1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/bio.h> 31 #include <sys/diskmbr.h> 32 #include <sys/gsb_crc32.h> 33 #include <sys/endian.h> 34 #include <sys/gpt.h> 35 #include <sys/kernel.h> 36 #include <sys/kobj.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/malloc.h> 40 #include <sys/mutex.h> 41 #include <sys/queue.h> 42 #include <sys/sbuf.h> 43 #include <sys/systm.h> 44 #include <sys/sysctl.h> 45 #include <sys/uuid.h> 46 #include <geom/geom.h> 47 #include <geom/geom_int.h> 48 #include <geom/part/g_part.h> 49 50 #include "g_part_if.h" 51 52 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support"); 53 54 SYSCTL_DECL(_kern_geom_part); 55 static SYSCTL_NODE(_kern_geom_part, OID_AUTO, gpt, 56 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 57 "GEOM_PART_GPT GUID Partition Table"); 58 59 static u_int allow_nesting = 0; 60 SYSCTL_UINT(_kern_geom_part_gpt, OID_AUTO, allow_nesting, 61 CTLFLAG_RWTUN, &allow_nesting, 0, "Allow GPT to be nested inside other schemes"); 62 63 CTASSERT(offsetof(struct gpt_hdr, padding) == 92); 64 CTASSERT(sizeof(struct gpt_ent) == 128); 65 66 extern u_int geom_part_check_integrity; 67 68 #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) 69 70 #define MBRSIZE 512 71 72 enum gpt_elt { 73 GPT_ELT_PRIHDR, 74 GPT_ELT_PRITBL, 75 GPT_ELT_SECHDR, 76 GPT_ELT_SECTBL, 77 GPT_ELT_COUNT 78 }; 79 80 enum gpt_state { 81 GPT_STATE_UNKNOWN, /* Not determined. */ 82 GPT_STATE_MISSING, /* No signature found. */ 83 GPT_STATE_CORRUPT, /* Checksum mismatch. */ 84 GPT_STATE_INVALID, /* Nonconformant/invalid. */ 85 GPT_STATE_UNSUPPORTED, /* Not supported. */ 86 GPT_STATE_OK /* Perfectly fine. */ 87 }; 88 89 struct g_part_gpt_table { 90 struct g_part_table base; 91 u_char mbr[MBRSIZE]; 92 struct gpt_hdr *hdr; 93 quad_t lba[GPT_ELT_COUNT]; 94 enum gpt_state state[GPT_ELT_COUNT]; 95 int bootcamp; 96 }; 97 98 struct g_part_gpt_entry { 99 struct g_part_entry base; 100 struct gpt_ent ent; 101 }; 102 103 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); 104 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); 105 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *, 106 struct g_part_parms *); 107 108 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, 109 struct g_part_parms *); 110 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); 111 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); 112 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); 113 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, 114 struct sbuf *, const char *); 115 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); 116 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, 117 struct g_part_parms *); 118 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, 119 char *, size_t); 120 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); 121 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); 122 static int g_part_gpt_setunset(struct g_part_table *table, 123 struct g_part_entry *baseentry, const char *attrib, unsigned int set); 124 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, 125 char *, size_t); 126 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); 127 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, 128 struct g_part_parms *); 129 static int g_part_gpt_recover(struct g_part_table *); 130 131 static kobj_method_t g_part_gpt_methods[] = { 132 KOBJMETHOD(g_part_add, g_part_gpt_add), 133 KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), 134 KOBJMETHOD(g_part_create, g_part_gpt_create), 135 KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), 136 KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), 137 KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), 138 KOBJMETHOD(g_part_modify, g_part_gpt_modify), 139 KOBJMETHOD(g_part_resize, g_part_gpt_resize), 140 KOBJMETHOD(g_part_name, g_part_gpt_name), 141 KOBJMETHOD(g_part_probe, g_part_gpt_probe), 142 KOBJMETHOD(g_part_read, g_part_gpt_read), 143 KOBJMETHOD(g_part_recover, g_part_gpt_recover), 144 KOBJMETHOD(g_part_setunset, g_part_gpt_setunset), 145 KOBJMETHOD(g_part_type, g_part_gpt_type), 146 KOBJMETHOD(g_part_write, g_part_gpt_write), 147 { 0, 0 } 148 }; 149 150 #define MAXENTSIZE 1024 151 152 static struct g_part_scheme g_part_gpt_scheme = { 153 "GPT", 154 g_part_gpt_methods, 155 sizeof(struct g_part_gpt_table), 156 .gps_entrysz = sizeof(struct g_part_gpt_entry), 157 .gps_minent = 128, 158 .gps_maxent = 4096, 159 .gps_bootcodesz = MBRSIZE, 160 }; 161 G_PART_SCHEME_DECLARE(g_part_gpt); 162 MODULE_VERSION(geom_part_gpt, 0); 163 164 static struct uuid gpt_uuid_apple_apfs = GPT_ENT_TYPE_APPLE_APFS; 165 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; 166 static struct uuid gpt_uuid_apple_core_storage = 167 GPT_ENT_TYPE_APPLE_CORE_STORAGE; 168 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; 169 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; 170 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; 171 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; 172 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; 173 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; 174 static struct uuid gpt_uuid_apple_zfs = GPT_ENT_TYPE_APPLE_ZFS; 175 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT; 176 static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE; 177 static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL; 178 static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED; 179 static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT; 180 static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD; 181 static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER; 182 static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2; 183 static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32; 184 static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64; 185 static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY; 186 static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP; 187 static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1; 188 static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM; 189 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; 190 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; 191 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; 192 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS; 193 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; 194 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; 195 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; 196 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; 197 static struct uuid gpt_uuid_hifive_fsbl = GPT_ENT_TYPE_HIFIVE_FSBL; 198 static struct uuid gpt_uuid_hifive_bbl = GPT_ENT_TYPE_HIFIVE_BBL; 199 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; 200 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; 201 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; 202 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; 203 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; 204 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; 205 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; 206 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; 207 static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY; 208 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; 209 static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES; 210 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; 211 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; 212 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; 213 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; 214 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; 215 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; 216 static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA; 217 static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT; 218 static struct uuid gpt_uuid_solaris_boot = GPT_ENT_TYPE_SOLARIS_BOOT; 219 static struct uuid gpt_uuid_solaris_root = GPT_ENT_TYPE_SOLARIS_ROOT; 220 static struct uuid gpt_uuid_solaris_swap = GPT_ENT_TYPE_SOLARIS_SWAP; 221 static struct uuid gpt_uuid_solaris_backup = GPT_ENT_TYPE_SOLARIS_BACKUP; 222 static struct uuid gpt_uuid_solaris_var = GPT_ENT_TYPE_SOLARIS_VAR; 223 static struct uuid gpt_uuid_solaris_home = GPT_ENT_TYPE_SOLARIS_HOME; 224 static struct uuid gpt_uuid_solaris_altsec = GPT_ENT_TYPE_SOLARIS_ALTSEC; 225 static struct uuid gpt_uuid_solaris_reserved = GPT_ENT_TYPE_SOLARIS_RESERVED; 226 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; 227 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS; 228 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG; 229 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED; 230 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR; 231 232 static struct g_part_uuid_alias { 233 struct uuid *uuid; 234 int alias; 235 int mbrtype; 236 } gpt_uuid_alias_match[] = { 237 { &gpt_uuid_apple_apfs, G_PART_ALIAS_APPLE_APFS, 0 }, 238 { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab }, 239 { &gpt_uuid_apple_core_storage, G_PART_ALIAS_APPLE_CORE_STORAGE, 0 }, 240 { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf }, 241 { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 }, 242 { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 }, 243 { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 }, 244 { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 }, 245 { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 }, 246 { &gpt_uuid_apple_zfs, G_PART_ALIAS_APPLE_ZFS, 0 }, 247 { &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 }, 248 { &gpt_uuid_chromeos_firmware, G_PART_ALIAS_CHROMEOS_FIRMWARE, 0 }, 249 { &gpt_uuid_chromeos_kernel, G_PART_ALIAS_CHROMEOS_KERNEL, 0 }, 250 { &gpt_uuid_chromeos_reserved, G_PART_ALIAS_CHROMEOS_RESERVED, 0 }, 251 { &gpt_uuid_chromeos_root, G_PART_ALIAS_CHROMEOS_ROOT, 0 }, 252 { &gpt_uuid_dfbsd_ccd, G_PART_ALIAS_DFBSD_CCD, 0 }, 253 { &gpt_uuid_dfbsd_hammer, G_PART_ALIAS_DFBSD_HAMMER, 0 }, 254 { &gpt_uuid_dfbsd_hammer2, G_PART_ALIAS_DFBSD_HAMMER2, 0 }, 255 { &gpt_uuid_dfbsd_label32, G_PART_ALIAS_DFBSD, 0xa5 }, 256 { &gpt_uuid_dfbsd_label64, G_PART_ALIAS_DFBSD64, 0xa5 }, 257 { &gpt_uuid_dfbsd_legacy, G_PART_ALIAS_DFBSD_LEGACY, 0 }, 258 { &gpt_uuid_dfbsd_swap, G_PART_ALIAS_DFBSD_SWAP, 0 }, 259 { &gpt_uuid_dfbsd_ufs1, G_PART_ALIAS_DFBSD_UFS, 0 }, 260 { &gpt_uuid_dfbsd_vinum, G_PART_ALIAS_DFBSD_VINUM, 0 }, 261 { &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee }, 262 { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 }, 263 { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 }, 264 { &gpt_uuid_freebsd_nandfs, G_PART_ALIAS_FREEBSD_NANDFS, 0 }, 265 { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 }, 266 { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 }, 267 { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 }, 268 { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 }, 269 { &gpt_uuid_hifive_fsbl, G_PART_ALIAS_HIFIVE_FSBL, 0 }, 270 { &gpt_uuid_hifive_bbl, G_PART_ALIAS_HIFIVE_BBL, 0 }, 271 { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b }, 272 { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 }, 273 { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 }, 274 { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 }, 275 { &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 }, 276 { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b }, 277 { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 }, 278 { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 }, 279 { &gpt_uuid_ms_recovery, G_PART_ALIAS_MS_RECOVERY, 0 }, 280 { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 }, 281 { &gpt_uuid_ms_spaces, G_PART_ALIAS_MS_SPACES, 0 }, 282 { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 }, 283 { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 }, 284 { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 }, 285 { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 }, 286 { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 }, 287 { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 }, 288 { &gpt_uuid_openbsd_data, G_PART_ALIAS_OPENBSD_DATA, 0 }, 289 { &gpt_uuid_prep_boot, G_PART_ALIAS_PREP_BOOT, 0x41 }, 290 { &gpt_uuid_solaris_boot, G_PART_ALIAS_SOLARIS_BOOT, 0 }, 291 { &gpt_uuid_solaris_root, G_PART_ALIAS_SOLARIS_ROOT, 0 }, 292 { &gpt_uuid_solaris_swap, G_PART_ALIAS_SOLARIS_SWAP, 0 }, 293 { &gpt_uuid_solaris_backup, G_PART_ALIAS_SOLARIS_BACKUP, 0 }, 294 { &gpt_uuid_solaris_var, G_PART_ALIAS_SOLARIS_VAR, 0 }, 295 { &gpt_uuid_solaris_home, G_PART_ALIAS_SOLARIS_HOME, 0 }, 296 { &gpt_uuid_solaris_altsec, G_PART_ALIAS_SOLARIS_ALTSEC, 0 }, 297 { &gpt_uuid_solaris_reserved, G_PART_ALIAS_SOLARIS_RESERVED, 0 }, 298 { &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 }, 299 { &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 }, 300 { &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 }, 301 { &gpt_uuid_vmvsanhdr, G_PART_ALIAS_VMVSANHDR, 0 }, 302 { NULL, 0, 0 } 303 }; 304 305 static int 306 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start, 307 quad_t end) 308 { 309 310 if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX) 311 return (EINVAL); 312 313 mbr += DOSPARTOFF + idx * DOSPARTSIZE; 314 mbr[0] = 0; 315 if (start == 1) { 316 /* 317 * Treat the PMBR partition specially to maximize 318 * interoperability with BIOSes. 319 */ 320 mbr[1] = mbr[3] = 0; 321 mbr[2] = 2; 322 } else 323 mbr[1] = mbr[2] = mbr[3] = 0xff; 324 mbr[4] = typ; 325 mbr[5] = mbr[6] = mbr[7] = 0xff; 326 le32enc(mbr + 8, (uint32_t)start); 327 le32enc(mbr + 12, (uint32_t)(end - start + 1)); 328 return (0); 329 } 330 331 static int 332 gpt_map_type(struct uuid *t) 333 { 334 struct g_part_uuid_alias *uap; 335 336 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 337 if (EQUUID(t, uap->uuid)) 338 return (uap->mbrtype); 339 } 340 return (0); 341 } 342 343 static void 344 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp) 345 { 346 347 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 348 gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, 349 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 350 le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); 351 } 352 353 /* 354 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the 355 * whole disk anymore. Rather, it covers the GPT table and the EFI 356 * system partition only. This way the HFS+ partition and any FAT 357 * partitions can be added to the MBR without creating an overlap. 358 */ 359 static int 360 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname) 361 { 362 uint8_t *p; 363 364 p = table->mbr + DOSPARTOFF; 365 if (p[4] != 0xee || le32dec(p + 8) != 1) 366 return (0); 367 368 p += DOSPARTSIZE; 369 if (p[4] != 0xaf) 370 return (0); 371 372 printf("GEOM: %s: enabling Boot Camp\n", provname); 373 return (1); 374 } 375 376 static void 377 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp) 378 { 379 struct g_part_entry *baseentry; 380 struct g_part_gpt_entry *entry; 381 struct g_part_gpt_table *table; 382 int bootable, error, index, slices, typ; 383 384 table = (struct g_part_gpt_table *)basetable; 385 386 bootable = -1; 387 for (index = 0; index < NDOSPART; index++) { 388 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index]) 389 bootable = index; 390 } 391 392 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 393 slices = 0; 394 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 395 if (baseentry->gpe_deleted) 396 continue; 397 index = baseentry->gpe_index - 1; 398 if (index >= NDOSPART) 399 continue; 400 401 entry = (struct g_part_gpt_entry *)baseentry; 402 403 switch (index) { 404 case 0: /* This must be the EFI system partition. */ 405 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi)) 406 goto disable; 407 error = gpt_write_mbr_entry(table->mbr, index, 0xee, 408 1ull, entry->ent.ent_lba_end); 409 break; 410 case 1: /* This must be the HFS+ partition. */ 411 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs)) 412 goto disable; 413 error = gpt_write_mbr_entry(table->mbr, index, 0xaf, 414 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 415 break; 416 default: 417 typ = gpt_map_type(&entry->ent.ent_type); 418 error = gpt_write_mbr_entry(table->mbr, index, typ, 419 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 420 break; 421 } 422 if (error) 423 continue; 424 425 if (index == bootable) 426 table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80; 427 slices |= 1 << index; 428 } 429 if ((slices & 3) == 3) 430 return; 431 432 disable: 433 table->bootcamp = 0; 434 gpt_create_pmbr(table, pp); 435 } 436 437 static struct gpt_hdr * 438 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, 439 enum gpt_elt elt) 440 { 441 struct gpt_hdr *buf, *hdr; 442 struct g_provider *pp; 443 quad_t lba, last; 444 int error; 445 uint32_t crc, sz; 446 447 pp = cp->provider; 448 last = (pp->mediasize / pp->sectorsize) - 1; 449 table->state[elt] = GPT_STATE_MISSING; 450 /* 451 * If the primary header is valid look for secondary 452 * header in AlternateLBA, otherwise in the last medium's LBA. 453 */ 454 if (elt == GPT_ELT_SECHDR) { 455 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK) 456 table->lba[elt] = last; 457 } else 458 table->lba[elt] = 1; 459 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, 460 &error); 461 if (buf == NULL) 462 return (NULL); 463 hdr = NULL; 464 if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) 465 goto fail; 466 467 table->state[elt] = GPT_STATE_CORRUPT; 468 sz = le32toh(buf->hdr_size); 469 if (sz < 92 || sz > pp->sectorsize) 470 goto fail; 471 472 hdr = g_malloc(sz, M_WAITOK | M_ZERO); 473 bcopy(buf, hdr, sz); 474 hdr->hdr_size = sz; 475 476 crc = le32toh(buf->hdr_crc_self); 477 buf->hdr_crc_self = 0; 478 if (crc32(buf, sz) != crc) 479 goto fail; 480 hdr->hdr_crc_self = crc; 481 482 table->state[elt] = GPT_STATE_INVALID; 483 hdr->hdr_revision = le32toh(buf->hdr_revision); 484 if (hdr->hdr_revision < GPT_HDR_REVISION) 485 goto fail; 486 hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); 487 if (hdr->hdr_lba_self != table->lba[elt]) 488 goto fail; 489 hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); 490 if (hdr->hdr_lba_alt == hdr->hdr_lba_self) 491 goto fail; 492 if (hdr->hdr_lba_alt > last && geom_part_check_integrity) 493 goto fail; 494 495 /* Check the managed area. */ 496 hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); 497 if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) 498 goto fail; 499 hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); 500 if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) 501 goto fail; 502 503 /* Check the table location and size of the table. */ 504 hdr->hdr_entries = le32toh(buf->hdr_entries); 505 hdr->hdr_entsz = le32toh(buf->hdr_entsz); 506 if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || 507 (hdr->hdr_entsz & 7) != 0) 508 goto fail; 509 hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); 510 if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) 511 goto fail; 512 if (hdr->hdr_lba_table >= hdr->hdr_lba_start && 513 hdr->hdr_lba_table <= hdr->hdr_lba_end) 514 goto fail; 515 lba = hdr->hdr_lba_table + 516 howmany((uint64_t)hdr->hdr_entries * hdr->hdr_entsz, 517 pp->sectorsize) - 1; 518 if (lba >= last) 519 goto fail; 520 if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) 521 goto fail; 522 523 table->state[elt] = GPT_STATE_OK; 524 le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); 525 hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); 526 527 /* save LBA for secondary header */ 528 if (elt == GPT_ELT_PRIHDR) 529 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt; 530 531 g_free(buf); 532 return (hdr); 533 534 fail: 535 g_free(hdr); 536 g_free(buf); 537 return (NULL); 538 } 539 540 static struct gpt_ent * 541 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, 542 enum gpt_elt elt, struct gpt_hdr *hdr) 543 { 544 struct g_provider *pp; 545 struct gpt_ent *ent, *tbl; 546 char *buf, *p; 547 unsigned int idx, sectors, tblsz, size; 548 int error; 549 550 if (hdr == NULL) 551 return (NULL); 552 if (hdr->hdr_entries > g_part_gpt_scheme.gps_maxent || 553 hdr->hdr_entsz > MAXENTSIZE) { 554 table->state[elt] = GPT_STATE_UNSUPPORTED; 555 return (NULL); 556 } 557 558 pp = cp->provider; 559 table->lba[elt] = hdr->hdr_lba_table; 560 561 table->state[elt] = GPT_STATE_MISSING; 562 tblsz = hdr->hdr_entries * hdr->hdr_entsz; 563 sectors = howmany(tblsz, pp->sectorsize); 564 buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO); 565 for (idx = 0; idx < sectors; idx += maxphys / pp->sectorsize) { 566 size = (sectors - idx > maxphys / pp->sectorsize) ? maxphys: 567 (sectors - idx) * pp->sectorsize; 568 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize, 569 size, &error); 570 if (p == NULL) { 571 g_free(buf); 572 return (NULL); 573 } 574 bcopy(p, buf + idx * pp->sectorsize, size); 575 g_free(p); 576 } 577 table->state[elt] = GPT_STATE_CORRUPT; 578 if (crc32(buf, tblsz) != hdr->hdr_crc_table) { 579 g_free(buf); 580 return (NULL); 581 } 582 583 table->state[elt] = GPT_STATE_OK; 584 tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), 585 M_WAITOK | M_ZERO); 586 587 for (idx = 0, ent = tbl, p = buf; 588 idx < hdr->hdr_entries; 589 idx++, ent++, p += hdr->hdr_entsz) { 590 le_uuid_dec(p, &ent->ent_type); 591 le_uuid_dec(p + 16, &ent->ent_uuid); 592 ent->ent_lba_start = le64dec(p + 32); 593 ent->ent_lba_end = le64dec(p + 40); 594 ent->ent_attr = le64dec(p + 48); 595 /* Keep UTF-16 in little-endian. */ 596 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); 597 } 598 599 g_free(buf); 600 return (tbl); 601 } 602 603 static int 604 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) 605 { 606 607 if (pri == NULL || sec == NULL) 608 return (0); 609 610 if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) 611 return (0); 612 return ((pri->hdr_revision == sec->hdr_revision && 613 pri->hdr_size == sec->hdr_size && 614 pri->hdr_lba_start == sec->hdr_lba_start && 615 pri->hdr_lba_end == sec->hdr_lba_end && 616 pri->hdr_entries == sec->hdr_entries && 617 pri->hdr_entsz == sec->hdr_entsz && 618 pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); 619 } 620 621 static int 622 gpt_parse_type(const char *type, struct uuid *uuid) 623 { 624 struct uuid tmp; 625 const char *alias; 626 int error; 627 struct g_part_uuid_alias *uap; 628 629 if (type[0] == '!') { 630 error = parse_uuid(type + 1, &tmp); 631 if (error) 632 return (error); 633 if (EQUUID(&tmp, &gpt_uuid_unused)) 634 return (EINVAL); 635 *uuid = tmp; 636 return (0); 637 } 638 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 639 alias = g_part_alias_name(uap->alias); 640 if (!strcasecmp(type, alias)) { 641 *uuid = *uap->uuid; 642 return (0); 643 } 644 } 645 return (EINVAL); 646 } 647 648 static int 649 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, 650 struct g_part_parms *gpp) 651 { 652 struct g_part_gpt_entry *entry; 653 int error; 654 655 entry = (struct g_part_gpt_entry *)baseentry; 656 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 657 if (error) 658 return (error); 659 kern_uuidgen(&entry->ent.ent_uuid, 1); 660 entry->ent.ent_lba_start = baseentry->gpe_start; 661 entry->ent.ent_lba_end = baseentry->gpe_end; 662 if (baseentry->gpe_deleted) { 663 entry->ent.ent_attr = 0; 664 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); 665 } 666 if (gpp->gpp_parms & G_PART_PARM_LABEL) 667 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 668 sizeof(entry->ent.ent_name) / 669 sizeof(entry->ent.ent_name[0])); 670 return (0); 671 } 672 673 static int 674 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) 675 { 676 struct g_part_gpt_table *table; 677 size_t codesz; 678 679 codesz = DOSPARTOFF; 680 table = (struct g_part_gpt_table *)basetable; 681 bzero(table->mbr, codesz); 682 codesz = MIN(codesz, gpp->gpp_codesize); 683 if (codesz > 0) 684 bcopy(gpp->gpp_codeptr, table->mbr, codesz); 685 return (0); 686 } 687 688 static int 689 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) 690 { 691 struct g_provider *pp; 692 struct g_part_gpt_table *table; 693 size_t tblsz; 694 695 /* Our depth should be 0 unless nesting was explicitly enabled. */ 696 if (!allow_nesting && basetable->gpt_depth != 0) 697 return (ENXIO); 698 699 table = (struct g_part_gpt_table *)basetable; 700 pp = gpp->gpp_provider; 701 tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent), 702 pp->sectorsize); 703 if (pp->sectorsize < MBRSIZE || 704 pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * 705 pp->sectorsize) 706 return (ENOSPC); 707 708 gpt_create_pmbr(table, pp); 709 710 /* Allocate space for the header */ 711 table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); 712 713 bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 714 table->hdr->hdr_revision = GPT_HDR_REVISION; 715 table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); 716 kern_uuidgen(&table->hdr->hdr_uuid, 1); 717 table->hdr->hdr_entries = basetable->gpt_entries; 718 table->hdr->hdr_entsz = sizeof(struct gpt_ent); 719 720 g_gpt_set_defaults(basetable, pp, gpp); 721 return (0); 722 } 723 724 static int 725 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) 726 { 727 struct g_part_gpt_table *table; 728 struct g_provider *pp; 729 730 table = (struct g_part_gpt_table *)basetable; 731 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 732 g_free(table->hdr); 733 table->hdr = NULL; 734 735 /* 736 * Wipe the first 2 sectors and last one to clear the partitioning. 737 * Wipe sectors only if they have valid metadata. 738 */ 739 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) 740 basetable->gpt_smhead |= 3; 741 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 742 table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1) 743 basetable->gpt_smtail |= 1; 744 return (0); 745 } 746 747 static void 748 g_part_gpt_efimedia(struct g_part_gpt_entry *entry, struct sbuf *sb) 749 { 750 sbuf_printf(sb, "HD(%d,GPT,", entry->base.gpe_index); 751 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 752 sbuf_printf(sb, ",%#jx,%#jx)", (intmax_t)entry->base.gpe_start, 753 (intmax_t)(entry->base.gpe_end - entry->base.gpe_start + 1)); 754 } 755 756 static void 757 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 758 struct sbuf *sb, const char *indent) 759 { 760 struct g_part_gpt_entry *entry; 761 762 entry = (struct g_part_gpt_entry *)baseentry; 763 if (indent == NULL) { 764 /* conftxt: libdisk compatibility */ 765 sbuf_cat(sb, " xs GPT xt "); 766 sbuf_printf_uuid(sb, &entry->ent.ent_type); 767 } else if (entry != NULL) { 768 /* confxml: partition entry information */ 769 sbuf_printf(sb, "%s<label>", indent); 770 g_gpt_printf_utf16(sb, entry->ent.ent_name, 771 sizeof(entry->ent.ent_name) >> 1); 772 sbuf_cat(sb, "</label>\n"); 773 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME) 774 sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent); 775 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) { 776 sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n", 777 indent); 778 } 779 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) { 780 sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n", 781 indent); 782 } 783 sbuf_printf(sb, "%s<rawtype>", indent); 784 sbuf_printf_uuid(sb, &entry->ent.ent_type); 785 sbuf_cat(sb, "</rawtype>\n"); 786 sbuf_printf(sb, "%s<rawuuid>", indent); 787 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 788 sbuf_cat(sb, "</rawuuid>\n"); 789 sbuf_printf(sb, "%s<efimedia>", indent); 790 g_part_gpt_efimedia(entry, sb); 791 sbuf_cat(sb, "</efimedia>\n"); 792 } else { 793 /* confxml: scheme information */ 794 } 795 } 796 797 static int 798 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) 799 { 800 struct g_part_gpt_entry *entry; 801 802 entry = (struct g_part_gpt_entry *)baseentry; 803 return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || 804 EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) || 805 EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0); 806 } 807 808 static int 809 g_part_gpt_modify(struct g_part_table *basetable, 810 struct g_part_entry *baseentry, struct g_part_parms *gpp) 811 { 812 struct g_part_gpt_entry *entry; 813 int error; 814 815 entry = (struct g_part_gpt_entry *)baseentry; 816 if (gpp->gpp_parms & G_PART_PARM_TYPE) { 817 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 818 if (error) 819 return (error); 820 } 821 if (gpp->gpp_parms & G_PART_PARM_LABEL) 822 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 823 sizeof(entry->ent.ent_name) / 824 sizeof(entry->ent.ent_name[0])); 825 return (0); 826 } 827 828 static int 829 g_part_gpt_resize(struct g_part_table *basetable, 830 struct g_part_entry *baseentry, struct g_part_parms *gpp) 831 { 832 struct g_part_gpt_entry *entry; 833 834 if (baseentry == NULL) 835 return (g_part_gpt_recover(basetable)); 836 837 entry = (struct g_part_gpt_entry *)baseentry; 838 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; 839 entry->ent.ent_lba_end = baseentry->gpe_end; 840 841 return (0); 842 } 843 844 static const char * 845 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, 846 char *buf, size_t bufsz) 847 { 848 struct g_part_gpt_entry *entry; 849 char c; 850 851 entry = (struct g_part_gpt_entry *)baseentry; 852 c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; 853 snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); 854 return (buf); 855 } 856 857 static int 858 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) 859 { 860 struct g_provider *pp; 861 u_char *buf; 862 int error, index, pri, res; 863 864 /* Our depth should be 0 unless nesting was explicitly enabled. */ 865 if (!allow_nesting && table->gpt_depth != 0) 866 return (ENXIO); 867 868 pp = cp->provider; 869 870 /* 871 * Sanity-check the provider. Since the first sector on the provider 872 * must be a PMBR and a PMBR is 512 bytes large, the sector size 873 * must be at least 512 bytes. Also, since the theoretical minimum 874 * number of sectors needed by GPT is 6, any medium that has less 875 * than 6 sectors is never going to be able to hold a GPT. The 876 * number 6 comes from: 877 * 1 sector for the PMBR 878 * 2 sectors for the GPT headers (each 1 sector) 879 * 2 sectors for the GPT tables (each 1 sector) 880 * 1 sector for an actual partition 881 * It's better to catch this pathological case early than behaving 882 * pathologically later on... 883 */ 884 if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) 885 return (ENOSPC); 886 887 /* 888 * Check that there's a MBR or a PMBR. If it's a PMBR, we return 889 * as the highest priority on a match, otherwise we assume some 890 * GPT-unaware tool has destroyed the GPT by recreating a MBR and 891 * we really want the MBR scheme to take precedence. 892 */ 893 buf = g_read_data(cp, 0L, pp->sectorsize, &error); 894 if (buf == NULL) 895 return (error); 896 res = le16dec(buf + DOSMAGICOFFSET); 897 pri = G_PART_PROBE_PRI_LOW; 898 if (res == DOSMAGIC) { 899 for (index = 0; index < NDOSPART; index++) { 900 if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee) 901 pri = G_PART_PROBE_PRI_HIGH; 902 } 903 g_free(buf); 904 905 /* Check that there's a primary header. */ 906 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); 907 if (buf == NULL) 908 return (error); 909 res = memcmp(buf, GPT_HDR_SIG, 8); 910 g_free(buf); 911 if (res == 0) 912 return (pri); 913 } else 914 g_free(buf); 915 916 /* No primary? Check that there's a secondary. */ 917 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 918 &error); 919 if (buf == NULL) 920 return (error); 921 res = memcmp(buf, GPT_HDR_SIG, 8); 922 g_free(buf); 923 return ((res == 0) ? pri : ENXIO); 924 } 925 926 static int 927 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) 928 { 929 struct gpt_hdr *prihdr, *sechdr; 930 struct gpt_ent *tbl, *pritbl, *sectbl; 931 struct g_provider *pp; 932 struct g_part_gpt_table *table; 933 struct g_part_gpt_entry *entry; 934 u_char *buf; 935 uint64_t last; 936 int error, index; 937 938 table = (struct g_part_gpt_table *)basetable; 939 pp = cp->provider; 940 last = (pp->mediasize / pp->sectorsize) - 1; 941 942 /* Read the PMBR */ 943 buf = g_read_data(cp, 0, pp->sectorsize, &error); 944 if (buf == NULL) 945 return (error); 946 bcopy(buf, table->mbr, MBRSIZE); 947 g_free(buf); 948 949 /* Read the primary header and table. */ 950 prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); 951 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { 952 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); 953 } else { 954 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 955 pritbl = NULL; 956 } 957 958 /* Read the secondary header and table. */ 959 sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); 960 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { 961 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); 962 } else { 963 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 964 sectbl = NULL; 965 } 966 967 /* Fail if we haven't got any good tables at all. */ 968 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && 969 table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 970 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_UNSUPPORTED && 971 table->state[GPT_ELT_SECTBL] == GPT_STATE_UNSUPPORTED && 972 gpt_matched_hdrs(prihdr, sechdr)) { 973 printf("GEOM: %s: unsupported GPT detected.\n", 974 pp->name); 975 printf( 976 "GEOM: %s: number of GPT entries: %u, entry size: %uB.\n", 977 pp->name, prihdr->hdr_entries, prihdr->hdr_entsz); 978 printf( 979 "GEOM: %s: maximum supported number of GPT entries: %u, entry size: %uB.\n", 980 pp->name, g_part_gpt_scheme.gps_maxent, MAXENTSIZE); 981 printf("GEOM: %s: GPT rejected.\n", pp->name); 982 } else { 983 printf("GEOM: %s: corrupt or invalid GPT detected.\n", 984 pp->name); 985 printf( 986 "GEOM: %s: GPT rejected -- may not be recoverable.\n", 987 pp->name); 988 } 989 g_free(prihdr); 990 g_free(pritbl); 991 g_free(sechdr); 992 g_free(sectbl); 993 return (EINVAL); 994 } 995 996 /* 997 * If both headers are good but they disagree with each other, 998 * then invalidate one. We prefer to keep the primary header, 999 * unless the primary table is corrupt. 1000 */ 1001 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && 1002 table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 1003 !gpt_matched_hdrs(prihdr, sechdr)) { 1004 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { 1005 table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; 1006 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 1007 g_free(sechdr); 1008 sechdr = NULL; 1009 } else { 1010 table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; 1011 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 1012 g_free(prihdr); 1013 prihdr = NULL; 1014 } 1015 } 1016 1017 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { 1018 printf("GEOM: %s: the primary GPT table is corrupt or " 1019 "invalid.\n", pp->name); 1020 printf("GEOM: %s: using the secondary instead -- recovery " 1021 "strongly advised.\n", pp->name); 1022 table->hdr = sechdr; 1023 basetable->gpt_corrupt = 1; 1024 g_free(prihdr); 1025 tbl = sectbl; 1026 g_free(pritbl); 1027 } else { 1028 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 1029 printf("GEOM: %s: the secondary GPT table is corrupt " 1030 "or invalid.\n", pp->name); 1031 printf("GEOM: %s: using the primary only -- recovery " 1032 "suggested.\n", pp->name); 1033 basetable->gpt_corrupt = 1; 1034 } else if (table->lba[GPT_ELT_SECHDR] != last) { 1035 printf( "GEOM: %s: the secondary GPT header is not in " 1036 "the last LBA.\n", pp->name); 1037 basetable->gpt_corrupt = 1; 1038 } 1039 table->hdr = prihdr; 1040 g_free(sechdr); 1041 tbl = pritbl; 1042 g_free(sectbl); 1043 } 1044 1045 basetable->gpt_first = table->hdr->hdr_lba_start; 1046 basetable->gpt_last = table->hdr->hdr_lba_end; 1047 basetable->gpt_entries = table->hdr->hdr_entries; 1048 1049 for (index = basetable->gpt_entries - 1; index >= 0; index--) { 1050 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) 1051 continue; 1052 entry = (struct g_part_gpt_entry *)g_part_new_entry( 1053 basetable, index + 1, tbl[index].ent_lba_start, 1054 tbl[index].ent_lba_end); 1055 entry->ent = tbl[index]; 1056 } 1057 1058 g_free(tbl); 1059 1060 /* 1061 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions 1062 * if (and only if) any FAT32 or FAT16 partitions have been 1063 * created. This happens irrespective of whether Boot Camp is 1064 * used/enabled, though it's generally understood to be done 1065 * to support legacy Windows under Boot Camp. We refer to this 1066 * mirroring simply as Boot Camp. We try to detect Boot Camp 1067 * so that we can update the MBR if and when GPT changes have 1068 * been made. Note that we do not enable Boot Camp if not 1069 * previously enabled because we can't assume that we're on a 1070 * Mac alongside Mac OS X. 1071 */ 1072 table->bootcamp = gpt_is_bootcamp(table, pp->name); 1073 1074 return (0); 1075 } 1076 1077 static int 1078 g_part_gpt_recover(struct g_part_table *basetable) 1079 { 1080 struct g_part_gpt_table *table; 1081 struct g_provider *pp; 1082 1083 table = (struct g_part_gpt_table *)basetable; 1084 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 1085 gpt_create_pmbr(table, pp); 1086 g_gpt_set_defaults(basetable, pp, NULL); 1087 basetable->gpt_corrupt = 0; 1088 return (0); 1089 } 1090 1091 static int 1092 g_part_gpt_setunset(struct g_part_table *basetable, 1093 struct g_part_entry *baseentry, const char *attrib, unsigned int set) 1094 { 1095 struct g_part_gpt_entry *entry; 1096 struct g_part_gpt_table *table; 1097 struct g_provider *pp; 1098 uint8_t *p; 1099 uint64_t attr; 1100 int i; 1101 1102 table = (struct g_part_gpt_table *)basetable; 1103 entry = (struct g_part_gpt_entry *)baseentry; 1104 1105 if (strcasecmp(attrib, "active") == 0) { 1106 if (table->bootcamp) { 1107 /* The active flag must be set on a valid entry. */ 1108 if (entry == NULL) 1109 return (ENXIO); 1110 if (baseentry->gpe_index > NDOSPART) 1111 return (EINVAL); 1112 for (i = 0; i < NDOSPART; i++) { 1113 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1114 p[0] = (i == baseentry->gpe_index - 1) 1115 ? ((set) ? 0x80 : 0) : 0; 1116 } 1117 } else { 1118 /* The PMBR is marked as active without an entry. */ 1119 if (entry != NULL) 1120 return (ENXIO); 1121 for (i = 0; i < NDOSPART; i++) { 1122 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1123 p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0; 1124 } 1125 } 1126 return (0); 1127 } else if (strcasecmp(attrib, "lenovofix") == 0) { 1128 /* 1129 * Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR. 1130 * This workaround allows Lenovo X220, T420, T520, etc to boot 1131 * from GPT Partitions in BIOS mode. 1132 */ 1133 1134 if (entry != NULL) 1135 return (ENXIO); 1136 1137 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 1138 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 1139 gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1, 1140 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 1141 return (0); 1142 } 1143 1144 if (entry == NULL) 1145 return (ENODEV); 1146 1147 attr = 0; 1148 if (strcasecmp(attrib, "bootme") == 0) { 1149 attr |= GPT_ENT_ATTR_BOOTME; 1150 } else if (strcasecmp(attrib, "bootonce") == 0) { 1151 attr |= GPT_ENT_ATTR_BOOTONCE; 1152 if (set) 1153 attr |= GPT_ENT_ATTR_BOOTME; 1154 } else if (strcasecmp(attrib, "bootfailed") == 0) { 1155 /* 1156 * It should only be possible to unset BOOTFAILED, but it might 1157 * be useful for test purposes to also be able to set it. 1158 */ 1159 attr |= GPT_ENT_ATTR_BOOTFAILED; 1160 } 1161 if (attr == 0) 1162 return (EINVAL); 1163 1164 if (set) 1165 attr = entry->ent.ent_attr | attr; 1166 else 1167 attr = entry->ent.ent_attr & ~attr; 1168 if (attr != entry->ent.ent_attr) { 1169 entry->ent.ent_attr = attr; 1170 if (!baseentry->gpe_created) 1171 baseentry->gpe_modified = 1; 1172 } 1173 return (0); 1174 } 1175 1176 static const char * 1177 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 1178 char *buf, size_t bufsz) 1179 { 1180 struct g_part_gpt_entry *entry; 1181 struct uuid *type; 1182 struct g_part_uuid_alias *uap; 1183 1184 entry = (struct g_part_gpt_entry *)baseentry; 1185 type = &entry->ent.ent_type; 1186 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) 1187 if (EQUUID(type, uap->uuid)) 1188 return (g_part_alias_name(uap->alias)); 1189 buf[0] = '!'; 1190 snprintf_uuid(buf + 1, bufsz - 1, type); 1191 1192 return (buf); 1193 } 1194 1195 static int 1196 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) 1197 { 1198 unsigned char *buf, *bp; 1199 struct g_provider *pp; 1200 struct g_part_entry *baseentry; 1201 struct g_part_gpt_entry *entry; 1202 struct g_part_gpt_table *table; 1203 size_t tblsz; 1204 uint32_t crc; 1205 int error, index; 1206 1207 pp = cp->provider; 1208 table = (struct g_part_gpt_table *)basetable; 1209 tblsz = howmany(table->hdr->hdr_entries * table->hdr->hdr_entsz, 1210 pp->sectorsize); 1211 1212 /* Reconstruct the MBR from the GPT if under Boot Camp. */ 1213 if (table->bootcamp) 1214 gpt_update_bootcamp(basetable, pp); 1215 1216 /* Write the PMBR */ 1217 buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); 1218 bcopy(table->mbr, buf, MBRSIZE); 1219 error = g_write_data(cp, 0, buf, pp->sectorsize); 1220 g_free(buf); 1221 if (error) 1222 return (error); 1223 1224 /* Allocate space for the header and entries. */ 1225 buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); 1226 1227 memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 1228 le32enc(buf + 8, table->hdr->hdr_revision); 1229 le32enc(buf + 12, table->hdr->hdr_size); 1230 le64enc(buf + 40, table->hdr->hdr_lba_start); 1231 le64enc(buf + 48, table->hdr->hdr_lba_end); 1232 le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); 1233 le32enc(buf + 80, table->hdr->hdr_entries); 1234 le32enc(buf + 84, table->hdr->hdr_entsz); 1235 1236 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1237 if (baseentry->gpe_deleted) 1238 continue; 1239 entry = (struct g_part_gpt_entry *)baseentry; 1240 index = baseentry->gpe_index - 1; 1241 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; 1242 le_uuid_enc(bp, &entry->ent.ent_type); 1243 le_uuid_enc(bp + 16, &entry->ent.ent_uuid); 1244 le64enc(bp + 32, entry->ent.ent_lba_start); 1245 le64enc(bp + 40, entry->ent.ent_lba_end); 1246 le64enc(bp + 48, entry->ent.ent_attr); 1247 memcpy(bp + 56, entry->ent.ent_name, 1248 sizeof(entry->ent.ent_name)); 1249 } 1250 1251 crc = crc32(buf + pp->sectorsize, 1252 table->hdr->hdr_entries * table->hdr->hdr_entsz); 1253 le32enc(buf + 88, crc); 1254 1255 /* Write primary meta-data. */ 1256 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1257 le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ 1258 le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ 1259 le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ 1260 crc = crc32(buf, table->hdr->hdr_size); 1261 le32enc(buf + 16, crc); 1262 1263 for (index = 0; index < tblsz; index += maxphys / pp->sectorsize) { 1264 error = g_write_data(cp, 1265 (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize, 1266 buf + (index + 1) * pp->sectorsize, 1267 (tblsz - index > maxphys / pp->sectorsize) ? maxphys : 1268 (tblsz - index) * pp->sectorsize); 1269 if (error) 1270 goto out; 1271 } 1272 error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, 1273 buf, pp->sectorsize); 1274 if (error) 1275 goto out; 1276 1277 /* Write secondary meta-data. */ 1278 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1279 le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ 1280 le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ 1281 le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ 1282 crc = crc32(buf, table->hdr->hdr_size); 1283 le32enc(buf + 16, crc); 1284 1285 for (index = 0; index < tblsz; index += maxphys / pp->sectorsize) { 1286 error = g_write_data(cp, 1287 (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize, 1288 buf + (index + 1) * pp->sectorsize, 1289 (tblsz - index > maxphys / pp->sectorsize) ? maxphys : 1290 (tblsz - index) * pp->sectorsize); 1291 if (error) 1292 goto out; 1293 } 1294 error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, 1295 buf, pp->sectorsize); 1296 1297 out: 1298 g_free(buf); 1299 return (error); 1300 } 1301 1302 static void 1303 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp, 1304 struct g_part_parms *gpp) 1305 { 1306 struct g_part_entry *baseentry; 1307 struct g_part_gpt_entry *entry; 1308 struct g_part_gpt_table *table; 1309 quad_t start, end, min, max; 1310 quad_t lba, last; 1311 size_t spb, tblsz; 1312 1313 table = (struct g_part_gpt_table *)basetable; 1314 last = pp->mediasize / pp->sectorsize - 1; 1315 tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent), 1316 pp->sectorsize); 1317 1318 table->lba[GPT_ELT_PRIHDR] = 1; 1319 table->lba[GPT_ELT_PRITBL] = 2; 1320 table->lba[GPT_ELT_SECHDR] = last; 1321 table->lba[GPT_ELT_SECTBL] = last - tblsz; 1322 table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK; 1323 table->state[GPT_ELT_PRITBL] = GPT_STATE_OK; 1324 table->state[GPT_ELT_SECHDR] = GPT_STATE_OK; 1325 table->state[GPT_ELT_SECTBL] = GPT_STATE_OK; 1326 1327 max = start = 2 + tblsz; 1328 min = end = last - tblsz - 1; 1329 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1330 if (baseentry->gpe_deleted) 1331 continue; 1332 entry = (struct g_part_gpt_entry *)baseentry; 1333 if (entry->ent.ent_lba_start < min) 1334 min = entry->ent.ent_lba_start; 1335 if (entry->ent.ent_lba_end > max) 1336 max = entry->ent.ent_lba_end; 1337 } 1338 /* 1339 * Don't force alignment of any kind whatsoever on resize, restore or 1340 * recover. resize doesn't go through this path, recover has a NULL gpp 1341 * and restore has flags == restore (maybe with an appended 'C' to 1342 * commit the operation). For these operations, we have to trust the 1343 * user knows what they are doing. 1344 * 1345 * Otherwise it some flavor of creation of a new partition, so we align 1346 * to a 4k offset on the drive, to make 512e/4kn drives more performant 1347 * by default. 1348 */ 1349 if (gpp == NULL || 1350 (gpp->gpp_parms & G_PART_PARM_FLAGS) == 0 || 1351 strstr(gpp->gpp_flags, "restore") == NULL) { 1352 spb = 4096 / pp->sectorsize; 1353 if (spb > 1) { 1354 lba = start + ((start % spb) ? spb - start % spb : 0); 1355 if (lba <= min) 1356 start = lba; 1357 lba = end - (end + 1) % spb; 1358 if (max <= lba) 1359 end = lba; 1360 } 1361 } 1362 table->hdr->hdr_lba_start = start; 1363 table->hdr->hdr_lba_end = end; 1364 1365 basetable->gpt_first = start; 1366 basetable->gpt_last = end; 1367 } 1368 1369 static void 1370 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) 1371 { 1372 u_int bo; 1373 uint32_t ch; 1374 uint16_t c; 1375 1376 bo = LITTLE_ENDIAN; /* GPT is little-endian */ 1377 while (len > 0 && *str != 0) { 1378 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); 1379 str++, len--; 1380 if ((ch & 0xf800) == 0xd800) { 1381 if (len > 0) { 1382 c = (bo == BIG_ENDIAN) ? be16toh(*str) 1383 : le16toh(*str); 1384 str++, len--; 1385 } else 1386 c = 0xfffd; 1387 if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { 1388 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); 1389 ch += 0x10000; 1390 } else 1391 ch = 0xfffd; 1392 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ 1393 bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; 1394 continue; 1395 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ 1396 continue; 1397 1398 /* Write the Unicode character in UTF-8 */ 1399 if (ch < 0x80) 1400 g_conf_printf_escaped(sb, "%c", ch); 1401 else if (ch < 0x800) 1402 g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6), 1403 0x80 | (ch & 0x3f)); 1404 else if (ch < 0x10000) 1405 g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12), 1406 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1407 else if (ch < 0x200000) 1408 g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 | 1409 (ch >> 18), 0x80 | ((ch >> 12) & 0x3f), 1410 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1411 } 1412 } 1413 1414 static void 1415 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) 1416 { 1417 size_t s16idx, s8idx; 1418 uint32_t utfchar; 1419 unsigned int c, utfbytes; 1420 1421 s8idx = s16idx = 0; 1422 utfchar = 0; 1423 utfbytes = 0; 1424 bzero(s16, s16len << 1); 1425 while (s8[s8idx] != 0 && s16idx < s16len) { 1426 c = s8[s8idx++]; 1427 if ((c & 0xc0) != 0x80) { 1428 /* Initial characters. */ 1429 if (utfbytes != 0) { 1430 /* Incomplete encoding of previous char. */ 1431 s16[s16idx++] = htole16(0xfffd); 1432 } 1433 if ((c & 0xf8) == 0xf0) { 1434 utfchar = c & 0x07; 1435 utfbytes = 3; 1436 } else if ((c & 0xf0) == 0xe0) { 1437 utfchar = c & 0x0f; 1438 utfbytes = 2; 1439 } else if ((c & 0xe0) == 0xc0) { 1440 utfchar = c & 0x1f; 1441 utfbytes = 1; 1442 } else { 1443 utfchar = c & 0x7f; 1444 utfbytes = 0; 1445 } 1446 } else { 1447 /* Followup characters. */ 1448 if (utfbytes > 0) { 1449 utfchar = (utfchar << 6) + (c & 0x3f); 1450 utfbytes--; 1451 } else if (utfbytes == 0) 1452 utfbytes = ~0; 1453 } 1454 /* 1455 * Write the complete Unicode character as UTF-16 when we 1456 * have all the UTF-8 charactars collected. 1457 */ 1458 if (utfbytes == 0) { 1459 /* 1460 * If we need to write 2 UTF-16 characters, but 1461 * we only have room for 1, then we truncate the 1462 * string by writing a 0 instead. 1463 */ 1464 if (utfchar >= 0x10000 && s16idx < s16len - 1) { 1465 s16[s16idx++] = 1466 htole16(0xd800 | ((utfchar >> 10) - 0x40)); 1467 s16[s16idx++] = 1468 htole16(0xdc00 | (utfchar & 0x3ff)); 1469 } else 1470 s16[s16idx++] = (utfchar >= 0x10000) ? 0 : 1471 htole16(utfchar); 1472 } 1473 } 1474 /* 1475 * If our input string was truncated, append an invalid encoding 1476 * character to the output string. 1477 */ 1478 if (utfbytes != 0 && s16idx < s16len) 1479 s16[s16idx++] = htole16(0xfffd); 1480 } 1481