPT_STATE_MISSING, /* No signature found. */ 71 GPT_STATE_CORRUPT, /* Checksum mismatch. */ 72 GPT_STATE_INVALID, /* Nonconformant/invalid. */ 73 GPT_STATE_OK /* Perfectly fine. */ 74 }; 75 76 struct g_part_gpt_table { 77 struct g_part_table base; 78 u_char mbr[MBRSIZE]; 79 struct gpt_hdr *hdr; 80 quad_t lba[GPT_ELT_COUNT]; 81 enum gpt_state state[GPT_ELT_COUNT]; 82 int bootcamp; 83 }; 84 85 struct g_part_gpt_entry { 86 struct g_part_entry base; 87 struct gpt_ent ent; 88 }; 89 90 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); 91 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); 92 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *); 93 94 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, 95 struct g_part_parms *); 96 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); 97 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); 98 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); 99 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, 100 struct sbuf *, const char *); 101 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); 102 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, 103 struct g_part_parms *); 104 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, 105 char *, size_t); 106 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); 107 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); 108 static int g_part_gpt_setunset(struct g_part_table *table, 109 struct g_part_entry *baseentry, const char *attrib, unsigned int set); 110 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, 111 char *, size_t); 112 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); 113 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, 114 struct g_part_parms *); 115 static int g_part_gpt_recover(struct g_part_table *); 116 117 static kobj_method_t g_part_gpt_methods[] = { 118 KOBJMETHOD(g_part_add, g_part_gpt_add), 119 KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), 120 KOBJMETHOD(g_part_create, g_part_gpt_create), 121 KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), 122 KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), 123 KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), 124 KOBJMETHOD(g_part_modify, g_part_gpt_modify), 125 KOBJMETHOD(g_part_resize, g_part_gpt_resize), 126 KOBJMETHOD(g_part_name, g_part_gpt_name), 127 KOBJMETHOD(g_part_probe, g_part_gpt_probe), 128 KOBJMETHOD(g_part_read, g_part_gpt_read), 129 KOBJMETHOD(g_part_recover, g_part_gpt_recover), 130 KOBJMETHOD(g_part_setunset, g_part_gpt_setunset), 131 KOBJMETHOD(g_part_type, g_part_gpt_type), 132 KOBJMETHOD(g_part_write, g_part_gpt_write), 133 { 0, 0 } 134 }; 135 136 static struct g_part_scheme g_part_gpt_scheme = { 137 "GPT", 138 g_part_gpt_methods, 139 sizeof(struct g_part_gpt_table), 140 .gps_entrysz = sizeof(struct g_part_gpt_entry), 141 .gps_minent = 128, 142 .gps_maxent = 4096, 143 .gps_bootcodesz = MBRSIZE, 144 }; 145 G_PART_SCHEME_DECLARE(g_part_gpt); 146 147 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; 148 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; 149 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; 150 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; 151 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; 152 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; 153 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; 154 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT; 155 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; 156 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; 157 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; 158 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; 159 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; 160 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; 161 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; 162 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; 163 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; 164 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; 165 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; 166 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS; 167 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG; 168 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED; 169 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; 170 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; 171 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; 172 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; 173 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; 174 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; 175 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; 176 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; 177 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; 178 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; 179 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; 180 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; 181 182 static struct g_part_uuid_alias { 183 struct uuid *uuid; 184 int alias; 185 int mbrtype; 186 } gpt_uuid_alias_match[] = { 187 { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab }, 188 { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf }, 189 { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 }, 190 { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 }, 191 { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 }, 192 { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 }, 193 { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 }, 194 { &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 }, 195 { &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee }, 196 { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 }, 197 { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 }, 198 { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 }, 199 { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 }, 200 { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 }, 201 { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 }, 202 { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b }, 203 { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 }, 204 { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 }, 205 { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 }, 206 { &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 }, 207 { &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 }, 208 { &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 }, 209 { &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 }, 210 { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b }, 211 { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 }, 212 { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 }, 213 { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 }, 214 { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 }, 215 { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 }, 216 { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 }, 217 { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 }, 218 { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 }, 219 { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 }, 220 { NULL, 0, 0 } 221 }; 222 223 static int 224 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start, 225 quad_t end) 226 { 227 228 if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX) 229 return (EINVAL); 230 231 mbr += DOSPARTOFF + idx * DOSPARTSIZE; 232 mbr[0] = 0; 233 if (start == 1) { 234 /* 235 * Treat the PMBR partition specially to maximize 236 * interoperability with BIOSes. 237 */ 238 mbr[1] = mbr[3] = 0; 239 mbr[2] = 2; 240 } else 241 mbr[1] = mbr[2] = mbr[3] = 0xff; 242 mbr[4] = typ; 243 mbr[5] = mbr[6] = mbr[7] = 0xff; 244 le32enc(mbr + 8, (uint32_t)start); 245 le32enc(mbr + 12, (uint32_t)(end - start + 1)); 246 return (0); 247 } 248 249 static int 250 gpt_map_type(struct uuid *t) 251 { 252 struct g_part_uuid_alias *uap; 253 254 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 255 if (EQUUID(t, uap->uuid)) 256 return (uap->mbrtype); 257 } 258 return (0); 259 } 260 261 /* 262 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the 263 * whole disk anymore. Rather, it covers the GPT table and the EFI 264 * system partition only. This way the HFS+ partition and any FAT 265 * partitions can be added to the MBR without creating an overlap. 266 */ 267 static int 268 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname) 269 { 270 uint8_t *p; 271 272 p = table->mbr + DOSPARTOFF; 273 if (p[4] != 0xee || le32dec(p + 8) != 1) 274 return (0); 275 276 p += DOSPARTSIZE; 277 if (p[4] != 0xaf) 278 return (0); 279 280 printf("GEOM: %s: enabling Boot Camp\n", provname); 281 return (1); 282 } 283 284 static void 285 gpt_update_bootcamp(struct g_part_table *basetable) 286 { 287 struct g_part_entry *baseentry; 288 struct g_part_gpt_entry *entry; 289 struct g_part_gpt_table *table; 290 int bootable, error, index, slices, typ; 291 292 table = (struct g_part_gpt_table *)basetable; 293 294 bootable = -1; 295 for (index = 0; index < NDOSPART; index++) { 296 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index]) 297 bootable = index; 298 } 299 300 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 301 slices = 0; 302 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 303 if (baseentry->gpe_deleted) 304 continue; 305 index = baseentry->gpe_index - 1; 306 if (index >= NDOSPART) 307 continue; 308 309 entry = (struct g_part_gpt_entry *)baseentry; 310 311 switch (index) { 312 case 0: /* This must be the EFI system partition. */ 313 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi)) 314 goto disable; 315 error = gpt_write_mbr_entry(table->mbr, index, 0xee, 316 1ull, entry->ent.ent_lba_end); 317 break; 318 case 1: /* This must be the HFS+ partition. */ 319 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs)) 320 goto disable; 321 error = gpt_write_mbr_entry(table->mbr, index, 0xaf, 322 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 323 break; 324 default: 325 typ = gpt_map_type(&entry->ent.ent_type); 326 error = gpt_write_mbr_entry(table->mbr, index, typ, 327 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 328 break; 329 } 330 if (error) 331 continue; 332 333 if (index == bootable) 334 table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80; 335 slices |= 1 << index; 336 } 337 if ((slices & 3) == 3) 338 return; 339 340 disable: 341 table->bootcamp = 0; 342 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 343 gpt_write_mbr_entry(table->mbr, 0, 0xee, 1ull, 344 MIN(table->lba[GPT_ELT_SECHDR], UINT32_MAX)); 345 } 346 347 static struct gpt_hdr * 348 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, 349 enum gpt_elt elt) 350 { 351 struct gpt_hdr *buf, *hdr; 352 struct g_provider *pp; 353 quad_t lba, last; 354 int error; 355 uint32_t crc, sz; 356 357 pp = cp->provider; 358 last = (pp->mediasize / pp->sectorsize) - 1; 359 table->state[elt] = GPT_STATE_MISSING; 360 /* 361 * If the primary header is valid look for secondary 362 * header in AlternateLBA, otherwise in the last medium's LBA. 363 */ 364 if (elt == GPT_ELT_SECHDR) { 365 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK) 366 table->lba[elt] = last; 367 } else 368 table->lba[elt] = 1; 369 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, 370 &error); 371 if (buf == NULL) 372 return (NULL); 373 hdr = NULL; 374 if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) 375 goto fail; 376 377 table->state[elt] = GPT_STATE_CORRUPT; 378 sz = le32toh(buf->hdr_size); 379 if (sz < 92 || sz > pp->sectorsize) 380 goto fail; 381 382 hdr = g_malloc(sz, M_WAITOK | M_ZERO); 383 bcopy(buf, hdr, sz); 384 hdr->hdr_size = sz; 385 386 crc = le32toh(buf->hdr_crc_self); 387 buf->hdr_crc_self = 0; 388 if (crc32(buf, sz) != crc) 389 goto fail; 390 hdr->hdr_crc_self = crc; 391 392 table->state[elt] = GPT_STATE_INVALID; 393 hdr->hdr_revision = le32toh(buf->hdr_revision); 394 if (hdr->hdr_revision < GPT_HDR_REVISION) 395 goto fail; 396 hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); 397 if (hdr->hdr_lba_self != table->lba[elt]) 398 goto fail; 399 hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); 400 if (hdr->hdr_lba_alt == hdr->hdr_lba_self || 401 hdr->hdr_lba_alt > last) 402 goto fail; 403 404 /* Check the managed area. */ 405 hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); 406 if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) 407 goto fail; 408 hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); 409 if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) 410 goto fail; 411 412 /* Check the table location and size of the table. */ 413 hdr->hdr_entries = le32toh(buf->hdr_entries); 414 hdr->hdr_entsz = le32toh(buf->hdr_entsz); 415 if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || 416 (hdr->hdr_entsz & 7) != 0) 417 goto fail; 418 hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); 419 if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) 420 goto fail; 421 if (hdr->hdr_lba_table >= hdr->hdr_lba_start && 422 hdr->hdr_lba_table <= hdr->hdr_lba_end) 423 goto fail; 424 lba = hdr->hdr_lba_table + 425 (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) / 426 pp->sectorsize - 1; 427 if (lba >= last) 428 goto fail; 429 if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) 430 goto fail; 431 432 table->state[elt] = GPT_STATE_OK; 433 le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); 434 hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); 435 436 /* save LBA for secondary header */ 437 if (elt == GPT_ELT_PRIHDR) 438 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt; 439 440 g_free(buf); 441 return (hdr); 442 443 fail: 444 if (hdr != NULL) 445 g_free(hdr); 446 g_free(buf); 447 return (NULL); 448 } 449 450 static struct gpt_ent * 451 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, 452 enum gpt_elt elt, struct gpt_hdr *hdr) 453 { 454 struct g_provider *pp; 455 struct gpt_ent *ent, *tbl; 456 char *buf, *p; 457 unsigned int idx, sectors, tblsz, size; 458 int error; 459 460 if (hdr == NULL) 461 return (NULL); 462 463 pp = cp->provider; 464 table->lba[elt] = hdr->hdr_lba_table; 465 466 table->state[elt] = GPT_STATE_MISSING; 467 tblsz = hdr->hdr_entries * hdr->hdr_entsz; 468 sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize; 469 buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO); 470 for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) { 471 size = (sectors - idx > MAXPHYS / pp->sectorsize) ? MAXPHYS: 472 (sectors - idx) * pp->sectorsize; 473 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize, 474 size, &error); 475 if (p == NULL) { 476 g_free(buf); 477 return (NULL); 478 } 479 bcopy(p, buf + idx * pp->sectorsize, size); 480 g_free(p); 481 } 482 table->state[elt] = GPT_STATE_CORRUPT; 483 if (crc32(buf, tblsz) != hdr->hdr_crc_table) { 484 g_free(buf); 485 return (NULL); 486 } 487 488 table->state[elt] = GPT_STATE_OK; 489 tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), 490 M_WAITOK | M_ZERO); 491 492 for (idx = 0, ent = tbl, p = buf; 493 idx < hdr->hdr_entries; 494 idx++, ent++, p += hdr->hdr_entsz) { 495 le_uuid_dec(p, &ent->ent_type); 496 le_uuid_dec(p + 16, &ent->ent_uuid); 497 ent->ent_lba_start = le64dec(p + 32); 498 ent->ent_lba_end = le64dec(p + 40); 499 ent->ent_attr = le64dec(p + 48); 500 /* Keep UTF-16 in little-endian. */ 501 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); 502 } 503 504 g_free(buf); 505 return (tbl); 506 } 507 508 static int 509 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) 510 { 511 512 if (pri == NULL || sec == NULL) 513 return (0); 514 515 if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) 516 return (0); 517 return ((pri->hdr_revision == sec->hdr_revision && 518 pri->hdr_size == sec->hdr_size && 519 pri->hdr_lba_start == sec->hdr_lba_start && 520 pri->hdr_lba_end == sec->hdr_lba_end && 521 pri->hdr_entries == sec->hdr_entries && 522 pri->hdr_entsz == sec->hdr_entsz && 523 pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); 524 } 525 526 static int 527 gpt_parse_type(const char *type, struct uuid *uuid) 528 { 529 struct uuid tmp; 530 const char *alias; 531 int error; 532 struct g_part_uuid_alias *uap; 533 534 if (type[0] == '!') { 535 error = parse_uuid(type + 1, &tmp); 536 if (error) 537 return (error); 538 if (EQUUID(&tmp, &gpt_uuid_unused)) 539 return (EINVAL); 540 *uuid = tmp; 541 return (0); 542 } 543 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 544 alias = g_part_alias_name(uap->alias); 545 if (!strcasecmp(type, alias)) { 546 *uuid = *uap->uuid; 547 return (0); 548 } 549 } 550 return (EINVAL); 551 } 552 553 static int 554 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, 555 struct g_part_parms *gpp) 556 { 557 struct g_part_gpt_entry *entry; 558 int error; 559 560 entry = (struct g_part_gpt_entry *)baseentry; 561 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 562 if (error) 563 return (error); 564 kern_uuidgen(&entry->ent.ent_uuid, 1); 565 entry->ent.ent_lba_start = baseentry->gpe_start; 566 entry->ent.ent_lba_end = baseentry->gpe_end; 567 if (baseentry->gpe_deleted) { 568 entry->ent.ent_attr = 0; 569 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); 570 } 571 if (gpp->gpp_parms & G_PART_PARM_LABEL) 572 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 573 sizeof(entry->ent.ent_name) / 574 sizeof(entry->ent.ent_name[0])); 575 return (0); 576 } 577 578 static int 579 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) 580 { 581 struct g_part_gpt_table *table; 582 size_t codesz; 583 584 codesz = DOSPARTOFF; 585 table = (struct g_part_gpt_table *)basetable; 586 bzero(table->mbr, codesz); 587 codesz = MIN(codesz, gpp->gpp_codesize); 588 if (codesz > 0) 589 bcopy(gpp->gpp_codeptr, table->mbr, codesz); 590 591 /* Mark the PMBR active since some BIOS require it. */ 592 if (!table->bootcamp) 593 table->mbr[DOSPARTOFF] = 0x80; /* status */ 594 return (0); 595 } 596 597 static int 598 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) 599 { 600 struct g_provider *pp; 601 struct g_part_gpt_table *table; 602 quad_t last; 603 size_t tblsz; 604 605 /* We don't nest, which means that our depth should be 0. */ 606 if (basetable->gpt_depth != 0) 607 return (ENXIO); 608 609 table = (struct g_part_gpt_table *)basetable; 610 pp = gpp->gpp_provider; 611 tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) + 612 pp->sectorsize - 1) / pp->sectorsize; 613 if (pp->sectorsize < MBRSIZE || 614 pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * 615 pp->sectorsize) 616 return (ENOSPC); 617 618 last = (pp->mediasize / pp->sectorsize) - 1; 619 620 le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); 621 gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, MIN(last, UINT32_MAX)); 622 623 /* Allocate space for the header */ 624 table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); 625 626 bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 627 table->hdr->hdr_revision = GPT_HDR_REVISION; 628 table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); 629 kern_uuidgen(&table->hdr->hdr_uuid, 1); 630 table->hdr->hdr_entries = basetable->gpt_entries; 631 table->hdr->hdr_entsz = sizeof(struct gpt_ent); 632 633 g_gpt_set_defaults(basetable, pp); 634 return (0); 635 } 636 637 static int 638 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) 639 { 640 struct g_part_gpt_table *table; 641 struct g_provider *pp; 642 643 table = (struct g_part_gpt_table *)basetable; 644 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 645 g_free(table->hdr); 646 table->hdr = NULL; 647 648 /* 649 * Wipe the first 2 sectors to clear the partitioning. Wipe the last 650 * sector only if it has valid secondary header. 651 */ 652 basetable->gpt_smhead |= 3; 653 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 654 table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1) 655 basetable->gpt_smtail |= 1; 656 return (0); 657 } 658 659 static void 660 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 661 struct sbuf *sb, const char *indent) 662 { 663 struct g_part_gpt_entry *entry; 664 665 entry = (struct g_part_gpt_entry *)baseentry; 666 if (indent == NULL) { 667 /* conftxt: libdisk compatibility */ 668 sbuf_printf(sb, " xs GPT xt "); 669 sbuf_printf_uuid(sb, &entry->ent.ent_type); 670 } else if (entry != NULL) { 671 /* confxml: partition entry information */ 672 sbuf_printf(sb, "%s<label>", indent); 673 g_gpt_printf_utf16(sb, entry->ent.ent_name, 674 sizeof(entry->ent.ent_name) >> 1); 675 sbuf_printf(sb, "</label>\n"); 676 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME) 677 sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent); 678 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) { 679 sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n", 680 indent); 681 } 682 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) { 683 sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n", 684 indent); 685 } 686 sbuf_printf(sb, "%s<rawtype>", indent); 687 sbuf_printf_uuid(sb, &entry->ent.ent_type); 688 sbuf_printf(sb, "</rawtype>\n"); 689 sbuf_printf(sb, "%s<rawuuid>", indent); 690 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 691 sbuf_printf(sb, "</rawuuid>\n"); 692 } else { 693 /* confxml: scheme information */ 694 } 695 } 696 697 static int 698 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) 699 { 700 struct g_part_gpt_entry *entry; 701 702 entry = (struct g_part_gpt_entry *)baseentry; 703 return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || 704 EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap)) ? 1 : 0); 705 } 706 707 static int 708 g_part_gpt_modify(struct g_part_table *basetable, 709 struct g_part_entry *baseentry, struct g_part_parms *gpp) 710 { 711 struct g_part_gpt_entry *entry; 712 int error; 713 714 entry = (struct g_part_gpt_entry *)baseentry; 715 if (gpp->gpp_parms & G_PART_PARM_TYPE) { 716 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 717 if (error) 718 return (error); 719 } 720 if (gpp->gpp_parms & G_PART_PARM_LABEL) 721 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 722 sizeof(entry->ent.ent_name) / 723 sizeof(entry->ent.ent_name[0])); 724 return (0); 725 } 726 727 static int 728 g_part_gpt_resize(struct g_part_table *basetable, 729 struct g_part_entry *baseentry, struct g_part_parms *gpp) 730 { 731 struct g_part_gpt_entry *entry; 732 entry = (struct g_part_gpt_entry *)baseentry; 733 734 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; 735 entry->ent.ent_lba_end = baseentry->gpe_end; 736 737 return (0); 738 } 739 740 static const char * 741 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, 742 char *buf, size_t bufsz) 743 { 744 struct g_part_gpt_entry *entry; 745 char c; 746 747 entry = (struct g_part_gpt_entry *)baseentry; 748 c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; 749 snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); 750 return (buf); 751 } 752 753 static int 754 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) 755 { 756 struct g_provider *pp; 757 char *buf; 758 int error, res; 759 760 /* We don't nest, which means that our depth should be 0. */ 761 if (table->gpt_depth != 0) 762 return (ENXIO); 763 764 pp = cp->provider; 765 766 /* 767 * Sanity-check the provider. Since the first sector on the provider 768 * must be a PMBR and a PMBR is 512 bytes large, the sector size 769 * must be at least 512 bytes. Also, since the theoretical minimum 770 * number of sectors needed by GPT is 6, any medium that has less 771 * than 6 sectors is never going to be able to hold a GPT. The 772 * number 6 comes from: 773 * 1 sector for the PMBR 774 * 2 sectors for the GPT headers (each 1 sector) 775 * 2 sectors for the GPT tables (each 1 sector) 776 * 1 sector for an actual partition 777 * It's better to catch this pathological case early than behaving 778 * pathologically later on... 779 */ 780 if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) 781 return (ENOSPC); 782 783 /* Check that there's a MBR. */ 784 buf = g_read_data(cp, 0L, pp->sectorsize, &error); 785 if (buf == NULL) 786 return (error); 787 res = le16dec(buf + DOSMAGICOFFSET); 788 g_free(buf); 789 if (res != DOSMAGIC) 790 return (ENXIO); 791 792 /* Check that there's a primary header. */ 793 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); 794 if (buf == NULL) 795 return (error); 796 res = memcmp(buf, GPT_HDR_SIG, 8); 797 g_free(buf); 798 if (res == 0) 799 return (G_PART_PROBE_PRI_HIGH); 800 801 /* No primary? Check that there's a secondary. */ 802 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 803 &error); 804 if (buf == NULL) 805 return (error); 806 res = memcmp(buf, GPT_HDR_SIG, 8); 807 g_free(buf); 808 return ((res == 0) ? G_PART_PROBE_PRI_HIGH : ENXIO); 809 } 810 811 static int 812 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) 813 { 814 struct gpt_hdr *prihdr, *sechdr; 815 struct gpt_ent *tbl, *pritbl, *sectbl; 816 struct g_provider *pp; 817 struct g_part_gpt_table *table; 818 struct g_part_gpt_entry *entry; 819 u_char *buf; 820 uint64_t last; 821 int error, index; 822 823 table = (struct g_part_gpt_table *)basetable; 824 pp = cp->provider; 825 last = (pp->mediasize / pp->sectorsize) - 1; 826 827 /* Read the PMBR */ 828 buf = g_read_data(cp, 0, pp->sectorsize, &error); 829 if (buf == NULL) 830 return (error); 831 bcopy(buf, table->mbr, MBRSIZE); 832 g_free(buf); 833 834 /* Read the primary header and table. */ 835 prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); 836 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { 837 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); 838 } else { 839 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 840 pritbl = NULL; 841 } 842 843 /* Read the secondary header and table. */ 844 sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); 845 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { 846 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); 847 } else { 848 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 849 sectbl = NULL; 850 } 851 852 /* Fail if we haven't got any good tables at all. */ 853 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && 854 table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 855 printf("GEOM: %s: corrupt or invalid GPT detected.\n", 856 pp->name); 857 printf("GEOM: %s: GPT rejected -- may not be recoverable.\n", 858 pp->name); 859 return (EINVAL); 860 } 861 862 /* 863 * If both headers are good but they disagree with each other, 864 * then invalidate one. We prefer to keep the primary header, 865 * unless the primary table is corrupt. 866 */ 867 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && 868 table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 869 !gpt_matched_hdrs(prihdr, sechdr)) { 870 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { 871 table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; 872 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 873 g_free(sechdr); 874 sechdr = NULL; 875 } else { 876 table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; 877 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 878 g_free(prihdr); 879 prihdr = NULL; 880 } 881 } 882 883 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { 884 printf("GEOM: %s: the primary GPT table is corrupt or " 885 "invalid.\n", pp->name); 886 printf("GEOM: %s: using the secondary instead -- recovery " 887 "strongly advised.\n", pp->name); 888 table->hdr = sechdr; 889 basetable->gpt_corrupt = 1; 890 if (prihdr != NULL) 891 g_free(prihdr); 892 tbl = sectbl; 893 if (pritbl != NULL) 894 g_free(pritbl); 895 } else { 896 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 897 printf("GEOM: %s: the secondary GPT table is corrupt " 898 "or invalid.\n", pp->name); 899 printf("GEOM: %s: using the primary only -- recovery " 900 "suggested.\n", pp->name); 901 basetable->gpt_corrupt = 1; 902 } else if (table->lba[GPT_ELT_SECHDR] != last) { 903 printf( "GEOM: %s: the secondary GPT header is not in " 904 "the last LBA.\n", pp->name); 905 basetable->gpt_corrupt = 1; 906 } 907 table->hdr = prihdr; 908 if (sechdr != NULL) 909 g_free(sechdr); 910 tbl = pritbl; 911 if (sectbl != NULL) 912 g_free(sectbl); 913 } 914 915 basetable->gpt_first = table->hdr->hdr_lba_start; 916 basetable->gpt_last = table->hdr->hdr_lba_end; 917 basetable->gpt_entries = table->hdr->hdr_entries; 918 919 for (index = basetable->gpt_entries - 1; index >= 0; index--) { 920 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) 921 continue; 922 entry = (struct g_part_gpt_entry *)g_part_new_entry( 923 basetable, index + 1, tbl[index].ent_lba_start, 924 tbl[index].ent_lba_end); 925 entry->ent = tbl[index]; 926 } 927 928 g_free(tbl); 929 930 /* 931 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions 932 * if (and only if) any FAT32 or FAT16 partitions have been 933 * created. This happens irrespective of whether Boot Camp is 934 * used/enabled, though it's generally understood to be done 935 * to support legacy Windows under Boot Camp. We refer to this 936 * mirroring simply as Boot Camp. We try to detect Boot Camp 937 * so that we can update the MBR if and when GPT changes have 938 * been made. Note that we do not enable Boot Camp if not 939 * previously enabled because we can't assume that we're on a 940 * Mac alongside Mac OS X. 941 */ 942 table->bootcamp = gpt_is_bootcamp(table, pp->name); 943 944 return (0); 945 } 946 947 static int 948 g_part_gpt_recover(struct g_part_table *basetable) 949 { 950 951 g_gpt_set_defaults(basetable, 952 LIST_FIRST(&basetable->gpt_gp->consumer)->provider); 953 basetable->gpt_corrupt = 0; 954 return (0); 955 } 956 957 static int 958 g_part_gpt_setunset(struct g_part_table *basetable, 959 struct g_part_entry *baseentry, const char *attrib, unsigned int set) 960 { 961 struct g_part_gpt_entry *entry; 962 struct g_part_gpt_table *table; 963 uint64_t attr; 964 int i; 965 966 table = (struct g_part_gpt_table *)basetable; 967 entry = (struct g_part_gpt_entry *)baseentry; 968 969 if (strcasecmp(attrib, "active") == 0) { 970 if (!table->bootcamp || baseentry->gpe_index > NDOSPART) 971 return (EINVAL); 972 for (i = 0; i < NDOSPART; i++) { 973 table->mbr[DOSPARTOFF + i * DOSPARTSIZE] = 974 (i == baseentry->gpe_index - 1) ? 0x80 : 0; 975 } 976 return (0); 977 } 978 979 attr = 0; 980 if (strcasecmp(attrib, "bootme") == 0) { 981 attr |= GPT_ENT_ATTR_BOOTME; 982 } else if (strcasecmp(attrib, "bootonce") == 0) { 983 attr |= GPT_ENT_ATTR_BOOTONCE; 984 if (set) 985 attr |= GPT_ENT_ATTR_BOOTME; 986 } else if (strcasecmp(attrib, "bootfailed") == 0) { 987 /* 988 * It should only be possible to unset BOOTFAILED, but it might 989 * be useful for test purposes to also be able to set it. 990 */ 991 attr |= GPT_ENT_ATTR_BOOTFAILED; 992 } 993 if (attr == 0) 994 return (EINVAL); 995 996 if (set) 997 attr = entry->ent.ent_attr | attr; 998 else 999 attr = entry->ent.ent_attr & ~attr; 1000 if (attr != entry->ent.ent_attr) { 1001 entry->ent.ent_attr = attr; 1002 if (!baseentry->gpe_created) 1003 baseentry->gpe_modified = 1; 1004 } 1005 return (0); 1006 } 1007 1008 static const char * 1009 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 1010 char *buf, size_t bufsz) 1011 { 1012 struct g_part_gpt_entry *entry; 1013 struct uuid *type; 1014 struct g_part_uuid_alias *uap; 1015 1016 entry = (struct g_part_gpt_entry *)baseentry; 1017 type = &entry->ent.ent_type; 1018 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) 1019 if (EQUUID(type, uap->uuid)) 1020 return (g_part_alias_name(uap->alias)); 1021 buf[0] = '!'; 1022 snprintf_uuid(buf + 1, bufsz - 1, type); 1023 1024 return (buf); 1025 } 1026 1027 static int 1028 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) 1029 { 1030 unsigned char *buf, *bp; 1031 struct g_provider *pp; 1032 struct g_part_entry *baseentry; 1033 struct g_part_gpt_entry *entry; 1034 struct g_part_gpt_table *table; 1035 size_t tblsz; 1036 uint32_t crc; 1037 int error, index; 1038 1039 pp = cp->provider; 1040 table = (struct g_part_gpt_table *)basetable; 1041 tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz + 1042 pp->sectorsize - 1) / pp->sectorsize; 1043 1044 /* Reconstruct the MBR from the GPT if under Boot Camp. */ 1045 if (table->bootcamp) 1046 gpt_update_bootcamp(basetable); 1047 1048 /* Write the PMBR */ 1049 buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); 1050 bcopy(table->mbr, buf, MBRSIZE); 1051 error = g_write_data(cp, 0, buf, pp->sectorsize); 1052 g_free(buf); 1053 if (error) 1054 return (error); 1055 1056 /* Allocate space for the header and entries. */ 1057 buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); 1058 1059 memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 1060 le32enc(buf + 8, table->hdr->hdr_revision); 1061 le32enc(buf + 12, table->hdr->hdr_size); 1062 le64enc(buf + 40, table->hdr->hdr_lba_start); 1063 le64enc(buf + 48, table->hdr->hdr_lba_end); 1064 le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); 1065 le32enc(buf + 80, table->hdr->hdr_entries); 1066 le32enc(buf + 84, table->hdr->hdr_entsz); 1067 1068 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1069 if (baseentry->gpe_deleted) 1070 continue; 1071 entry = (struct g_part_gpt_entry *)baseentry; 1072 index = baseentry->gpe_index - 1; 1073 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; 1074 le_uuid_enc(bp, &entry->ent.ent_type); 1075 le_uuid_enc(bp + 16, &entry->ent.ent_uuid); 1076 le64enc(bp + 32, entry->ent.ent_lba_start); 1077 le64enc(bp + 40, entry->ent.ent_lba_end); 1078 le64enc(bp + 48, entry->ent.ent_attr); 1079 memcpy(bp + 56, entry->ent.ent_name, 1080 sizeof(entry->ent.ent_name)); 1081 } 1082 1083 crc = crc32(buf + pp->sectorsize, 1084 table->hdr->hdr_entries * table->hdr->hdr_entsz); 1085 le32enc(buf + 88, crc); 1086 1087 /* Write primary meta-data. */ 1088 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1089 le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ 1090 le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ 1091 le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ 1092 crc = crc32(buf, table->hdr->hdr_size); 1093 le32enc(buf + 16, crc); 1094 1095 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1096 error = g_write_data(cp, 1097 (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize, 1098 buf + (index + 1) * pp->sectorsize, 1099 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1100 (tblsz - index) * pp->sectorsize); 1101 if (error) 1102 goto out; 1103 } 1104 error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, 1105 buf, pp->sectorsize); 1106 if (error) 1107 goto out; 1108 1109 /* Write secondary meta-data. */ 1110 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1111 le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ 1112 le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ 1113 le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ 1114 crc = crc32(buf, table->hdr->hdr_size); 1115 le32enc(buf + 16, crc); 1116 1117 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1118 error = g_write_data(cp, 1119 (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize, 1120 buf + (index + 1) * pp->sectorsize, 1121 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1122 (tblsz - index) * pp->sectorsize); 1123 if (error) 1124 goto out; 1125 } 1126 error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, 1127 buf, pp->sectorsize); 1128 1129 out: 1130 g_free(buf); 1131 return (error); 1132 } 1133 1134 static void 1135 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp) 1136 { 1137 struct g_part_gpt_table *table; 1138 quad_t last; 1139 size_t tblsz; 1140 1141 table = (struct g_part_gpt_table *)basetable; 1142 last = pp->mediasize / pp->sectorsize - 1; 1143 tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) + 1144 pp->sectorsize - 1) / pp->sectorsize; 1145 1146 table->lba[GPT_ELT_PRIHDR] = 1; 1147 table->lba[GPT_ELT_PRITBL] = 2; 1148 table->lba[GPT_ELT_SECHDR] = last; 1149 table->lba[GPT_ELT_SECTBL] = last - tblsz; 1150 table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK; 1151 table->state[GPT_ELT_PRITBL] = GPT_STATE_OK; 1152 table->state[GPT_ELT_SECHDR] = GPT_STATE_OK; 1153 table->state[GPT_ELT_SECTBL] = GPT_STATE_OK; 1154 1155 table->hdr->hdr_lba_start = 2 + tblsz; 1156 table->hdr->hdr_lba_end = last - tblsz - 1; 1157 1158 basetable->gpt_first = table->hdr->hdr_lba_start; 1159 basetable->gpt_last = table->hdr->hdr_lba_end; 1160 } 1161 1162 static void 1163 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) 1164 { 1165 u_int bo; 1166 uint32_t ch; 1167 uint16_t c; 1168 1169 bo = LITTLE_ENDIAN; /* GPT is little-endian */ 1170 while (len > 0 && *str != 0) { 1171 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); 1172 str++, len--; 1173 if ((ch & 0xf800) == 0xd800) { 1174 if (len > 0) { 1175 c = (bo == BIG_ENDIAN) ? be16toh(*str) 1176 : le16toh(*str); 1177 str++, len--; 1178 } else 1179 c = 0xfffd; 1180 if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { 1181 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); 1182 ch += 0x10000; 1183 } else 1184 ch = 0xfffd; 1185 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ 1186 bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; 1187 continue; 1188 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ 1189 continue; 1190 1191 /* Write the Unicode character in UTF-8 */ 1192 if (ch < 0x80) 1193 sbuf_printf(sb, "%c", ch); 1194 else if (ch < 0x800) 1195 sbuf_printf(sb, "%c%c", 0xc0 | (ch >> 6), 1196 0x80 | (ch & 0x3f)); 1197 else if (ch < 0x10000) 1198 sbuf_printf(sb, "%c%c%c", 0xe0 | (ch >> 12), 1199 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1200 else if (ch < 0x200000) 1201 sbuf_printf(sb, "%c%c%c%c", 0xf0 | (ch >> 18), 1202 0x80 | ((ch >> 12) & 0x3f), 1203 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1204 } 1205 } 1206 1207 static void 1208 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) 1209 { 1210 size_t s16idx, s8idx; 1211 uint32_t utfchar; 1212 unsigned int c, utfbytes; 1213 1214 s8idx = s16idx = 0; 1215 utfchar = 0; 1216 utfbytes = 0; 1217 bzero(s16, s16len << 1); 1218 while (s8[s8idx] != 0 && s16idx < s16len) { 1219 c = s8[s8idx++]; 1220 if ((c & 0xc0) != 0x80) { 1221 /* Initial characters. */ 1222 if (utfbytes != 0) { 1223 /* Incomplete encoding of previous char. */ 1224 s16[s16idx++] = htole16(0xfffd); 1225 } 1226 if ((c & 0xf8) == 0xf0) { 1227 utfchar = c & 0x07; 1228 utfbytes = 3; 1229 } else if ((c & 0xf0) == 0xe0) { 1230 utfchar = c & 0x0f; 1231 utfbytes = 2; 1232 } else if ((c & 0xe0) == 0xc0) { 1233 utfchar = c & 0x1f; 1234 utfbytes = 1; 1235 } else { 1236 utfchar = c & 0x7f; 1237 utfbytes = 0; 1238 } 1239 } else { 1240 /* Followup characters. */ 1241 if (utfbytes > 0) { 1242 utfchar = (utfchar << 6) + (c & 0x3f); 1243 utfbytes--; 1244 } else if (utfbytes == 0) 1245 utfbytes = ~0; 1246 } 1247 /* 1248 * Write the complete Unicode character as UTF-16 when we 1249 * have all the UTF-8 charactars collected. 1250 */ 1251 if (utfbytes == 0) { 1252 /* 1253 * If we need to write 2 UTF-16 characters, but 1254 * we only have room for 1, then we truncate the 1255 * string by writing a 0 instead. 1256 */ 1257 if (utfchar >= 0x10000 && s16idx < s16len - 1) { 1258 s16[s16idx++] = 1259 htole16(0xd800 | ((utfchar >> 10) - 0x40)); 1260 s16[s16idx++] = 1261 htole16(0xdc00 | (utfchar & 0x3ff)); 1262 } else 1263 s16[s16idx++] = (utfchar >= 0x10000) ? 0 : 1264 htole16(utfchar); 1265 } 1266 } 1267 /* 1268 * If our input string was truncated, append an invalid encoding 1269 * character to the output string. 1270 */ 1271 if (utfbytes != 0 && s16idx < s16len) 1272 s16[s16idx++] = htole16(0xfffd); 1273 } 1274