1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include <sys/param.h> 31 #include <sys/bio.h> 32 #include <sys/diskmbr.h> 33 #include <sys/gsb_crc32.h> 34 #include <sys/endian.h> 35 #include <sys/gpt.h> 36 #include <sys/kernel.h> 37 #include <sys/kobj.h> 38 #include <sys/limits.h> 39 #include <sys/lock.h> 40 #include <sys/malloc.h> 41 #include <sys/mutex.h> 42 #include <sys/queue.h> 43 #include <sys/sbuf.h> 44 #include <sys/systm.h> 45 #include <sys/sysctl.h> 46 #include <sys/uuid.h> 47 #include <geom/geom.h> 48 #include <geom/geom_int.h> 49 #include <geom/part/g_part.h> 50 51 #include "g_part_if.h" 52 53 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support"); 54 55 SYSCTL_DECL(_kern_geom_part); 56 static SYSCTL_NODE(_kern_geom_part, OID_AUTO, gpt, 57 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 58 "GEOM_PART_GPT GUID Partition Table"); 59 60 static u_int allow_nesting = 0; 61 SYSCTL_UINT(_kern_geom_part_gpt, OID_AUTO, allow_nesting, 62 CTLFLAG_RWTUN, &allow_nesting, 0, "Allow GPT to be nested inside other schemes"); 63 64 CTASSERT(offsetof(struct gpt_hdr, padding) == 92); 65 CTASSERT(sizeof(struct gpt_ent) == 128); 66 67 extern u_int geom_part_check_integrity; 68 69 #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) 70 71 #define MBRSIZE 512 72 73 enum gpt_elt { 74 GPT_ELT_PRIHDR, 75 GPT_ELT_PRITBL, 76 GPT_ELT_SECHDR, 77 GPT_ELT_SECTBL, 78 GPT_ELT_COUNT 79 }; 80 81 enum gpt_state { 82 GPT_STATE_UNKNOWN, /* Not determined. */ 83 GPT_STATE_MISSING, /* No signature found. */ 84 GPT_STATE_CORRUPT, /* Checksum mismatch. */ 85 GPT_STATE_INVALID, /* Nonconformant/invalid. */ 86 GPT_STATE_UNSUPPORTED, /* Not supported. */ 87 GPT_STATE_OK /* Perfectly fine. */ 88 }; 89 90 struct g_part_gpt_table { 91 struct g_part_table base; 92 u_char mbr[MBRSIZE]; 93 struct gpt_hdr *hdr; 94 quad_t lba[GPT_ELT_COUNT]; 95 enum gpt_state state[GPT_ELT_COUNT]; 96 int bootcamp; 97 }; 98 99 struct g_part_gpt_entry { 100 struct g_part_entry base; 101 struct gpt_ent ent; 102 }; 103 104 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); 105 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); 106 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *, 107 struct g_part_parms *); 108 109 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, 110 struct g_part_parms *); 111 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); 112 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); 113 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); 114 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, 115 struct sbuf *, const char *); 116 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); 117 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, 118 struct g_part_parms *); 119 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, 120 char *, size_t); 121 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); 122 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); 123 static int g_part_gpt_setunset(struct g_part_table *table, 124 struct g_part_entry *baseentry, const char *attrib, unsigned int set); 125 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, 126 char *, size_t); 127 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); 128 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, 129 struct g_part_parms *); 130 static int g_part_gpt_recover(struct g_part_table *); 131 132 static kobj_method_t g_part_gpt_methods[] = { 133 KOBJMETHOD(g_part_add, g_part_gpt_add), 134 KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), 135 KOBJMETHOD(g_part_create, g_part_gpt_create), 136 KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), 137 KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), 138 KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), 139 KOBJMETHOD(g_part_modify, g_part_gpt_modify), 140 KOBJMETHOD(g_part_resize, g_part_gpt_resize), 141 KOBJMETHOD(g_part_name, g_part_gpt_name), 142 KOBJMETHOD(g_part_probe, g_part_gpt_probe), 143 KOBJMETHOD(g_part_read, g_part_gpt_read), 144 KOBJMETHOD(g_part_recover, g_part_gpt_recover), 145 KOBJMETHOD(g_part_setunset, g_part_gpt_setunset), 146 KOBJMETHOD(g_part_type, g_part_gpt_type), 147 KOBJMETHOD(g_part_write, g_part_gpt_write), 148 { 0, 0 } 149 }; 150 151 #define MAXENTSIZE 1024 152 153 static struct g_part_scheme g_part_gpt_scheme = { 154 "GPT", 155 g_part_gpt_methods, 156 sizeof(struct g_part_gpt_table), 157 .gps_entrysz = sizeof(struct g_part_gpt_entry), 158 .gps_minent = 128, 159 .gps_maxent = 4096, 160 .gps_bootcodesz = MBRSIZE, 161 }; 162 G_PART_SCHEME_DECLARE(g_part_gpt); 163 MODULE_VERSION(geom_part_gpt, 0); 164 165 static struct uuid gpt_uuid_apple_apfs = GPT_ENT_TYPE_APPLE_APFS; 166 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; 167 static struct uuid gpt_uuid_apple_core_storage = 168 GPT_ENT_TYPE_APPLE_CORE_STORAGE; 169 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; 170 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; 171 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; 172 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; 173 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; 174 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; 175 static struct uuid gpt_uuid_apple_zfs = GPT_ENT_TYPE_APPLE_ZFS; 176 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT; 177 static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE; 178 static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL; 179 static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED; 180 static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT; 181 static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD; 182 static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER; 183 static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2; 184 static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32; 185 static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64; 186 static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY; 187 static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP; 188 static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1; 189 static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM; 190 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; 191 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; 192 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; 193 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS; 194 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; 195 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; 196 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; 197 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; 198 static struct uuid gpt_uuid_hifive_fsbl = GPT_ENT_TYPE_HIFIVE_FSBL; 199 static struct uuid gpt_uuid_hifive_bbl = GPT_ENT_TYPE_HIFIVE_BBL; 200 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; 201 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; 202 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; 203 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; 204 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; 205 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; 206 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; 207 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; 208 static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY; 209 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; 210 static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES; 211 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; 212 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; 213 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; 214 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; 215 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; 216 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; 217 static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA; 218 static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT; 219 static struct uuid gpt_uuid_solaris_boot = GPT_ENT_TYPE_SOLARIS_BOOT; 220 static struct uuid gpt_uuid_solaris_root = GPT_ENT_TYPE_SOLARIS_ROOT; 221 static struct uuid gpt_uuid_solaris_swap = GPT_ENT_TYPE_SOLARIS_SWAP; 222 static struct uuid gpt_uuid_solaris_backup = GPT_ENT_TYPE_SOLARIS_BACKUP; 223 static struct uuid gpt_uuid_solaris_var = GPT_ENT_TYPE_SOLARIS_VAR; 224 static struct uuid gpt_uuid_solaris_home = GPT_ENT_TYPE_SOLARIS_HOME; 225 static struct uuid gpt_uuid_solaris_altsec = GPT_ENT_TYPE_SOLARIS_ALTSEC; 226 static struct uuid gpt_uuid_solaris_reserved = GPT_ENT_TYPE_SOLARIS_RESERVED; 227 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; 228 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS; 229 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG; 230 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED; 231 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR; 232 233 static struct g_part_uuid_alias { 234 struct uuid *uuid; 235 int alias; 236 int mbrtype; 237 } gpt_uuid_alias_match[] = { 238 { &gpt_uuid_apple_apfs, G_PART_ALIAS_APPLE_APFS, 0 }, 239 { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab }, 240 { &gpt_uuid_apple_core_storage, G_PART_ALIAS_APPLE_CORE_STORAGE, 0 }, 241 { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf }, 242 { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 }, 243 { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 }, 244 { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 }, 245 { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 }, 246 { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 }, 247 { &gpt_uuid_apple_zfs, G_PART_ALIAS_APPLE_ZFS, 0 }, 248 { &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 }, 249 { &gpt_uuid_chromeos_firmware, G_PART_ALIAS_CHROMEOS_FIRMWARE, 0 }, 250 { &gpt_uuid_chromeos_kernel, G_PART_ALIAS_CHROMEOS_KERNEL, 0 }, 251 { &gpt_uuid_chromeos_reserved, G_PART_ALIAS_CHROMEOS_RESERVED, 0 }, 252 { &gpt_uuid_chromeos_root, G_PART_ALIAS_CHROMEOS_ROOT, 0 }, 253 { &gpt_uuid_dfbsd_ccd, G_PART_ALIAS_DFBSD_CCD, 0 }, 254 { &gpt_uuid_dfbsd_hammer, G_PART_ALIAS_DFBSD_HAMMER, 0 }, 255 { &gpt_uuid_dfbsd_hammer2, G_PART_ALIAS_DFBSD_HAMMER2, 0 }, 256 { &gpt_uuid_dfbsd_label32, G_PART_ALIAS_DFBSD, 0xa5 }, 257 { &gpt_uuid_dfbsd_label64, G_PART_ALIAS_DFBSD64, 0xa5 }, 258 { &gpt_uuid_dfbsd_legacy, G_PART_ALIAS_DFBSD_LEGACY, 0 }, 259 { &gpt_uuid_dfbsd_swap, G_PART_ALIAS_DFBSD_SWAP, 0 }, 260 { &gpt_uuid_dfbsd_ufs1, G_PART_ALIAS_DFBSD_UFS, 0 }, 261 { &gpt_uuid_dfbsd_vinum, G_PART_ALIAS_DFBSD_VINUM, 0 }, 262 { &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee }, 263 { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 }, 264 { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 }, 265 { &gpt_uuid_freebsd_nandfs, G_PART_ALIAS_FREEBSD_NANDFS, 0 }, 266 { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 }, 267 { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 }, 268 { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 }, 269 { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 }, 270 { &gpt_uuid_hifive_fsbl, G_PART_ALIAS_HIFIVE_FSBL, 0 }, 271 { &gpt_uuid_hifive_bbl, G_PART_ALIAS_HIFIVE_BBL, 0 }, 272 { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b }, 273 { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 }, 274 { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 }, 275 { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 }, 276 { &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 }, 277 { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b }, 278 { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 }, 279 { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 }, 280 { &gpt_uuid_ms_recovery, G_PART_ALIAS_MS_RECOVERY, 0 }, 281 { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 }, 282 { &gpt_uuid_ms_spaces, G_PART_ALIAS_MS_SPACES, 0 }, 283 { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 }, 284 { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 }, 285 { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 }, 286 { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 }, 287 { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 }, 288 { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 }, 289 { &gpt_uuid_openbsd_data, G_PART_ALIAS_OPENBSD_DATA, 0 }, 290 { &gpt_uuid_prep_boot, G_PART_ALIAS_PREP_BOOT, 0x41 }, 291 { &gpt_uuid_solaris_boot, G_PART_ALIAS_SOLARIS_BOOT, 0 }, 292 { &gpt_uuid_solaris_root, G_PART_ALIAS_SOLARIS_ROOT, 0 }, 293 { &gpt_uuid_solaris_swap, G_PART_ALIAS_SOLARIS_SWAP, 0 }, 294 { &gpt_uuid_solaris_backup, G_PART_ALIAS_SOLARIS_BACKUP, 0 }, 295 { &gpt_uuid_solaris_var, G_PART_ALIAS_SOLARIS_VAR, 0 }, 296 { &gpt_uuid_solaris_home, G_PART_ALIAS_SOLARIS_HOME, 0 }, 297 { &gpt_uuid_solaris_altsec, G_PART_ALIAS_SOLARIS_ALTSEC, 0 }, 298 { &gpt_uuid_solaris_reserved, G_PART_ALIAS_SOLARIS_RESERVED, 0 }, 299 { &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 }, 300 { &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 }, 301 { &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 }, 302 { &gpt_uuid_vmvsanhdr, G_PART_ALIAS_VMVSANHDR, 0 }, 303 { NULL, 0, 0 } 304 }; 305 306 static int 307 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start, 308 quad_t end) 309 { 310 311 if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX) 312 return (EINVAL); 313 314 mbr += DOSPARTOFF + idx * DOSPARTSIZE; 315 mbr[0] = 0; 316 if (start == 1) { 317 /* 318 * Treat the PMBR partition specially to maximize 319 * interoperability with BIOSes. 320 */ 321 mbr[1] = mbr[3] = 0; 322 mbr[2] = 2; 323 } else 324 mbr[1] = mbr[2] = mbr[3] = 0xff; 325 mbr[4] = typ; 326 mbr[5] = mbr[6] = mbr[7] = 0xff; 327 le32enc(mbr + 8, (uint32_t)start); 328 le32enc(mbr + 12, (uint32_t)(end - start + 1)); 329 return (0); 330 } 331 332 static int 333 gpt_map_type(struct uuid *t) 334 { 335 struct g_part_uuid_alias *uap; 336 337 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 338 if (EQUUID(t, uap->uuid)) 339 return (uap->mbrtype); 340 } 341 return (0); 342 } 343 344 static void 345 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp) 346 { 347 348 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 349 gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, 350 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 351 le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); 352 } 353 354 /* 355 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the 356 * whole disk anymore. Rather, it covers the GPT table and the EFI 357 * system partition only. This way the HFS+ partition and any FAT 358 * partitions can be added to the MBR without creating an overlap. 359 */ 360 static int 361 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname) 362 { 363 uint8_t *p; 364 365 p = table->mbr + DOSPARTOFF; 366 if (p[4] != 0xee || le32dec(p + 8) != 1) 367 return (0); 368 369 p += DOSPARTSIZE; 370 if (p[4] != 0xaf) 371 return (0); 372 373 printf("GEOM: %s: enabling Boot Camp\n", provname); 374 return (1); 375 } 376 377 static void 378 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp) 379 { 380 struct g_part_entry *baseentry; 381 struct g_part_gpt_entry *entry; 382 struct g_part_gpt_table *table; 383 int bootable, error, index, slices, typ; 384 385 table = (struct g_part_gpt_table *)basetable; 386 387 bootable = -1; 388 for (index = 0; index < NDOSPART; index++) { 389 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index]) 390 bootable = index; 391 } 392 393 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 394 slices = 0; 395 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 396 if (baseentry->gpe_deleted) 397 continue; 398 index = baseentry->gpe_index - 1; 399 if (index >= NDOSPART) 400 continue; 401 402 entry = (struct g_part_gpt_entry *)baseentry; 403 404 switch (index) { 405 case 0: /* This must be the EFI system partition. */ 406 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi)) 407 goto disable; 408 error = gpt_write_mbr_entry(table->mbr, index, 0xee, 409 1ull, entry->ent.ent_lba_end); 410 break; 411 case 1: /* This must be the HFS+ partition. */ 412 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs)) 413 goto disable; 414 error = gpt_write_mbr_entry(table->mbr, index, 0xaf, 415 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 416 break; 417 default: 418 typ = gpt_map_type(&entry->ent.ent_type); 419 error = gpt_write_mbr_entry(table->mbr, index, typ, 420 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 421 break; 422 } 423 if (error) 424 continue; 425 426 if (index == bootable) 427 table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80; 428 slices |= 1 << index; 429 } 430 if ((slices & 3) == 3) 431 return; 432 433 disable: 434 table->bootcamp = 0; 435 gpt_create_pmbr(table, pp); 436 } 437 438 static struct gpt_hdr * 439 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, 440 enum gpt_elt elt) 441 { 442 struct gpt_hdr *buf, *hdr; 443 struct g_provider *pp; 444 quad_t lba, last; 445 int error; 446 uint32_t crc, sz; 447 448 pp = cp->provider; 449 last = (pp->mediasize / pp->sectorsize) - 1; 450 table->state[elt] = GPT_STATE_MISSING; 451 /* 452 * If the primary header is valid look for secondary 453 * header in AlternateLBA, otherwise in the last medium's LBA. 454 */ 455 if (elt == GPT_ELT_SECHDR) { 456 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK) 457 table->lba[elt] = last; 458 } else 459 table->lba[elt] = 1; 460 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, 461 &error); 462 if (buf == NULL) 463 return (NULL); 464 hdr = NULL; 465 if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) 466 goto fail; 467 468 table->state[elt] = GPT_STATE_CORRUPT; 469 sz = le32toh(buf->hdr_size); 470 if (sz < 92 || sz > pp->sectorsize) 471 goto fail; 472 473 hdr = g_malloc(sz, M_WAITOK | M_ZERO); 474 bcopy(buf, hdr, sz); 475 hdr->hdr_size = sz; 476 477 crc = le32toh(buf->hdr_crc_self); 478 buf->hdr_crc_self = 0; 479 if (crc32(buf, sz) != crc) 480 goto fail; 481 hdr->hdr_crc_self = crc; 482 483 table->state[elt] = GPT_STATE_INVALID; 484 hdr->hdr_revision = le32toh(buf->hdr_revision); 485 if (hdr->hdr_revision < GPT_HDR_REVISION) 486 goto fail; 487 hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); 488 if (hdr->hdr_lba_self != table->lba[elt]) 489 goto fail; 490 hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); 491 if (hdr->hdr_lba_alt == hdr->hdr_lba_self) 492 goto fail; 493 if (hdr->hdr_lba_alt > last && geom_part_check_integrity) 494 goto fail; 495 496 /* Check the managed area. */ 497 hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); 498 if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) 499 goto fail; 500 hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); 501 if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) 502 goto fail; 503 504 /* Check the table location and size of the table. */ 505 hdr->hdr_entries = le32toh(buf->hdr_entries); 506 hdr->hdr_entsz = le32toh(buf->hdr_entsz); 507 if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || 508 (hdr->hdr_entsz & 7) != 0) 509 goto fail; 510 hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); 511 if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) 512 goto fail; 513 if (hdr->hdr_lba_table >= hdr->hdr_lba_start && 514 hdr->hdr_lba_table <= hdr->hdr_lba_end) 515 goto fail; 516 lba = hdr->hdr_lba_table + 517 howmany((uint64_t)hdr->hdr_entries * hdr->hdr_entsz, 518 pp->sectorsize) - 1; 519 if (lba >= last) 520 goto fail; 521 if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) 522 goto fail; 523 524 table->state[elt] = GPT_STATE_OK; 525 le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); 526 hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); 527 528 /* save LBA for secondary header */ 529 if (elt == GPT_ELT_PRIHDR) 530 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt; 531 532 g_free(buf); 533 return (hdr); 534 535 fail: 536 g_free(hdr); 537 g_free(buf); 538 return (NULL); 539 } 540 541 static struct gpt_ent * 542 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, 543 enum gpt_elt elt, struct gpt_hdr *hdr) 544 { 545 struct g_provider *pp; 546 struct gpt_ent *ent, *tbl; 547 char *buf, *p; 548 unsigned int idx, sectors, tblsz, size; 549 int error; 550 551 if (hdr == NULL) 552 return (NULL); 553 if (hdr->hdr_entries > g_part_gpt_scheme.gps_maxent || 554 hdr->hdr_entsz > MAXENTSIZE) { 555 table->state[elt] = GPT_STATE_UNSUPPORTED; 556 return (NULL); 557 } 558 559 pp = cp->provider; 560 table->lba[elt] = hdr->hdr_lba_table; 561 562 table->state[elt] = GPT_STATE_MISSING; 563 tblsz = hdr->hdr_entries * hdr->hdr_entsz; 564 sectors = howmany(tblsz, pp->sectorsize); 565 buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO); 566 for (idx = 0; idx < sectors; idx += maxphys / pp->sectorsize) { 567 size = (sectors - idx > maxphys / pp->sectorsize) ? maxphys: 568 (sectors - idx) * pp->sectorsize; 569 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize, 570 size, &error); 571 if (p == NULL) { 572 g_free(buf); 573 return (NULL); 574 } 575 bcopy(p, buf + idx * pp->sectorsize, size); 576 g_free(p); 577 } 578 table->state[elt] = GPT_STATE_CORRUPT; 579 if (crc32(buf, tblsz) != hdr->hdr_crc_table) { 580 g_free(buf); 581 return (NULL); 582 } 583 584 table->state[elt] = GPT_STATE_OK; 585 tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), 586 M_WAITOK | M_ZERO); 587 588 for (idx = 0, ent = tbl, p = buf; 589 idx < hdr->hdr_entries; 590 idx++, ent++, p += hdr->hdr_entsz) { 591 le_uuid_dec(p, &ent->ent_type); 592 le_uuid_dec(p + 16, &ent->ent_uuid); 593 ent->ent_lba_start = le64dec(p + 32); 594 ent->ent_lba_end = le64dec(p + 40); 595 ent->ent_attr = le64dec(p + 48); 596 /* Keep UTF-16 in little-endian. */ 597 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); 598 } 599 600 g_free(buf); 601 return (tbl); 602 } 603 604 static int 605 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) 606 { 607 608 if (pri == NULL || sec == NULL) 609 return (0); 610 611 if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) 612 return (0); 613 return ((pri->hdr_revision == sec->hdr_revision && 614 pri->hdr_size == sec->hdr_size && 615 pri->hdr_lba_start == sec->hdr_lba_start && 616 pri->hdr_lba_end == sec->hdr_lba_end && 617 pri->hdr_entries == sec->hdr_entries && 618 pri->hdr_entsz == sec->hdr_entsz && 619 pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); 620 } 621 622 static int 623 gpt_parse_type(const char *type, struct uuid *uuid) 624 { 625 struct uuid tmp; 626 const char *alias; 627 int error; 628 struct g_part_uuid_alias *uap; 629 630 if (type[0] == '!') { 631 error = parse_uuid(type + 1, &tmp); 632 if (error) 633 return (error); 634 if (EQUUID(&tmp, &gpt_uuid_unused)) 635 return (EINVAL); 636 *uuid = tmp; 637 return (0); 638 } 639 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 640 alias = g_part_alias_name(uap->alias); 641 if (!strcasecmp(type, alias)) { 642 *uuid = *uap->uuid; 643 return (0); 644 } 645 } 646 return (EINVAL); 647 } 648 649 static int 650 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, 651 struct g_part_parms *gpp) 652 { 653 struct g_part_gpt_entry *entry; 654 int error; 655 656 entry = (struct g_part_gpt_entry *)baseentry; 657 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 658 if (error) 659 return (error); 660 kern_uuidgen(&entry->ent.ent_uuid, 1); 661 entry->ent.ent_lba_start = baseentry->gpe_start; 662 entry->ent.ent_lba_end = baseentry->gpe_end; 663 if (baseentry->gpe_deleted) { 664 entry->ent.ent_attr = 0; 665 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); 666 } 667 if (gpp->gpp_parms & G_PART_PARM_LABEL) 668 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 669 sizeof(entry->ent.ent_name) / 670 sizeof(entry->ent.ent_name[0])); 671 return (0); 672 } 673 674 static int 675 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) 676 { 677 struct g_part_gpt_table *table; 678 size_t codesz; 679 680 codesz = DOSPARTOFF; 681 table = (struct g_part_gpt_table *)basetable; 682 bzero(table->mbr, codesz); 683 codesz = MIN(codesz, gpp->gpp_codesize); 684 if (codesz > 0) 685 bcopy(gpp->gpp_codeptr, table->mbr, codesz); 686 return (0); 687 } 688 689 static int 690 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) 691 { 692 struct g_provider *pp; 693 struct g_part_gpt_table *table; 694 size_t tblsz; 695 696 /* Our depth should be 0 unless nesting was explicitly enabled. */ 697 if (!allow_nesting && basetable->gpt_depth != 0) 698 return (ENXIO); 699 700 table = (struct g_part_gpt_table *)basetable; 701 pp = gpp->gpp_provider; 702 tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent), 703 pp->sectorsize); 704 if (pp->sectorsize < MBRSIZE || 705 pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * 706 pp->sectorsize) 707 return (ENOSPC); 708 709 gpt_create_pmbr(table, pp); 710 711 /* Allocate space for the header */ 712 table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); 713 714 bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 715 table->hdr->hdr_revision = GPT_HDR_REVISION; 716 table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); 717 kern_uuidgen(&table->hdr->hdr_uuid, 1); 718 table->hdr->hdr_entries = basetable->gpt_entries; 719 table->hdr->hdr_entsz = sizeof(struct gpt_ent); 720 721 g_gpt_set_defaults(basetable, pp, gpp); 722 return (0); 723 } 724 725 static int 726 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) 727 { 728 struct g_part_gpt_table *table; 729 struct g_provider *pp; 730 731 table = (struct g_part_gpt_table *)basetable; 732 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 733 g_free(table->hdr); 734 table->hdr = NULL; 735 736 /* 737 * Wipe the first 2 sectors and last one to clear the partitioning. 738 * Wipe sectors only if they have valid metadata. 739 */ 740 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) 741 basetable->gpt_smhead |= 3; 742 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 743 table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1) 744 basetable->gpt_smtail |= 1; 745 return (0); 746 } 747 748 static void 749 g_part_gpt_efimedia(struct g_part_gpt_entry *entry, struct sbuf *sb) 750 { 751 sbuf_printf(sb, "HD(%d,GPT,", entry->base.gpe_index); 752 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 753 sbuf_printf(sb, ",%#jx,%#jx)", (intmax_t)entry->base.gpe_start, 754 (intmax_t)(entry->base.gpe_end - entry->base.gpe_start + 1)); 755 } 756 757 static void 758 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 759 struct sbuf *sb, const char *indent) 760 { 761 struct g_part_gpt_entry *entry; 762 763 entry = (struct g_part_gpt_entry *)baseentry; 764 if (indent == NULL) { 765 /* conftxt: libdisk compatibility */ 766 sbuf_cat(sb, " xs GPT xt "); 767 sbuf_printf_uuid(sb, &entry->ent.ent_type); 768 } else if (entry != NULL) { 769 /* confxml: partition entry information */ 770 sbuf_printf(sb, "%s<label>", indent); 771 g_gpt_printf_utf16(sb, entry->ent.ent_name, 772 sizeof(entry->ent.ent_name) >> 1); 773 sbuf_cat(sb, "</label>\n"); 774 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME) 775 sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent); 776 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) { 777 sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n", 778 indent); 779 } 780 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) { 781 sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n", 782 indent); 783 } 784 sbuf_printf(sb, "%s<rawtype>", indent); 785 sbuf_printf_uuid(sb, &entry->ent.ent_type); 786 sbuf_cat(sb, "</rawtype>\n"); 787 sbuf_printf(sb, "%s<rawuuid>", indent); 788 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 789 sbuf_cat(sb, "</rawuuid>\n"); 790 sbuf_printf(sb, "%s<efimedia>", indent); 791 g_part_gpt_efimedia(entry, sb); 792 sbuf_cat(sb, "</efimedia>\n"); 793 } else { 794 /* confxml: scheme information */ 795 } 796 } 797 798 static int 799 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) 800 { 801 struct g_part_gpt_entry *entry; 802 803 entry = (struct g_part_gpt_entry *)baseentry; 804 return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || 805 EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) || 806 EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0); 807 } 808 809 static int 810 g_part_gpt_modify(struct g_part_table *basetable, 811 struct g_part_entry *baseentry, struct g_part_parms *gpp) 812 { 813 struct g_part_gpt_entry *entry; 814 int error; 815 816 entry = (struct g_part_gpt_entry *)baseentry; 817 if (gpp->gpp_parms & G_PART_PARM_TYPE) { 818 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 819 if (error) 820 return (error); 821 } 822 if (gpp->gpp_parms & G_PART_PARM_LABEL) 823 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 824 sizeof(entry->ent.ent_name) / 825 sizeof(entry->ent.ent_name[0])); 826 return (0); 827 } 828 829 static int 830 g_part_gpt_resize(struct g_part_table *basetable, 831 struct g_part_entry *baseentry, struct g_part_parms *gpp) 832 { 833 struct g_part_gpt_entry *entry; 834 835 if (baseentry == NULL) 836 return (g_part_gpt_recover(basetable)); 837 838 entry = (struct g_part_gpt_entry *)baseentry; 839 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; 840 entry->ent.ent_lba_end = baseentry->gpe_end; 841 842 return (0); 843 } 844 845 static const char * 846 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, 847 char *buf, size_t bufsz) 848 { 849 struct g_part_gpt_entry *entry; 850 char c; 851 852 entry = (struct g_part_gpt_entry *)baseentry; 853 c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; 854 snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); 855 return (buf); 856 } 857 858 static int 859 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) 860 { 861 struct g_provider *pp; 862 u_char *buf; 863 int error, index, pri, res; 864 865 /* Our depth should be 0 unless nesting was explicitly enabled. */ 866 if (!allow_nesting && table->gpt_depth != 0) 867 return (ENXIO); 868 869 pp = cp->provider; 870 871 /* 872 * Sanity-check the provider. Since the first sector on the provider 873 * must be a PMBR and a PMBR is 512 bytes large, the sector size 874 * must be at least 512 bytes. Also, since the theoretical minimum 875 * number of sectors needed by GPT is 6, any medium that has less 876 * than 6 sectors is never going to be able to hold a GPT. The 877 * number 6 comes from: 878 * 1 sector for the PMBR 879 * 2 sectors for the GPT headers (each 1 sector) 880 * 2 sectors for the GPT tables (each 1 sector) 881 * 1 sector for an actual partition 882 * It's better to catch this pathological case early than behaving 883 * pathologically later on... 884 */ 885 if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) 886 return (ENOSPC); 887 888 /* 889 * Check that there's a MBR or a PMBR. If it's a PMBR, we return 890 * as the highest priority on a match, otherwise we assume some 891 * GPT-unaware tool has destroyed the GPT by recreating a MBR and 892 * we really want the MBR scheme to take precedence. 893 */ 894 buf = g_read_data(cp, 0L, pp->sectorsize, &error); 895 if (buf == NULL) 896 return (error); 897 res = le16dec(buf + DOSMAGICOFFSET); 898 pri = G_PART_PROBE_PRI_LOW; 899 if (res == DOSMAGIC) { 900 for (index = 0; index < NDOSPART; index++) { 901 if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee) 902 pri = G_PART_PROBE_PRI_HIGH; 903 } 904 g_free(buf); 905 906 /* Check that there's a primary header. */ 907 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); 908 if (buf == NULL) 909 return (error); 910 res = memcmp(buf, GPT_HDR_SIG, 8); 911 g_free(buf); 912 if (res == 0) 913 return (pri); 914 } else 915 g_free(buf); 916 917 /* No primary? Check that there's a secondary. */ 918 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 919 &error); 920 if (buf == NULL) 921 return (error); 922 res = memcmp(buf, GPT_HDR_SIG, 8); 923 g_free(buf); 924 return ((res == 0) ? pri : ENXIO); 925 } 926 927 static int 928 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) 929 { 930 struct gpt_hdr *prihdr, *sechdr; 931 struct gpt_ent *tbl, *pritbl, *sectbl; 932 struct g_provider *pp; 933 struct g_part_gpt_table *table; 934 struct g_part_gpt_entry *entry; 935 u_char *buf; 936 uint64_t last; 937 int error, index; 938 939 table = (struct g_part_gpt_table *)basetable; 940 pp = cp->provider; 941 last = (pp->mediasize / pp->sectorsize) - 1; 942 943 /* Read the PMBR */ 944 buf = g_read_data(cp, 0, pp->sectorsize, &error); 945 if (buf == NULL) 946 return (error); 947 bcopy(buf, table->mbr, MBRSIZE); 948 g_free(buf); 949 950 /* Read the primary header and table. */ 951 prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); 952 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { 953 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); 954 } else { 955 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 956 pritbl = NULL; 957 } 958 959 /* Read the secondary header and table. */ 960 sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); 961 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { 962 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); 963 } else { 964 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 965 sectbl = NULL; 966 } 967 968 /* Fail if we haven't got any good tables at all. */ 969 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && 970 table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 971 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_UNSUPPORTED && 972 table->state[GPT_ELT_SECTBL] == GPT_STATE_UNSUPPORTED && 973 gpt_matched_hdrs(prihdr, sechdr)) { 974 printf("GEOM: %s: unsupported GPT detected.\n", 975 pp->name); 976 printf( 977 "GEOM: %s: number of GPT entries: %u, entry size: %uB.\n", 978 pp->name, prihdr->hdr_entries, prihdr->hdr_entsz); 979 printf( 980 "GEOM: %s: maximum supported number of GPT entries: %u, entry size: %uB.\n", 981 pp->name, g_part_gpt_scheme.gps_maxent, MAXENTSIZE); 982 printf("GEOM: %s: GPT rejected.\n", pp->name); 983 } else { 984 printf("GEOM: %s: corrupt or invalid GPT detected.\n", 985 pp->name); 986 printf( 987 "GEOM: %s: GPT rejected -- may not be recoverable.\n", 988 pp->name); 989 } 990 g_free(prihdr); 991 g_free(pritbl); 992 g_free(sechdr); 993 g_free(sectbl); 994 return (EINVAL); 995 } 996 997 /* 998 * If both headers are good but they disagree with each other, 999 * then invalidate one. We prefer to keep the primary header, 1000 * unless the primary table is corrupt. 1001 */ 1002 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && 1003 table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 1004 !gpt_matched_hdrs(prihdr, sechdr)) { 1005 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { 1006 table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; 1007 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 1008 g_free(sechdr); 1009 sechdr = NULL; 1010 } else { 1011 table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; 1012 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 1013 g_free(prihdr); 1014 prihdr = NULL; 1015 } 1016 } 1017 1018 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { 1019 printf("GEOM: %s: the primary GPT table is corrupt or " 1020 "invalid.\n", pp->name); 1021 printf("GEOM: %s: using the secondary instead -- recovery " 1022 "strongly advised.\n", pp->name); 1023 table->hdr = sechdr; 1024 basetable->gpt_corrupt = 1; 1025 g_free(prihdr); 1026 tbl = sectbl; 1027 g_free(pritbl); 1028 } else { 1029 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 1030 printf("GEOM: %s: the secondary GPT table is corrupt " 1031 "or invalid.\n", pp->name); 1032 printf("GEOM: %s: using the primary only -- recovery " 1033 "suggested.\n", pp->name); 1034 basetable->gpt_corrupt = 1; 1035 } else if (table->lba[GPT_ELT_SECHDR] != last) { 1036 printf( "GEOM: %s: the secondary GPT header is not in " 1037 "the last LBA.\n", pp->name); 1038 basetable->gpt_corrupt = 1; 1039 } 1040 table->hdr = prihdr; 1041 g_free(sechdr); 1042 tbl = pritbl; 1043 g_free(sectbl); 1044 } 1045 1046 basetable->gpt_first = table->hdr->hdr_lba_start; 1047 basetable->gpt_last = table->hdr->hdr_lba_end; 1048 basetable->gpt_entries = table->hdr->hdr_entries; 1049 1050 for (index = basetable->gpt_entries - 1; index >= 0; index--) { 1051 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) 1052 continue; 1053 entry = (struct g_part_gpt_entry *)g_part_new_entry( 1054 basetable, index + 1, tbl[index].ent_lba_start, 1055 tbl[index].ent_lba_end); 1056 entry->ent = tbl[index]; 1057 } 1058 1059 g_free(tbl); 1060 1061 /* 1062 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions 1063 * if (and only if) any FAT32 or FAT16 partitions have been 1064 * created. This happens irrespective of whether Boot Camp is 1065 * used/enabled, though it's generally understood to be done 1066 * to support legacy Windows under Boot Camp. We refer to this 1067 * mirroring simply as Boot Camp. We try to detect Boot Camp 1068 * so that we can update the MBR if and when GPT changes have 1069 * been made. Note that we do not enable Boot Camp if not 1070 * previously enabled because we can't assume that we're on a 1071 * Mac alongside Mac OS X. 1072 */ 1073 table->bootcamp = gpt_is_bootcamp(table, pp->name); 1074 1075 return (0); 1076 } 1077 1078 static int 1079 g_part_gpt_recover(struct g_part_table *basetable) 1080 { 1081 struct g_part_gpt_table *table; 1082 struct g_provider *pp; 1083 1084 table = (struct g_part_gpt_table *)basetable; 1085 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 1086 gpt_create_pmbr(table, pp); 1087 g_gpt_set_defaults(basetable, pp, NULL); 1088 basetable->gpt_corrupt = 0; 1089 return (0); 1090 } 1091 1092 static int 1093 g_part_gpt_setunset(struct g_part_table *basetable, 1094 struct g_part_entry *baseentry, const char *attrib, unsigned int set) 1095 { 1096 struct g_part_gpt_entry *entry; 1097 struct g_part_gpt_table *table; 1098 struct g_provider *pp; 1099 uint8_t *p; 1100 uint64_t attr; 1101 int i; 1102 1103 table = (struct g_part_gpt_table *)basetable; 1104 entry = (struct g_part_gpt_entry *)baseentry; 1105 1106 if (strcasecmp(attrib, "active") == 0) { 1107 if (table->bootcamp) { 1108 /* The active flag must be set on a valid entry. */ 1109 if (entry == NULL) 1110 return (ENXIO); 1111 if (baseentry->gpe_index > NDOSPART) 1112 return (EINVAL); 1113 for (i = 0; i < NDOSPART; i++) { 1114 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1115 p[0] = (i == baseentry->gpe_index - 1) 1116 ? ((set) ? 0x80 : 0) : 0; 1117 } 1118 } else { 1119 /* The PMBR is marked as active without an entry. */ 1120 if (entry != NULL) 1121 return (ENXIO); 1122 for (i = 0; i < NDOSPART; i++) { 1123 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1124 p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0; 1125 } 1126 } 1127 return (0); 1128 } else if (strcasecmp(attrib, "lenovofix") == 0) { 1129 /* 1130 * Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR. 1131 * This workaround allows Lenovo X220, T420, T520, etc to boot 1132 * from GPT Partitions in BIOS mode. 1133 */ 1134 1135 if (entry != NULL) 1136 return (ENXIO); 1137 1138 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 1139 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 1140 gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1, 1141 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 1142 return (0); 1143 } 1144 1145 if (entry == NULL) 1146 return (ENODEV); 1147 1148 attr = 0; 1149 if (strcasecmp(attrib, "bootme") == 0) { 1150 attr |= GPT_ENT_ATTR_BOOTME; 1151 } else if (strcasecmp(attrib, "bootonce") == 0) { 1152 attr |= GPT_ENT_ATTR_BOOTONCE; 1153 if (set) 1154 attr |= GPT_ENT_ATTR_BOOTME; 1155 } else if (strcasecmp(attrib, "bootfailed") == 0) { 1156 /* 1157 * It should only be possible to unset BOOTFAILED, but it might 1158 * be useful for test purposes to also be able to set it. 1159 */ 1160 attr |= GPT_ENT_ATTR_BOOTFAILED; 1161 } 1162 if (attr == 0) 1163 return (EINVAL); 1164 1165 if (set) 1166 attr = entry->ent.ent_attr | attr; 1167 else 1168 attr = entry->ent.ent_attr & ~attr; 1169 if (attr != entry->ent.ent_attr) { 1170 entry->ent.ent_attr = attr; 1171 if (!baseentry->gpe_created) 1172 baseentry->gpe_modified = 1; 1173 } 1174 return (0); 1175 } 1176 1177 static const char * 1178 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 1179 char *buf, size_t bufsz) 1180 { 1181 struct g_part_gpt_entry *entry; 1182 struct uuid *type; 1183 struct g_part_uuid_alias *uap; 1184 1185 entry = (struct g_part_gpt_entry *)baseentry; 1186 type = &entry->ent.ent_type; 1187 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) 1188 if (EQUUID(type, uap->uuid)) 1189 return (g_part_alias_name(uap->alias)); 1190 buf[0] = '!'; 1191 snprintf_uuid(buf + 1, bufsz - 1, type); 1192 1193 return (buf); 1194 } 1195 1196 static int 1197 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) 1198 { 1199 unsigned char *buf, *bp; 1200 struct g_provider *pp; 1201 struct g_part_entry *baseentry; 1202 struct g_part_gpt_entry *entry; 1203 struct g_part_gpt_table *table; 1204 size_t tblsz; 1205 uint32_t crc; 1206 int error, index; 1207 1208 pp = cp->provider; 1209 table = (struct g_part_gpt_table *)basetable; 1210 tblsz = howmany(table->hdr->hdr_entries * table->hdr->hdr_entsz, 1211 pp->sectorsize); 1212 1213 /* Reconstruct the MBR from the GPT if under Boot Camp. */ 1214 if (table->bootcamp) 1215 gpt_update_bootcamp(basetable, pp); 1216 1217 /* Write the PMBR */ 1218 buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); 1219 bcopy(table->mbr, buf, MBRSIZE); 1220 error = g_write_data(cp, 0, buf, pp->sectorsize); 1221 g_free(buf); 1222 if (error) 1223 return (error); 1224 1225 /* Allocate space for the header and entries. */ 1226 buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); 1227 1228 memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 1229 le32enc(buf + 8, table->hdr->hdr_revision); 1230 le32enc(buf + 12, table->hdr->hdr_size); 1231 le64enc(buf + 40, table->hdr->hdr_lba_start); 1232 le64enc(buf + 48, table->hdr->hdr_lba_end); 1233 le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); 1234 le32enc(buf + 80, table->hdr->hdr_entries); 1235 le32enc(buf + 84, table->hdr->hdr_entsz); 1236 1237 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1238 if (baseentry->gpe_deleted) 1239 continue; 1240 entry = (struct g_part_gpt_entry *)baseentry; 1241 index = baseentry->gpe_index - 1; 1242 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; 1243 le_uuid_enc(bp, &entry->ent.ent_type); 1244 le_uuid_enc(bp + 16, &entry->ent.ent_uuid); 1245 le64enc(bp + 32, entry->ent.ent_lba_start); 1246 le64enc(bp + 40, entry->ent.ent_lba_end); 1247 le64enc(bp + 48, entry->ent.ent_attr); 1248 memcpy(bp + 56, entry->ent.ent_name, 1249 sizeof(entry->ent.ent_name)); 1250 } 1251 1252 crc = crc32(buf + pp->sectorsize, 1253 table->hdr->hdr_entries * table->hdr->hdr_entsz); 1254 le32enc(buf + 88, crc); 1255 1256 /* Write primary meta-data. */ 1257 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1258 le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ 1259 le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ 1260 le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ 1261 crc = crc32(buf, table->hdr->hdr_size); 1262 le32enc(buf + 16, crc); 1263 1264 for (index = 0; index < tblsz; index += maxphys / pp->sectorsize) { 1265 error = g_write_data(cp, 1266 (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize, 1267 buf + (index + 1) * pp->sectorsize, 1268 (tblsz - index > maxphys / pp->sectorsize) ? maxphys : 1269 (tblsz - index) * pp->sectorsize); 1270 if (error) 1271 goto out; 1272 } 1273 error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, 1274 buf, pp->sectorsize); 1275 if (error) 1276 goto out; 1277 1278 /* Write secondary meta-data. */ 1279 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1280 le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ 1281 le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ 1282 le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ 1283 crc = crc32(buf, table->hdr->hdr_size); 1284 le32enc(buf + 16, crc); 1285 1286 for (index = 0; index < tblsz; index += maxphys / pp->sectorsize) { 1287 error = g_write_data(cp, 1288 (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize, 1289 buf + (index + 1) * pp->sectorsize, 1290 (tblsz - index > maxphys / pp->sectorsize) ? maxphys : 1291 (tblsz - index) * pp->sectorsize); 1292 if (error) 1293 goto out; 1294 } 1295 error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, 1296 buf, pp->sectorsize); 1297 1298 out: 1299 g_free(buf); 1300 return (error); 1301 } 1302 1303 static void 1304 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp, 1305 struct g_part_parms *gpp) 1306 { 1307 struct g_part_entry *baseentry; 1308 struct g_part_gpt_entry *entry; 1309 struct g_part_gpt_table *table; 1310 quad_t start, end, min, max; 1311 quad_t lba, last; 1312 size_t spb, tblsz; 1313 1314 table = (struct g_part_gpt_table *)basetable; 1315 last = pp->mediasize / pp->sectorsize - 1; 1316 tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent), 1317 pp->sectorsize); 1318 1319 table->lba[GPT_ELT_PRIHDR] = 1; 1320 table->lba[GPT_ELT_PRITBL] = 2; 1321 table->lba[GPT_ELT_SECHDR] = last; 1322 table->lba[GPT_ELT_SECTBL] = last - tblsz; 1323 table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK; 1324 table->state[GPT_ELT_PRITBL] = GPT_STATE_OK; 1325 table->state[GPT_ELT_SECHDR] = GPT_STATE_OK; 1326 table->state[GPT_ELT_SECTBL] = GPT_STATE_OK; 1327 1328 max = start = 2 + tblsz; 1329 min = end = last - tblsz - 1; 1330 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1331 if (baseentry->gpe_deleted) 1332 continue; 1333 entry = (struct g_part_gpt_entry *)baseentry; 1334 if (entry->ent.ent_lba_start < min) 1335 min = entry->ent.ent_lba_start; 1336 if (entry->ent.ent_lba_end > max) 1337 max = entry->ent.ent_lba_end; 1338 } 1339 /* 1340 * Don't force alignment of any kind whatsoever on resize, restore or 1341 * recover. resize doesn't go through this path, recover has a NULL gpp 1342 * and restore has flags == restore (maybe with an appended 'C' to 1343 * commit the operation). For these operations, we have to trust the 1344 * user knows what they are doing. 1345 * 1346 * Otherwise it some flavor of creation of a new partition, so we align 1347 * to a 4k offset on the drive, to make 512e/4kn drives more performant 1348 * by default. 1349 */ 1350 if (gpp == NULL || 1351 (gpp->gpp_parms & G_PART_PARM_FLAGS) == 0 || 1352 strstr(gpp->gpp_flags, "restore") == NULL) { 1353 spb = 4096 / pp->sectorsize; 1354 if (spb > 1) { 1355 lba = start + ((start % spb) ? spb - start % spb : 0); 1356 if (lba <= min) 1357 start = lba; 1358 lba = end - (end + 1) % spb; 1359 if (max <= lba) 1360 end = lba; 1361 } 1362 } 1363 table->hdr->hdr_lba_start = start; 1364 table->hdr->hdr_lba_end = end; 1365 1366 basetable->gpt_first = start; 1367 basetable->gpt_last = end; 1368 } 1369 1370 static void 1371 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) 1372 { 1373 u_int bo; 1374 uint32_t ch; 1375 uint16_t c; 1376 1377 bo = LITTLE_ENDIAN; /* GPT is little-endian */ 1378 while (len > 0 && *str != 0) { 1379 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); 1380 str++, len--; 1381 if ((ch & 0xf800) == 0xd800) { 1382 if (len > 0) { 1383 c = (bo == BIG_ENDIAN) ? be16toh(*str) 1384 : le16toh(*str); 1385 str++, len--; 1386 } else 1387 c = 0xfffd; 1388 if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { 1389 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); 1390 ch += 0x10000; 1391 } else 1392 ch = 0xfffd; 1393 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ 1394 bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; 1395 continue; 1396 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ 1397 continue; 1398 1399 /* Write the Unicode character in UTF-8 */ 1400 if (ch < 0x80) 1401 g_conf_printf_escaped(sb, "%c", ch); 1402 else if (ch < 0x800) 1403 g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6), 1404 0x80 | (ch & 0x3f)); 1405 else if (ch < 0x10000) 1406 g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12), 1407 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1408 else if (ch < 0x200000) 1409 g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 | 1410 (ch >> 18), 0x80 | ((ch >> 12) & 0x3f), 1411 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1412 } 1413 } 1414 1415 static void 1416 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) 1417 { 1418 size_t s16idx, s8idx; 1419 uint32_t utfchar; 1420 unsigned int c, utfbytes; 1421 1422 s8idx = s16idx = 0; 1423 utfchar = 0; 1424 utfbytes = 0; 1425 bzero(s16, s16len << 1); 1426 while (s8[s8idx] != 0 && s16idx < s16len) { 1427 c = s8[s8idx++]; 1428 if ((c & 0xc0) != 0x80) { 1429 /* Initial characters. */ 1430 if (utfbytes != 0) { 1431 /* Incomplete encoding of previous char. */ 1432 s16[s16idx++] = htole16(0xfffd); 1433 } 1434 if ((c & 0xf8) == 0xf0) { 1435 utfchar = c & 0x07; 1436 utfbytes = 3; 1437 } else if ((c & 0xf0) == 0xe0) { 1438 utfchar = c & 0x0f; 1439 utfbytes = 2; 1440 } else if ((c & 0xe0) == 0xc0) { 1441 utfchar = c & 0x1f; 1442 utfbytes = 1; 1443 } else { 1444 utfchar = c & 0x7f; 1445 utfbytes = 0; 1446 } 1447 } else { 1448 /* Followup characters. */ 1449 if (utfbytes > 0) { 1450 utfchar = (utfchar << 6) + (c & 0x3f); 1451 utfbytes--; 1452 } else if (utfbytes == 0) 1453 utfbytes = ~0; 1454 } 1455 /* 1456 * Write the complete Unicode character as UTF-16 when we 1457 * have all the UTF-8 charactars collected. 1458 */ 1459 if (utfbytes == 0) { 1460 /* 1461 * If we need to write 2 UTF-16 characters, but 1462 * we only have room for 1, then we truncate the 1463 * string by writing a 0 instead. 1464 */ 1465 if (utfchar >= 0x10000 && s16idx < s16len - 1) { 1466 s16[s16idx++] = 1467 htole16(0xd800 | ((utfchar >> 10) - 0x40)); 1468 s16[s16idx++] = 1469 htole16(0xdc00 | (utfchar & 0x3ff)); 1470 } else 1471 s16[s16idx++] = (utfchar >= 0x10000) ? 0 : 1472 htole16(utfchar); 1473 } 1474 } 1475 /* 1476 * If our input string was truncated, append an invalid encoding 1477 * character to the output string. 1478 */ 1479 if (utfbytes != 0 && s16idx < s16len) 1480 s16[s16idx++] = htole16(0xfffd); 1481 } 1482