1 /*- 2 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/bio.h> 32 #include <sys/diskmbr.h> 33 #include <sys/endian.h> 34 #include <sys/gpt.h> 35 #include <sys/kernel.h> 36 #include <sys/kobj.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/malloc.h> 40 #include <sys/mutex.h> 41 #include <sys/queue.h> 42 #include <sys/sbuf.h> 43 #include <sys/systm.h> 44 #include <sys/sysctl.h> 45 #include <sys/uuid.h> 46 #include <geom/geom.h> 47 #include <geom/geom_int.h> 48 #include <geom/part/g_part.h> 49 50 #include "g_part_if.h" 51 52 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support"); 53 54 CTASSERT(offsetof(struct gpt_hdr, padding) == 92); 55 CTASSERT(sizeof(struct gpt_ent) == 128); 56 57 #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) 58 59 #define MBRSIZE 512 60 61 enum gpt_elt { 62 GPT_ELT_PRIHDR, 63 GPT_ELT_PRITBL, 64 GPT_ELT_SECHDR, 65 GPT_ELT_SECTBL, 66 GPT_ELT_COUNT 67 }; 68 69 enum gpt_state { 70 GPT_STATE_UNKNOWN, /* Not determined. */ 71 GPT_STATE_MISSING, /* No signature found. */ 72 GPT_STATE_CORRUPT, /* Checksum mismatch. */ 73 GPT_STATE_INVALID, /* Nonconformant/invalid. */ 74 GPT_STATE_OK /* Perfectly fine. */ 75 }; 76 77 struct g_part_gpt_table { 78 struct g_part_table base; 79 u_char mbr[MBRSIZE]; 80 struct gpt_hdr *hdr; 81 quad_t lba[GPT_ELT_COUNT]; 82 enum gpt_state state[GPT_ELT_COUNT]; 83 int bootcamp; 84 }; 85 86 struct g_part_gpt_entry { 87 struct g_part_entry base; 88 struct gpt_ent ent; 89 }; 90 91 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); 92 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); 93 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *); 94 95 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, 96 struct g_part_parms *); 97 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); 98 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); 99 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); 100 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, 101 struct sbuf *, const char *); 102 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); 103 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, 104 struct g_part_parms *); 105 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, 106 char *, size_t); 107 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); 108 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); 109 static int g_part_gpt_setunset(struct g_part_table *table, 110 struct g_part_entry *baseentry, const char *attrib, unsigned int set); 111 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, 112 char *, size_t); 113 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); 114 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, 115 struct g_part_parms *); 116 static int g_part_gpt_recover(struct g_part_table *); 117 118 static kobj_method_t g_part_gpt_methods[] = { 119 KOBJMETHOD(g_part_add, g_part_gpt_add), 120 KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), 121 KOBJMETHOD(g_part_create, g_part_gpt_create), 122 KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), 123 KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), 124 KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), 125 KOBJMETHOD(g_part_modify, g_part_gpt_modify), 126 KOBJMETHOD(g_part_resize, g_part_gpt_resize), 127 KOBJMETHOD(g_part_name, g_part_gpt_name), 128 KOBJMETHOD(g_part_probe, g_part_gpt_probe), 129 KOBJMETHOD(g_part_read, g_part_gpt_read), 130 KOBJMETHOD(g_part_recover, g_part_gpt_recover), 131 KOBJMETHOD(g_part_setunset, g_part_gpt_setunset), 132 KOBJMETHOD(g_part_type, g_part_gpt_type), 133 KOBJMETHOD(g_part_write, g_part_gpt_write), 134 { 0, 0 } 135 }; 136 137 static struct g_part_scheme g_part_gpt_scheme = { 138 "GPT", 139 g_part_gpt_methods, 140 sizeof(struct g_part_gpt_table), 141 .gps_entrysz = sizeof(struct g_part_gpt_entry), 142 .gps_minent = 128, 143 .gps_maxent = 4096, 144 .gps_bootcodesz = MBRSIZE, 145 }; 146 G_PART_SCHEME_DECLARE(g_part_gpt); 147 148 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; 149 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; 150 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; 151 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; 152 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; 153 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; 154 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; 155 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT; 156 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; 157 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; 158 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; 159 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS; 160 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; 161 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; 162 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; 163 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; 164 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; 165 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; 166 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; 167 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; 168 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS; 169 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG; 170 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED; 171 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR; 172 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; 173 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; 174 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; 175 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; 176 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; 177 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; 178 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; 179 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; 180 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; 181 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; 182 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; 183 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; 184 static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP; 185 static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1; 186 static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM; 187 static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD; 188 static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY; 189 static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER; 190 static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2; 191 static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32; 192 static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64; 193 static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT; 194 195 static struct g_part_uuid_alias { 196 struct uuid *uuid; 197 int alias; 198 int mbrtype; 199 } gpt_uuid_alias_match[] = { 200 { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab }, 201 { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf }, 202 { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 }, 203 { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 }, 204 { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 }, 205 { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 }, 206 { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 }, 207 { &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 }, 208 { &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee }, 209 { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 }, 210 { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 }, 211 { &gpt_uuid_freebsd_nandfs, G_PART_ALIAS_FREEBSD_NANDFS, 0 }, 212 { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 }, 213 { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 }, 214 { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 }, 215 { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 }, 216 { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b }, 217 { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 }, 218 { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 }, 219 { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 }, 220 { &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 }, 221 { &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 }, 222 { &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 }, 223 { &gpt_uuid_vmvsanhdr, G_PART_ALIAS_VMVSANHDR, 0 }, 224 { &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 }, 225 { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b }, 226 { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 }, 227 { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 }, 228 { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 }, 229 { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 }, 230 { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 }, 231 { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 }, 232 { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 }, 233 { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 }, 234 { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 }, 235 { &gpt_uuid_dfbsd_swap, G_PART_ALIAS_DFBSD_SWAP, 0 }, 236 { &gpt_uuid_dfbsd_ufs1, G_PART_ALIAS_DFBSD_UFS, 0 }, 237 { &gpt_uuid_dfbsd_vinum, G_PART_ALIAS_DFBSD_VINUM, 0 }, 238 { &gpt_uuid_dfbsd_ccd, G_PART_ALIAS_DFBSD_CCD, 0 }, 239 { &gpt_uuid_dfbsd_legacy, G_PART_ALIAS_DFBSD_LEGACY, 0 }, 240 { &gpt_uuid_dfbsd_hammer, G_PART_ALIAS_DFBSD_HAMMER, 0 }, 241 { &gpt_uuid_dfbsd_hammer2, G_PART_ALIAS_DFBSD_HAMMER2, 0 }, 242 { &gpt_uuid_dfbsd_label32, G_PART_ALIAS_DFBSD, 0xa5 }, 243 { &gpt_uuid_dfbsd_label64, G_PART_ALIAS_DFBSD64, 0xa5 }, 244 { &gpt_uuid_prep_boot, G_PART_ALIAS_PREP_BOOT, 0x41 }, 245 { NULL, 0, 0 } 246 }; 247 248 static int 249 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start, 250 quad_t end) 251 { 252 253 if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX) 254 return (EINVAL); 255 256 mbr += DOSPARTOFF + idx * DOSPARTSIZE; 257 mbr[0] = 0; 258 if (start == 1) { 259 /* 260 * Treat the PMBR partition specially to maximize 261 * interoperability with BIOSes. 262 */ 263 mbr[1] = mbr[3] = 0; 264 mbr[2] = 2; 265 } else 266 mbr[1] = mbr[2] = mbr[3] = 0xff; 267 mbr[4] = typ; 268 mbr[5] = mbr[6] = mbr[7] = 0xff; 269 le32enc(mbr + 8, (uint32_t)start); 270 le32enc(mbr + 12, (uint32_t)(end - start + 1)); 271 return (0); 272 } 273 274 static int 275 gpt_map_type(struct uuid *t) 276 { 277 struct g_part_uuid_alias *uap; 278 279 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 280 if (EQUUID(t, uap->uuid)) 281 return (uap->mbrtype); 282 } 283 return (0); 284 } 285 286 static void 287 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp) 288 { 289 290 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 291 gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, 292 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 293 le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); 294 } 295 296 /* 297 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the 298 * whole disk anymore. Rather, it covers the GPT table and the EFI 299 * system partition only. This way the HFS+ partition and any FAT 300 * partitions can be added to the MBR without creating an overlap. 301 */ 302 static int 303 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname) 304 { 305 uint8_t *p; 306 307 p = table->mbr + DOSPARTOFF; 308 if (p[4] != 0xee || le32dec(p + 8) != 1) 309 return (0); 310 311 p += DOSPARTSIZE; 312 if (p[4] != 0xaf) 313 return (0); 314 315 printf("GEOM: %s: enabling Boot Camp\n", provname); 316 return (1); 317 } 318 319 static void 320 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp) 321 { 322 struct g_part_entry *baseentry; 323 struct g_part_gpt_entry *entry; 324 struct g_part_gpt_table *table; 325 int bootable, error, index, slices, typ; 326 327 table = (struct g_part_gpt_table *)basetable; 328 329 bootable = -1; 330 for (index = 0; index < NDOSPART; index++) { 331 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index]) 332 bootable = index; 333 } 334 335 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 336 slices = 0; 337 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 338 if (baseentry->gpe_deleted) 339 continue; 340 index = baseentry->gpe_index - 1; 341 if (index >= NDOSPART) 342 continue; 343 344 entry = (struct g_part_gpt_entry *)baseentry; 345 346 switch (index) { 347 case 0: /* This must be the EFI system partition. */ 348 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi)) 349 goto disable; 350 error = gpt_write_mbr_entry(table->mbr, index, 0xee, 351 1ull, entry->ent.ent_lba_end); 352 break; 353 case 1: /* This must be the HFS+ partition. */ 354 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs)) 355 goto disable; 356 error = gpt_write_mbr_entry(table->mbr, index, 0xaf, 357 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 358 break; 359 default: 360 typ = gpt_map_type(&entry->ent.ent_type); 361 error = gpt_write_mbr_entry(table->mbr, index, typ, 362 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 363 break; 364 } 365 if (error) 366 continue; 367 368 if (index == bootable) 369 table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80; 370 slices |= 1 << index; 371 } 372 if ((slices & 3) == 3) 373 return; 374 375 disable: 376 table->bootcamp = 0; 377 gpt_create_pmbr(table, pp); 378 } 379 380 static struct gpt_hdr * 381 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, 382 enum gpt_elt elt) 383 { 384 struct gpt_hdr *buf, *hdr; 385 struct g_provider *pp; 386 quad_t lba, last; 387 int error; 388 uint32_t crc, sz; 389 390 pp = cp->provider; 391 last = (pp->mediasize / pp->sectorsize) - 1; 392 table->state[elt] = GPT_STATE_MISSING; 393 /* 394 * If the primary header is valid look for secondary 395 * header in AlternateLBA, otherwise in the last medium's LBA. 396 */ 397 if (elt == GPT_ELT_SECHDR) { 398 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK) 399 table->lba[elt] = last; 400 } else 401 table->lba[elt] = 1; 402 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, 403 &error); 404 if (buf == NULL) 405 return (NULL); 406 hdr = NULL; 407 if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) 408 goto fail; 409 410 table->state[elt] = GPT_STATE_CORRUPT; 411 sz = le32toh(buf->hdr_size); 412 if (sz < 92 || sz > pp->sectorsize) 413 goto fail; 414 415 hdr = g_malloc(sz, M_WAITOK | M_ZERO); 416 bcopy(buf, hdr, sz); 417 hdr->hdr_size = sz; 418 419 crc = le32toh(buf->hdr_crc_self); 420 buf->hdr_crc_self = 0; 421 if (crc32(buf, sz) != crc) 422 goto fail; 423 hdr->hdr_crc_self = crc; 424 425 table->state[elt] = GPT_STATE_INVALID; 426 hdr->hdr_revision = le32toh(buf->hdr_revision); 427 if (hdr->hdr_revision < GPT_HDR_REVISION) 428 goto fail; 429 hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); 430 if (hdr->hdr_lba_self != table->lba[elt]) 431 goto fail; 432 hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); 433 if (hdr->hdr_lba_alt == hdr->hdr_lba_self || 434 hdr->hdr_lba_alt > last) 435 goto fail; 436 437 /* Check the managed area. */ 438 hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); 439 if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) 440 goto fail; 441 hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); 442 if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) 443 goto fail; 444 445 /* Check the table location and size of the table. */ 446 hdr->hdr_entries = le32toh(buf->hdr_entries); 447 hdr->hdr_entsz = le32toh(buf->hdr_entsz); 448 if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || 449 (hdr->hdr_entsz & 7) != 0) 450 goto fail; 451 hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); 452 if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) 453 goto fail; 454 if (hdr->hdr_lba_table >= hdr->hdr_lba_start && 455 hdr->hdr_lba_table <= hdr->hdr_lba_end) 456 goto fail; 457 lba = hdr->hdr_lba_table + 458 (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) / 459 pp->sectorsize - 1; 460 if (lba >= last) 461 goto fail; 462 if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) 463 goto fail; 464 465 table->state[elt] = GPT_STATE_OK; 466 le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); 467 hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); 468 469 /* save LBA for secondary header */ 470 if (elt == GPT_ELT_PRIHDR) 471 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt; 472 473 g_free(buf); 474 return (hdr); 475 476 fail: 477 if (hdr != NULL) 478 g_free(hdr); 479 g_free(buf); 480 return (NULL); 481 } 482 483 static struct gpt_ent * 484 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, 485 enum gpt_elt elt, struct gpt_hdr *hdr) 486 { 487 struct g_provider *pp; 488 struct gpt_ent *ent, *tbl; 489 char *buf, *p; 490 unsigned int idx, sectors, tblsz, size; 491 int error; 492 493 if (hdr == NULL) 494 return (NULL); 495 496 pp = cp->provider; 497 table->lba[elt] = hdr->hdr_lba_table; 498 499 table->state[elt] = GPT_STATE_MISSING; 500 tblsz = hdr->hdr_entries * hdr->hdr_entsz; 501 sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize; 502 buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO); 503 for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) { 504 size = (sectors - idx > MAXPHYS / pp->sectorsize) ? MAXPHYS: 505 (sectors - idx) * pp->sectorsize; 506 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize, 507 size, &error); 508 if (p == NULL) { 509 g_free(buf); 510 return (NULL); 511 } 512 bcopy(p, buf + idx * pp->sectorsize, size); 513 g_free(p); 514 } 515 table->state[elt] = GPT_STATE_CORRUPT; 516 if (crc32(buf, tblsz) != hdr->hdr_crc_table) { 517 g_free(buf); 518 return (NULL); 519 } 520 521 table->state[elt] = GPT_STATE_OK; 522 tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), 523 M_WAITOK | M_ZERO); 524 525 for (idx = 0, ent = tbl, p = buf; 526 idx < hdr->hdr_entries; 527 idx++, ent++, p += hdr->hdr_entsz) { 528 le_uuid_dec(p, &ent->ent_type); 529 le_uuid_dec(p + 16, &ent->ent_uuid); 530 ent->ent_lba_start = le64dec(p + 32); 531 ent->ent_lba_end = le64dec(p + 40); 532 ent->ent_attr = le64dec(p + 48); 533 /* Keep UTF-16 in little-endian. */ 534 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); 535 } 536 537 g_free(buf); 538 return (tbl); 539 } 540 541 static int 542 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) 543 { 544 545 if (pri == NULL || sec == NULL) 546 return (0); 547 548 if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) 549 return (0); 550 return ((pri->hdr_revision == sec->hdr_revision && 551 pri->hdr_size == sec->hdr_size && 552 pri->hdr_lba_start == sec->hdr_lba_start && 553 pri->hdr_lba_end == sec->hdr_lba_end && 554 pri->hdr_entries == sec->hdr_entries && 555 pri->hdr_entsz == sec->hdr_entsz && 556 pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); 557 } 558 559 static int 560 gpt_parse_type(const char *type, struct uuid *uuid) 561 { 562 struct uuid tmp; 563 const char *alias; 564 int error; 565 struct g_part_uuid_alias *uap; 566 567 if (type[0] == '!') { 568 error = parse_uuid(type + 1, &tmp); 569 if (error) 570 return (error); 571 if (EQUUID(&tmp, &gpt_uuid_unused)) 572 return (EINVAL); 573 *uuid = tmp; 574 return (0); 575 } 576 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 577 alias = g_part_alias_name(uap->alias); 578 if (!strcasecmp(type, alias)) { 579 *uuid = *uap->uuid; 580 return (0); 581 } 582 } 583 return (EINVAL); 584 } 585 586 static int 587 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, 588 struct g_part_parms *gpp) 589 { 590 struct g_part_gpt_entry *entry; 591 int error; 592 593 entry = (struct g_part_gpt_entry *)baseentry; 594 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 595 if (error) 596 return (error); 597 kern_uuidgen(&entry->ent.ent_uuid, 1); 598 entry->ent.ent_lba_start = baseentry->gpe_start; 599 entry->ent.ent_lba_end = baseentry->gpe_end; 600 if (baseentry->gpe_deleted) { 601 entry->ent.ent_attr = 0; 602 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); 603 } 604 if (gpp->gpp_parms & G_PART_PARM_LABEL) 605 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 606 sizeof(entry->ent.ent_name) / 607 sizeof(entry->ent.ent_name[0])); 608 return (0); 609 } 610 611 static int 612 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) 613 { 614 struct g_part_gpt_table *table; 615 size_t codesz; 616 617 codesz = DOSPARTOFF; 618 table = (struct g_part_gpt_table *)basetable; 619 bzero(table->mbr, codesz); 620 codesz = MIN(codesz, gpp->gpp_codesize); 621 if (codesz > 0) 622 bcopy(gpp->gpp_codeptr, table->mbr, codesz); 623 return (0); 624 } 625 626 static int 627 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) 628 { 629 struct g_provider *pp; 630 struct g_part_gpt_table *table; 631 size_t tblsz; 632 633 /* We don't nest, which means that our depth should be 0. */ 634 if (basetable->gpt_depth != 0) 635 return (ENXIO); 636 637 table = (struct g_part_gpt_table *)basetable; 638 pp = gpp->gpp_provider; 639 tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) + 640 pp->sectorsize - 1) / pp->sectorsize; 641 if (pp->sectorsize < MBRSIZE || 642 pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * 643 pp->sectorsize) 644 return (ENOSPC); 645 646 gpt_create_pmbr(table, pp); 647 648 /* Allocate space for the header */ 649 table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); 650 651 bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 652 table->hdr->hdr_revision = GPT_HDR_REVISION; 653 table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); 654 kern_uuidgen(&table->hdr->hdr_uuid, 1); 655 table->hdr->hdr_entries = basetable->gpt_entries; 656 table->hdr->hdr_entsz = sizeof(struct gpt_ent); 657 658 g_gpt_set_defaults(basetable, pp); 659 return (0); 660 } 661 662 static int 663 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) 664 { 665 struct g_part_gpt_table *table; 666 struct g_provider *pp; 667 668 table = (struct g_part_gpt_table *)basetable; 669 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 670 g_free(table->hdr); 671 table->hdr = NULL; 672 673 /* 674 * Wipe the first 2 sectors to clear the partitioning. Wipe the last 675 * sector only if it has valid secondary header. 676 */ 677 basetable->gpt_smhead |= 3; 678 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 679 table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1) 680 basetable->gpt_smtail |= 1; 681 return (0); 682 } 683 684 static void 685 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 686 struct sbuf *sb, const char *indent) 687 { 688 struct g_part_gpt_entry *entry; 689 690 entry = (struct g_part_gpt_entry *)baseentry; 691 if (indent == NULL) { 692 /* conftxt: libdisk compatibility */ 693 sbuf_printf(sb, " xs GPT xt "); 694 sbuf_printf_uuid(sb, &entry->ent.ent_type); 695 } else if (entry != NULL) { 696 /* confxml: partition entry information */ 697 sbuf_printf(sb, "%s<label>", indent); 698 g_gpt_printf_utf16(sb, entry->ent.ent_name, 699 sizeof(entry->ent.ent_name) >> 1); 700 sbuf_printf(sb, "</label>\n"); 701 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME) 702 sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent); 703 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) { 704 sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n", 705 indent); 706 } 707 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) { 708 sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n", 709 indent); 710 } 711 sbuf_printf(sb, "%s<rawtype>", indent); 712 sbuf_printf_uuid(sb, &entry->ent.ent_type); 713 sbuf_printf(sb, "</rawtype>\n"); 714 sbuf_printf(sb, "%s<rawuuid>", indent); 715 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 716 sbuf_printf(sb, "</rawuuid>\n"); 717 } else { 718 /* confxml: scheme information */ 719 } 720 } 721 722 static int 723 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) 724 { 725 struct g_part_gpt_entry *entry; 726 727 entry = (struct g_part_gpt_entry *)baseentry; 728 return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || 729 EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) || 730 EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0); 731 } 732 733 static int 734 g_part_gpt_modify(struct g_part_table *basetable, 735 struct g_part_entry *baseentry, struct g_part_parms *gpp) 736 { 737 struct g_part_gpt_entry *entry; 738 int error; 739 740 entry = (struct g_part_gpt_entry *)baseentry; 741 if (gpp->gpp_parms & G_PART_PARM_TYPE) { 742 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 743 if (error) 744 return (error); 745 } 746 if (gpp->gpp_parms & G_PART_PARM_LABEL) 747 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 748 sizeof(entry->ent.ent_name) / 749 sizeof(entry->ent.ent_name[0])); 750 return (0); 751 } 752 753 static int 754 g_part_gpt_resize(struct g_part_table *basetable, 755 struct g_part_entry *baseentry, struct g_part_parms *gpp) 756 { 757 struct g_part_gpt_entry *entry; 758 759 if (baseentry == NULL) 760 return (EOPNOTSUPP); 761 762 entry = (struct g_part_gpt_entry *)baseentry; 763 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; 764 entry->ent.ent_lba_end = baseentry->gpe_end; 765 766 return (0); 767 } 768 769 static const char * 770 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, 771 char *buf, size_t bufsz) 772 { 773 struct g_part_gpt_entry *entry; 774 char c; 775 776 entry = (struct g_part_gpt_entry *)baseentry; 777 c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; 778 snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); 779 return (buf); 780 } 781 782 static int 783 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) 784 { 785 struct g_provider *pp; 786 u_char *buf; 787 int error, index, pri, res; 788 789 /* We don't nest, which means that our depth should be 0. */ 790 if (table->gpt_depth != 0) 791 return (ENXIO); 792 793 pp = cp->provider; 794 795 /* 796 * Sanity-check the provider. Since the first sector on the provider 797 * must be a PMBR and a PMBR is 512 bytes large, the sector size 798 * must be at least 512 bytes. Also, since the theoretical minimum 799 * number of sectors needed by GPT is 6, any medium that has less 800 * than 6 sectors is never going to be able to hold a GPT. The 801 * number 6 comes from: 802 * 1 sector for the PMBR 803 * 2 sectors for the GPT headers (each 1 sector) 804 * 2 sectors for the GPT tables (each 1 sector) 805 * 1 sector for an actual partition 806 * It's better to catch this pathological case early than behaving 807 * pathologically later on... 808 */ 809 if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) 810 return (ENOSPC); 811 812 /* 813 * Check that there's a MBR or a PMBR. If it's a PMBR, we return 814 * as the highest priority on a match, otherwise we assume some 815 * GPT-unaware tool has destroyed the GPT by recreating a MBR and 816 * we really want the MBR scheme to take precedence. 817 */ 818 buf = g_read_data(cp, 0L, pp->sectorsize, &error); 819 if (buf == NULL) 820 return (error); 821 res = le16dec(buf + DOSMAGICOFFSET); 822 pri = G_PART_PROBE_PRI_LOW; 823 for (index = 0; index < NDOSPART; index++) { 824 if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee) 825 pri = G_PART_PROBE_PRI_HIGH; 826 } 827 g_free(buf); 828 if (res != DOSMAGIC) 829 return (ENXIO); 830 831 /* Check that there's a primary header. */ 832 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); 833 if (buf == NULL) 834 return (error); 835 res = memcmp(buf, GPT_HDR_SIG, 8); 836 g_free(buf); 837 if (res == 0) 838 return (pri); 839 840 /* No primary? Check that there's a secondary. */ 841 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 842 &error); 843 if (buf == NULL) 844 return (error); 845 res = memcmp(buf, GPT_HDR_SIG, 8); 846 g_free(buf); 847 return ((res == 0) ? pri : ENXIO); 848 } 849 850 static int 851 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) 852 { 853 struct gpt_hdr *prihdr, *sechdr; 854 struct gpt_ent *tbl, *pritbl, *sectbl; 855 struct g_provider *pp; 856 struct g_part_gpt_table *table; 857 struct g_part_gpt_entry *entry; 858 u_char *buf; 859 uint64_t last; 860 int error, index; 861 862 table = (struct g_part_gpt_table *)basetable; 863 pp = cp->provider; 864 last = (pp->mediasize / pp->sectorsize) - 1; 865 866 /* Read the PMBR */ 867 buf = g_read_data(cp, 0, pp->sectorsize, &error); 868 if (buf == NULL) 869 return (error); 870 bcopy(buf, table->mbr, MBRSIZE); 871 g_free(buf); 872 873 /* Read the primary header and table. */ 874 prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); 875 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { 876 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); 877 } else { 878 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 879 pritbl = NULL; 880 } 881 882 /* Read the secondary header and table. */ 883 sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); 884 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { 885 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); 886 } else { 887 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 888 sectbl = NULL; 889 } 890 891 /* Fail if we haven't got any good tables at all. */ 892 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && 893 table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 894 printf("GEOM: %s: corrupt or invalid GPT detected.\n", 895 pp->name); 896 printf("GEOM: %s: GPT rejected -- may not be recoverable.\n", 897 pp->name); 898 return (EINVAL); 899 } 900 901 /* 902 * If both headers are good but they disagree with each other, 903 * then invalidate one. We prefer to keep the primary header, 904 * unless the primary table is corrupt. 905 */ 906 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && 907 table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 908 !gpt_matched_hdrs(prihdr, sechdr)) { 909 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { 910 table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; 911 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 912 g_free(sechdr); 913 sechdr = NULL; 914 } else { 915 table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; 916 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 917 g_free(prihdr); 918 prihdr = NULL; 919 } 920 } 921 922 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { 923 printf("GEOM: %s: the primary GPT table is corrupt or " 924 "invalid.\n", pp->name); 925 printf("GEOM: %s: using the secondary instead -- recovery " 926 "strongly advised.\n", pp->name); 927 table->hdr = sechdr; 928 basetable->gpt_corrupt = 1; 929 if (prihdr != NULL) 930 g_free(prihdr); 931 tbl = sectbl; 932 if (pritbl != NULL) 933 g_free(pritbl); 934 } else { 935 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 936 printf("GEOM: %s: the secondary GPT table is corrupt " 937 "or invalid.\n", pp->name); 938 printf("GEOM: %s: using the primary only -- recovery " 939 "suggested.\n", pp->name); 940 basetable->gpt_corrupt = 1; 941 } else if (table->lba[GPT_ELT_SECHDR] != last) { 942 printf( "GEOM: %s: the secondary GPT header is not in " 943 "the last LBA.\n", pp->name); 944 basetable->gpt_corrupt = 1; 945 } 946 table->hdr = prihdr; 947 if (sechdr != NULL) 948 g_free(sechdr); 949 tbl = pritbl; 950 if (sectbl != NULL) 951 g_free(sectbl); 952 } 953 954 basetable->gpt_first = table->hdr->hdr_lba_start; 955 basetable->gpt_last = table->hdr->hdr_lba_end; 956 basetable->gpt_entries = (table->hdr->hdr_lba_start - 2) * 957 pp->sectorsize / table->hdr->hdr_entsz; 958 959 for (index = table->hdr->hdr_entries - 1; index >= 0; index--) { 960 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) 961 continue; 962 entry = (struct g_part_gpt_entry *)g_part_new_entry( 963 basetable, index + 1, tbl[index].ent_lba_start, 964 tbl[index].ent_lba_end); 965 entry->ent = tbl[index]; 966 } 967 968 g_free(tbl); 969 970 /* 971 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions 972 * if (and only if) any FAT32 or FAT16 partitions have been 973 * created. This happens irrespective of whether Boot Camp is 974 * used/enabled, though it's generally understood to be done 975 * to support legacy Windows under Boot Camp. We refer to this 976 * mirroring simply as Boot Camp. We try to detect Boot Camp 977 * so that we can update the MBR if and when GPT changes have 978 * been made. Note that we do not enable Boot Camp if not 979 * previously enabled because we can't assume that we're on a 980 * Mac alongside Mac OS X. 981 */ 982 table->bootcamp = gpt_is_bootcamp(table, pp->name); 983 984 return (0); 985 } 986 987 static int 988 g_part_gpt_recover(struct g_part_table *basetable) 989 { 990 struct g_part_gpt_table *table; 991 struct g_provider *pp; 992 993 table = (struct g_part_gpt_table *)basetable; 994 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 995 gpt_create_pmbr(table, pp); 996 g_gpt_set_defaults(basetable, pp); 997 basetable->gpt_corrupt = 0; 998 return (0); 999 } 1000 1001 static int 1002 g_part_gpt_setunset(struct g_part_table *basetable, 1003 struct g_part_entry *baseentry, const char *attrib, unsigned int set) 1004 { 1005 struct g_part_gpt_entry *entry; 1006 struct g_part_gpt_table *table; 1007 uint8_t *p; 1008 uint64_t attr; 1009 int i; 1010 1011 table = (struct g_part_gpt_table *)basetable; 1012 entry = (struct g_part_gpt_entry *)baseentry; 1013 1014 if (strcasecmp(attrib, "active") == 0) { 1015 if (table->bootcamp) { 1016 /* The active flag must be set on a valid entry. */ 1017 if (entry == NULL) 1018 return (ENXIO); 1019 if (baseentry->gpe_index > NDOSPART) 1020 return (EINVAL); 1021 for (i = 0; i < NDOSPART; i++) { 1022 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1023 p[0] = (i == baseentry->gpe_index - 1) 1024 ? ((set) ? 0x80 : 0) : 0; 1025 } 1026 } else { 1027 /* The PMBR is marked as active without an entry. */ 1028 if (entry != NULL) 1029 return (ENXIO); 1030 for (i = 0; i < NDOSPART; i++) { 1031 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1032 p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0; 1033 } 1034 } 1035 return (0); 1036 } 1037 1038 if (entry == NULL) 1039 return (ENODEV); 1040 1041 attr = 0; 1042 if (strcasecmp(attrib, "bootme") == 0) { 1043 attr |= GPT_ENT_ATTR_BOOTME; 1044 } else if (strcasecmp(attrib, "bootonce") == 0) { 1045 attr |= GPT_ENT_ATTR_BOOTONCE; 1046 if (set) 1047 attr |= GPT_ENT_ATTR_BOOTME; 1048 } else if (strcasecmp(attrib, "bootfailed") == 0) { 1049 /* 1050 * It should only be possible to unset BOOTFAILED, but it might 1051 * be useful for test purposes to also be able to set it. 1052 */ 1053 attr |= GPT_ENT_ATTR_BOOTFAILED; 1054 } 1055 if (attr == 0) 1056 return (EINVAL); 1057 1058 if (set) 1059 attr = entry->ent.ent_attr | attr; 1060 else 1061 attr = entry->ent.ent_attr & ~attr; 1062 if (attr != entry->ent.ent_attr) { 1063 entry->ent.ent_attr = attr; 1064 if (!baseentry->gpe_created) 1065 baseentry->gpe_modified = 1; 1066 } 1067 return (0); 1068 } 1069 1070 static const char * 1071 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 1072 char *buf, size_t bufsz) 1073 { 1074 struct g_part_gpt_entry *entry; 1075 struct uuid *type; 1076 struct g_part_uuid_alias *uap; 1077 1078 entry = (struct g_part_gpt_entry *)baseentry; 1079 type = &entry->ent.ent_type; 1080 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) 1081 if (EQUUID(type, uap->uuid)) 1082 return (g_part_alias_name(uap->alias)); 1083 buf[0] = '!'; 1084 snprintf_uuid(buf + 1, bufsz - 1, type); 1085 1086 return (buf); 1087 } 1088 1089 static int 1090 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) 1091 { 1092 unsigned char *buf, *bp; 1093 struct g_provider *pp; 1094 struct g_part_entry *baseentry; 1095 struct g_part_gpt_entry *entry; 1096 struct g_part_gpt_table *table; 1097 size_t tblsz; 1098 uint32_t crc; 1099 int error, index; 1100 1101 pp = cp->provider; 1102 table = (struct g_part_gpt_table *)basetable; 1103 tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz + 1104 pp->sectorsize - 1) / pp->sectorsize; 1105 1106 /* Reconstruct the MBR from the GPT if under Boot Camp. */ 1107 if (table->bootcamp) 1108 gpt_update_bootcamp(basetable, pp); 1109 1110 /* Write the PMBR */ 1111 buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); 1112 bcopy(table->mbr, buf, MBRSIZE); 1113 error = g_write_data(cp, 0, buf, pp->sectorsize); 1114 g_free(buf); 1115 if (error) 1116 return (error); 1117 1118 /* Allocate space for the header and entries. */ 1119 buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); 1120 1121 memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 1122 le32enc(buf + 8, table->hdr->hdr_revision); 1123 le32enc(buf + 12, table->hdr->hdr_size); 1124 le64enc(buf + 40, table->hdr->hdr_lba_start); 1125 le64enc(buf + 48, table->hdr->hdr_lba_end); 1126 le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); 1127 le32enc(buf + 80, table->hdr->hdr_entries); 1128 le32enc(buf + 84, table->hdr->hdr_entsz); 1129 1130 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1131 if (baseentry->gpe_deleted) 1132 continue; 1133 entry = (struct g_part_gpt_entry *)baseentry; 1134 index = baseentry->gpe_index - 1; 1135 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; 1136 le_uuid_enc(bp, &entry->ent.ent_type); 1137 le_uuid_enc(bp + 16, &entry->ent.ent_uuid); 1138 le64enc(bp + 32, entry->ent.ent_lba_start); 1139 le64enc(bp + 40, entry->ent.ent_lba_end); 1140 le64enc(bp + 48, entry->ent.ent_attr); 1141 memcpy(bp + 56, entry->ent.ent_name, 1142 sizeof(entry->ent.ent_name)); 1143 } 1144 1145 crc = crc32(buf + pp->sectorsize, 1146 table->hdr->hdr_entries * table->hdr->hdr_entsz); 1147 le32enc(buf + 88, crc); 1148 1149 /* Write primary meta-data. */ 1150 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1151 le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ 1152 le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ 1153 le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ 1154 crc = crc32(buf, table->hdr->hdr_size); 1155 le32enc(buf + 16, crc); 1156 1157 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1158 error = g_write_data(cp, 1159 (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize, 1160 buf + (index + 1) * pp->sectorsize, 1161 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1162 (tblsz - index) * pp->sectorsize); 1163 if (error) 1164 goto out; 1165 } 1166 error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, 1167 buf, pp->sectorsize); 1168 if (error) 1169 goto out; 1170 1171 /* Write secondary meta-data. */ 1172 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1173 le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ 1174 le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ 1175 le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ 1176 crc = crc32(buf, table->hdr->hdr_size); 1177 le32enc(buf + 16, crc); 1178 1179 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1180 error = g_write_data(cp, 1181 (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize, 1182 buf + (index + 1) * pp->sectorsize, 1183 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1184 (tblsz - index) * pp->sectorsize); 1185 if (error) 1186 goto out; 1187 } 1188 error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, 1189 buf, pp->sectorsize); 1190 1191 out: 1192 g_free(buf); 1193 return (error); 1194 } 1195 1196 static void 1197 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp) 1198 { 1199 struct g_part_entry *baseentry; 1200 struct g_part_gpt_entry *entry; 1201 struct g_part_gpt_table *table; 1202 quad_t start, end, min, max; 1203 quad_t lba, last; 1204 size_t spb, tblsz; 1205 1206 table = (struct g_part_gpt_table *)basetable; 1207 last = pp->mediasize / pp->sectorsize - 1; 1208 tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) + 1209 pp->sectorsize - 1) / pp->sectorsize; 1210 1211 table->lba[GPT_ELT_PRIHDR] = 1; 1212 table->lba[GPT_ELT_PRITBL] = 2; 1213 table->lba[GPT_ELT_SECHDR] = last; 1214 table->lba[GPT_ELT_SECTBL] = last - tblsz; 1215 table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK; 1216 table->state[GPT_ELT_PRITBL] = GPT_STATE_OK; 1217 table->state[GPT_ELT_SECHDR] = GPT_STATE_OK; 1218 table->state[GPT_ELT_SECTBL] = GPT_STATE_OK; 1219 1220 max = start = 2 + tblsz; 1221 min = end = last - tblsz - 1; 1222 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1223 if (baseentry->gpe_deleted) 1224 continue; 1225 entry = (struct g_part_gpt_entry *)baseentry; 1226 if (entry->ent.ent_lba_start < min) 1227 min = entry->ent.ent_lba_start; 1228 if (entry->ent.ent_lba_end > max) 1229 max = entry->ent.ent_lba_end; 1230 } 1231 spb = 4096 / pp->sectorsize; 1232 if (spb > 1) { 1233 lba = start + ((start % spb) ? spb - start % spb : 0); 1234 if (lba <= min) 1235 start = lba; 1236 lba = end - (end + 1) % spb; 1237 if (max <= lba) 1238 end = lba; 1239 } 1240 table->hdr->hdr_lba_start = start; 1241 table->hdr->hdr_lba_end = end; 1242 1243 basetable->gpt_first = start; 1244 basetable->gpt_last = end; 1245 } 1246 1247 static void 1248 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) 1249 { 1250 u_int bo; 1251 uint32_t ch; 1252 uint16_t c; 1253 1254 bo = LITTLE_ENDIAN; /* GPT is little-endian */ 1255 while (len > 0 && *str != 0) { 1256 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); 1257 str++, len--; 1258 if ((ch & 0xf800) == 0xd800) { 1259 if (len > 0) { 1260 c = (bo == BIG_ENDIAN) ? be16toh(*str) 1261 : le16toh(*str); 1262 str++, len--; 1263 } else 1264 c = 0xfffd; 1265 if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { 1266 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); 1267 ch += 0x10000; 1268 } else 1269 ch = 0xfffd; 1270 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ 1271 bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; 1272 continue; 1273 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ 1274 continue; 1275 1276 /* Write the Unicode character in UTF-8 */ 1277 if (ch < 0x80) 1278 g_conf_printf_escaped(sb, "%c", ch); 1279 else if (ch < 0x800) 1280 g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6), 1281 0x80 | (ch & 0x3f)); 1282 else if (ch < 0x10000) 1283 g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12), 1284 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1285 else if (ch < 0x200000) 1286 g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 | 1287 (ch >> 18), 0x80 | ((ch >> 12) & 0x3f), 1288 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1289 } 1290 } 1291 1292 static void 1293 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) 1294 { 1295 size_t s16idx, s8idx; 1296 uint32_t utfchar; 1297 unsigned int c, utfbytes; 1298 1299 s8idx = s16idx = 0; 1300 utfchar = 0; 1301 utfbytes = 0; 1302 bzero(s16, s16len << 1); 1303 while (s8[s8idx] != 0 && s16idx < s16len) { 1304 c = s8[s8idx++]; 1305 if ((c & 0xc0) != 0x80) { 1306 /* Initial characters. */ 1307 if (utfbytes != 0) { 1308 /* Incomplete encoding of previous char. */ 1309 s16[s16idx++] = htole16(0xfffd); 1310 } 1311 if ((c & 0xf8) == 0xf0) { 1312 utfchar = c & 0x07; 1313 utfbytes = 3; 1314 } else if ((c & 0xf0) == 0xe0) { 1315 utfchar = c & 0x0f; 1316 utfbytes = 2; 1317 } else if ((c & 0xe0) == 0xc0) { 1318 utfchar = c & 0x1f; 1319 utfbytes = 1; 1320 } else { 1321 utfchar = c & 0x7f; 1322 utfbytes = 0; 1323 } 1324 } else { 1325 /* Followup characters. */ 1326 if (utfbytes > 0) { 1327 utfchar = (utfchar << 6) + (c & 0x3f); 1328 utfbytes--; 1329 } else if (utfbytes == 0) 1330 utfbytes = ~0; 1331 } 1332 /* 1333 * Write the complete Unicode character as UTF-16 when we 1334 * have all the UTF-8 charactars collected. 1335 */ 1336 if (utfbytes == 0) { 1337 /* 1338 * If we need to write 2 UTF-16 characters, but 1339 * we only have room for 1, then we truncate the 1340 * string by writing a 0 instead. 1341 */ 1342 if (utfchar >= 0x10000 && s16idx < s16len - 1) { 1343 s16[s16idx++] = 1344 htole16(0xd800 | ((utfchar >> 10) - 0x40)); 1345 s16[s16idx++] = 1346 htole16(0xdc00 | (utfchar & 0x3ff)); 1347 } else 1348 s16[s16idx++] = (utfchar >= 0x10000) ? 0 : 1349 htole16(utfchar); 1350 } 1351 } 1352 /* 1353 * If our input string was truncated, append an invalid encoding 1354 * character to the output string. 1355 */ 1356 if (utfbytes != 0 && s16idx < s16len) 1357 s16[s16idx++] = htole16(0xfffd); 1358 } 1359