xref: /freebsd/sys/geom/part/g_part_gpt.c (revision 3fc36ee018bb836bd1796067cf4ef8683f166ebc)
1 /*-
2  * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/bio.h>
32 #include <sys/diskmbr.h>
33 #include <sys/endian.h>
34 #include <sys/gpt.h>
35 #include <sys/kernel.h>
36 #include <sys/kobj.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mutex.h>
41 #include <sys/queue.h>
42 #include <sys/sbuf.h>
43 #include <sys/systm.h>
44 #include <sys/sysctl.h>
45 #include <sys/uuid.h>
46 #include <geom/geom.h>
47 #include <geom/geom_int.h>
48 #include <geom/part/g_part.h>
49 
50 #include "g_part_if.h"
51 
52 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support");
53 
54 CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
55 CTASSERT(sizeof(struct gpt_ent) == 128);
56 
57 #define	EQUUID(a,b)	(memcmp(a, b, sizeof(struct uuid)) == 0)
58 
59 #define	MBRSIZE		512
60 
61 enum gpt_elt {
62 	GPT_ELT_PRIHDR,
63 	GPT_ELT_PRITBL,
64 	GPT_ELT_SECHDR,
65 	GPT_ELT_SECTBL,
66 	GPT_ELT_COUNT
67 };
68 
69 enum gpt_state {
70 	GPT_STATE_UNKNOWN,	/* Not determined. */
71 	GPT_STATE_MISSING,	/* No signature found. */
72 	GPT_STATE_CORRUPT,	/* Checksum mismatch. */
73 	GPT_STATE_INVALID,	/* Nonconformant/invalid. */
74 	GPT_STATE_OK		/* Perfectly fine. */
75 };
76 
77 struct g_part_gpt_table {
78 	struct g_part_table	base;
79 	u_char			mbr[MBRSIZE];
80 	struct gpt_hdr		*hdr;
81 	quad_t			lba[GPT_ELT_COUNT];
82 	enum gpt_state		state[GPT_ELT_COUNT];
83 	int			bootcamp;
84 };
85 
86 struct g_part_gpt_entry {
87 	struct g_part_entry	base;
88 	struct gpt_ent		ent;
89 };
90 
91 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
92 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
93 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *);
94 
95 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
96     struct g_part_parms *);
97 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
98 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
99 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
100 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
101     struct sbuf *, const char *);
102 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
103 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,
104     struct g_part_parms *);
105 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
106     char *, size_t);
107 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
108 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
109 static int g_part_gpt_setunset(struct g_part_table *table,
110     struct g_part_entry *baseentry, const char *attrib, unsigned int set);
111 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
112     char *, size_t);
113 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
114 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *,
115     struct g_part_parms *);
116 static int g_part_gpt_recover(struct g_part_table *);
117 
118 static kobj_method_t g_part_gpt_methods[] = {
119 	KOBJMETHOD(g_part_add,		g_part_gpt_add),
120 	KOBJMETHOD(g_part_bootcode,	g_part_gpt_bootcode),
121 	KOBJMETHOD(g_part_create,	g_part_gpt_create),
122 	KOBJMETHOD(g_part_destroy,	g_part_gpt_destroy),
123 	KOBJMETHOD(g_part_dumpconf,	g_part_gpt_dumpconf),
124 	KOBJMETHOD(g_part_dumpto,	g_part_gpt_dumpto),
125 	KOBJMETHOD(g_part_modify,	g_part_gpt_modify),
126 	KOBJMETHOD(g_part_resize,	g_part_gpt_resize),
127 	KOBJMETHOD(g_part_name,		g_part_gpt_name),
128 	KOBJMETHOD(g_part_probe,	g_part_gpt_probe),
129 	KOBJMETHOD(g_part_read,		g_part_gpt_read),
130 	KOBJMETHOD(g_part_recover,	g_part_gpt_recover),
131 	KOBJMETHOD(g_part_setunset,	g_part_gpt_setunset),
132 	KOBJMETHOD(g_part_type,		g_part_gpt_type),
133 	KOBJMETHOD(g_part_write,	g_part_gpt_write),
134 	{ 0, 0 }
135 };
136 
137 static struct g_part_scheme g_part_gpt_scheme = {
138 	"GPT",
139 	g_part_gpt_methods,
140 	sizeof(struct g_part_gpt_table),
141 	.gps_entrysz = sizeof(struct g_part_gpt_entry),
142 	.gps_minent = 128,
143 	.gps_maxent = 4096,
144 	.gps_bootcodesz = MBRSIZE,
145 };
146 G_PART_SCHEME_DECLARE(g_part_gpt);
147 
148 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT;
149 static struct uuid gpt_uuid_apple_core_storage =
150     GPT_ENT_TYPE_APPLE_CORE_STORAGE;
151 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
152 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL;
153 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID;
154 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE;
155 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY;
156 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS;
157 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT;
158 static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE;
159 static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL;
160 static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED;
161 static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT;
162 static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD;
163 static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER;
164 static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2;
165 static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32;
166 static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64;
167 static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY;
168 static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP;
169 static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1;
170 static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM;
171 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
172 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
173 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
174 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
175 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
176 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
177 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
178 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
179 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
180 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM;
181 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID;
182 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
183 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
184 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
185 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA;
186 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA;
187 static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY;
188 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED;
189 static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES;
190 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD;
191 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD;
192 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS;
193 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS;
194 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID;
195 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP;
196 static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA;
197 static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT;
198 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
199 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS;
200 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG;
201 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED;
202 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR;
203 
204 static struct g_part_uuid_alias {
205 	struct uuid *uuid;
206 	int alias;
207 	int mbrtype;
208 } gpt_uuid_alias_match[] = {
209 	{ &gpt_uuid_apple_boot,		G_PART_ALIAS_APPLE_BOOT,	 0xab },
210 	{ &gpt_uuid_apple_core_storage,	G_PART_ALIAS_APPLE_CORE_STORAGE, 0 },
211 	{ &gpt_uuid_apple_hfs,		G_PART_ALIAS_APPLE_HFS,		 0xaf },
212 	{ &gpt_uuid_apple_label,	G_PART_ALIAS_APPLE_LABEL,	 0 },
213 	{ &gpt_uuid_apple_raid,		G_PART_ALIAS_APPLE_RAID,	 0 },
214 	{ &gpt_uuid_apple_raid_offline,	G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 },
215 	{ &gpt_uuid_apple_tv_recovery,	G_PART_ALIAS_APPLE_TV_RECOVERY,	 0 },
216 	{ &gpt_uuid_apple_ufs,		G_PART_ALIAS_APPLE_UFS,		 0 },
217 	{ &gpt_uuid_bios_boot,		G_PART_ALIAS_BIOS_BOOT,		 0 },
218 	{ &gpt_uuid_chromeos_firmware,	G_PART_ALIAS_CHROMEOS_FIRMWARE,	 0 },
219 	{ &gpt_uuid_chromeos_kernel,	G_PART_ALIAS_CHROMEOS_KERNEL,	 0 },
220 	{ &gpt_uuid_chromeos_reserved,	G_PART_ALIAS_CHROMEOS_RESERVED,	 0 },
221 	{ &gpt_uuid_chromeos_root,	G_PART_ALIAS_CHROMEOS_ROOT,	 0 },
222 	{ &gpt_uuid_dfbsd_ccd,		G_PART_ALIAS_DFBSD_CCD,		 0 },
223 	{ &gpt_uuid_dfbsd_hammer,	G_PART_ALIAS_DFBSD_HAMMER,	 0 },
224 	{ &gpt_uuid_dfbsd_hammer2,	G_PART_ALIAS_DFBSD_HAMMER2,	 0 },
225 	{ &gpt_uuid_dfbsd_label32,	G_PART_ALIAS_DFBSD,		 0xa5 },
226 	{ &gpt_uuid_dfbsd_label64,	G_PART_ALIAS_DFBSD64,		 0xa5 },
227 	{ &gpt_uuid_dfbsd_legacy,	G_PART_ALIAS_DFBSD_LEGACY,	 0 },
228 	{ &gpt_uuid_dfbsd_swap,		G_PART_ALIAS_DFBSD_SWAP,	 0 },
229 	{ &gpt_uuid_dfbsd_ufs1,		G_PART_ALIAS_DFBSD_UFS,		 0 },
230 	{ &gpt_uuid_dfbsd_vinum,	G_PART_ALIAS_DFBSD_VINUM,	 0 },
231 	{ &gpt_uuid_efi, 		G_PART_ALIAS_EFI,		 0xee },
232 	{ &gpt_uuid_freebsd,		G_PART_ALIAS_FREEBSD,		 0xa5 },
233 	{ &gpt_uuid_freebsd_boot, 	G_PART_ALIAS_FREEBSD_BOOT,	 0 },
234 	{ &gpt_uuid_freebsd_nandfs, 	G_PART_ALIAS_FREEBSD_NANDFS,	 0 },
235 	{ &gpt_uuid_freebsd_swap,	G_PART_ALIAS_FREEBSD_SWAP,	 0 },
236 	{ &gpt_uuid_freebsd_ufs,	G_PART_ALIAS_FREEBSD_UFS,	 0 },
237 	{ &gpt_uuid_freebsd_vinum,	G_PART_ALIAS_FREEBSD_VINUM,	 0 },
238 	{ &gpt_uuid_freebsd_zfs,	G_PART_ALIAS_FREEBSD_ZFS,	 0 },
239 	{ &gpt_uuid_linux_data,		G_PART_ALIAS_LINUX_DATA,	 0x0b },
240 	{ &gpt_uuid_linux_lvm,		G_PART_ALIAS_LINUX_LVM,		 0 },
241 	{ &gpt_uuid_linux_raid,		G_PART_ALIAS_LINUX_RAID,	 0 },
242 	{ &gpt_uuid_linux_swap,		G_PART_ALIAS_LINUX_SWAP,	 0 },
243 	{ &gpt_uuid_mbr,		G_PART_ALIAS_MBR,		 0 },
244 	{ &gpt_uuid_ms_basic_data,	G_PART_ALIAS_MS_BASIC_DATA,	 0x0b },
245 	{ &gpt_uuid_ms_ldm_data,	G_PART_ALIAS_MS_LDM_DATA,	 0 },
246 	{ &gpt_uuid_ms_ldm_metadata,	G_PART_ALIAS_MS_LDM_METADATA,	 0 },
247 	{ &gpt_uuid_ms_recovery,	G_PART_ALIAS_MS_RECOVERY,	 0 },
248 	{ &gpt_uuid_ms_reserved,	G_PART_ALIAS_MS_RESERVED,	 0 },
249 	{ &gpt_uuid_ms_spaces,		G_PART_ALIAS_MS_SPACES,		 0 },
250 	{ &gpt_uuid_netbsd_ccd,		G_PART_ALIAS_NETBSD_CCD,	 0 },
251 	{ &gpt_uuid_netbsd_cgd,		G_PART_ALIAS_NETBSD_CGD,	 0 },
252 	{ &gpt_uuid_netbsd_ffs,		G_PART_ALIAS_NETBSD_FFS,	 0 },
253 	{ &gpt_uuid_netbsd_lfs,		G_PART_ALIAS_NETBSD_LFS,	 0 },
254 	{ &gpt_uuid_netbsd_raid,	G_PART_ALIAS_NETBSD_RAID,	 0 },
255 	{ &gpt_uuid_netbsd_swap,	G_PART_ALIAS_NETBSD_SWAP,	 0 },
256 	{ &gpt_uuid_openbsd_data,	G_PART_ALIAS_OPENBSD_DATA,	 0 },
257 	{ &gpt_uuid_prep_boot,		G_PART_ALIAS_PREP_BOOT,		 0x41 },
258 	{ &gpt_uuid_vmfs,		G_PART_ALIAS_VMFS,		 0 },
259 	{ &gpt_uuid_vmkdiag,		G_PART_ALIAS_VMKDIAG,		 0 },
260 	{ &gpt_uuid_vmreserved,		G_PART_ALIAS_VMRESERVED,	 0 },
261 	{ &gpt_uuid_vmvsanhdr,		G_PART_ALIAS_VMVSANHDR,		 0 },
262 	{ NULL, 0, 0 }
263 };
264 
265 static int
266 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start,
267     quad_t end)
268 {
269 
270 	if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX)
271 		return (EINVAL);
272 
273 	mbr += DOSPARTOFF + idx * DOSPARTSIZE;
274 	mbr[0] = 0;
275 	if (start == 1) {
276 		/*
277 		 * Treat the PMBR partition specially to maximize
278 		 * interoperability with BIOSes.
279 		 */
280 		mbr[1] = mbr[3] = 0;
281 		mbr[2] = 2;
282 	} else
283 		mbr[1] = mbr[2] = mbr[3] = 0xff;
284 	mbr[4] = typ;
285 	mbr[5] = mbr[6] = mbr[7] = 0xff;
286 	le32enc(mbr + 8, (uint32_t)start);
287 	le32enc(mbr + 12, (uint32_t)(end - start + 1));
288 	return (0);
289 }
290 
291 static int
292 gpt_map_type(struct uuid *t)
293 {
294 	struct g_part_uuid_alias *uap;
295 
296 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
297 		if (EQUUID(t, uap->uuid))
298 			return (uap->mbrtype);
299 	}
300 	return (0);
301 }
302 
303 static void
304 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp)
305 {
306 
307 	bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
308 	gpt_write_mbr_entry(table->mbr, 0, 0xee, 1,
309 	    MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
310 	le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
311 }
312 
313 /*
314  * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the
315  * whole disk anymore. Rather, it covers the GPT table and the EFI
316  * system partition only. This way the HFS+ partition and any FAT
317  * partitions can be added to the MBR without creating an overlap.
318  */
319 static int
320 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname)
321 {
322 	uint8_t *p;
323 
324 	p = table->mbr + DOSPARTOFF;
325 	if (p[4] != 0xee || le32dec(p + 8) != 1)
326 		return (0);
327 
328 	p += DOSPARTSIZE;
329 	if (p[4] != 0xaf)
330 		return (0);
331 
332 	printf("GEOM: %s: enabling Boot Camp\n", provname);
333 	return (1);
334 }
335 
336 static void
337 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp)
338 {
339 	struct g_part_entry *baseentry;
340 	struct g_part_gpt_entry *entry;
341 	struct g_part_gpt_table *table;
342 	int bootable, error, index, slices, typ;
343 
344 	table = (struct g_part_gpt_table *)basetable;
345 
346 	bootable = -1;
347 	for (index = 0; index < NDOSPART; index++) {
348 		if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index])
349 			bootable = index;
350 	}
351 
352 	bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
353 	slices = 0;
354 	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
355 		if (baseentry->gpe_deleted)
356 			continue;
357 		index = baseentry->gpe_index - 1;
358 		if (index >= NDOSPART)
359 			continue;
360 
361 		entry = (struct g_part_gpt_entry *)baseentry;
362 
363 		switch (index) {
364 		case 0:	/* This must be the EFI system partition. */
365 			if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi))
366 				goto disable;
367 			error = gpt_write_mbr_entry(table->mbr, index, 0xee,
368 			    1ull, entry->ent.ent_lba_end);
369 			break;
370 		case 1:	/* This must be the HFS+ partition. */
371 			if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs))
372 				goto disable;
373 			error = gpt_write_mbr_entry(table->mbr, index, 0xaf,
374 			    entry->ent.ent_lba_start, entry->ent.ent_lba_end);
375 			break;
376 		default:
377 			typ = gpt_map_type(&entry->ent.ent_type);
378 			error = gpt_write_mbr_entry(table->mbr, index, typ,
379 			    entry->ent.ent_lba_start, entry->ent.ent_lba_end);
380 			break;
381 		}
382 		if (error)
383 			continue;
384 
385 		if (index == bootable)
386 			table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80;
387 		slices |= 1 << index;
388 	}
389 	if ((slices & 3) == 3)
390 		return;
391 
392  disable:
393 	table->bootcamp = 0;
394 	gpt_create_pmbr(table, pp);
395 }
396 
397 static struct gpt_hdr *
398 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
399     enum gpt_elt elt)
400 {
401 	struct gpt_hdr *buf, *hdr;
402 	struct g_provider *pp;
403 	quad_t lba, last;
404 	int error;
405 	uint32_t crc, sz;
406 
407 	pp = cp->provider;
408 	last = (pp->mediasize / pp->sectorsize) - 1;
409 	table->state[elt] = GPT_STATE_MISSING;
410 	/*
411 	 * If the primary header is valid look for secondary
412 	 * header in AlternateLBA, otherwise in the last medium's LBA.
413 	 */
414 	if (elt == GPT_ELT_SECHDR) {
415 		if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK)
416 			table->lba[elt] = last;
417 	} else
418 		table->lba[elt] = 1;
419 	buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
420 	    &error);
421 	if (buf == NULL)
422 		return (NULL);
423 	hdr = NULL;
424 	if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0)
425 		goto fail;
426 
427 	table->state[elt] = GPT_STATE_CORRUPT;
428 	sz = le32toh(buf->hdr_size);
429 	if (sz < 92 || sz > pp->sectorsize)
430 		goto fail;
431 
432 	hdr = g_malloc(sz, M_WAITOK | M_ZERO);
433 	bcopy(buf, hdr, sz);
434 	hdr->hdr_size = sz;
435 
436 	crc = le32toh(buf->hdr_crc_self);
437 	buf->hdr_crc_self = 0;
438 	if (crc32(buf, sz) != crc)
439 		goto fail;
440 	hdr->hdr_crc_self = crc;
441 
442 	table->state[elt] = GPT_STATE_INVALID;
443 	hdr->hdr_revision = le32toh(buf->hdr_revision);
444 	if (hdr->hdr_revision < GPT_HDR_REVISION)
445 		goto fail;
446 	hdr->hdr_lba_self = le64toh(buf->hdr_lba_self);
447 	if (hdr->hdr_lba_self != table->lba[elt])
448 		goto fail;
449 	hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt);
450 	if (hdr->hdr_lba_alt == hdr->hdr_lba_self ||
451 	    hdr->hdr_lba_alt > last)
452 		goto fail;
453 
454 	/* Check the managed area. */
455 	hdr->hdr_lba_start = le64toh(buf->hdr_lba_start);
456 	if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
457 		goto fail;
458 	hdr->hdr_lba_end = le64toh(buf->hdr_lba_end);
459 	if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
460 		goto fail;
461 
462 	/* Check the table location and size of the table. */
463 	hdr->hdr_entries = le32toh(buf->hdr_entries);
464 	hdr->hdr_entsz = le32toh(buf->hdr_entsz);
465 	if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
466 	    (hdr->hdr_entsz & 7) != 0)
467 		goto fail;
468 	hdr->hdr_lba_table = le64toh(buf->hdr_lba_table);
469 	if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
470 		goto fail;
471 	if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
472 	    hdr->hdr_lba_table <= hdr->hdr_lba_end)
473 		goto fail;
474 	lba = hdr->hdr_lba_table +
475 	    howmany(hdr->hdr_entries * hdr->hdr_entsz, pp->sectorsize) - 1;
476 	if (lba >= last)
477 		goto fail;
478 	if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
479 		goto fail;
480 
481 	table->state[elt] = GPT_STATE_OK;
482 	le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid);
483 	hdr->hdr_crc_table = le32toh(buf->hdr_crc_table);
484 
485 	/* save LBA for secondary header */
486 	if (elt == GPT_ELT_PRIHDR)
487 		table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt;
488 
489 	g_free(buf);
490 	return (hdr);
491 
492  fail:
493 	if (hdr != NULL)
494 		g_free(hdr);
495 	g_free(buf);
496 	return (NULL);
497 }
498 
499 static struct gpt_ent *
500 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
501     enum gpt_elt elt, struct gpt_hdr *hdr)
502 {
503 	struct g_provider *pp;
504 	struct gpt_ent *ent, *tbl;
505 	char *buf, *p;
506 	unsigned int idx, sectors, tblsz, size;
507 	int error;
508 
509 	if (hdr == NULL)
510 		return (NULL);
511 
512 	pp = cp->provider;
513 	table->lba[elt] = hdr->hdr_lba_table;
514 
515 	table->state[elt] = GPT_STATE_MISSING;
516 	tblsz = hdr->hdr_entries * hdr->hdr_entsz;
517 	sectors = howmany(tblsz, pp->sectorsize);
518 	buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO);
519 	for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) {
520 		size = (sectors - idx > MAXPHYS / pp->sectorsize) ?  MAXPHYS:
521 		    (sectors - idx) * pp->sectorsize;
522 		p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize,
523 		    size, &error);
524 		if (p == NULL) {
525 			g_free(buf);
526 			return (NULL);
527 		}
528 		bcopy(p, buf + idx * pp->sectorsize, size);
529 		g_free(p);
530 	}
531 	table->state[elt] = GPT_STATE_CORRUPT;
532 	if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
533 		g_free(buf);
534 		return (NULL);
535 	}
536 
537 	table->state[elt] = GPT_STATE_OK;
538 	tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
539 	    M_WAITOK | M_ZERO);
540 
541 	for (idx = 0, ent = tbl, p = buf;
542 	     idx < hdr->hdr_entries;
543 	     idx++, ent++, p += hdr->hdr_entsz) {
544 		le_uuid_dec(p, &ent->ent_type);
545 		le_uuid_dec(p + 16, &ent->ent_uuid);
546 		ent->ent_lba_start = le64dec(p + 32);
547 		ent->ent_lba_end = le64dec(p + 40);
548 		ent->ent_attr = le64dec(p + 48);
549 		/* Keep UTF-16 in little-endian. */
550 		bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
551 	}
552 
553 	g_free(buf);
554 	return (tbl);
555 }
556 
557 static int
558 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
559 {
560 
561 	if (pri == NULL || sec == NULL)
562 		return (0);
563 
564 	if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
565 		return (0);
566 	return ((pri->hdr_revision == sec->hdr_revision &&
567 	    pri->hdr_size == sec->hdr_size &&
568 	    pri->hdr_lba_start == sec->hdr_lba_start &&
569 	    pri->hdr_lba_end == sec->hdr_lba_end &&
570 	    pri->hdr_entries == sec->hdr_entries &&
571 	    pri->hdr_entsz == sec->hdr_entsz &&
572 	    pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
573 }
574 
575 static int
576 gpt_parse_type(const char *type, struct uuid *uuid)
577 {
578 	struct uuid tmp;
579 	const char *alias;
580 	int error;
581 	struct g_part_uuid_alias *uap;
582 
583 	if (type[0] == '!') {
584 		error = parse_uuid(type + 1, &tmp);
585 		if (error)
586 			return (error);
587 		if (EQUUID(&tmp, &gpt_uuid_unused))
588 			return (EINVAL);
589 		*uuid = tmp;
590 		return (0);
591 	}
592 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
593 		alias = g_part_alias_name(uap->alias);
594 		if (!strcasecmp(type, alias)) {
595 			*uuid = *uap->uuid;
596 			return (0);
597 		}
598 	}
599 	return (EINVAL);
600 }
601 
602 static int
603 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
604     struct g_part_parms *gpp)
605 {
606 	struct g_part_gpt_entry *entry;
607 	int error;
608 
609 	entry = (struct g_part_gpt_entry *)baseentry;
610 	error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
611 	if (error)
612 		return (error);
613 	kern_uuidgen(&entry->ent.ent_uuid, 1);
614 	entry->ent.ent_lba_start = baseentry->gpe_start;
615 	entry->ent.ent_lba_end = baseentry->gpe_end;
616 	if (baseentry->gpe_deleted) {
617 		entry->ent.ent_attr = 0;
618 		bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
619 	}
620 	if (gpp->gpp_parms & G_PART_PARM_LABEL)
621 		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
622 		    sizeof(entry->ent.ent_name) /
623 		    sizeof(entry->ent.ent_name[0]));
624 	return (0);
625 }
626 
627 static int
628 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
629 {
630 	struct g_part_gpt_table *table;
631 	size_t codesz;
632 
633 	codesz = DOSPARTOFF;
634 	table = (struct g_part_gpt_table *)basetable;
635 	bzero(table->mbr, codesz);
636 	codesz = MIN(codesz, gpp->gpp_codesize);
637 	if (codesz > 0)
638 		bcopy(gpp->gpp_codeptr, table->mbr, codesz);
639 	return (0);
640 }
641 
642 static int
643 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
644 {
645 	struct g_provider *pp;
646 	struct g_part_gpt_table *table;
647 	size_t tblsz;
648 
649 	/* We don't nest, which means that our depth should be 0. */
650 	if (basetable->gpt_depth != 0)
651 		return (ENXIO);
652 
653 	table = (struct g_part_gpt_table *)basetable;
654 	pp = gpp->gpp_provider;
655 	tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent),
656 	    pp->sectorsize);
657 	if (pp->sectorsize < MBRSIZE ||
658 	    pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
659 	    pp->sectorsize)
660 		return (ENOSPC);
661 
662 	gpt_create_pmbr(table, pp);
663 
664 	/* Allocate space for the header */
665 	table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO);
666 
667 	bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
668 	table->hdr->hdr_revision = GPT_HDR_REVISION;
669 	table->hdr->hdr_size = offsetof(struct gpt_hdr, padding);
670 	kern_uuidgen(&table->hdr->hdr_uuid, 1);
671 	table->hdr->hdr_entries = basetable->gpt_entries;
672 	table->hdr->hdr_entsz = sizeof(struct gpt_ent);
673 
674 	g_gpt_set_defaults(basetable, pp);
675 	return (0);
676 }
677 
678 static int
679 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
680 {
681 	struct g_part_gpt_table *table;
682 	struct g_provider *pp;
683 
684 	table = (struct g_part_gpt_table *)basetable;
685 	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
686 	g_free(table->hdr);
687 	table->hdr = NULL;
688 
689 	/*
690 	 * Wipe the first 2 sectors to clear the partitioning. Wipe the last
691 	 * sector only if it has valid secondary header.
692 	 */
693 	basetable->gpt_smhead |= 3;
694 	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
695 	    table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1)
696 		basetable->gpt_smtail |= 1;
697 	return (0);
698 }
699 
700 static void
701 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry,
702     struct sbuf *sb, const char *indent)
703 {
704 	struct g_part_gpt_entry *entry;
705 
706 	entry = (struct g_part_gpt_entry *)baseentry;
707 	if (indent == NULL) {
708 		/* conftxt: libdisk compatibility */
709 		sbuf_printf(sb, " xs GPT xt ");
710 		sbuf_printf_uuid(sb, &entry->ent.ent_type);
711 	} else if (entry != NULL) {
712 		/* confxml: partition entry information */
713 		sbuf_printf(sb, "%s<label>", indent);
714 		g_gpt_printf_utf16(sb, entry->ent.ent_name,
715 		    sizeof(entry->ent.ent_name) >> 1);
716 		sbuf_printf(sb, "</label>\n");
717 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)
718 			sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent);
719 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) {
720 			sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n",
721 			    indent);
722 		}
723 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) {
724 			sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n",
725 			    indent);
726 		}
727 		sbuf_printf(sb, "%s<rawtype>", indent);
728 		sbuf_printf_uuid(sb, &entry->ent.ent_type);
729 		sbuf_printf(sb, "</rawtype>\n");
730 		sbuf_printf(sb, "%s<rawuuid>", indent);
731 		sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
732 		sbuf_printf(sb, "</rawuuid>\n");
733 	} else {
734 		/* confxml: scheme information */
735 	}
736 }
737 
738 static int
739 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
740 {
741 	struct g_part_gpt_entry *entry;
742 
743 	entry = (struct g_part_gpt_entry *)baseentry;
744 	return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
745 	    EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) ||
746 	    EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0);
747 }
748 
749 static int
750 g_part_gpt_modify(struct g_part_table *basetable,
751     struct g_part_entry *baseentry, struct g_part_parms *gpp)
752 {
753 	struct g_part_gpt_entry *entry;
754 	int error;
755 
756 	entry = (struct g_part_gpt_entry *)baseentry;
757 	if (gpp->gpp_parms & G_PART_PARM_TYPE) {
758 		error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
759 		if (error)
760 			return (error);
761 	}
762 	if (gpp->gpp_parms & G_PART_PARM_LABEL)
763 		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
764 		    sizeof(entry->ent.ent_name) /
765 		    sizeof(entry->ent.ent_name[0]));
766 	return (0);
767 }
768 
769 static int
770 g_part_gpt_resize(struct g_part_table *basetable,
771     struct g_part_entry *baseentry, struct g_part_parms *gpp)
772 {
773 	struct g_part_gpt_entry *entry;
774 
775 	if (baseentry == NULL)
776 		return (g_part_gpt_recover(basetable));
777 
778 	entry = (struct g_part_gpt_entry *)baseentry;
779 	baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
780 	entry->ent.ent_lba_end = baseentry->gpe_end;
781 
782 	return (0);
783 }
784 
785 static const char *
786 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
787     char *buf, size_t bufsz)
788 {
789 	struct g_part_gpt_entry *entry;
790 	char c;
791 
792 	entry = (struct g_part_gpt_entry *)baseentry;
793 	c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
794 	snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
795 	return (buf);
796 }
797 
798 static int
799 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
800 {
801 	struct g_provider *pp;
802 	u_char *buf;
803 	int error, index, pri, res;
804 
805 	/* We don't nest, which means that our depth should be 0. */
806 	if (table->gpt_depth != 0)
807 		return (ENXIO);
808 
809 	pp = cp->provider;
810 
811 	/*
812 	 * Sanity-check the provider. Since the first sector on the provider
813 	 * must be a PMBR and a PMBR is 512 bytes large, the sector size
814 	 * must be at least 512 bytes.  Also, since the theoretical minimum
815 	 * number of sectors needed by GPT is 6, any medium that has less
816 	 * than 6 sectors is never going to be able to hold a GPT. The
817 	 * number 6 comes from:
818 	 *	1 sector for the PMBR
819 	 *	2 sectors for the GPT headers (each 1 sector)
820 	 *	2 sectors for the GPT tables (each 1 sector)
821 	 *	1 sector for an actual partition
822 	 * It's better to catch this pathological case early than behaving
823 	 * pathologically later on...
824 	 */
825 	if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
826 		return (ENOSPC);
827 
828 	/*
829 	 * Check that there's a MBR or a PMBR. If it's a PMBR, we return
830 	 * as the highest priority on a match, otherwise we assume some
831 	 * GPT-unaware tool has destroyed the GPT by recreating a MBR and
832 	 * we really want the MBR scheme to take precedence.
833 	 */
834 	buf = g_read_data(cp, 0L, pp->sectorsize, &error);
835 	if (buf == NULL)
836 		return (error);
837 	res = le16dec(buf + DOSMAGICOFFSET);
838 	pri = G_PART_PROBE_PRI_LOW;
839 	if (res == DOSMAGIC) {
840 		for (index = 0; index < NDOSPART; index++) {
841 			if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee)
842 				pri = G_PART_PROBE_PRI_HIGH;
843 		}
844 		g_free(buf);
845 
846 		/* Check that there's a primary header. */
847 		buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
848 		if (buf == NULL)
849 			return (error);
850 		res = memcmp(buf, GPT_HDR_SIG, 8);
851 		g_free(buf);
852 		if (res == 0)
853 			return (pri);
854 	} else
855 		g_free(buf);
856 
857 	/* No primary? Check that there's a secondary. */
858 	buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
859 	    &error);
860 	if (buf == NULL)
861 		return (error);
862 	res = memcmp(buf, GPT_HDR_SIG, 8);
863 	g_free(buf);
864 	return ((res == 0) ? pri : ENXIO);
865 }
866 
867 static int
868 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
869 {
870 	struct gpt_hdr *prihdr, *sechdr;
871 	struct gpt_ent *tbl, *pritbl, *sectbl;
872 	struct g_provider *pp;
873 	struct g_part_gpt_table *table;
874 	struct g_part_gpt_entry *entry;
875 	u_char *buf;
876 	uint64_t last;
877 	int error, index;
878 
879 	table = (struct g_part_gpt_table *)basetable;
880 	pp = cp->provider;
881 	last = (pp->mediasize / pp->sectorsize) - 1;
882 
883 	/* Read the PMBR */
884 	buf = g_read_data(cp, 0, pp->sectorsize, &error);
885 	if (buf == NULL)
886 		return (error);
887 	bcopy(buf, table->mbr, MBRSIZE);
888 	g_free(buf);
889 
890 	/* Read the primary header and table. */
891 	prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR);
892 	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
893 		pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr);
894 	} else {
895 		table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
896 		pritbl = NULL;
897 	}
898 
899 	/* Read the secondary header and table. */
900 	sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR);
901 	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
902 		sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr);
903 	} else {
904 		table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
905 		sectbl = NULL;
906 	}
907 
908 	/* Fail if we haven't got any good tables at all. */
909 	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
910 	    table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
911 		printf("GEOM: %s: corrupt or invalid GPT detected.\n",
912 		    pp->name);
913 		printf("GEOM: %s: GPT rejected -- may not be recoverable.\n",
914 		    pp->name);
915 		return (EINVAL);
916 	}
917 
918 	/*
919 	 * If both headers are good but they disagree with each other,
920 	 * then invalidate one. We prefer to keep the primary header,
921 	 * unless the primary table is corrupt.
922 	 */
923 	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
924 	    table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
925 	    !gpt_matched_hdrs(prihdr, sechdr)) {
926 		if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
927 			table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
928 			table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
929 			g_free(sechdr);
930 			sechdr = NULL;
931 		} else {
932 			table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
933 			table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
934 			g_free(prihdr);
935 			prihdr = NULL;
936 		}
937 	}
938 
939 	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
940 		printf("GEOM: %s: the primary GPT table is corrupt or "
941 		    "invalid.\n", pp->name);
942 		printf("GEOM: %s: using the secondary instead -- recovery "
943 		    "strongly advised.\n", pp->name);
944 		table->hdr = sechdr;
945 		basetable->gpt_corrupt = 1;
946 		if (prihdr != NULL)
947 			g_free(prihdr);
948 		tbl = sectbl;
949 		if (pritbl != NULL)
950 			g_free(pritbl);
951 	} else {
952 		if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
953 			printf("GEOM: %s: the secondary GPT table is corrupt "
954 			    "or invalid.\n", pp->name);
955 			printf("GEOM: %s: using the primary only -- recovery "
956 			    "suggested.\n", pp->name);
957 			basetable->gpt_corrupt = 1;
958 		} else if (table->lba[GPT_ELT_SECHDR] != last) {
959 			printf( "GEOM: %s: the secondary GPT header is not in "
960 			    "the last LBA.\n", pp->name);
961 			basetable->gpt_corrupt = 1;
962 		}
963 		table->hdr = prihdr;
964 		if (sechdr != NULL)
965 			g_free(sechdr);
966 		tbl = pritbl;
967 		if (sectbl != NULL)
968 			g_free(sectbl);
969 	}
970 
971 	basetable->gpt_first = table->hdr->hdr_lba_start;
972 	basetable->gpt_last = table->hdr->hdr_lba_end;
973 	basetable->gpt_entries = (table->hdr->hdr_lba_start - 2) *
974 	    pp->sectorsize / table->hdr->hdr_entsz;
975 
976 	for (index = table->hdr->hdr_entries - 1; index >= 0; index--) {
977 		if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
978 			continue;
979 		entry = (struct g_part_gpt_entry *)g_part_new_entry(
980 		    basetable, index + 1, tbl[index].ent_lba_start,
981 		    tbl[index].ent_lba_end);
982 		entry->ent = tbl[index];
983 	}
984 
985 	g_free(tbl);
986 
987 	/*
988 	 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions
989 	 * if (and only if) any FAT32 or FAT16 partitions have been
990 	 * created. This happens irrespective of whether Boot Camp is
991 	 * used/enabled, though it's generally understood to be done
992 	 * to support legacy Windows under Boot Camp. We refer to this
993 	 * mirroring simply as Boot Camp. We try to detect Boot Camp
994 	 * so that we can update the MBR if and when GPT changes have
995 	 * been made. Note that we do not enable Boot Camp if not
996 	 * previously enabled because we can't assume that we're on a
997 	 * Mac alongside Mac OS X.
998 	 */
999 	table->bootcamp = gpt_is_bootcamp(table, pp->name);
1000 
1001 	return (0);
1002 }
1003 
1004 static int
1005 g_part_gpt_recover(struct g_part_table *basetable)
1006 {
1007 	struct g_part_gpt_table *table;
1008 	struct g_provider *pp;
1009 
1010 	table = (struct g_part_gpt_table *)basetable;
1011 	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
1012 	gpt_create_pmbr(table, pp);
1013 	g_gpt_set_defaults(basetable, pp);
1014 	basetable->gpt_corrupt = 0;
1015 	return (0);
1016 }
1017 
1018 static int
1019 g_part_gpt_setunset(struct g_part_table *basetable,
1020     struct g_part_entry *baseentry, const char *attrib, unsigned int set)
1021 {
1022 	struct g_part_gpt_entry *entry;
1023 	struct g_part_gpt_table *table;
1024 	struct g_provider *pp;
1025 	uint8_t *p;
1026 	uint64_t attr;
1027 	int i;
1028 
1029 	table = (struct g_part_gpt_table *)basetable;
1030 	entry = (struct g_part_gpt_entry *)baseentry;
1031 
1032 	if (strcasecmp(attrib, "active") == 0) {
1033 		if (table->bootcamp) {
1034 			/* The active flag must be set on a valid entry. */
1035 			if (entry == NULL)
1036 				return (ENXIO);
1037 			if (baseentry->gpe_index > NDOSPART)
1038 				return (EINVAL);
1039 			for (i = 0; i < NDOSPART; i++) {
1040 				p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
1041 				p[0] = (i == baseentry->gpe_index - 1)
1042 				    ? ((set) ? 0x80 : 0) : 0;
1043 			}
1044 		} else {
1045 			/* The PMBR is marked as active without an entry. */
1046 			if (entry != NULL)
1047 				return (ENXIO);
1048 			for (i = 0; i < NDOSPART; i++) {
1049 				p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
1050 				p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0;
1051 			}
1052 		}
1053 		return (0);
1054 	} else if (strcasecmp(attrib, "lenovofix") == 0) {
1055 		/*
1056 		 * Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR.
1057 		 * This workaround allows Lenovo X220, T420, T520, etc to boot
1058 		 * from GPT Partitions in BIOS mode.
1059 		 */
1060 
1061 		if (entry != NULL)
1062 			return (ENXIO);
1063 
1064 		pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
1065 		bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
1066 		gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1,
1067 		    MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
1068 		return (0);
1069 	}
1070 
1071 	if (entry == NULL)
1072 		return (ENODEV);
1073 
1074 	attr = 0;
1075 	if (strcasecmp(attrib, "bootme") == 0) {
1076 		attr |= GPT_ENT_ATTR_BOOTME;
1077 	} else if (strcasecmp(attrib, "bootonce") == 0) {
1078 		attr |= GPT_ENT_ATTR_BOOTONCE;
1079 		if (set)
1080 			attr |= GPT_ENT_ATTR_BOOTME;
1081 	} else if (strcasecmp(attrib, "bootfailed") == 0) {
1082 		/*
1083 		 * It should only be possible to unset BOOTFAILED, but it might
1084 		 * be useful for test purposes to also be able to set it.
1085 		 */
1086 		attr |= GPT_ENT_ATTR_BOOTFAILED;
1087 	}
1088 	if (attr == 0)
1089 		return (EINVAL);
1090 
1091 	if (set)
1092 		attr = entry->ent.ent_attr | attr;
1093 	else
1094 		attr = entry->ent.ent_attr & ~attr;
1095 	if (attr != entry->ent.ent_attr) {
1096 		entry->ent.ent_attr = attr;
1097 		if (!baseentry->gpe_created)
1098 			baseentry->gpe_modified = 1;
1099 	}
1100 	return (0);
1101 }
1102 
1103 static const char *
1104 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
1105     char *buf, size_t bufsz)
1106 {
1107 	struct g_part_gpt_entry *entry;
1108 	struct uuid *type;
1109 	struct g_part_uuid_alias *uap;
1110 
1111 	entry = (struct g_part_gpt_entry *)baseentry;
1112 	type = &entry->ent.ent_type;
1113 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++)
1114 		if (EQUUID(type, uap->uuid))
1115 			return (g_part_alias_name(uap->alias));
1116 	buf[0] = '!';
1117 	snprintf_uuid(buf + 1, bufsz - 1, type);
1118 
1119 	return (buf);
1120 }
1121 
1122 static int
1123 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
1124 {
1125 	unsigned char *buf, *bp;
1126 	struct g_provider *pp;
1127 	struct g_part_entry *baseentry;
1128 	struct g_part_gpt_entry *entry;
1129 	struct g_part_gpt_table *table;
1130 	size_t tblsz;
1131 	uint32_t crc;
1132 	int error, index;
1133 
1134 	pp = cp->provider;
1135 	table = (struct g_part_gpt_table *)basetable;
1136 	tblsz = howmany(table->hdr->hdr_entries * table->hdr->hdr_entsz,
1137 	    pp->sectorsize);
1138 
1139 	/* Reconstruct the MBR from the GPT if under Boot Camp. */
1140 	if (table->bootcamp)
1141 		gpt_update_bootcamp(basetable, pp);
1142 
1143 	/* Write the PMBR */
1144 	buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
1145 	bcopy(table->mbr, buf, MBRSIZE);
1146 	error = g_write_data(cp, 0, buf, pp->sectorsize);
1147 	g_free(buf);
1148 	if (error)
1149 		return (error);
1150 
1151 	/* Allocate space for the header and entries. */
1152 	buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
1153 
1154 	memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
1155 	le32enc(buf + 8, table->hdr->hdr_revision);
1156 	le32enc(buf + 12, table->hdr->hdr_size);
1157 	le64enc(buf + 40, table->hdr->hdr_lba_start);
1158 	le64enc(buf + 48, table->hdr->hdr_lba_end);
1159 	le_uuid_enc(buf + 56, &table->hdr->hdr_uuid);
1160 	le32enc(buf + 80, table->hdr->hdr_entries);
1161 	le32enc(buf + 84, table->hdr->hdr_entsz);
1162 
1163 	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1164 		if (baseentry->gpe_deleted)
1165 			continue;
1166 		entry = (struct g_part_gpt_entry *)baseentry;
1167 		index = baseentry->gpe_index - 1;
1168 		bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index;
1169 		le_uuid_enc(bp, &entry->ent.ent_type);
1170 		le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
1171 		le64enc(bp + 32, entry->ent.ent_lba_start);
1172 		le64enc(bp + 40, entry->ent.ent_lba_end);
1173 		le64enc(bp + 48, entry->ent.ent_attr);
1174 		memcpy(bp + 56, entry->ent.ent_name,
1175 		    sizeof(entry->ent.ent_name));
1176 	}
1177 
1178 	crc = crc32(buf + pp->sectorsize,
1179 	    table->hdr->hdr_entries * table->hdr->hdr_entsz);
1180 	le32enc(buf + 88, crc);
1181 
1182 	/* Write primary meta-data. */
1183 	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1184 	le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_self. */
1185 	le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_alt. */
1186 	le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]);	/* hdr_lba_table. */
1187 	crc = crc32(buf, table->hdr->hdr_size);
1188 	le32enc(buf + 16, crc);
1189 
1190 	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1191 		error = g_write_data(cp,
1192 		    (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize,
1193 		    buf + (index + 1) * pp->sectorsize,
1194 		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1195 		    (tblsz - index) * pp->sectorsize);
1196 		if (error)
1197 			goto out;
1198 	}
1199 	error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
1200 	    buf, pp->sectorsize);
1201 	if (error)
1202 		goto out;
1203 
1204 	/* Write secondary meta-data. */
1205 	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1206 	le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_self. */
1207 	le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_alt. */
1208 	le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]);	/* hdr_lba_table. */
1209 	crc = crc32(buf, table->hdr->hdr_size);
1210 	le32enc(buf + 16, crc);
1211 
1212 	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1213 		error = g_write_data(cp,
1214 		    (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize,
1215 		    buf + (index + 1) * pp->sectorsize,
1216 		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1217 		    (tblsz - index) * pp->sectorsize);
1218 		if (error)
1219 			goto out;
1220 	}
1221 	error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
1222 	    buf, pp->sectorsize);
1223 
1224  out:
1225 	g_free(buf);
1226 	return (error);
1227 }
1228 
1229 static void
1230 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp)
1231 {
1232 	struct g_part_entry *baseentry;
1233 	struct g_part_gpt_entry *entry;
1234 	struct g_part_gpt_table *table;
1235 	quad_t start, end, min, max;
1236 	quad_t lba, last;
1237 	size_t spb, tblsz;
1238 
1239 	table = (struct g_part_gpt_table *)basetable;
1240 	last = pp->mediasize / pp->sectorsize - 1;
1241 	tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent),
1242 	    pp->sectorsize);
1243 
1244 	table->lba[GPT_ELT_PRIHDR] = 1;
1245 	table->lba[GPT_ELT_PRITBL] = 2;
1246 	table->lba[GPT_ELT_SECHDR] = last;
1247 	table->lba[GPT_ELT_SECTBL] = last - tblsz;
1248 	table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK;
1249 	table->state[GPT_ELT_PRITBL] = GPT_STATE_OK;
1250 	table->state[GPT_ELT_SECHDR] = GPT_STATE_OK;
1251 	table->state[GPT_ELT_SECTBL] = GPT_STATE_OK;
1252 
1253 	max = start = 2 + tblsz;
1254 	min = end = last - tblsz - 1;
1255 	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1256 		if (baseentry->gpe_deleted)
1257 			continue;
1258 		entry = (struct g_part_gpt_entry *)baseentry;
1259 		if (entry->ent.ent_lba_start < min)
1260 			min = entry->ent.ent_lba_start;
1261 		if (entry->ent.ent_lba_end > max)
1262 			max = entry->ent.ent_lba_end;
1263 	}
1264 	spb = 4096 / pp->sectorsize;
1265 	if (spb > 1) {
1266 		lba = start + ((start % spb) ? spb - start % spb : 0);
1267 		if (lba <= min)
1268 			start = lba;
1269 		lba = end - (end + 1) % spb;
1270 		if (max <= lba)
1271 			end = lba;
1272 	}
1273 	table->hdr->hdr_lba_start = start;
1274 	table->hdr->hdr_lba_end = end;
1275 
1276 	basetable->gpt_first = start;
1277 	basetable->gpt_last = end;
1278 }
1279 
1280 static void
1281 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
1282 {
1283 	u_int bo;
1284 	uint32_t ch;
1285 	uint16_t c;
1286 
1287 	bo = LITTLE_ENDIAN;	/* GPT is little-endian */
1288 	while (len > 0 && *str != 0) {
1289 		ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
1290 		str++, len--;
1291 		if ((ch & 0xf800) == 0xd800) {
1292 			if (len > 0) {
1293 				c = (bo == BIG_ENDIAN) ? be16toh(*str)
1294 				    : le16toh(*str);
1295 				str++, len--;
1296 			} else
1297 				c = 0xfffd;
1298 			if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
1299 				ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
1300 				ch += 0x10000;
1301 			} else
1302 				ch = 0xfffd;
1303 		} else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
1304 			bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
1305 			continue;
1306 		} else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
1307 			continue;
1308 
1309 		/* Write the Unicode character in UTF-8 */
1310 		if (ch < 0x80)
1311 			g_conf_printf_escaped(sb, "%c", ch);
1312 		else if (ch < 0x800)
1313 			g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6),
1314 			    0x80 | (ch & 0x3f));
1315 		else if (ch < 0x10000)
1316 			g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12),
1317 			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1318 		else if (ch < 0x200000)
1319 			g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 |
1320 			    (ch >> 18), 0x80 | ((ch >> 12) & 0x3f),
1321 			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1322 	}
1323 }
1324 
1325 static void
1326 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
1327 {
1328 	size_t s16idx, s8idx;
1329 	uint32_t utfchar;
1330 	unsigned int c, utfbytes;
1331 
1332 	s8idx = s16idx = 0;
1333 	utfchar = 0;
1334 	utfbytes = 0;
1335 	bzero(s16, s16len << 1);
1336 	while (s8[s8idx] != 0 && s16idx < s16len) {
1337 		c = s8[s8idx++];
1338 		if ((c & 0xc0) != 0x80) {
1339 			/* Initial characters. */
1340 			if (utfbytes != 0) {
1341 				/* Incomplete encoding of previous char. */
1342 				s16[s16idx++] = htole16(0xfffd);
1343 			}
1344 			if ((c & 0xf8) == 0xf0) {
1345 				utfchar = c & 0x07;
1346 				utfbytes = 3;
1347 			} else if ((c & 0xf0) == 0xe0) {
1348 				utfchar = c & 0x0f;
1349 				utfbytes = 2;
1350 			} else if ((c & 0xe0) == 0xc0) {
1351 				utfchar = c & 0x1f;
1352 				utfbytes = 1;
1353 			} else {
1354 				utfchar = c & 0x7f;
1355 				utfbytes = 0;
1356 			}
1357 		} else {
1358 			/* Followup characters. */
1359 			if (utfbytes > 0) {
1360 				utfchar = (utfchar << 6) + (c & 0x3f);
1361 				utfbytes--;
1362 			} else if (utfbytes == 0)
1363 				utfbytes = ~0;
1364 		}
1365 		/*
1366 		 * Write the complete Unicode character as UTF-16 when we
1367 		 * have all the UTF-8 charactars collected.
1368 		 */
1369 		if (utfbytes == 0) {
1370 			/*
1371 			 * If we need to write 2 UTF-16 characters, but
1372 			 * we only have room for 1, then we truncate the
1373 			 * string by writing a 0 instead.
1374 			 */
1375 			if (utfchar >= 0x10000 && s16idx < s16len - 1) {
1376 				s16[s16idx++] =
1377 				    htole16(0xd800 | ((utfchar >> 10) - 0x40));
1378 				s16[s16idx++] =
1379 				    htole16(0xdc00 | (utfchar & 0x3ff));
1380 			} else
1381 				s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
1382 				    htole16(utfchar);
1383 		}
1384 	}
1385 	/*
1386 	 * If our input string was truncated, append an invalid encoding
1387 	 * character to the output string.
1388 	 */
1389 	if (utfbytes != 0 && s16idx < s16len)
1390 		s16[s16idx++] = htole16(0xfffd);
1391 }
1392