1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/bio.h> 34 #include <sys/diskmbr.h> 35 #include <sys/gsb_crc32.h> 36 #include <sys/endian.h> 37 #include <sys/gpt.h> 38 #include <sys/kernel.h> 39 #include <sys/kobj.h> 40 #include <sys/limits.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mutex.h> 44 #include <sys/queue.h> 45 #include <sys/sbuf.h> 46 #include <sys/systm.h> 47 #include <sys/sysctl.h> 48 #include <sys/uuid.h> 49 #include <geom/geom.h> 50 #include <geom/geom_int.h> 51 #include <geom/part/g_part.h> 52 53 #include "g_part_if.h" 54 55 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support"); 56 57 SYSCTL_DECL(_kern_geom_part); 58 static SYSCTL_NODE(_kern_geom_part, OID_AUTO, gpt, 59 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 60 "GEOM_PART_GPT GUID Partition Table"); 61 62 static u_int allow_nesting = 0; 63 SYSCTL_UINT(_kern_geom_part_gpt, OID_AUTO, allow_nesting, 64 CTLFLAG_RWTUN, &allow_nesting, 0, "Allow GPT to be nested inside other schemes"); 65 66 CTASSERT(offsetof(struct gpt_hdr, padding) == 92); 67 CTASSERT(sizeof(struct gpt_ent) == 128); 68 69 extern u_int geom_part_check_integrity; 70 71 #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) 72 73 #define MBRSIZE 512 74 75 enum gpt_elt { 76 GPT_ELT_PRIHDR, 77 GPT_ELT_PRITBL, 78 GPT_ELT_SECHDR, 79 GPT_ELT_SECTBL, 80 GPT_ELT_COUNT 81 }; 82 83 enum gpt_state { 84 GPT_STATE_UNKNOWN, /* Not determined. */ 85 GPT_STATE_MISSING, /* No signature found. */ 86 GPT_STATE_CORRUPT, /* Checksum mismatch. */ 87 GPT_STATE_INVALID, /* Nonconformant/invalid. */ 88 GPT_STATE_OK /* Perfectly fine. */ 89 }; 90 91 struct g_part_gpt_table { 92 struct g_part_table base; 93 u_char mbr[MBRSIZE]; 94 struct gpt_hdr *hdr; 95 quad_t lba[GPT_ELT_COUNT]; 96 enum gpt_state state[GPT_ELT_COUNT]; 97 int bootcamp; 98 }; 99 100 struct g_part_gpt_entry { 101 struct g_part_entry base; 102 struct gpt_ent ent; 103 }; 104 105 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); 106 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); 107 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *); 108 109 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, 110 struct g_part_parms *); 111 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); 112 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); 113 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); 114 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, 115 struct sbuf *, const char *); 116 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); 117 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, 118 struct g_part_parms *); 119 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, 120 char *, size_t); 121 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); 122 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); 123 static int g_part_gpt_setunset(struct g_part_table *table, 124 struct g_part_entry *baseentry, const char *attrib, unsigned int set); 125 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, 126 char *, size_t); 127 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); 128 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, 129 struct g_part_parms *); 130 static int g_part_gpt_recover(struct g_part_table *); 131 132 static kobj_method_t g_part_gpt_methods[] = { 133 KOBJMETHOD(g_part_add, g_part_gpt_add), 134 KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), 135 KOBJMETHOD(g_part_create, g_part_gpt_create), 136 KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), 137 KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), 138 KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), 139 KOBJMETHOD(g_part_modify, g_part_gpt_modify), 140 KOBJMETHOD(g_part_resize, g_part_gpt_resize), 141 KOBJMETHOD(g_part_name, g_part_gpt_name), 142 KOBJMETHOD(g_part_probe, g_part_gpt_probe), 143 KOBJMETHOD(g_part_read, g_part_gpt_read), 144 KOBJMETHOD(g_part_recover, g_part_gpt_recover), 145 KOBJMETHOD(g_part_setunset, g_part_gpt_setunset), 146 KOBJMETHOD(g_part_type, g_part_gpt_type), 147 KOBJMETHOD(g_part_write, g_part_gpt_write), 148 { 0, 0 } 149 }; 150 151 static struct g_part_scheme g_part_gpt_scheme = { 152 "GPT", 153 g_part_gpt_methods, 154 sizeof(struct g_part_gpt_table), 155 .gps_entrysz = sizeof(struct g_part_gpt_entry), 156 .gps_minent = 128, 157 .gps_maxent = 4096, 158 .gps_bootcodesz = MBRSIZE, 159 }; 160 G_PART_SCHEME_DECLARE(g_part_gpt); 161 MODULE_VERSION(geom_part_gpt, 0); 162 163 static struct uuid gpt_uuid_apple_apfs = GPT_ENT_TYPE_APPLE_APFS; 164 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; 165 static struct uuid gpt_uuid_apple_core_storage = 166 GPT_ENT_TYPE_APPLE_CORE_STORAGE; 167 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; 168 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; 169 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; 170 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; 171 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; 172 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; 173 static struct uuid gpt_uuid_apple_zfs = GPT_ENT_TYPE_APPLE_ZFS; 174 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT; 175 static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE; 176 static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL; 177 static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED; 178 static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT; 179 static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD; 180 static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER; 181 static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2; 182 static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32; 183 static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64; 184 static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY; 185 static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP; 186 static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1; 187 static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM; 188 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; 189 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; 190 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; 191 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS; 192 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; 193 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; 194 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; 195 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; 196 static struct uuid gpt_uuid_hifive_fsbl = GPT_ENT_TYPE_HIFIVE_FSBL; 197 static struct uuid gpt_uuid_hifive_bbl = GPT_ENT_TYPE_HIFIVE_BBL; 198 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; 199 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; 200 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; 201 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; 202 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; 203 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; 204 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; 205 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; 206 static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY; 207 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; 208 static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES; 209 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; 210 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; 211 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; 212 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; 213 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; 214 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; 215 static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA; 216 static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT; 217 static struct uuid gpt_uuid_solaris_boot = GPT_ENT_TYPE_SOLARIS_BOOT; 218 static struct uuid gpt_uuid_solaris_root = GPT_ENT_TYPE_SOLARIS_ROOT; 219 static struct uuid gpt_uuid_solaris_swap = GPT_ENT_TYPE_SOLARIS_SWAP; 220 static struct uuid gpt_uuid_solaris_backup = GPT_ENT_TYPE_SOLARIS_BACKUP; 221 static struct uuid gpt_uuid_solaris_var = GPT_ENT_TYPE_SOLARIS_VAR; 222 static struct uuid gpt_uuid_solaris_home = GPT_ENT_TYPE_SOLARIS_HOME; 223 static struct uuid gpt_uuid_solaris_altsec = GPT_ENT_TYPE_SOLARIS_ALTSEC; 224 static struct uuid gpt_uuid_solaris_reserved = GPT_ENT_TYPE_SOLARIS_RESERVED; 225 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; 226 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS; 227 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG; 228 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED; 229 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR; 230 231 static struct g_part_uuid_alias { 232 struct uuid *uuid; 233 int alias; 234 int mbrtype; 235 } gpt_uuid_alias_match[] = { 236 { &gpt_uuid_apple_apfs, G_PART_ALIAS_APPLE_APFS, 0 }, 237 { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab }, 238 { &gpt_uuid_apple_core_storage, G_PART_ALIAS_APPLE_CORE_STORAGE, 0 }, 239 { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf }, 240 { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 }, 241 { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 }, 242 { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 }, 243 { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 }, 244 { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 }, 245 { &gpt_uuid_apple_zfs, G_PART_ALIAS_APPLE_ZFS, 0 }, 246 { &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 }, 247 { &gpt_uuid_chromeos_firmware, G_PART_ALIAS_CHROMEOS_FIRMWARE, 0 }, 248 { &gpt_uuid_chromeos_kernel, G_PART_ALIAS_CHROMEOS_KERNEL, 0 }, 249 { &gpt_uuid_chromeos_reserved, G_PART_ALIAS_CHROMEOS_RESERVED, 0 }, 250 { &gpt_uuid_chromeos_root, G_PART_ALIAS_CHROMEOS_ROOT, 0 }, 251 { &gpt_uuid_dfbsd_ccd, G_PART_ALIAS_DFBSD_CCD, 0 }, 252 { &gpt_uuid_dfbsd_hammer, G_PART_ALIAS_DFBSD_HAMMER, 0 }, 253 { &gpt_uuid_dfbsd_hammer2, G_PART_ALIAS_DFBSD_HAMMER2, 0 }, 254 { &gpt_uuid_dfbsd_label32, G_PART_ALIAS_DFBSD, 0xa5 }, 255 { &gpt_uuid_dfbsd_label64, G_PART_ALIAS_DFBSD64, 0xa5 }, 256 { &gpt_uuid_dfbsd_legacy, G_PART_ALIAS_DFBSD_LEGACY, 0 }, 257 { &gpt_uuid_dfbsd_swap, G_PART_ALIAS_DFBSD_SWAP, 0 }, 258 { &gpt_uuid_dfbsd_ufs1, G_PART_ALIAS_DFBSD_UFS, 0 }, 259 { &gpt_uuid_dfbsd_vinum, G_PART_ALIAS_DFBSD_VINUM, 0 }, 260 { &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee }, 261 { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 }, 262 { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 }, 263 { &gpt_uuid_freebsd_nandfs, G_PART_ALIAS_FREEBSD_NANDFS, 0 }, 264 { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 }, 265 { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 }, 266 { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 }, 267 { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 }, 268 { &gpt_uuid_hifive_fsbl, G_PART_ALIAS_HIFIVE_FSBL, 0 }, 269 { &gpt_uuid_hifive_bbl, G_PART_ALIAS_HIFIVE_BBL, 0 }, 270 { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b }, 271 { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 }, 272 { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 }, 273 { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 }, 274 { &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 }, 275 { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b }, 276 { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 }, 277 { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 }, 278 { &gpt_uuid_ms_recovery, G_PART_ALIAS_MS_RECOVERY, 0 }, 279 { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 }, 280 { &gpt_uuid_ms_spaces, G_PART_ALIAS_MS_SPACES, 0 }, 281 { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 }, 282 { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 }, 283 { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 }, 284 { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 }, 285 { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 }, 286 { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 }, 287 { &gpt_uuid_openbsd_data, G_PART_ALIAS_OPENBSD_DATA, 0 }, 288 { &gpt_uuid_prep_boot, G_PART_ALIAS_PREP_BOOT, 0x41 }, 289 { &gpt_uuid_solaris_boot, G_PART_ALIAS_SOLARIS_BOOT, 0 }, 290 { &gpt_uuid_solaris_root, G_PART_ALIAS_SOLARIS_ROOT, 0 }, 291 { &gpt_uuid_solaris_swap, G_PART_ALIAS_SOLARIS_SWAP, 0 }, 292 { &gpt_uuid_solaris_backup, G_PART_ALIAS_SOLARIS_BACKUP, 0 }, 293 { &gpt_uuid_solaris_var, G_PART_ALIAS_SOLARIS_VAR, 0 }, 294 { &gpt_uuid_solaris_home, G_PART_ALIAS_SOLARIS_HOME, 0 }, 295 { &gpt_uuid_solaris_altsec, G_PART_ALIAS_SOLARIS_ALTSEC, 0 }, 296 { &gpt_uuid_solaris_reserved, G_PART_ALIAS_SOLARIS_RESERVED, 0 }, 297 { &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 }, 298 { &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 }, 299 { &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 }, 300 { &gpt_uuid_vmvsanhdr, G_PART_ALIAS_VMVSANHDR, 0 }, 301 { NULL, 0, 0 } 302 }; 303 304 static int 305 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start, 306 quad_t end) 307 { 308 309 if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX) 310 return (EINVAL); 311 312 mbr += DOSPARTOFF + idx * DOSPARTSIZE; 313 mbr[0] = 0; 314 if (start == 1) { 315 /* 316 * Treat the PMBR partition specially to maximize 317 * interoperability with BIOSes. 318 */ 319 mbr[1] = mbr[3] = 0; 320 mbr[2] = 2; 321 } else 322 mbr[1] = mbr[2] = mbr[3] = 0xff; 323 mbr[4] = typ; 324 mbr[5] = mbr[6] = mbr[7] = 0xff; 325 le32enc(mbr + 8, (uint32_t)start); 326 le32enc(mbr + 12, (uint32_t)(end - start + 1)); 327 return (0); 328 } 329 330 static int 331 gpt_map_type(struct uuid *t) 332 { 333 struct g_part_uuid_alias *uap; 334 335 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 336 if (EQUUID(t, uap->uuid)) 337 return (uap->mbrtype); 338 } 339 return (0); 340 } 341 342 static void 343 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp) 344 { 345 346 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 347 gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, 348 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 349 le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); 350 } 351 352 /* 353 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the 354 * whole disk anymore. Rather, it covers the GPT table and the EFI 355 * system partition only. This way the HFS+ partition and any FAT 356 * partitions can be added to the MBR without creating an overlap. 357 */ 358 static int 359 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname) 360 { 361 uint8_t *p; 362 363 p = table->mbr + DOSPARTOFF; 364 if (p[4] != 0xee || le32dec(p + 8) != 1) 365 return (0); 366 367 p += DOSPARTSIZE; 368 if (p[4] != 0xaf) 369 return (0); 370 371 printf("GEOM: %s: enabling Boot Camp\n", provname); 372 return (1); 373 } 374 375 static void 376 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp) 377 { 378 struct g_part_entry *baseentry; 379 struct g_part_gpt_entry *entry; 380 struct g_part_gpt_table *table; 381 int bootable, error, index, slices, typ; 382 383 table = (struct g_part_gpt_table *)basetable; 384 385 bootable = -1; 386 for (index = 0; index < NDOSPART; index++) { 387 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index]) 388 bootable = index; 389 } 390 391 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 392 slices = 0; 393 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 394 if (baseentry->gpe_deleted) 395 continue; 396 index = baseentry->gpe_index - 1; 397 if (index >= NDOSPART) 398 continue; 399 400 entry = (struct g_part_gpt_entry *)baseentry; 401 402 switch (index) { 403 case 0: /* This must be the EFI system partition. */ 404 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi)) 405 goto disable; 406 error = gpt_write_mbr_entry(table->mbr, index, 0xee, 407 1ull, entry->ent.ent_lba_end); 408 break; 409 case 1: /* This must be the HFS+ partition. */ 410 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs)) 411 goto disable; 412 error = gpt_write_mbr_entry(table->mbr, index, 0xaf, 413 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 414 break; 415 default: 416 typ = gpt_map_type(&entry->ent.ent_type); 417 error = gpt_write_mbr_entry(table->mbr, index, typ, 418 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 419 break; 420 } 421 if (error) 422 continue; 423 424 if (index == bootable) 425 table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80; 426 slices |= 1 << index; 427 } 428 if ((slices & 3) == 3) 429 return; 430 431 disable: 432 table->bootcamp = 0; 433 gpt_create_pmbr(table, pp); 434 } 435 436 static struct gpt_hdr * 437 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, 438 enum gpt_elt elt) 439 { 440 struct gpt_hdr *buf, *hdr; 441 struct g_provider *pp; 442 quad_t lba, last; 443 int error; 444 uint32_t crc, sz; 445 446 pp = cp->provider; 447 last = (pp->mediasize / pp->sectorsize) - 1; 448 table->state[elt] = GPT_STATE_MISSING; 449 /* 450 * If the primary header is valid look for secondary 451 * header in AlternateLBA, otherwise in the last medium's LBA. 452 */ 453 if (elt == GPT_ELT_SECHDR) { 454 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK) 455 table->lba[elt] = last; 456 } else 457 table->lba[elt] = 1; 458 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, 459 &error); 460 if (buf == NULL) 461 return (NULL); 462 hdr = NULL; 463 if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) 464 goto fail; 465 466 table->state[elt] = GPT_STATE_CORRUPT; 467 sz = le32toh(buf->hdr_size); 468 if (sz < 92 || sz > pp->sectorsize) 469 goto fail; 470 471 hdr = g_malloc(sz, M_WAITOK | M_ZERO); 472 bcopy(buf, hdr, sz); 473 hdr->hdr_size = sz; 474 475 crc = le32toh(buf->hdr_crc_self); 476 buf->hdr_crc_self = 0; 477 if (crc32(buf, sz) != crc) 478 goto fail; 479 hdr->hdr_crc_self = crc; 480 481 table->state[elt] = GPT_STATE_INVALID; 482 hdr->hdr_revision = le32toh(buf->hdr_revision); 483 if (hdr->hdr_revision < GPT_HDR_REVISION) 484 goto fail; 485 hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); 486 if (hdr->hdr_lba_self != table->lba[elt]) 487 goto fail; 488 hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); 489 if (hdr->hdr_lba_alt == hdr->hdr_lba_self) 490 goto fail; 491 if (hdr->hdr_lba_alt > last && geom_part_check_integrity) 492 goto fail; 493 494 /* Check the managed area. */ 495 hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); 496 if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) 497 goto fail; 498 hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); 499 if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) 500 goto fail; 501 502 /* Check the table location and size of the table. */ 503 hdr->hdr_entries = le32toh(buf->hdr_entries); 504 hdr->hdr_entsz = le32toh(buf->hdr_entsz); 505 if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || 506 (hdr->hdr_entsz & 7) != 0) 507 goto fail; 508 hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); 509 if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) 510 goto fail; 511 if (hdr->hdr_lba_table >= hdr->hdr_lba_start && 512 hdr->hdr_lba_table <= hdr->hdr_lba_end) 513 goto fail; 514 lba = hdr->hdr_lba_table + 515 howmany(hdr->hdr_entries * hdr->hdr_entsz, pp->sectorsize) - 1; 516 if (lba >= last) 517 goto fail; 518 if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) 519 goto fail; 520 521 table->state[elt] = GPT_STATE_OK; 522 le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); 523 hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); 524 525 /* save LBA for secondary header */ 526 if (elt == GPT_ELT_PRIHDR) 527 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt; 528 529 g_free(buf); 530 return (hdr); 531 532 fail: 533 if (hdr != NULL) 534 g_free(hdr); 535 g_free(buf); 536 return (NULL); 537 } 538 539 static struct gpt_ent * 540 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, 541 enum gpt_elt elt, struct gpt_hdr *hdr) 542 { 543 struct g_provider *pp; 544 struct gpt_ent *ent, *tbl; 545 char *buf, *p; 546 unsigned int idx, sectors, tblsz, size; 547 int error; 548 549 if (hdr == NULL) 550 return (NULL); 551 552 pp = cp->provider; 553 table->lba[elt] = hdr->hdr_lba_table; 554 555 table->state[elt] = GPT_STATE_MISSING; 556 tblsz = hdr->hdr_entries * hdr->hdr_entsz; 557 sectors = howmany(tblsz, pp->sectorsize); 558 buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO); 559 for (idx = 0; idx < sectors; idx += maxphys / pp->sectorsize) { 560 size = (sectors - idx > maxphys / pp->sectorsize) ? maxphys: 561 (sectors - idx) * pp->sectorsize; 562 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize, 563 size, &error); 564 if (p == NULL) { 565 g_free(buf); 566 return (NULL); 567 } 568 bcopy(p, buf + idx * pp->sectorsize, size); 569 g_free(p); 570 } 571 table->state[elt] = GPT_STATE_CORRUPT; 572 if (crc32(buf, tblsz) != hdr->hdr_crc_table) { 573 g_free(buf); 574 return (NULL); 575 } 576 577 table->state[elt] = GPT_STATE_OK; 578 tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), 579 M_WAITOK | M_ZERO); 580 581 for (idx = 0, ent = tbl, p = buf; 582 idx < hdr->hdr_entries; 583 idx++, ent++, p += hdr->hdr_entsz) { 584 le_uuid_dec(p, &ent->ent_type); 585 le_uuid_dec(p + 16, &ent->ent_uuid); 586 ent->ent_lba_start = le64dec(p + 32); 587 ent->ent_lba_end = le64dec(p + 40); 588 ent->ent_attr = le64dec(p + 48); 589 /* Keep UTF-16 in little-endian. */ 590 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); 591 } 592 593 g_free(buf); 594 return (tbl); 595 } 596 597 static int 598 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) 599 { 600 601 if (pri == NULL || sec == NULL) 602 return (0); 603 604 if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) 605 return (0); 606 return ((pri->hdr_revision == sec->hdr_revision && 607 pri->hdr_size == sec->hdr_size && 608 pri->hdr_lba_start == sec->hdr_lba_start && 609 pri->hdr_lba_end == sec->hdr_lba_end && 610 pri->hdr_entries == sec->hdr_entries && 611 pri->hdr_entsz == sec->hdr_entsz && 612 pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); 613 } 614 615 static int 616 gpt_parse_type(const char *type, struct uuid *uuid) 617 { 618 struct uuid tmp; 619 const char *alias; 620 int error; 621 struct g_part_uuid_alias *uap; 622 623 if (type[0] == '!') { 624 error = parse_uuid(type + 1, &tmp); 625 if (error) 626 return (error); 627 if (EQUUID(&tmp, &gpt_uuid_unused)) 628 return (EINVAL); 629 *uuid = tmp; 630 return (0); 631 } 632 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 633 alias = g_part_alias_name(uap->alias); 634 if (!strcasecmp(type, alias)) { 635 *uuid = *uap->uuid; 636 return (0); 637 } 638 } 639 return (EINVAL); 640 } 641 642 static int 643 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, 644 struct g_part_parms *gpp) 645 { 646 struct g_part_gpt_entry *entry; 647 int error; 648 649 entry = (struct g_part_gpt_entry *)baseentry; 650 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 651 if (error) 652 return (error); 653 kern_uuidgen(&entry->ent.ent_uuid, 1); 654 entry->ent.ent_lba_start = baseentry->gpe_start; 655 entry->ent.ent_lba_end = baseentry->gpe_end; 656 if (baseentry->gpe_deleted) { 657 entry->ent.ent_attr = 0; 658 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); 659 } 660 if (gpp->gpp_parms & G_PART_PARM_LABEL) 661 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 662 sizeof(entry->ent.ent_name) / 663 sizeof(entry->ent.ent_name[0])); 664 return (0); 665 } 666 667 static int 668 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) 669 { 670 struct g_part_gpt_table *table; 671 size_t codesz; 672 673 codesz = DOSPARTOFF; 674 table = (struct g_part_gpt_table *)basetable; 675 bzero(table->mbr, codesz); 676 codesz = MIN(codesz, gpp->gpp_codesize); 677 if (codesz > 0) 678 bcopy(gpp->gpp_codeptr, table->mbr, codesz); 679 return (0); 680 } 681 682 static int 683 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) 684 { 685 struct g_provider *pp; 686 struct g_part_gpt_table *table; 687 size_t tblsz; 688 689 /* Our depth should be 0 unless nesting was explicitly enabled. */ 690 if (!allow_nesting && basetable->gpt_depth != 0) 691 return (ENXIO); 692 693 table = (struct g_part_gpt_table *)basetable; 694 pp = gpp->gpp_provider; 695 tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent), 696 pp->sectorsize); 697 if (pp->sectorsize < MBRSIZE || 698 pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * 699 pp->sectorsize) 700 return (ENOSPC); 701 702 gpt_create_pmbr(table, pp); 703 704 /* Allocate space for the header */ 705 table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); 706 707 bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 708 table->hdr->hdr_revision = GPT_HDR_REVISION; 709 table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); 710 kern_uuidgen(&table->hdr->hdr_uuid, 1); 711 table->hdr->hdr_entries = basetable->gpt_entries; 712 table->hdr->hdr_entsz = sizeof(struct gpt_ent); 713 714 g_gpt_set_defaults(basetable, pp); 715 return (0); 716 } 717 718 static int 719 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) 720 { 721 struct g_part_gpt_table *table; 722 struct g_provider *pp; 723 724 table = (struct g_part_gpt_table *)basetable; 725 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 726 g_free(table->hdr); 727 table->hdr = NULL; 728 729 /* 730 * Wipe the first 2 sectors and last one to clear the partitioning. 731 * Wipe sectors only if they have valid metadata. 732 */ 733 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) 734 basetable->gpt_smhead |= 3; 735 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 736 table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1) 737 basetable->gpt_smtail |= 1; 738 return (0); 739 } 740 741 static void 742 g_part_gpt_efimedia(struct g_part_gpt_entry *entry, struct sbuf *sb) 743 { 744 sbuf_printf(sb, "HD(%d,GPT,", entry->base.gpe_index); 745 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 746 sbuf_printf(sb, ",%#jx,%#jx)", (intmax_t)entry->base.gpe_start, 747 (intmax_t)(entry->base.gpe_end - entry->base.gpe_start + 1)); 748 } 749 750 static void 751 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 752 struct sbuf *sb, const char *indent) 753 { 754 struct g_part_gpt_entry *entry; 755 756 entry = (struct g_part_gpt_entry *)baseentry; 757 if (indent == NULL) { 758 /* conftxt: libdisk compatibility */ 759 sbuf_cat(sb, " xs GPT xt "); 760 sbuf_printf_uuid(sb, &entry->ent.ent_type); 761 } else if (entry != NULL) { 762 /* confxml: partition entry information */ 763 sbuf_printf(sb, "%s<label>", indent); 764 g_gpt_printf_utf16(sb, entry->ent.ent_name, 765 sizeof(entry->ent.ent_name) >> 1); 766 sbuf_cat(sb, "</label>\n"); 767 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME) 768 sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent); 769 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) { 770 sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n", 771 indent); 772 } 773 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) { 774 sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n", 775 indent); 776 } 777 sbuf_printf(sb, "%s<rawtype>", indent); 778 sbuf_printf_uuid(sb, &entry->ent.ent_type); 779 sbuf_cat(sb, "</rawtype>\n"); 780 sbuf_printf(sb, "%s<rawuuid>", indent); 781 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 782 sbuf_cat(sb, "</rawuuid>\n"); 783 sbuf_printf(sb, "%s<efimedia>", indent); 784 g_part_gpt_efimedia(entry, sb); 785 sbuf_cat(sb, "</efimedia>\n"); 786 } else { 787 /* confxml: scheme information */ 788 } 789 } 790 791 static int 792 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) 793 { 794 struct g_part_gpt_entry *entry; 795 796 entry = (struct g_part_gpt_entry *)baseentry; 797 return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || 798 EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) || 799 EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0); 800 } 801 802 static int 803 g_part_gpt_modify(struct g_part_table *basetable, 804 struct g_part_entry *baseentry, struct g_part_parms *gpp) 805 { 806 struct g_part_gpt_entry *entry; 807 int error; 808 809 entry = (struct g_part_gpt_entry *)baseentry; 810 if (gpp->gpp_parms & G_PART_PARM_TYPE) { 811 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 812 if (error) 813 return (error); 814 } 815 if (gpp->gpp_parms & G_PART_PARM_LABEL) 816 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 817 sizeof(entry->ent.ent_name) / 818 sizeof(entry->ent.ent_name[0])); 819 return (0); 820 } 821 822 static int 823 g_part_gpt_resize(struct g_part_table *basetable, 824 struct g_part_entry *baseentry, struct g_part_parms *gpp) 825 { 826 struct g_part_gpt_entry *entry; 827 828 if (baseentry == NULL) 829 return (g_part_gpt_recover(basetable)); 830 831 entry = (struct g_part_gpt_entry *)baseentry; 832 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; 833 entry->ent.ent_lba_end = baseentry->gpe_end; 834 835 return (0); 836 } 837 838 static const char * 839 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, 840 char *buf, size_t bufsz) 841 { 842 struct g_part_gpt_entry *entry; 843 char c; 844 845 entry = (struct g_part_gpt_entry *)baseentry; 846 c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; 847 snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); 848 return (buf); 849 } 850 851 static int 852 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) 853 { 854 struct g_provider *pp; 855 u_char *buf; 856 int error, index, pri, res; 857 858 /* Our depth should be 0 unless nesting was explicitly enabled. */ 859 if (!allow_nesting && table->gpt_depth != 0) 860 return (ENXIO); 861 862 pp = cp->provider; 863 864 /* 865 * Sanity-check the provider. Since the first sector on the provider 866 * must be a PMBR and a PMBR is 512 bytes large, the sector size 867 * must be at least 512 bytes. Also, since the theoretical minimum 868 * number of sectors needed by GPT is 6, any medium that has less 869 * than 6 sectors is never going to be able to hold a GPT. The 870 * number 6 comes from: 871 * 1 sector for the PMBR 872 * 2 sectors for the GPT headers (each 1 sector) 873 * 2 sectors for the GPT tables (each 1 sector) 874 * 1 sector for an actual partition 875 * It's better to catch this pathological case early than behaving 876 * pathologically later on... 877 */ 878 if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) 879 return (ENOSPC); 880 881 /* 882 * Check that there's a MBR or a PMBR. If it's a PMBR, we return 883 * as the highest priority on a match, otherwise we assume some 884 * GPT-unaware tool has destroyed the GPT by recreating a MBR and 885 * we really want the MBR scheme to take precedence. 886 */ 887 buf = g_read_data(cp, 0L, pp->sectorsize, &error); 888 if (buf == NULL) 889 return (error); 890 res = le16dec(buf + DOSMAGICOFFSET); 891 pri = G_PART_PROBE_PRI_LOW; 892 if (res == DOSMAGIC) { 893 for (index = 0; index < NDOSPART; index++) { 894 if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee) 895 pri = G_PART_PROBE_PRI_HIGH; 896 } 897 g_free(buf); 898 899 /* Check that there's a primary header. */ 900 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); 901 if (buf == NULL) 902 return (error); 903 res = memcmp(buf, GPT_HDR_SIG, 8); 904 g_free(buf); 905 if (res == 0) 906 return (pri); 907 } else 908 g_free(buf); 909 910 /* No primary? Check that there's a secondary. */ 911 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 912 &error); 913 if (buf == NULL) 914 return (error); 915 res = memcmp(buf, GPT_HDR_SIG, 8); 916 g_free(buf); 917 return ((res == 0) ? pri : ENXIO); 918 } 919 920 static int 921 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) 922 { 923 struct gpt_hdr *prihdr, *sechdr; 924 struct gpt_ent *tbl, *pritbl, *sectbl; 925 struct g_provider *pp; 926 struct g_part_gpt_table *table; 927 struct g_part_gpt_entry *entry; 928 u_char *buf; 929 uint64_t last; 930 int error, index; 931 932 table = (struct g_part_gpt_table *)basetable; 933 pp = cp->provider; 934 last = (pp->mediasize / pp->sectorsize) - 1; 935 936 /* Read the PMBR */ 937 buf = g_read_data(cp, 0, pp->sectorsize, &error); 938 if (buf == NULL) 939 return (error); 940 bcopy(buf, table->mbr, MBRSIZE); 941 g_free(buf); 942 943 /* Read the primary header and table. */ 944 prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); 945 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { 946 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); 947 } else { 948 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 949 pritbl = NULL; 950 } 951 952 /* Read the secondary header and table. */ 953 sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); 954 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { 955 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); 956 } else { 957 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 958 sectbl = NULL; 959 } 960 961 /* Fail if we haven't got any good tables at all. */ 962 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && 963 table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 964 printf("GEOM: %s: corrupt or invalid GPT detected.\n", 965 pp->name); 966 printf("GEOM: %s: GPT rejected -- may not be recoverable.\n", 967 pp->name); 968 if (prihdr != NULL) 969 g_free(prihdr); 970 if (pritbl != NULL) 971 g_free(pritbl); 972 if (sechdr != NULL) 973 g_free(sechdr); 974 if (sectbl != NULL) 975 g_free(sectbl); 976 return (EINVAL); 977 } 978 979 /* 980 * If both headers are good but they disagree with each other, 981 * then invalidate one. We prefer to keep the primary header, 982 * unless the primary table is corrupt. 983 */ 984 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && 985 table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 986 !gpt_matched_hdrs(prihdr, sechdr)) { 987 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { 988 table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; 989 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 990 g_free(sechdr); 991 sechdr = NULL; 992 } else { 993 table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; 994 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 995 g_free(prihdr); 996 prihdr = NULL; 997 } 998 } 999 1000 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { 1001 printf("GEOM: %s: the primary GPT table is corrupt or " 1002 "invalid.\n", pp->name); 1003 printf("GEOM: %s: using the secondary instead -- recovery " 1004 "strongly advised.\n", pp->name); 1005 table->hdr = sechdr; 1006 basetable->gpt_corrupt = 1; 1007 if (prihdr != NULL) 1008 g_free(prihdr); 1009 tbl = sectbl; 1010 if (pritbl != NULL) 1011 g_free(pritbl); 1012 } else { 1013 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 1014 printf("GEOM: %s: the secondary GPT table is corrupt " 1015 "or invalid.\n", pp->name); 1016 printf("GEOM: %s: using the primary only -- recovery " 1017 "suggested.\n", pp->name); 1018 basetable->gpt_corrupt = 1; 1019 } else if (table->lba[GPT_ELT_SECHDR] != last) { 1020 printf( "GEOM: %s: the secondary GPT header is not in " 1021 "the last LBA.\n", pp->name); 1022 basetable->gpt_corrupt = 1; 1023 } 1024 table->hdr = prihdr; 1025 if (sechdr != NULL) 1026 g_free(sechdr); 1027 tbl = pritbl; 1028 if (sectbl != NULL) 1029 g_free(sectbl); 1030 } 1031 1032 basetable->gpt_first = table->hdr->hdr_lba_start; 1033 basetable->gpt_last = table->hdr->hdr_lba_end; 1034 basetable->gpt_entries = table->hdr->hdr_entries; 1035 1036 for (index = basetable->gpt_entries - 1; index >= 0; index--) { 1037 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) 1038 continue; 1039 entry = (struct g_part_gpt_entry *)g_part_new_entry( 1040 basetable, index + 1, tbl[index].ent_lba_start, 1041 tbl[index].ent_lba_end); 1042 entry->ent = tbl[index]; 1043 } 1044 1045 g_free(tbl); 1046 1047 /* 1048 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions 1049 * if (and only if) any FAT32 or FAT16 partitions have been 1050 * created. This happens irrespective of whether Boot Camp is 1051 * used/enabled, though it's generally understood to be done 1052 * to support legacy Windows under Boot Camp. We refer to this 1053 * mirroring simply as Boot Camp. We try to detect Boot Camp 1054 * so that we can update the MBR if and when GPT changes have 1055 * been made. Note that we do not enable Boot Camp if not 1056 * previously enabled because we can't assume that we're on a 1057 * Mac alongside Mac OS X. 1058 */ 1059 table->bootcamp = gpt_is_bootcamp(table, pp->name); 1060 1061 return (0); 1062 } 1063 1064 static int 1065 g_part_gpt_recover(struct g_part_table *basetable) 1066 { 1067 struct g_part_gpt_table *table; 1068 struct g_provider *pp; 1069 1070 table = (struct g_part_gpt_table *)basetable; 1071 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 1072 gpt_create_pmbr(table, pp); 1073 g_gpt_set_defaults(basetable, pp); 1074 basetable->gpt_corrupt = 0; 1075 return (0); 1076 } 1077 1078 static int 1079 g_part_gpt_setunset(struct g_part_table *basetable, 1080 struct g_part_entry *baseentry, const char *attrib, unsigned int set) 1081 { 1082 struct g_part_gpt_entry *entry; 1083 struct g_part_gpt_table *table; 1084 struct g_provider *pp; 1085 uint8_t *p; 1086 uint64_t attr; 1087 int i; 1088 1089 table = (struct g_part_gpt_table *)basetable; 1090 entry = (struct g_part_gpt_entry *)baseentry; 1091 1092 if (strcasecmp(attrib, "active") == 0) { 1093 if (table->bootcamp) { 1094 /* The active flag must be set on a valid entry. */ 1095 if (entry == NULL) 1096 return (ENXIO); 1097 if (baseentry->gpe_index > NDOSPART) 1098 return (EINVAL); 1099 for (i = 0; i < NDOSPART; i++) { 1100 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1101 p[0] = (i == baseentry->gpe_index - 1) 1102 ? ((set) ? 0x80 : 0) : 0; 1103 } 1104 } else { 1105 /* The PMBR is marked as active without an entry. */ 1106 if (entry != NULL) 1107 return (ENXIO); 1108 for (i = 0; i < NDOSPART; i++) { 1109 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1110 p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0; 1111 } 1112 } 1113 return (0); 1114 } else if (strcasecmp(attrib, "lenovofix") == 0) { 1115 /* 1116 * Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR. 1117 * This workaround allows Lenovo X220, T420, T520, etc to boot 1118 * from GPT Partitions in BIOS mode. 1119 */ 1120 1121 if (entry != NULL) 1122 return (ENXIO); 1123 1124 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 1125 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 1126 gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1, 1127 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 1128 return (0); 1129 } 1130 1131 if (entry == NULL) 1132 return (ENODEV); 1133 1134 attr = 0; 1135 if (strcasecmp(attrib, "bootme") == 0) { 1136 attr |= GPT_ENT_ATTR_BOOTME; 1137 } else if (strcasecmp(attrib, "bootonce") == 0) { 1138 attr |= GPT_ENT_ATTR_BOOTONCE; 1139 if (set) 1140 attr |= GPT_ENT_ATTR_BOOTME; 1141 } else if (strcasecmp(attrib, "bootfailed") == 0) { 1142 /* 1143 * It should only be possible to unset BOOTFAILED, but it might 1144 * be useful for test purposes to also be able to set it. 1145 */ 1146 attr |= GPT_ENT_ATTR_BOOTFAILED; 1147 } 1148 if (attr == 0) 1149 return (EINVAL); 1150 1151 if (set) 1152 attr = entry->ent.ent_attr | attr; 1153 else 1154 attr = entry->ent.ent_attr & ~attr; 1155 if (attr != entry->ent.ent_attr) { 1156 entry->ent.ent_attr = attr; 1157 if (!baseentry->gpe_created) 1158 baseentry->gpe_modified = 1; 1159 } 1160 return (0); 1161 } 1162 1163 static const char * 1164 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 1165 char *buf, size_t bufsz) 1166 { 1167 struct g_part_gpt_entry *entry; 1168 struct uuid *type; 1169 struct g_part_uuid_alias *uap; 1170 1171 entry = (struct g_part_gpt_entry *)baseentry; 1172 type = &entry->ent.ent_type; 1173 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) 1174 if (EQUUID(type, uap->uuid)) 1175 return (g_part_alias_name(uap->alias)); 1176 buf[0] = '!'; 1177 snprintf_uuid(buf + 1, bufsz - 1, type); 1178 1179 return (buf); 1180 } 1181 1182 static int 1183 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) 1184 { 1185 unsigned char *buf, *bp; 1186 struct g_provider *pp; 1187 struct g_part_entry *baseentry; 1188 struct g_part_gpt_entry *entry; 1189 struct g_part_gpt_table *table; 1190 size_t tblsz; 1191 uint32_t crc; 1192 int error, index; 1193 1194 pp = cp->provider; 1195 table = (struct g_part_gpt_table *)basetable; 1196 tblsz = howmany(table->hdr->hdr_entries * table->hdr->hdr_entsz, 1197 pp->sectorsize); 1198 1199 /* Reconstruct the MBR from the GPT if under Boot Camp. */ 1200 if (table->bootcamp) 1201 gpt_update_bootcamp(basetable, pp); 1202 1203 /* Write the PMBR */ 1204 buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); 1205 bcopy(table->mbr, buf, MBRSIZE); 1206 error = g_write_data(cp, 0, buf, pp->sectorsize); 1207 g_free(buf); 1208 if (error) 1209 return (error); 1210 1211 /* Allocate space for the header and entries. */ 1212 buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); 1213 1214 memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 1215 le32enc(buf + 8, table->hdr->hdr_revision); 1216 le32enc(buf + 12, table->hdr->hdr_size); 1217 le64enc(buf + 40, table->hdr->hdr_lba_start); 1218 le64enc(buf + 48, table->hdr->hdr_lba_end); 1219 le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); 1220 le32enc(buf + 80, table->hdr->hdr_entries); 1221 le32enc(buf + 84, table->hdr->hdr_entsz); 1222 1223 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1224 if (baseentry->gpe_deleted) 1225 continue; 1226 entry = (struct g_part_gpt_entry *)baseentry; 1227 index = baseentry->gpe_index - 1; 1228 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; 1229 le_uuid_enc(bp, &entry->ent.ent_type); 1230 le_uuid_enc(bp + 16, &entry->ent.ent_uuid); 1231 le64enc(bp + 32, entry->ent.ent_lba_start); 1232 le64enc(bp + 40, entry->ent.ent_lba_end); 1233 le64enc(bp + 48, entry->ent.ent_attr); 1234 memcpy(bp + 56, entry->ent.ent_name, 1235 sizeof(entry->ent.ent_name)); 1236 } 1237 1238 crc = crc32(buf + pp->sectorsize, 1239 table->hdr->hdr_entries * table->hdr->hdr_entsz); 1240 le32enc(buf + 88, crc); 1241 1242 /* Write primary meta-data. */ 1243 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1244 le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ 1245 le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ 1246 le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ 1247 crc = crc32(buf, table->hdr->hdr_size); 1248 le32enc(buf + 16, crc); 1249 1250 for (index = 0; index < tblsz; index += maxphys / pp->sectorsize) { 1251 error = g_write_data(cp, 1252 (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize, 1253 buf + (index + 1) * pp->sectorsize, 1254 (tblsz - index > maxphys / pp->sectorsize) ? maxphys : 1255 (tblsz - index) * pp->sectorsize); 1256 if (error) 1257 goto out; 1258 } 1259 error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, 1260 buf, pp->sectorsize); 1261 if (error) 1262 goto out; 1263 1264 /* Write secondary meta-data. */ 1265 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1266 le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ 1267 le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ 1268 le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ 1269 crc = crc32(buf, table->hdr->hdr_size); 1270 le32enc(buf + 16, crc); 1271 1272 for (index = 0; index < tblsz; index += maxphys / pp->sectorsize) { 1273 error = g_write_data(cp, 1274 (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize, 1275 buf + (index + 1) * pp->sectorsize, 1276 (tblsz - index > maxphys / pp->sectorsize) ? maxphys : 1277 (tblsz - index) * pp->sectorsize); 1278 if (error) 1279 goto out; 1280 } 1281 error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, 1282 buf, pp->sectorsize); 1283 1284 out: 1285 g_free(buf); 1286 return (error); 1287 } 1288 1289 static void 1290 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp) 1291 { 1292 struct g_part_entry *baseentry; 1293 struct g_part_gpt_entry *entry; 1294 struct g_part_gpt_table *table; 1295 quad_t start, end, min, max; 1296 quad_t lba, last; 1297 size_t spb, tblsz; 1298 1299 table = (struct g_part_gpt_table *)basetable; 1300 last = pp->mediasize / pp->sectorsize - 1; 1301 tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent), 1302 pp->sectorsize); 1303 1304 table->lba[GPT_ELT_PRIHDR] = 1; 1305 table->lba[GPT_ELT_PRITBL] = 2; 1306 table->lba[GPT_ELT_SECHDR] = last; 1307 table->lba[GPT_ELT_SECTBL] = last - tblsz; 1308 table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK; 1309 table->state[GPT_ELT_PRITBL] = GPT_STATE_OK; 1310 table->state[GPT_ELT_SECHDR] = GPT_STATE_OK; 1311 table->state[GPT_ELT_SECTBL] = GPT_STATE_OK; 1312 1313 max = start = 2 + tblsz; 1314 min = end = last - tblsz - 1; 1315 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1316 if (baseentry->gpe_deleted) 1317 continue; 1318 entry = (struct g_part_gpt_entry *)baseentry; 1319 if (entry->ent.ent_lba_start < min) 1320 min = entry->ent.ent_lba_start; 1321 if (entry->ent.ent_lba_end > max) 1322 max = entry->ent.ent_lba_end; 1323 } 1324 spb = 4096 / pp->sectorsize; 1325 if (spb > 1) { 1326 lba = start + ((start % spb) ? spb - start % spb : 0); 1327 if (lba <= min) 1328 start = lba; 1329 lba = end - (end + 1) % spb; 1330 if (max <= lba) 1331 end = lba; 1332 } 1333 table->hdr->hdr_lba_start = start; 1334 table->hdr->hdr_lba_end = end; 1335 1336 basetable->gpt_first = start; 1337 basetable->gpt_last = end; 1338 } 1339 1340 static void 1341 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) 1342 { 1343 u_int bo; 1344 uint32_t ch; 1345 uint16_t c; 1346 1347 bo = LITTLE_ENDIAN; /* GPT is little-endian */ 1348 while (len > 0 && *str != 0) { 1349 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); 1350 str++, len--; 1351 if ((ch & 0xf800) == 0xd800) { 1352 if (len > 0) { 1353 c = (bo == BIG_ENDIAN) ? be16toh(*str) 1354 : le16toh(*str); 1355 str++, len--; 1356 } else 1357 c = 0xfffd; 1358 if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { 1359 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); 1360 ch += 0x10000; 1361 } else 1362 ch = 0xfffd; 1363 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ 1364 bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; 1365 continue; 1366 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ 1367 continue; 1368 1369 /* Write the Unicode character in UTF-8 */ 1370 if (ch < 0x80) 1371 g_conf_printf_escaped(sb, "%c", ch); 1372 else if (ch < 0x800) 1373 g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6), 1374 0x80 | (ch & 0x3f)); 1375 else if (ch < 0x10000) 1376 g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12), 1377 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1378 else if (ch < 0x200000) 1379 g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 | 1380 (ch >> 18), 0x80 | ((ch >> 12) & 0x3f), 1381 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1382 } 1383 } 1384 1385 static void 1386 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) 1387 { 1388 size_t s16idx, s8idx; 1389 uint32_t utfchar; 1390 unsigned int c, utfbytes; 1391 1392 s8idx = s16idx = 0; 1393 utfchar = 0; 1394 utfbytes = 0; 1395 bzero(s16, s16len << 1); 1396 while (s8[s8idx] != 0 && s16idx < s16len) { 1397 c = s8[s8idx++]; 1398 if ((c & 0xc0) != 0x80) { 1399 /* Initial characters. */ 1400 if (utfbytes != 0) { 1401 /* Incomplete encoding of previous char. */ 1402 s16[s16idx++] = htole16(0xfffd); 1403 } 1404 if ((c & 0xf8) == 0xf0) { 1405 utfchar = c & 0x07; 1406 utfbytes = 3; 1407 } else if ((c & 0xf0) == 0xe0) { 1408 utfchar = c & 0x0f; 1409 utfbytes = 2; 1410 } else if ((c & 0xe0) == 0xc0) { 1411 utfchar = c & 0x1f; 1412 utfbytes = 1; 1413 } else { 1414 utfchar = c & 0x7f; 1415 utfbytes = 0; 1416 } 1417 } else { 1418 /* Followup characters. */ 1419 if (utfbytes > 0) { 1420 utfchar = (utfchar << 6) + (c & 0x3f); 1421 utfbytes--; 1422 } else if (utfbytes == 0) 1423 utfbytes = ~0; 1424 } 1425 /* 1426 * Write the complete Unicode character as UTF-16 when we 1427 * have all the UTF-8 charactars collected. 1428 */ 1429 if (utfbytes == 0) { 1430 /* 1431 * If we need to write 2 UTF-16 characters, but 1432 * we only have room for 1, then we truncate the 1433 * string by writing a 0 instead. 1434 */ 1435 if (utfchar >= 0x10000 && s16idx < s16len - 1) { 1436 s16[s16idx++] = 1437 htole16(0xd800 | ((utfchar >> 10) - 0x40)); 1438 s16[s16idx++] = 1439 htole16(0xdc00 | (utfchar & 0x3ff)); 1440 } else 1441 s16[s16idx++] = (utfchar >= 0x10000) ? 0 : 1442 htole16(utfchar); 1443 } 1444 } 1445 /* 1446 * If our input string was truncated, append an invalid encoding 1447 * character to the output string. 1448 */ 1449 if (utfbytes != 0 && s16idx < s16len) 1450 s16[s16idx++] = htole16(0xfffd); 1451 } 1452