1 /*- 2 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/bio.h> 32 #include <sys/diskmbr.h> 33 #include <sys/endian.h> 34 #include <sys/gpt.h> 35 #include <sys/kernel.h> 36 #include <sys/kobj.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/malloc.h> 40 #include <sys/mutex.h> 41 #include <sys/queue.h> 42 #include <sys/sbuf.h> 43 #include <sys/systm.h> 44 #include <sys/sysctl.h> 45 #include <sys/uuid.h> 46 #include <geom/geom.h> 47 #include <geom/geom_int.h> 48 #include <geom/part/g_part.h> 49 50 #include "g_part_if.h" 51 52 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support"); 53 54 CTASSERT(offsetof(struct gpt_hdr, padding) == 92); 55 CTASSERT(sizeof(struct gpt_ent) == 128); 56 57 #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) 58 59 #define MBRSIZE 512 60 61 enum gpt_elt { 62 GPT_ELT_PRIHDR, 63 GPT_ELT_PRITBL, 64 GPT_ELT_SECHDR, 65 GPT_ELT_SECTBL, 66 GPT_ELT_COUNT 67 }; 68 69 enum gpt_state { 70 GPT_STATE_UNKNOWN, /* Not determined. */ 71 GPT_STATE_MISSING, /* No signature found. */ 72 GPT_STATE_CORRUPT, /* Checksum mismatch. */ 73 GPT_STATE_INVALID, /* Nonconformant/invalid. */ 74 GPT_STATE_OK /* Perfectly fine. */ 75 }; 76 77 struct g_part_gpt_table { 78 struct g_part_table base; 79 u_char mbr[MBRSIZE]; 80 struct gpt_hdr *hdr; 81 quad_t lba[GPT_ELT_COUNT]; 82 enum gpt_state state[GPT_ELT_COUNT]; 83 int bootcamp; 84 }; 85 86 struct g_part_gpt_entry { 87 struct g_part_entry base; 88 struct gpt_ent ent; 89 }; 90 91 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); 92 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); 93 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *); 94 95 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, 96 struct g_part_parms *); 97 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); 98 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); 99 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); 100 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, 101 struct sbuf *, const char *); 102 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); 103 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, 104 struct g_part_parms *); 105 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, 106 char *, size_t); 107 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); 108 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); 109 static int g_part_gpt_setunset(struct g_part_table *table, 110 struct g_part_entry *baseentry, const char *attrib, unsigned int set); 111 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, 112 char *, size_t); 113 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); 114 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, 115 struct g_part_parms *); 116 static int g_part_gpt_recover(struct g_part_table *); 117 118 static kobj_method_t g_part_gpt_methods[] = { 119 KOBJMETHOD(g_part_add, g_part_gpt_add), 120 KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), 121 KOBJMETHOD(g_part_create, g_part_gpt_create), 122 KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), 123 KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), 124 KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), 125 KOBJMETHOD(g_part_modify, g_part_gpt_modify), 126 KOBJMETHOD(g_part_resize, g_part_gpt_resize), 127 KOBJMETHOD(g_part_name, g_part_gpt_name), 128 KOBJMETHOD(g_part_probe, g_part_gpt_probe), 129 KOBJMETHOD(g_part_read, g_part_gpt_read), 130 KOBJMETHOD(g_part_recover, g_part_gpt_recover), 131 KOBJMETHOD(g_part_setunset, g_part_gpt_setunset), 132 KOBJMETHOD(g_part_type, g_part_gpt_type), 133 KOBJMETHOD(g_part_write, g_part_gpt_write), 134 { 0, 0 } 135 }; 136 137 static struct g_part_scheme g_part_gpt_scheme = { 138 "GPT", 139 g_part_gpt_methods, 140 sizeof(struct g_part_gpt_table), 141 .gps_entrysz = sizeof(struct g_part_gpt_entry), 142 .gps_minent = 128, 143 .gps_maxent = 4096, 144 .gps_bootcodesz = MBRSIZE, 145 }; 146 G_PART_SCHEME_DECLARE(g_part_gpt); 147 148 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; 149 static struct uuid gpt_uuid_apple_core_storage = 150 GPT_ENT_TYPE_APPLE_CORE_STORAGE; 151 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; 152 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; 153 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; 154 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; 155 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; 156 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; 157 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT; 158 static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE; 159 static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL; 160 static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED; 161 static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT; 162 static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD; 163 static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER; 164 static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2; 165 static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32; 166 static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64; 167 static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY; 168 static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP; 169 static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1; 170 static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM; 171 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; 172 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; 173 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; 174 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS; 175 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; 176 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; 177 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; 178 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; 179 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; 180 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; 181 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; 182 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; 183 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; 184 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; 185 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; 186 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; 187 static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY; 188 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; 189 static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES; 190 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; 191 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; 192 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; 193 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; 194 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; 195 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; 196 static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA; 197 static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT; 198 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; 199 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS; 200 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG; 201 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED; 202 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR; 203 204 static struct g_part_uuid_alias { 205 struct uuid *uuid; 206 int alias; 207 int mbrtype; 208 } gpt_uuid_alias_match[] = { 209 { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab }, 210 { &gpt_uuid_apple_core_storage, G_PART_ALIAS_APPLE_CORE_STORAGE, 0 }, 211 { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf }, 212 { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 }, 213 { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 }, 214 { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 }, 215 { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 }, 216 { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 }, 217 { &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 }, 218 { &gpt_uuid_chromeos_firmware, G_PART_ALIAS_CHROMEOS_FIRMWARE, 0 }, 219 { &gpt_uuid_chromeos_kernel, G_PART_ALIAS_CHROMEOS_KERNEL, 0 }, 220 { &gpt_uuid_chromeos_reserved, G_PART_ALIAS_CHROMEOS_RESERVED, 0 }, 221 { &gpt_uuid_chromeos_root, G_PART_ALIAS_CHROMEOS_ROOT, 0 }, 222 { &gpt_uuid_dfbsd_ccd, G_PART_ALIAS_DFBSD_CCD, 0 }, 223 { &gpt_uuid_dfbsd_hammer, G_PART_ALIAS_DFBSD_HAMMER, 0 }, 224 { &gpt_uuid_dfbsd_hammer2, G_PART_ALIAS_DFBSD_HAMMER2, 0 }, 225 { &gpt_uuid_dfbsd_label32, G_PART_ALIAS_DFBSD, 0xa5 }, 226 { &gpt_uuid_dfbsd_label64, G_PART_ALIAS_DFBSD64, 0xa5 }, 227 { &gpt_uuid_dfbsd_legacy, G_PART_ALIAS_DFBSD_LEGACY, 0 }, 228 { &gpt_uuid_dfbsd_swap, G_PART_ALIAS_DFBSD_SWAP, 0 }, 229 { &gpt_uuid_dfbsd_ufs1, G_PART_ALIAS_DFBSD_UFS, 0 }, 230 { &gpt_uuid_dfbsd_vinum, G_PART_ALIAS_DFBSD_VINUM, 0 }, 231 { &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee }, 232 { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 }, 233 { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 }, 234 { &gpt_uuid_freebsd_nandfs, G_PART_ALIAS_FREEBSD_NANDFS, 0 }, 235 { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 }, 236 { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 }, 237 { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 }, 238 { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 }, 239 { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b }, 240 { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 }, 241 { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 }, 242 { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 }, 243 { &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 }, 244 { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b }, 245 { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 }, 246 { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 }, 247 { &gpt_uuid_ms_recovery, G_PART_ALIAS_MS_RECOVERY, 0 }, 248 { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 }, 249 { &gpt_uuid_ms_spaces, G_PART_ALIAS_MS_SPACES, 0 }, 250 { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 }, 251 { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 }, 252 { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 }, 253 { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 }, 254 { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 }, 255 { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 }, 256 { &gpt_uuid_openbsd_data, G_PART_ALIAS_OPENBSD_DATA, 0 }, 257 { &gpt_uuid_prep_boot, G_PART_ALIAS_PREP_BOOT, 0x41 }, 258 { &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 }, 259 { &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 }, 260 { &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 }, 261 { &gpt_uuid_vmvsanhdr, G_PART_ALIAS_VMVSANHDR, 0 }, 262 { NULL, 0, 0 } 263 }; 264 265 static int 266 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start, 267 quad_t end) 268 { 269 270 if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX) 271 return (EINVAL); 272 273 mbr += DOSPARTOFF + idx * DOSPARTSIZE; 274 mbr[0] = 0; 275 if (start == 1) { 276 /* 277 * Treat the PMBR partition specially to maximize 278 * interoperability with BIOSes. 279 */ 280 mbr[1] = mbr[3] = 0; 281 mbr[2] = 2; 282 } else 283 mbr[1] = mbr[2] = mbr[3] = 0xff; 284 mbr[4] = typ; 285 mbr[5] = mbr[6] = mbr[7] = 0xff; 286 le32enc(mbr + 8, (uint32_t)start); 287 le32enc(mbr + 12, (uint32_t)(end - start + 1)); 288 return (0); 289 } 290 291 static int 292 gpt_map_type(struct uuid *t) 293 { 294 struct g_part_uuid_alias *uap; 295 296 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 297 if (EQUUID(t, uap->uuid)) 298 return (uap->mbrtype); 299 } 300 return (0); 301 } 302 303 static void 304 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp) 305 { 306 307 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 308 gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, 309 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 310 le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); 311 } 312 313 /* 314 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the 315 * whole disk anymore. Rather, it covers the GPT table and the EFI 316 * system partition only. This way the HFS+ partition and any FAT 317 * partitions can be added to the MBR without creating an overlap. 318 */ 319 static int 320 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname) 321 { 322 uint8_t *p; 323 324 p = table->mbr + DOSPARTOFF; 325 if (p[4] != 0xee || le32dec(p + 8) != 1) 326 return (0); 327 328 p += DOSPARTSIZE; 329 if (p[4] != 0xaf) 330 return (0); 331 332 printf("GEOM: %s: enabling Boot Camp\n", provname); 333 return (1); 334 } 335 336 static void 337 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp) 338 { 339 struct g_part_entry *baseentry; 340 struct g_part_gpt_entry *entry; 341 struct g_part_gpt_table *table; 342 int bootable, error, index, slices, typ; 343 344 table = (struct g_part_gpt_table *)basetable; 345 346 bootable = -1; 347 for (index = 0; index < NDOSPART; index++) { 348 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index]) 349 bootable = index; 350 } 351 352 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 353 slices = 0; 354 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 355 if (baseentry->gpe_deleted) 356 continue; 357 index = baseentry->gpe_index - 1; 358 if (index >= NDOSPART) 359 continue; 360 361 entry = (struct g_part_gpt_entry *)baseentry; 362 363 switch (index) { 364 case 0: /* This must be the EFI system partition. */ 365 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi)) 366 goto disable; 367 error = gpt_write_mbr_entry(table->mbr, index, 0xee, 368 1ull, entry->ent.ent_lba_end); 369 break; 370 case 1: /* This must be the HFS+ partition. */ 371 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs)) 372 goto disable; 373 error = gpt_write_mbr_entry(table->mbr, index, 0xaf, 374 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 375 break; 376 default: 377 typ = gpt_map_type(&entry->ent.ent_type); 378 error = gpt_write_mbr_entry(table->mbr, index, typ, 379 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 380 break; 381 } 382 if (error) 383 continue; 384 385 if (index == bootable) 386 table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80; 387 slices |= 1 << index; 388 } 389 if ((slices & 3) == 3) 390 return; 391 392 disable: 393 table->bootcamp = 0; 394 gpt_create_pmbr(table, pp); 395 } 396 397 static struct gpt_hdr * 398 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, 399 enum gpt_elt elt) 400 { 401 struct gpt_hdr *buf, *hdr; 402 struct g_provider *pp; 403 quad_t lba, last; 404 int error; 405 uint32_t crc, sz; 406 407 pp = cp->provider; 408 last = (pp->mediasize / pp->sectorsize) - 1; 409 table->state[elt] = GPT_STATE_MISSING; 410 /* 411 * If the primary header is valid look for secondary 412 * header in AlternateLBA, otherwise in the last medium's LBA. 413 */ 414 if (elt == GPT_ELT_SECHDR) { 415 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK) 416 table->lba[elt] = last; 417 } else 418 table->lba[elt] = 1; 419 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, 420 &error); 421 if (buf == NULL) 422 return (NULL); 423 hdr = NULL; 424 if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) 425 goto fail; 426 427 table->state[elt] = GPT_STATE_CORRUPT; 428 sz = le32toh(buf->hdr_size); 429 if (sz < 92 || sz > pp->sectorsize) 430 goto fail; 431 432 hdr = g_malloc(sz, M_WAITOK | M_ZERO); 433 bcopy(buf, hdr, sz); 434 hdr->hdr_size = sz; 435 436 crc = le32toh(buf->hdr_crc_self); 437 buf->hdr_crc_self = 0; 438 if (crc32(buf, sz) != crc) 439 goto fail; 440 hdr->hdr_crc_self = crc; 441 442 table->state[elt] = GPT_STATE_INVALID; 443 hdr->hdr_revision = le32toh(buf->hdr_revision); 444 if (hdr->hdr_revision < GPT_HDR_REVISION) 445 goto fail; 446 hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); 447 if (hdr->hdr_lba_self != table->lba[elt]) 448 goto fail; 449 hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); 450 if (hdr->hdr_lba_alt == hdr->hdr_lba_self || 451 hdr->hdr_lba_alt > last) 452 goto fail; 453 454 /* Check the managed area. */ 455 hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); 456 if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) 457 goto fail; 458 hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); 459 if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) 460 goto fail; 461 462 /* Check the table location and size of the table. */ 463 hdr->hdr_entries = le32toh(buf->hdr_entries); 464 hdr->hdr_entsz = le32toh(buf->hdr_entsz); 465 if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || 466 (hdr->hdr_entsz & 7) != 0) 467 goto fail; 468 hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); 469 if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) 470 goto fail; 471 if (hdr->hdr_lba_table >= hdr->hdr_lba_start && 472 hdr->hdr_lba_table <= hdr->hdr_lba_end) 473 goto fail; 474 lba = hdr->hdr_lba_table + 475 (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) / 476 pp->sectorsize - 1; 477 if (lba >= last) 478 goto fail; 479 if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) 480 goto fail; 481 482 table->state[elt] = GPT_STATE_OK; 483 le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); 484 hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); 485 486 /* save LBA for secondary header */ 487 if (elt == GPT_ELT_PRIHDR) 488 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt; 489 490 g_free(buf); 491 return (hdr); 492 493 fail: 494 if (hdr != NULL) 495 g_free(hdr); 496 g_free(buf); 497 return (NULL); 498 } 499 500 static struct gpt_ent * 501 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, 502 enum gpt_elt elt, struct gpt_hdr *hdr) 503 { 504 struct g_provider *pp; 505 struct gpt_ent *ent, *tbl; 506 char *buf, *p; 507 unsigned int idx, sectors, tblsz, size; 508 int error; 509 510 if (hdr == NULL) 511 return (NULL); 512 513 pp = cp->provider; 514 table->lba[elt] = hdr->hdr_lba_table; 515 516 table->state[elt] = GPT_STATE_MISSING; 517 tblsz = hdr->hdr_entries * hdr->hdr_entsz; 518 sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize; 519 buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO); 520 for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) { 521 size = (sectors - idx > MAXPHYS / pp->sectorsize) ? MAXPHYS: 522 (sectors - idx) * pp->sectorsize; 523 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize, 524 size, &error); 525 if (p == NULL) { 526 g_free(buf); 527 return (NULL); 528 } 529 bcopy(p, buf + idx * pp->sectorsize, size); 530 g_free(p); 531 } 532 table->state[elt] = GPT_STATE_CORRUPT; 533 if (crc32(buf, tblsz) != hdr->hdr_crc_table) { 534 g_free(buf); 535 return (NULL); 536 } 537 538 table->state[elt] = GPT_STATE_OK; 539 tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), 540 M_WAITOK | M_ZERO); 541 542 for (idx = 0, ent = tbl, p = buf; 543 idx < hdr->hdr_entries; 544 idx++, ent++, p += hdr->hdr_entsz) { 545 le_uuid_dec(p, &ent->ent_type); 546 le_uuid_dec(p + 16, &ent->ent_uuid); 547 ent->ent_lba_start = le64dec(p + 32); 548 ent->ent_lba_end = le64dec(p + 40); 549 ent->ent_attr = le64dec(p + 48); 550 /* Keep UTF-16 in little-endian. */ 551 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); 552 } 553 554 g_free(buf); 555 return (tbl); 556 } 557 558 static int 559 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) 560 { 561 562 if (pri == NULL || sec == NULL) 563 return (0); 564 565 if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) 566 return (0); 567 return ((pri->hdr_revision == sec->hdr_revision && 568 pri->hdr_size == sec->hdr_size && 569 pri->hdr_lba_start == sec->hdr_lba_start && 570 pri->hdr_lba_end == sec->hdr_lba_end && 571 pri->hdr_entries == sec->hdr_entries && 572 pri->hdr_entsz == sec->hdr_entsz && 573 pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); 574 } 575 576 static int 577 gpt_parse_type(const char *type, struct uuid *uuid) 578 { 579 struct uuid tmp; 580 const char *alias; 581 int error; 582 struct g_part_uuid_alias *uap; 583 584 if (type[0] == '!') { 585 error = parse_uuid(type + 1, &tmp); 586 if (error) 587 return (error); 588 if (EQUUID(&tmp, &gpt_uuid_unused)) 589 return (EINVAL); 590 *uuid = tmp; 591 return (0); 592 } 593 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 594 alias = g_part_alias_name(uap->alias); 595 if (!strcasecmp(type, alias)) { 596 *uuid = *uap->uuid; 597 return (0); 598 } 599 } 600 return (EINVAL); 601 } 602 603 static int 604 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, 605 struct g_part_parms *gpp) 606 { 607 struct g_part_gpt_entry *entry; 608 int error; 609 610 entry = (struct g_part_gpt_entry *)baseentry; 611 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 612 if (error) 613 return (error); 614 kern_uuidgen(&entry->ent.ent_uuid, 1); 615 entry->ent.ent_lba_start = baseentry->gpe_start; 616 entry->ent.ent_lba_end = baseentry->gpe_end; 617 if (baseentry->gpe_deleted) { 618 entry->ent.ent_attr = 0; 619 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); 620 } 621 if (gpp->gpp_parms & G_PART_PARM_LABEL) 622 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 623 sizeof(entry->ent.ent_name) / 624 sizeof(entry->ent.ent_name[0])); 625 return (0); 626 } 627 628 static int 629 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) 630 { 631 struct g_part_gpt_table *table; 632 size_t codesz; 633 634 codesz = DOSPARTOFF; 635 table = (struct g_part_gpt_table *)basetable; 636 bzero(table->mbr, codesz); 637 codesz = MIN(codesz, gpp->gpp_codesize); 638 if (codesz > 0) 639 bcopy(gpp->gpp_codeptr, table->mbr, codesz); 640 return (0); 641 } 642 643 static int 644 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) 645 { 646 struct g_provider *pp; 647 struct g_part_gpt_table *table; 648 size_t tblsz; 649 650 /* We don't nest, which means that our depth should be 0. */ 651 if (basetable->gpt_depth != 0) 652 return (ENXIO); 653 654 table = (struct g_part_gpt_table *)basetable; 655 pp = gpp->gpp_provider; 656 tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) + 657 pp->sectorsize - 1) / pp->sectorsize; 658 if (pp->sectorsize < MBRSIZE || 659 pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * 660 pp->sectorsize) 661 return (ENOSPC); 662 663 gpt_create_pmbr(table, pp); 664 665 /* Allocate space for the header */ 666 table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); 667 668 bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 669 table->hdr->hdr_revision = GPT_HDR_REVISION; 670 table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); 671 kern_uuidgen(&table->hdr->hdr_uuid, 1); 672 table->hdr->hdr_entries = basetable->gpt_entries; 673 table->hdr->hdr_entsz = sizeof(struct gpt_ent); 674 675 g_gpt_set_defaults(basetable, pp); 676 return (0); 677 } 678 679 static int 680 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) 681 { 682 struct g_part_gpt_table *table; 683 struct g_provider *pp; 684 685 table = (struct g_part_gpt_table *)basetable; 686 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 687 g_free(table->hdr); 688 table->hdr = NULL; 689 690 /* 691 * Wipe the first 2 sectors to clear the partitioning. Wipe the last 692 * sector only if it has valid secondary header. 693 */ 694 basetable->gpt_smhead |= 3; 695 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 696 table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1) 697 basetable->gpt_smtail |= 1; 698 return (0); 699 } 700 701 static void 702 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 703 struct sbuf *sb, const char *indent) 704 { 705 struct g_part_gpt_entry *entry; 706 707 entry = (struct g_part_gpt_entry *)baseentry; 708 if (indent == NULL) { 709 /* conftxt: libdisk compatibility */ 710 sbuf_printf(sb, " xs GPT xt "); 711 sbuf_printf_uuid(sb, &entry->ent.ent_type); 712 } else if (entry != NULL) { 713 /* confxml: partition entry information */ 714 sbuf_printf(sb, "%s<label>", indent); 715 g_gpt_printf_utf16(sb, entry->ent.ent_name, 716 sizeof(entry->ent.ent_name) >> 1); 717 sbuf_printf(sb, "</label>\n"); 718 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME) 719 sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent); 720 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) { 721 sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n", 722 indent); 723 } 724 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) { 725 sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n", 726 indent); 727 } 728 sbuf_printf(sb, "%s<rawtype>", indent); 729 sbuf_printf_uuid(sb, &entry->ent.ent_type); 730 sbuf_printf(sb, "</rawtype>\n"); 731 sbuf_printf(sb, "%s<rawuuid>", indent); 732 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 733 sbuf_printf(sb, "</rawuuid>\n"); 734 } else { 735 /* confxml: scheme information */ 736 } 737 } 738 739 static int 740 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) 741 { 742 struct g_part_gpt_entry *entry; 743 744 entry = (struct g_part_gpt_entry *)baseentry; 745 return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || 746 EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) || 747 EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0); 748 } 749 750 static int 751 g_part_gpt_modify(struct g_part_table *basetable, 752 struct g_part_entry *baseentry, struct g_part_parms *gpp) 753 { 754 struct g_part_gpt_entry *entry; 755 int error; 756 757 entry = (struct g_part_gpt_entry *)baseentry; 758 if (gpp->gpp_parms & G_PART_PARM_TYPE) { 759 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 760 if (error) 761 return (error); 762 } 763 if (gpp->gpp_parms & G_PART_PARM_LABEL) 764 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 765 sizeof(entry->ent.ent_name) / 766 sizeof(entry->ent.ent_name[0])); 767 return (0); 768 } 769 770 static int 771 g_part_gpt_resize(struct g_part_table *basetable, 772 struct g_part_entry *baseentry, struct g_part_parms *gpp) 773 { 774 struct g_part_gpt_entry *entry; 775 776 if (baseentry == NULL) 777 return (g_part_gpt_recover(basetable)); 778 779 entry = (struct g_part_gpt_entry *)baseentry; 780 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; 781 entry->ent.ent_lba_end = baseentry->gpe_end; 782 783 return (0); 784 } 785 786 static const char * 787 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, 788 char *buf, size_t bufsz) 789 { 790 struct g_part_gpt_entry *entry; 791 char c; 792 793 entry = (struct g_part_gpt_entry *)baseentry; 794 c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; 795 snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); 796 return (buf); 797 } 798 799 static int 800 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) 801 { 802 struct g_provider *pp; 803 u_char *buf; 804 int error, index, pri, res; 805 806 /* We don't nest, which means that our depth should be 0. */ 807 if (table->gpt_depth != 0) 808 return (ENXIO); 809 810 pp = cp->provider; 811 812 /* 813 * Sanity-check the provider. Since the first sector on the provider 814 * must be a PMBR and a PMBR is 512 bytes large, the sector size 815 * must be at least 512 bytes. Also, since the theoretical minimum 816 * number of sectors needed by GPT is 6, any medium that has less 817 * than 6 sectors is never going to be able to hold a GPT. The 818 * number 6 comes from: 819 * 1 sector for the PMBR 820 * 2 sectors for the GPT headers (each 1 sector) 821 * 2 sectors for the GPT tables (each 1 sector) 822 * 1 sector for an actual partition 823 * It's better to catch this pathological case early than behaving 824 * pathologically later on... 825 */ 826 if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) 827 return (ENOSPC); 828 829 /* 830 * Check that there's a MBR or a PMBR. If it's a PMBR, we return 831 * as the highest priority on a match, otherwise we assume some 832 * GPT-unaware tool has destroyed the GPT by recreating a MBR and 833 * we really want the MBR scheme to take precedence. 834 */ 835 buf = g_read_data(cp, 0L, pp->sectorsize, &error); 836 if (buf == NULL) 837 return (error); 838 res = le16dec(buf + DOSMAGICOFFSET); 839 pri = G_PART_PROBE_PRI_LOW; 840 if (res == DOSMAGIC) { 841 for (index = 0; index < NDOSPART; index++) { 842 if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee) 843 pri = G_PART_PROBE_PRI_HIGH; 844 } 845 g_free(buf); 846 847 /* Check that there's a primary header. */ 848 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); 849 if (buf == NULL) 850 return (error); 851 res = memcmp(buf, GPT_HDR_SIG, 8); 852 g_free(buf); 853 if (res == 0) 854 return (pri); 855 } else 856 g_free(buf); 857 858 /* No primary? Check that there's a secondary. */ 859 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 860 &error); 861 if (buf == NULL) 862 return (error); 863 res = memcmp(buf, GPT_HDR_SIG, 8); 864 g_free(buf); 865 return ((res == 0) ? pri : ENXIO); 866 } 867 868 static int 869 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) 870 { 871 struct gpt_hdr *prihdr, *sechdr; 872 struct gpt_ent *tbl, *pritbl, *sectbl; 873 struct g_provider *pp; 874 struct g_part_gpt_table *table; 875 struct g_part_gpt_entry *entry; 876 u_char *buf; 877 uint64_t last; 878 int error, index; 879 880 table = (struct g_part_gpt_table *)basetable; 881 pp = cp->provider; 882 last = (pp->mediasize / pp->sectorsize) - 1; 883 884 /* Read the PMBR */ 885 buf = g_read_data(cp, 0, pp->sectorsize, &error); 886 if (buf == NULL) 887 return (error); 888 bcopy(buf, table->mbr, MBRSIZE); 889 g_free(buf); 890 891 /* Read the primary header and table. */ 892 prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); 893 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { 894 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); 895 } else { 896 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 897 pritbl = NULL; 898 } 899 900 /* Read the secondary header and table. */ 901 sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); 902 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { 903 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); 904 } else { 905 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 906 sectbl = NULL; 907 } 908 909 /* Fail if we haven't got any good tables at all. */ 910 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && 911 table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 912 printf("GEOM: %s: corrupt or invalid GPT detected.\n", 913 pp->name); 914 printf("GEOM: %s: GPT rejected -- may not be recoverable.\n", 915 pp->name); 916 return (EINVAL); 917 } 918 919 /* 920 * If both headers are good but they disagree with each other, 921 * then invalidate one. We prefer to keep the primary header, 922 * unless the primary table is corrupt. 923 */ 924 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && 925 table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 926 !gpt_matched_hdrs(prihdr, sechdr)) { 927 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { 928 table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; 929 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 930 g_free(sechdr); 931 sechdr = NULL; 932 } else { 933 table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; 934 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 935 g_free(prihdr); 936 prihdr = NULL; 937 } 938 } 939 940 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { 941 printf("GEOM: %s: the primary GPT table is corrupt or " 942 "invalid.\n", pp->name); 943 printf("GEOM: %s: using the secondary instead -- recovery " 944 "strongly advised.\n", pp->name); 945 table->hdr = sechdr; 946 basetable->gpt_corrupt = 1; 947 if (prihdr != NULL) 948 g_free(prihdr); 949 tbl = sectbl; 950 if (pritbl != NULL) 951 g_free(pritbl); 952 } else { 953 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 954 printf("GEOM: %s: the secondary GPT table is corrupt " 955 "or invalid.\n", pp->name); 956 printf("GEOM: %s: using the primary only -- recovery " 957 "suggested.\n", pp->name); 958 basetable->gpt_corrupt = 1; 959 } else if (table->lba[GPT_ELT_SECHDR] != last) { 960 printf( "GEOM: %s: the secondary GPT header is not in " 961 "the last LBA.\n", pp->name); 962 basetable->gpt_corrupt = 1; 963 } 964 table->hdr = prihdr; 965 if (sechdr != NULL) 966 g_free(sechdr); 967 tbl = pritbl; 968 if (sectbl != NULL) 969 g_free(sectbl); 970 } 971 972 basetable->gpt_first = table->hdr->hdr_lba_start; 973 basetable->gpt_last = table->hdr->hdr_lba_end; 974 basetable->gpt_entries = (table->hdr->hdr_lba_start - 2) * 975 pp->sectorsize / table->hdr->hdr_entsz; 976 977 for (index = table->hdr->hdr_entries - 1; index >= 0; index--) { 978 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) 979 continue; 980 entry = (struct g_part_gpt_entry *)g_part_new_entry( 981 basetable, index + 1, tbl[index].ent_lba_start, 982 tbl[index].ent_lba_end); 983 entry->ent = tbl[index]; 984 } 985 986 g_free(tbl); 987 988 /* 989 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions 990 * if (and only if) any FAT32 or FAT16 partitions have been 991 * created. This happens irrespective of whether Boot Camp is 992 * used/enabled, though it's generally understood to be done 993 * to support legacy Windows under Boot Camp. We refer to this 994 * mirroring simply as Boot Camp. We try to detect Boot Camp 995 * so that we can update the MBR if and when GPT changes have 996 * been made. Note that we do not enable Boot Camp if not 997 * previously enabled because we can't assume that we're on a 998 * Mac alongside Mac OS X. 999 */ 1000 table->bootcamp = gpt_is_bootcamp(table, pp->name); 1001 1002 return (0); 1003 } 1004 1005 static int 1006 g_part_gpt_recover(struct g_part_table *basetable) 1007 { 1008 struct g_part_gpt_table *table; 1009 struct g_provider *pp; 1010 1011 table = (struct g_part_gpt_table *)basetable; 1012 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 1013 gpt_create_pmbr(table, pp); 1014 g_gpt_set_defaults(basetable, pp); 1015 basetable->gpt_corrupt = 0; 1016 return (0); 1017 } 1018 1019 static int 1020 g_part_gpt_setunset(struct g_part_table *basetable, 1021 struct g_part_entry *baseentry, const char *attrib, unsigned int set) 1022 { 1023 struct g_part_gpt_entry *entry; 1024 struct g_part_gpt_table *table; 1025 struct g_provider *pp; 1026 uint8_t *p; 1027 uint64_t attr; 1028 int i; 1029 1030 table = (struct g_part_gpt_table *)basetable; 1031 entry = (struct g_part_gpt_entry *)baseentry; 1032 1033 if (strcasecmp(attrib, "active") == 0) { 1034 if (table->bootcamp) { 1035 /* The active flag must be set on a valid entry. */ 1036 if (entry == NULL) 1037 return (ENXIO); 1038 if (baseentry->gpe_index > NDOSPART) 1039 return (EINVAL); 1040 for (i = 0; i < NDOSPART; i++) { 1041 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1042 p[0] = (i == baseentry->gpe_index - 1) 1043 ? ((set) ? 0x80 : 0) : 0; 1044 } 1045 } else { 1046 /* The PMBR is marked as active without an entry. */ 1047 if (entry != NULL) 1048 return (ENXIO); 1049 for (i = 0; i < NDOSPART; i++) { 1050 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1051 p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0; 1052 } 1053 } 1054 return (0); 1055 } else if (strcasecmp(attrib, "lenovofix") == 0) { 1056 /* 1057 * Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR. 1058 * This workaround allows Lenovo X220, T420, T520, etc to boot 1059 * from GPT Partitions in BIOS mode. 1060 */ 1061 1062 if (entry != NULL) 1063 return (ENXIO); 1064 1065 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 1066 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 1067 gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1, 1068 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 1069 return (0); 1070 } 1071 1072 if (entry == NULL) 1073 return (ENODEV); 1074 1075 attr = 0; 1076 if (strcasecmp(attrib, "bootme") == 0) { 1077 attr |= GPT_ENT_ATTR_BOOTME; 1078 } else if (strcasecmp(attrib, "bootonce") == 0) { 1079 attr |= GPT_ENT_ATTR_BOOTONCE; 1080 if (set) 1081 attr |= GPT_ENT_ATTR_BOOTME; 1082 } else if (strcasecmp(attrib, "bootfailed") == 0) { 1083 /* 1084 * It should only be possible to unset BOOTFAILED, but it might 1085 * be useful for test purposes to also be able to set it. 1086 */ 1087 attr |= GPT_ENT_ATTR_BOOTFAILED; 1088 } 1089 if (attr == 0) 1090 return (EINVAL); 1091 1092 if (set) 1093 attr = entry->ent.ent_attr | attr; 1094 else 1095 attr = entry->ent.ent_attr & ~attr; 1096 if (attr != entry->ent.ent_attr) { 1097 entry->ent.ent_attr = attr; 1098 if (!baseentry->gpe_created) 1099 baseentry->gpe_modified = 1; 1100 } 1101 return (0); 1102 } 1103 1104 static const char * 1105 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 1106 char *buf, size_t bufsz) 1107 { 1108 struct g_part_gpt_entry *entry; 1109 struct uuid *type; 1110 struct g_part_uuid_alias *uap; 1111 1112 entry = (struct g_part_gpt_entry *)baseentry; 1113 type = &entry->ent.ent_type; 1114 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) 1115 if (EQUUID(type, uap->uuid)) 1116 return (g_part_alias_name(uap->alias)); 1117 buf[0] = '!'; 1118 snprintf_uuid(buf + 1, bufsz - 1, type); 1119 1120 return (buf); 1121 } 1122 1123 static int 1124 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) 1125 { 1126 unsigned char *buf, *bp; 1127 struct g_provider *pp; 1128 struct g_part_entry *baseentry; 1129 struct g_part_gpt_entry *entry; 1130 struct g_part_gpt_table *table; 1131 size_t tblsz; 1132 uint32_t crc; 1133 int error, index; 1134 1135 pp = cp->provider; 1136 table = (struct g_part_gpt_table *)basetable; 1137 tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz + 1138 pp->sectorsize - 1) / pp->sectorsize; 1139 1140 /* Reconstruct the MBR from the GPT if under Boot Camp. */ 1141 if (table->bootcamp) 1142 gpt_update_bootcamp(basetable, pp); 1143 1144 /* Write the PMBR */ 1145 buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); 1146 bcopy(table->mbr, buf, MBRSIZE); 1147 error = g_write_data(cp, 0, buf, pp->sectorsize); 1148 g_free(buf); 1149 if (error) 1150 return (error); 1151 1152 /* Allocate space for the header and entries. */ 1153 buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); 1154 1155 memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 1156 le32enc(buf + 8, table->hdr->hdr_revision); 1157 le32enc(buf + 12, table->hdr->hdr_size); 1158 le64enc(buf + 40, table->hdr->hdr_lba_start); 1159 le64enc(buf + 48, table->hdr->hdr_lba_end); 1160 le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); 1161 le32enc(buf + 80, table->hdr->hdr_entries); 1162 le32enc(buf + 84, table->hdr->hdr_entsz); 1163 1164 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1165 if (baseentry->gpe_deleted) 1166 continue; 1167 entry = (struct g_part_gpt_entry *)baseentry; 1168 index = baseentry->gpe_index - 1; 1169 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; 1170 le_uuid_enc(bp, &entry->ent.ent_type); 1171 le_uuid_enc(bp + 16, &entry->ent.ent_uuid); 1172 le64enc(bp + 32, entry->ent.ent_lba_start); 1173 le64enc(bp + 40, entry->ent.ent_lba_end); 1174 le64enc(bp + 48, entry->ent.ent_attr); 1175 memcpy(bp + 56, entry->ent.ent_name, 1176 sizeof(entry->ent.ent_name)); 1177 } 1178 1179 crc = crc32(buf + pp->sectorsize, 1180 table->hdr->hdr_entries * table->hdr->hdr_entsz); 1181 le32enc(buf + 88, crc); 1182 1183 /* Write primary meta-data. */ 1184 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1185 le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ 1186 le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ 1187 le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ 1188 crc = crc32(buf, table->hdr->hdr_size); 1189 le32enc(buf + 16, crc); 1190 1191 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1192 error = g_write_data(cp, 1193 (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize, 1194 buf + (index + 1) * pp->sectorsize, 1195 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1196 (tblsz - index) * pp->sectorsize); 1197 if (error) 1198 goto out; 1199 } 1200 error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, 1201 buf, pp->sectorsize); 1202 if (error) 1203 goto out; 1204 1205 /* Write secondary meta-data. */ 1206 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1207 le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ 1208 le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ 1209 le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ 1210 crc = crc32(buf, table->hdr->hdr_size); 1211 le32enc(buf + 16, crc); 1212 1213 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1214 error = g_write_data(cp, 1215 (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize, 1216 buf + (index + 1) * pp->sectorsize, 1217 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1218 (tblsz - index) * pp->sectorsize); 1219 if (error) 1220 goto out; 1221 } 1222 error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, 1223 buf, pp->sectorsize); 1224 1225 out: 1226 g_free(buf); 1227 return (error); 1228 } 1229 1230 static void 1231 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp) 1232 { 1233 struct g_part_entry *baseentry; 1234 struct g_part_gpt_entry *entry; 1235 struct g_part_gpt_table *table; 1236 quad_t start, end, min, max; 1237 quad_t lba, last; 1238 size_t spb, tblsz; 1239 1240 table = (struct g_part_gpt_table *)basetable; 1241 last = pp->mediasize / pp->sectorsize - 1; 1242 tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) + 1243 pp->sectorsize - 1) / pp->sectorsize; 1244 1245 table->lba[GPT_ELT_PRIHDR] = 1; 1246 table->lba[GPT_ELT_PRITBL] = 2; 1247 table->lba[GPT_ELT_SECHDR] = last; 1248 table->lba[GPT_ELT_SECTBL] = last - tblsz; 1249 table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK; 1250 table->state[GPT_ELT_PRITBL] = GPT_STATE_OK; 1251 table->state[GPT_ELT_SECHDR] = GPT_STATE_OK; 1252 table->state[GPT_ELT_SECTBL] = GPT_STATE_OK; 1253 1254 max = start = 2 + tblsz; 1255 min = end = last - tblsz - 1; 1256 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1257 if (baseentry->gpe_deleted) 1258 continue; 1259 entry = (struct g_part_gpt_entry *)baseentry; 1260 if (entry->ent.ent_lba_start < min) 1261 min = entry->ent.ent_lba_start; 1262 if (entry->ent.ent_lba_end > max) 1263 max = entry->ent.ent_lba_end; 1264 } 1265 spb = 4096 / pp->sectorsize; 1266 if (spb > 1) { 1267 lba = start + ((start % spb) ? spb - start % spb : 0); 1268 if (lba <= min) 1269 start = lba; 1270 lba = end - (end + 1) % spb; 1271 if (max <= lba) 1272 end = lba; 1273 } 1274 table->hdr->hdr_lba_start = start; 1275 table->hdr->hdr_lba_end = end; 1276 1277 basetable->gpt_first = start; 1278 basetable->gpt_last = end; 1279 } 1280 1281 static void 1282 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) 1283 { 1284 u_int bo; 1285 uint32_t ch; 1286 uint16_t c; 1287 1288 bo = LITTLE_ENDIAN; /* GPT is little-endian */ 1289 while (len > 0 && *str != 0) { 1290 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); 1291 str++, len--; 1292 if ((ch & 0xf800) == 0xd800) { 1293 if (len > 0) { 1294 c = (bo == BIG_ENDIAN) ? be16toh(*str) 1295 : le16toh(*str); 1296 str++, len--; 1297 } else 1298 c = 0xfffd; 1299 if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { 1300 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); 1301 ch += 0x10000; 1302 } else 1303 ch = 0xfffd; 1304 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ 1305 bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; 1306 continue; 1307 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ 1308 continue; 1309 1310 /* Write the Unicode character in UTF-8 */ 1311 if (ch < 0x80) 1312 g_conf_printf_escaped(sb, "%c", ch); 1313 else if (ch < 0x800) 1314 g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6), 1315 0x80 | (ch & 0x3f)); 1316 else if (ch < 0x10000) 1317 g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12), 1318 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1319 else if (ch < 0x200000) 1320 g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 | 1321 (ch >> 18), 0x80 | ((ch >> 12) & 0x3f), 1322 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1323 } 1324 } 1325 1326 static void 1327 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) 1328 { 1329 size_t s16idx, s8idx; 1330 uint32_t utfchar; 1331 unsigned int c, utfbytes; 1332 1333 s8idx = s16idx = 0; 1334 utfchar = 0; 1335 utfbytes = 0; 1336 bzero(s16, s16len << 1); 1337 while (s8[s8idx] != 0 && s16idx < s16len) { 1338 c = s8[s8idx++]; 1339 if ((c & 0xc0) != 0x80) { 1340 /* Initial characters. */ 1341 if (utfbytes != 0) { 1342 /* Incomplete encoding of previous char. */ 1343 s16[s16idx++] = htole16(0xfffd); 1344 } 1345 if ((c & 0xf8) == 0xf0) { 1346 utfchar = c & 0x07; 1347 utfbytes = 3; 1348 } else if ((c & 0xf0) == 0xe0) { 1349 utfchar = c & 0x0f; 1350 utfbytes = 2; 1351 } else if ((c & 0xe0) == 0xc0) { 1352 utfchar = c & 0x1f; 1353 utfbytes = 1; 1354 } else { 1355 utfchar = c & 0x7f; 1356 utfbytes = 0; 1357 } 1358 } else { 1359 /* Followup characters. */ 1360 if (utfbytes > 0) { 1361 utfchar = (utfchar << 6) + (c & 0x3f); 1362 utfbytes--; 1363 } else if (utfbytes == 0) 1364 utfbytes = ~0; 1365 } 1366 /* 1367 * Write the complete Unicode character as UTF-16 when we 1368 * have all the UTF-8 charactars collected. 1369 */ 1370 if (utfbytes == 0) { 1371 /* 1372 * If we need to write 2 UTF-16 characters, but 1373 * we only have room for 1, then we truncate the 1374 * string by writing a 0 instead. 1375 */ 1376 if (utfchar >= 0x10000 && s16idx < s16len - 1) { 1377 s16[s16idx++] = 1378 htole16(0xd800 | ((utfchar >> 10) - 0x40)); 1379 s16[s16idx++] = 1380 htole16(0xdc00 | (utfchar & 0x3ff)); 1381 } else 1382 s16[s16idx++] = (utfchar >= 0x10000) ? 0 : 1383 htole16(utfchar); 1384 } 1385 } 1386 /* 1387 * If our input string was truncated, append an invalid encoding 1388 * character to the output string. 1389 */ 1390 if (utfbytes != 0 && s16idx < s16len) 1391 s16[s16idx++] = htole16(0xfffd); 1392 } 1393