1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/bio.h> 34 #include <sys/diskmbr.h> 35 #include <sys/endian.h> 36 #include <sys/gpt.h> 37 #include <sys/kernel.h> 38 #include <sys/kobj.h> 39 #include <sys/limits.h> 40 #include <sys/lock.h> 41 #include <sys/malloc.h> 42 #include <sys/mutex.h> 43 #include <sys/queue.h> 44 #include <sys/sbuf.h> 45 #include <sys/systm.h> 46 #include <sys/sysctl.h> 47 #include <sys/uuid.h> 48 #include <geom/geom.h> 49 #include <geom/geom_int.h> 50 #include <geom/part/g_part.h> 51 52 #include "g_part_if.h" 53 54 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support"); 55 56 CTASSERT(offsetof(struct gpt_hdr, padding) == 92); 57 CTASSERT(sizeof(struct gpt_ent) == 128); 58 59 #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) 60 61 #define MBRSIZE 512 62 63 enum gpt_elt { 64 GPT_ELT_PRIHDR, 65 GPT_ELT_PRITBL, 66 GPT_ELT_SECHDR, 67 GPT_ELT_SECTBL, 68 GPT_ELT_COUNT 69 }; 70 71 enum gpt_state { 72 GPT_STATE_UNKNOWN, /* Not determined. */ 73 GPT_STATE_MISSING, /* No signature found. */ 74 GPT_STATE_CORRUPT, /* Checksum mismatch. */ 75 GPT_STATE_INVALID, /* Nonconformant/invalid. */ 76 GPT_STATE_OK /* Perfectly fine. */ 77 }; 78 79 struct g_part_gpt_table { 80 struct g_part_table base; 81 u_char mbr[MBRSIZE]; 82 struct gpt_hdr *hdr; 83 quad_t lba[GPT_ELT_COUNT]; 84 enum gpt_state state[GPT_ELT_COUNT]; 85 int bootcamp; 86 }; 87 88 struct g_part_gpt_entry { 89 struct g_part_entry base; 90 struct gpt_ent ent; 91 }; 92 93 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); 94 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); 95 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *); 96 97 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, 98 struct g_part_parms *); 99 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); 100 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); 101 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); 102 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, 103 struct sbuf *, const char *); 104 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); 105 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, 106 struct g_part_parms *); 107 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, 108 char *, size_t); 109 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); 110 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); 111 static int g_part_gpt_setunset(struct g_part_table *table, 112 struct g_part_entry *baseentry, const char *attrib, unsigned int set); 113 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, 114 char *, size_t); 115 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); 116 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, 117 struct g_part_parms *); 118 static int g_part_gpt_recover(struct g_part_table *); 119 120 static kobj_method_t g_part_gpt_methods[] = { 121 KOBJMETHOD(g_part_add, g_part_gpt_add), 122 KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), 123 KOBJMETHOD(g_part_create, g_part_gpt_create), 124 KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), 125 KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), 126 KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), 127 KOBJMETHOD(g_part_modify, g_part_gpt_modify), 128 KOBJMETHOD(g_part_resize, g_part_gpt_resize), 129 KOBJMETHOD(g_part_name, g_part_gpt_name), 130 KOBJMETHOD(g_part_probe, g_part_gpt_probe), 131 KOBJMETHOD(g_part_read, g_part_gpt_read), 132 KOBJMETHOD(g_part_recover, g_part_gpt_recover), 133 KOBJMETHOD(g_part_setunset, g_part_gpt_setunset), 134 KOBJMETHOD(g_part_type, g_part_gpt_type), 135 KOBJMETHOD(g_part_write, g_part_gpt_write), 136 { 0, 0 } 137 }; 138 139 static struct g_part_scheme g_part_gpt_scheme = { 140 "GPT", 141 g_part_gpt_methods, 142 sizeof(struct g_part_gpt_table), 143 .gps_entrysz = sizeof(struct g_part_gpt_entry), 144 .gps_minent = 128, 145 .gps_maxent = 4096, 146 .gps_bootcodesz = MBRSIZE, 147 }; 148 G_PART_SCHEME_DECLARE(g_part_gpt); 149 MODULE_VERSION(geom_part_gpt, 0); 150 151 static struct uuid gpt_uuid_apple_apfs = GPT_ENT_TYPE_APPLE_APFS; 152 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; 153 static struct uuid gpt_uuid_apple_core_storage = 154 GPT_ENT_TYPE_APPLE_CORE_STORAGE; 155 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; 156 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; 157 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; 158 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; 159 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; 160 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; 161 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT; 162 static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE; 163 static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL; 164 static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED; 165 static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT; 166 static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD; 167 static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER; 168 static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2; 169 static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32; 170 static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64; 171 static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY; 172 static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP; 173 static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1; 174 static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM; 175 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; 176 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; 177 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; 178 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS; 179 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; 180 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; 181 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; 182 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; 183 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; 184 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; 185 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; 186 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; 187 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; 188 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; 189 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; 190 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; 191 static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY; 192 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; 193 static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES; 194 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; 195 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; 196 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; 197 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; 198 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; 199 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; 200 static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA; 201 static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT; 202 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; 203 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS; 204 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG; 205 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED; 206 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR; 207 208 static struct g_part_uuid_alias { 209 struct uuid *uuid; 210 int alias; 211 int mbrtype; 212 } gpt_uuid_alias_match[] = { 213 { &gpt_uuid_apple_apfs, G_PART_ALIAS_APPLE_APFS, 0 }, 214 { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab }, 215 { &gpt_uuid_apple_core_storage, G_PART_ALIAS_APPLE_CORE_STORAGE, 0 }, 216 { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf }, 217 { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 }, 218 { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 }, 219 { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 }, 220 { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 }, 221 { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 }, 222 { &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 }, 223 { &gpt_uuid_chromeos_firmware, G_PART_ALIAS_CHROMEOS_FIRMWARE, 0 }, 224 { &gpt_uuid_chromeos_kernel, G_PART_ALIAS_CHROMEOS_KERNEL, 0 }, 225 { &gpt_uuid_chromeos_reserved, G_PART_ALIAS_CHROMEOS_RESERVED, 0 }, 226 { &gpt_uuid_chromeos_root, G_PART_ALIAS_CHROMEOS_ROOT, 0 }, 227 { &gpt_uuid_dfbsd_ccd, G_PART_ALIAS_DFBSD_CCD, 0 }, 228 { &gpt_uuid_dfbsd_hammer, G_PART_ALIAS_DFBSD_HAMMER, 0 }, 229 { &gpt_uuid_dfbsd_hammer2, G_PART_ALIAS_DFBSD_HAMMER2, 0 }, 230 { &gpt_uuid_dfbsd_label32, G_PART_ALIAS_DFBSD, 0xa5 }, 231 { &gpt_uuid_dfbsd_label64, G_PART_ALIAS_DFBSD64, 0xa5 }, 232 { &gpt_uuid_dfbsd_legacy, G_PART_ALIAS_DFBSD_LEGACY, 0 }, 233 { &gpt_uuid_dfbsd_swap, G_PART_ALIAS_DFBSD_SWAP, 0 }, 234 { &gpt_uuid_dfbsd_ufs1, G_PART_ALIAS_DFBSD_UFS, 0 }, 235 { &gpt_uuid_dfbsd_vinum, G_PART_ALIAS_DFBSD_VINUM, 0 }, 236 { &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee }, 237 { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 }, 238 { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 }, 239 { &gpt_uuid_freebsd_nandfs, G_PART_ALIAS_FREEBSD_NANDFS, 0 }, 240 { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 }, 241 { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 }, 242 { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 }, 243 { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 }, 244 { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b }, 245 { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 }, 246 { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 }, 247 { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 }, 248 { &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 }, 249 { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b }, 250 { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 }, 251 { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 }, 252 { &gpt_uuid_ms_recovery, G_PART_ALIAS_MS_RECOVERY, 0 }, 253 { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 }, 254 { &gpt_uuid_ms_spaces, G_PART_ALIAS_MS_SPACES, 0 }, 255 { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 }, 256 { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 }, 257 { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 }, 258 { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 }, 259 { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 }, 260 { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 }, 261 { &gpt_uuid_openbsd_data, G_PART_ALIAS_OPENBSD_DATA, 0 }, 262 { &gpt_uuid_prep_boot, G_PART_ALIAS_PREP_BOOT, 0x41 }, 263 { &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 }, 264 { &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 }, 265 { &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 }, 266 { &gpt_uuid_vmvsanhdr, G_PART_ALIAS_VMVSANHDR, 0 }, 267 { NULL, 0, 0 } 268 }; 269 270 static int 271 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start, 272 quad_t end) 273 { 274 275 if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX) 276 return (EINVAL); 277 278 mbr += DOSPARTOFF + idx * DOSPARTSIZE; 279 mbr[0] = 0; 280 if (start == 1) { 281 /* 282 * Treat the PMBR partition specially to maximize 283 * interoperability with BIOSes. 284 */ 285 mbr[1] = mbr[3] = 0; 286 mbr[2] = 2; 287 } else 288 mbr[1] = mbr[2] = mbr[3] = 0xff; 289 mbr[4] = typ; 290 mbr[5] = mbr[6] = mbr[7] = 0xff; 291 le32enc(mbr + 8, (uint32_t)start); 292 le32enc(mbr + 12, (uint32_t)(end - start + 1)); 293 return (0); 294 } 295 296 static int 297 gpt_map_type(struct uuid *t) 298 { 299 struct g_part_uuid_alias *uap; 300 301 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 302 if (EQUUID(t, uap->uuid)) 303 return (uap->mbrtype); 304 } 305 return (0); 306 } 307 308 static void 309 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp) 310 { 311 312 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 313 gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, 314 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 315 le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); 316 } 317 318 /* 319 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the 320 * whole disk anymore. Rather, it covers the GPT table and the EFI 321 * system partition only. This way the HFS+ partition and any FAT 322 * partitions can be added to the MBR without creating an overlap. 323 */ 324 static int 325 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname) 326 { 327 uint8_t *p; 328 329 p = table->mbr + DOSPARTOFF; 330 if (p[4] != 0xee || le32dec(p + 8) != 1) 331 return (0); 332 333 p += DOSPARTSIZE; 334 if (p[4] != 0xaf) 335 return (0); 336 337 printf("GEOM: %s: enabling Boot Camp\n", provname); 338 return (1); 339 } 340 341 static void 342 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp) 343 { 344 struct g_part_entry *baseentry; 345 struct g_part_gpt_entry *entry; 346 struct g_part_gpt_table *table; 347 int bootable, error, index, slices, typ; 348 349 table = (struct g_part_gpt_table *)basetable; 350 351 bootable = -1; 352 for (index = 0; index < NDOSPART; index++) { 353 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index]) 354 bootable = index; 355 } 356 357 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 358 slices = 0; 359 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 360 if (baseentry->gpe_deleted) 361 continue; 362 index = baseentry->gpe_index - 1; 363 if (index >= NDOSPART) 364 continue; 365 366 entry = (struct g_part_gpt_entry *)baseentry; 367 368 switch (index) { 369 case 0: /* This must be the EFI system partition. */ 370 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi)) 371 goto disable; 372 error = gpt_write_mbr_entry(table->mbr, index, 0xee, 373 1ull, entry->ent.ent_lba_end); 374 break; 375 case 1: /* This must be the HFS+ partition. */ 376 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs)) 377 goto disable; 378 error = gpt_write_mbr_entry(table->mbr, index, 0xaf, 379 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 380 break; 381 default: 382 typ = gpt_map_type(&entry->ent.ent_type); 383 error = gpt_write_mbr_entry(table->mbr, index, typ, 384 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 385 break; 386 } 387 if (error) 388 continue; 389 390 if (index == bootable) 391 table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80; 392 slices |= 1 << index; 393 } 394 if ((slices & 3) == 3) 395 return; 396 397 disable: 398 table->bootcamp = 0; 399 gpt_create_pmbr(table, pp); 400 } 401 402 static struct gpt_hdr * 403 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, 404 enum gpt_elt elt) 405 { 406 struct gpt_hdr *buf, *hdr; 407 struct g_provider *pp; 408 quad_t lba, last; 409 int error; 410 uint32_t crc, sz; 411 412 pp = cp->provider; 413 last = (pp->mediasize / pp->sectorsize) - 1; 414 table->state[elt] = GPT_STATE_MISSING; 415 /* 416 * If the primary header is valid look for secondary 417 * header in AlternateLBA, otherwise in the last medium's LBA. 418 */ 419 if (elt == GPT_ELT_SECHDR) { 420 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK) 421 table->lba[elt] = last; 422 } else 423 table->lba[elt] = 1; 424 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, 425 &error); 426 if (buf == NULL) 427 return (NULL); 428 hdr = NULL; 429 if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) 430 goto fail; 431 432 table->state[elt] = GPT_STATE_CORRUPT; 433 sz = le32toh(buf->hdr_size); 434 if (sz < 92 || sz > pp->sectorsize) 435 goto fail; 436 437 hdr = g_malloc(sz, M_WAITOK | M_ZERO); 438 bcopy(buf, hdr, sz); 439 hdr->hdr_size = sz; 440 441 crc = le32toh(buf->hdr_crc_self); 442 buf->hdr_crc_self = 0; 443 if (crc32(buf, sz) != crc) 444 goto fail; 445 hdr->hdr_crc_self = crc; 446 447 table->state[elt] = GPT_STATE_INVALID; 448 hdr->hdr_revision = le32toh(buf->hdr_revision); 449 if (hdr->hdr_revision < GPT_HDR_REVISION) 450 goto fail; 451 hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); 452 if (hdr->hdr_lba_self != table->lba[elt]) 453 goto fail; 454 hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); 455 if (hdr->hdr_lba_alt == hdr->hdr_lba_self || 456 hdr->hdr_lba_alt > last) 457 goto fail; 458 459 /* Check the managed area. */ 460 hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); 461 if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) 462 goto fail; 463 hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); 464 if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) 465 goto fail; 466 467 /* Check the table location and size of the table. */ 468 hdr->hdr_entries = le32toh(buf->hdr_entries); 469 hdr->hdr_entsz = le32toh(buf->hdr_entsz); 470 if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || 471 (hdr->hdr_entsz & 7) != 0) 472 goto fail; 473 hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); 474 if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) 475 goto fail; 476 if (hdr->hdr_lba_table >= hdr->hdr_lba_start && 477 hdr->hdr_lba_table <= hdr->hdr_lba_end) 478 goto fail; 479 lba = hdr->hdr_lba_table + 480 howmany(hdr->hdr_entries * hdr->hdr_entsz, pp->sectorsize) - 1; 481 if (lba >= last) 482 goto fail; 483 if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) 484 goto fail; 485 486 table->state[elt] = GPT_STATE_OK; 487 le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); 488 hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); 489 490 /* save LBA for secondary header */ 491 if (elt == GPT_ELT_PRIHDR) 492 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt; 493 494 g_free(buf); 495 return (hdr); 496 497 fail: 498 if (hdr != NULL) 499 g_free(hdr); 500 g_free(buf); 501 return (NULL); 502 } 503 504 static struct gpt_ent * 505 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, 506 enum gpt_elt elt, struct gpt_hdr *hdr) 507 { 508 struct g_provider *pp; 509 struct gpt_ent *ent, *tbl; 510 char *buf, *p; 511 unsigned int idx, sectors, tblsz, size; 512 int error; 513 514 if (hdr == NULL) 515 return (NULL); 516 517 pp = cp->provider; 518 table->lba[elt] = hdr->hdr_lba_table; 519 520 table->state[elt] = GPT_STATE_MISSING; 521 tblsz = hdr->hdr_entries * hdr->hdr_entsz; 522 sectors = howmany(tblsz, pp->sectorsize); 523 buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO); 524 for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) { 525 size = (sectors - idx > MAXPHYS / pp->sectorsize) ? MAXPHYS: 526 (sectors - idx) * pp->sectorsize; 527 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize, 528 size, &error); 529 if (p == NULL) { 530 g_free(buf); 531 return (NULL); 532 } 533 bcopy(p, buf + idx * pp->sectorsize, size); 534 g_free(p); 535 } 536 table->state[elt] = GPT_STATE_CORRUPT; 537 if (crc32(buf, tblsz) != hdr->hdr_crc_table) { 538 g_free(buf); 539 return (NULL); 540 } 541 542 table->state[elt] = GPT_STATE_OK; 543 tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), 544 M_WAITOK | M_ZERO); 545 546 for (idx = 0, ent = tbl, p = buf; 547 idx < hdr->hdr_entries; 548 idx++, ent++, p += hdr->hdr_entsz) { 549 le_uuid_dec(p, &ent->ent_type); 550 le_uuid_dec(p + 16, &ent->ent_uuid); 551 ent->ent_lba_start = le64dec(p + 32); 552 ent->ent_lba_end = le64dec(p + 40); 553 ent->ent_attr = le64dec(p + 48); 554 /* Keep UTF-16 in little-endian. */ 555 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); 556 } 557 558 g_free(buf); 559 return (tbl); 560 } 561 562 static int 563 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) 564 { 565 566 if (pri == NULL || sec == NULL) 567 return (0); 568 569 if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) 570 return (0); 571 return ((pri->hdr_revision == sec->hdr_revision && 572 pri->hdr_size == sec->hdr_size && 573 pri->hdr_lba_start == sec->hdr_lba_start && 574 pri->hdr_lba_end == sec->hdr_lba_end && 575 pri->hdr_entries == sec->hdr_entries && 576 pri->hdr_entsz == sec->hdr_entsz && 577 pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); 578 } 579 580 static int 581 gpt_parse_type(const char *type, struct uuid *uuid) 582 { 583 struct uuid tmp; 584 const char *alias; 585 int error; 586 struct g_part_uuid_alias *uap; 587 588 if (type[0] == '!') { 589 error = parse_uuid(type + 1, &tmp); 590 if (error) 591 return (error); 592 if (EQUUID(&tmp, &gpt_uuid_unused)) 593 return (EINVAL); 594 *uuid = tmp; 595 return (0); 596 } 597 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 598 alias = g_part_alias_name(uap->alias); 599 if (!strcasecmp(type, alias)) { 600 *uuid = *uap->uuid; 601 return (0); 602 } 603 } 604 return (EINVAL); 605 } 606 607 static int 608 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, 609 struct g_part_parms *gpp) 610 { 611 struct g_part_gpt_entry *entry; 612 int error; 613 614 entry = (struct g_part_gpt_entry *)baseentry; 615 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 616 if (error) 617 return (error); 618 kern_uuidgen(&entry->ent.ent_uuid, 1); 619 entry->ent.ent_lba_start = baseentry->gpe_start; 620 entry->ent.ent_lba_end = baseentry->gpe_end; 621 if (baseentry->gpe_deleted) { 622 entry->ent.ent_attr = 0; 623 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); 624 } 625 if (gpp->gpp_parms & G_PART_PARM_LABEL) 626 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 627 sizeof(entry->ent.ent_name) / 628 sizeof(entry->ent.ent_name[0])); 629 return (0); 630 } 631 632 static int 633 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) 634 { 635 struct g_part_gpt_table *table; 636 size_t codesz; 637 638 codesz = DOSPARTOFF; 639 table = (struct g_part_gpt_table *)basetable; 640 bzero(table->mbr, codesz); 641 codesz = MIN(codesz, gpp->gpp_codesize); 642 if (codesz > 0) 643 bcopy(gpp->gpp_codeptr, table->mbr, codesz); 644 return (0); 645 } 646 647 static int 648 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) 649 { 650 struct g_provider *pp; 651 struct g_part_gpt_table *table; 652 size_t tblsz; 653 654 /* We don't nest, which means that our depth should be 0. */ 655 if (basetable->gpt_depth != 0) 656 return (ENXIO); 657 658 table = (struct g_part_gpt_table *)basetable; 659 pp = gpp->gpp_provider; 660 tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent), 661 pp->sectorsize); 662 if (pp->sectorsize < MBRSIZE || 663 pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * 664 pp->sectorsize) 665 return (ENOSPC); 666 667 gpt_create_pmbr(table, pp); 668 669 /* Allocate space for the header */ 670 table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); 671 672 bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 673 table->hdr->hdr_revision = GPT_HDR_REVISION; 674 table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); 675 kern_uuidgen(&table->hdr->hdr_uuid, 1); 676 table->hdr->hdr_entries = basetable->gpt_entries; 677 table->hdr->hdr_entsz = sizeof(struct gpt_ent); 678 679 g_gpt_set_defaults(basetable, pp); 680 return (0); 681 } 682 683 static int 684 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) 685 { 686 struct g_part_gpt_table *table; 687 struct g_provider *pp; 688 689 table = (struct g_part_gpt_table *)basetable; 690 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 691 g_free(table->hdr); 692 table->hdr = NULL; 693 694 /* 695 * Wipe the first 2 sectors and last one to clear the partitioning. 696 * Wipe sectors only if they have valid metadata. 697 */ 698 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) 699 basetable->gpt_smhead |= 3; 700 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 701 table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1) 702 basetable->gpt_smtail |= 1; 703 return (0); 704 } 705 706 static void 707 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 708 struct sbuf *sb, const char *indent) 709 { 710 struct g_part_gpt_entry *entry; 711 712 entry = (struct g_part_gpt_entry *)baseentry; 713 if (indent == NULL) { 714 /* conftxt: libdisk compatibility */ 715 sbuf_printf(sb, " xs GPT xt "); 716 sbuf_printf_uuid(sb, &entry->ent.ent_type); 717 } else if (entry != NULL) { 718 /* confxml: partition entry information */ 719 sbuf_printf(sb, "%s<label>", indent); 720 g_gpt_printf_utf16(sb, entry->ent.ent_name, 721 sizeof(entry->ent.ent_name) >> 1); 722 sbuf_printf(sb, "</label>\n"); 723 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME) 724 sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent); 725 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) { 726 sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n", 727 indent); 728 } 729 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) { 730 sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n", 731 indent); 732 } 733 sbuf_printf(sb, "%s<rawtype>", indent); 734 sbuf_printf_uuid(sb, &entry->ent.ent_type); 735 sbuf_printf(sb, "</rawtype>\n"); 736 sbuf_printf(sb, "%s<rawuuid>", indent); 737 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 738 sbuf_printf(sb, "</rawuuid>\n"); 739 sbuf_printf(sb, "%s<efimedia>", indent); 740 sbuf_printf(sb, "HD(%d,GPT,", entry->base.gpe_index); 741 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 742 sbuf_printf(sb, ",%#jx,%#jx)", (intmax_t)entry->base.gpe_start, 743 (intmax_t)(entry->base.gpe_end - entry->base.gpe_start + 1)); 744 sbuf_printf(sb, "</efimedia>\n"); 745 } else { 746 /* confxml: scheme information */ 747 } 748 } 749 750 static int 751 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) 752 { 753 struct g_part_gpt_entry *entry; 754 755 entry = (struct g_part_gpt_entry *)baseentry; 756 return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || 757 EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) || 758 EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0); 759 } 760 761 static int 762 g_part_gpt_modify(struct g_part_table *basetable, 763 struct g_part_entry *baseentry, struct g_part_parms *gpp) 764 { 765 struct g_part_gpt_entry *entry; 766 int error; 767 768 entry = (struct g_part_gpt_entry *)baseentry; 769 if (gpp->gpp_parms & G_PART_PARM_TYPE) { 770 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 771 if (error) 772 return (error); 773 } 774 if (gpp->gpp_parms & G_PART_PARM_LABEL) 775 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 776 sizeof(entry->ent.ent_name) / 777 sizeof(entry->ent.ent_name[0])); 778 return (0); 779 } 780 781 static int 782 g_part_gpt_resize(struct g_part_table *basetable, 783 struct g_part_entry *baseentry, struct g_part_parms *gpp) 784 { 785 struct g_part_gpt_entry *entry; 786 787 if (baseentry == NULL) 788 return (g_part_gpt_recover(basetable)); 789 790 entry = (struct g_part_gpt_entry *)baseentry; 791 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; 792 entry->ent.ent_lba_end = baseentry->gpe_end; 793 794 return (0); 795 } 796 797 static const char * 798 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, 799 char *buf, size_t bufsz) 800 { 801 struct g_part_gpt_entry *entry; 802 char c; 803 804 entry = (struct g_part_gpt_entry *)baseentry; 805 c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; 806 snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); 807 return (buf); 808 } 809 810 static int 811 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) 812 { 813 struct g_provider *pp; 814 u_char *buf; 815 int error, index, pri, res; 816 817 /* We don't nest, which means that our depth should be 0. */ 818 if (table->gpt_depth != 0) 819 return (ENXIO); 820 821 pp = cp->provider; 822 823 /* 824 * Sanity-check the provider. Since the first sector on the provider 825 * must be a PMBR and a PMBR is 512 bytes large, the sector size 826 * must be at least 512 bytes. Also, since the theoretical minimum 827 * number of sectors needed by GPT is 6, any medium that has less 828 * than 6 sectors is never going to be able to hold a GPT. The 829 * number 6 comes from: 830 * 1 sector for the PMBR 831 * 2 sectors for the GPT headers (each 1 sector) 832 * 2 sectors for the GPT tables (each 1 sector) 833 * 1 sector for an actual partition 834 * It's better to catch this pathological case early than behaving 835 * pathologically later on... 836 */ 837 if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) 838 return (ENOSPC); 839 840 /* 841 * Check that there's a MBR or a PMBR. If it's a PMBR, we return 842 * as the highest priority on a match, otherwise we assume some 843 * GPT-unaware tool has destroyed the GPT by recreating a MBR and 844 * we really want the MBR scheme to take precedence. 845 */ 846 buf = g_read_data(cp, 0L, pp->sectorsize, &error); 847 if (buf == NULL) 848 return (error); 849 res = le16dec(buf + DOSMAGICOFFSET); 850 pri = G_PART_PROBE_PRI_LOW; 851 if (res == DOSMAGIC) { 852 for (index = 0; index < NDOSPART; index++) { 853 if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee) 854 pri = G_PART_PROBE_PRI_HIGH; 855 } 856 g_free(buf); 857 858 /* Check that there's a primary header. */ 859 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); 860 if (buf == NULL) 861 return (error); 862 res = memcmp(buf, GPT_HDR_SIG, 8); 863 g_free(buf); 864 if (res == 0) 865 return (pri); 866 } else 867 g_free(buf); 868 869 /* No primary? Check that there's a secondary. */ 870 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 871 &error); 872 if (buf == NULL) 873 return (error); 874 res = memcmp(buf, GPT_HDR_SIG, 8); 875 g_free(buf); 876 return ((res == 0) ? pri : ENXIO); 877 } 878 879 static int 880 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) 881 { 882 struct gpt_hdr *prihdr, *sechdr; 883 struct gpt_ent *tbl, *pritbl, *sectbl; 884 struct g_provider *pp; 885 struct g_part_gpt_table *table; 886 struct g_part_gpt_entry *entry; 887 u_char *buf; 888 uint64_t last; 889 int error, index; 890 891 table = (struct g_part_gpt_table *)basetable; 892 pp = cp->provider; 893 last = (pp->mediasize / pp->sectorsize) - 1; 894 895 /* Read the PMBR */ 896 buf = g_read_data(cp, 0, pp->sectorsize, &error); 897 if (buf == NULL) 898 return (error); 899 bcopy(buf, table->mbr, MBRSIZE); 900 g_free(buf); 901 902 /* Read the primary header and table. */ 903 prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); 904 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { 905 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); 906 } else { 907 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 908 pritbl = NULL; 909 } 910 911 /* Read the secondary header and table. */ 912 sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); 913 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { 914 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); 915 } else { 916 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 917 sectbl = NULL; 918 } 919 920 /* Fail if we haven't got any good tables at all. */ 921 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && 922 table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 923 printf("GEOM: %s: corrupt or invalid GPT detected.\n", 924 pp->name); 925 printf("GEOM: %s: GPT rejected -- may not be recoverable.\n", 926 pp->name); 927 if (prihdr != NULL) 928 g_free(prihdr); 929 if (pritbl != NULL) 930 g_free(pritbl); 931 if (sechdr != NULL) 932 g_free(sechdr); 933 if (sectbl != NULL) 934 g_free(sectbl); 935 return (EINVAL); 936 } 937 938 /* 939 * If both headers are good but they disagree with each other, 940 * then invalidate one. We prefer to keep the primary header, 941 * unless the primary table is corrupt. 942 */ 943 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && 944 table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 945 !gpt_matched_hdrs(prihdr, sechdr)) { 946 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { 947 table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; 948 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 949 g_free(sechdr); 950 sechdr = NULL; 951 } else { 952 table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; 953 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 954 g_free(prihdr); 955 prihdr = NULL; 956 } 957 } 958 959 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { 960 printf("GEOM: %s: the primary GPT table is corrupt or " 961 "invalid.\n", pp->name); 962 printf("GEOM: %s: using the secondary instead -- recovery " 963 "strongly advised.\n", pp->name); 964 table->hdr = sechdr; 965 basetable->gpt_corrupt = 1; 966 if (prihdr != NULL) 967 g_free(prihdr); 968 tbl = sectbl; 969 if (pritbl != NULL) 970 g_free(pritbl); 971 } else { 972 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 973 printf("GEOM: %s: the secondary GPT table is corrupt " 974 "or invalid.\n", pp->name); 975 printf("GEOM: %s: using the primary only -- recovery " 976 "suggested.\n", pp->name); 977 basetable->gpt_corrupt = 1; 978 } else if (table->lba[GPT_ELT_SECHDR] != last) { 979 printf( "GEOM: %s: the secondary GPT header is not in " 980 "the last LBA.\n", pp->name); 981 basetable->gpt_corrupt = 1; 982 } 983 table->hdr = prihdr; 984 if (sechdr != NULL) 985 g_free(sechdr); 986 tbl = pritbl; 987 if (sectbl != NULL) 988 g_free(sectbl); 989 } 990 991 basetable->gpt_first = table->hdr->hdr_lba_start; 992 basetable->gpt_last = table->hdr->hdr_lba_end; 993 basetable->gpt_entries = table->hdr->hdr_entries; 994 995 for (index = basetable->gpt_entries - 1; index >= 0; index--) { 996 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) 997 continue; 998 entry = (struct g_part_gpt_entry *)g_part_new_entry( 999 basetable, index + 1, tbl[index].ent_lba_start, 1000 tbl[index].ent_lba_end); 1001 entry->ent = tbl[index]; 1002 } 1003 1004 g_free(tbl); 1005 1006 /* 1007 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions 1008 * if (and only if) any FAT32 or FAT16 partitions have been 1009 * created. This happens irrespective of whether Boot Camp is 1010 * used/enabled, though it's generally understood to be done 1011 * to support legacy Windows under Boot Camp. We refer to this 1012 * mirroring simply as Boot Camp. We try to detect Boot Camp 1013 * so that we can update the MBR if and when GPT changes have 1014 * been made. Note that we do not enable Boot Camp if not 1015 * previously enabled because we can't assume that we're on a 1016 * Mac alongside Mac OS X. 1017 */ 1018 table->bootcamp = gpt_is_bootcamp(table, pp->name); 1019 1020 return (0); 1021 } 1022 1023 static int 1024 g_part_gpt_recover(struct g_part_table *basetable) 1025 { 1026 struct g_part_gpt_table *table; 1027 struct g_provider *pp; 1028 1029 table = (struct g_part_gpt_table *)basetable; 1030 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 1031 gpt_create_pmbr(table, pp); 1032 g_gpt_set_defaults(basetable, pp); 1033 basetable->gpt_corrupt = 0; 1034 return (0); 1035 } 1036 1037 static int 1038 g_part_gpt_setunset(struct g_part_table *basetable, 1039 struct g_part_entry *baseentry, const char *attrib, unsigned int set) 1040 { 1041 struct g_part_gpt_entry *entry; 1042 struct g_part_gpt_table *table; 1043 struct g_provider *pp; 1044 uint8_t *p; 1045 uint64_t attr; 1046 int i; 1047 1048 table = (struct g_part_gpt_table *)basetable; 1049 entry = (struct g_part_gpt_entry *)baseentry; 1050 1051 if (strcasecmp(attrib, "active") == 0) { 1052 if (table->bootcamp) { 1053 /* The active flag must be set on a valid entry. */ 1054 if (entry == NULL) 1055 return (ENXIO); 1056 if (baseentry->gpe_index > NDOSPART) 1057 return (EINVAL); 1058 for (i = 0; i < NDOSPART; i++) { 1059 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1060 p[0] = (i == baseentry->gpe_index - 1) 1061 ? ((set) ? 0x80 : 0) : 0; 1062 } 1063 } else { 1064 /* The PMBR is marked as active without an entry. */ 1065 if (entry != NULL) 1066 return (ENXIO); 1067 for (i = 0; i < NDOSPART; i++) { 1068 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1069 p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0; 1070 } 1071 } 1072 return (0); 1073 } else if (strcasecmp(attrib, "lenovofix") == 0) { 1074 /* 1075 * Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR. 1076 * This workaround allows Lenovo X220, T420, T520, etc to boot 1077 * from GPT Partitions in BIOS mode. 1078 */ 1079 1080 if (entry != NULL) 1081 return (ENXIO); 1082 1083 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 1084 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 1085 gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1, 1086 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 1087 return (0); 1088 } 1089 1090 if (entry == NULL) 1091 return (ENODEV); 1092 1093 attr = 0; 1094 if (strcasecmp(attrib, "bootme") == 0) { 1095 attr |= GPT_ENT_ATTR_BOOTME; 1096 } else if (strcasecmp(attrib, "bootonce") == 0) { 1097 attr |= GPT_ENT_ATTR_BOOTONCE; 1098 if (set) 1099 attr |= GPT_ENT_ATTR_BOOTME; 1100 } else if (strcasecmp(attrib, "bootfailed") == 0) { 1101 /* 1102 * It should only be possible to unset BOOTFAILED, but it might 1103 * be useful for test purposes to also be able to set it. 1104 */ 1105 attr |= GPT_ENT_ATTR_BOOTFAILED; 1106 } 1107 if (attr == 0) 1108 return (EINVAL); 1109 1110 if (set) 1111 attr = entry->ent.ent_attr | attr; 1112 else 1113 attr = entry->ent.ent_attr & ~attr; 1114 if (attr != entry->ent.ent_attr) { 1115 entry->ent.ent_attr = attr; 1116 if (!baseentry->gpe_created) 1117 baseentry->gpe_modified = 1; 1118 } 1119 return (0); 1120 } 1121 1122 static const char * 1123 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 1124 char *buf, size_t bufsz) 1125 { 1126 struct g_part_gpt_entry *entry; 1127 struct uuid *type; 1128 struct g_part_uuid_alias *uap; 1129 1130 entry = (struct g_part_gpt_entry *)baseentry; 1131 type = &entry->ent.ent_type; 1132 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) 1133 if (EQUUID(type, uap->uuid)) 1134 return (g_part_alias_name(uap->alias)); 1135 buf[0] = '!'; 1136 snprintf_uuid(buf + 1, bufsz - 1, type); 1137 1138 return (buf); 1139 } 1140 1141 static int 1142 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) 1143 { 1144 unsigned char *buf, *bp; 1145 struct g_provider *pp; 1146 struct g_part_entry *baseentry; 1147 struct g_part_gpt_entry *entry; 1148 struct g_part_gpt_table *table; 1149 size_t tblsz; 1150 uint32_t crc; 1151 int error, index; 1152 1153 pp = cp->provider; 1154 table = (struct g_part_gpt_table *)basetable; 1155 tblsz = howmany(table->hdr->hdr_entries * table->hdr->hdr_entsz, 1156 pp->sectorsize); 1157 1158 /* Reconstruct the MBR from the GPT if under Boot Camp. */ 1159 if (table->bootcamp) 1160 gpt_update_bootcamp(basetable, pp); 1161 1162 /* Write the PMBR */ 1163 buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); 1164 bcopy(table->mbr, buf, MBRSIZE); 1165 error = g_write_data(cp, 0, buf, pp->sectorsize); 1166 g_free(buf); 1167 if (error) 1168 return (error); 1169 1170 /* Allocate space for the header and entries. */ 1171 buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); 1172 1173 memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 1174 le32enc(buf + 8, table->hdr->hdr_revision); 1175 le32enc(buf + 12, table->hdr->hdr_size); 1176 le64enc(buf + 40, table->hdr->hdr_lba_start); 1177 le64enc(buf + 48, table->hdr->hdr_lba_end); 1178 le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); 1179 le32enc(buf + 80, table->hdr->hdr_entries); 1180 le32enc(buf + 84, table->hdr->hdr_entsz); 1181 1182 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1183 if (baseentry->gpe_deleted) 1184 continue; 1185 entry = (struct g_part_gpt_entry *)baseentry; 1186 index = baseentry->gpe_index - 1; 1187 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; 1188 le_uuid_enc(bp, &entry->ent.ent_type); 1189 le_uuid_enc(bp + 16, &entry->ent.ent_uuid); 1190 le64enc(bp + 32, entry->ent.ent_lba_start); 1191 le64enc(bp + 40, entry->ent.ent_lba_end); 1192 le64enc(bp + 48, entry->ent.ent_attr); 1193 memcpy(bp + 56, entry->ent.ent_name, 1194 sizeof(entry->ent.ent_name)); 1195 } 1196 1197 crc = crc32(buf + pp->sectorsize, 1198 table->hdr->hdr_entries * table->hdr->hdr_entsz); 1199 le32enc(buf + 88, crc); 1200 1201 /* Write primary meta-data. */ 1202 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1203 le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ 1204 le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ 1205 le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ 1206 crc = crc32(buf, table->hdr->hdr_size); 1207 le32enc(buf + 16, crc); 1208 1209 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1210 error = g_write_data(cp, 1211 (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize, 1212 buf + (index + 1) * pp->sectorsize, 1213 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1214 (tblsz - index) * pp->sectorsize); 1215 if (error) 1216 goto out; 1217 } 1218 error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, 1219 buf, pp->sectorsize); 1220 if (error) 1221 goto out; 1222 1223 /* Write secondary meta-data. */ 1224 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1225 le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ 1226 le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ 1227 le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ 1228 crc = crc32(buf, table->hdr->hdr_size); 1229 le32enc(buf + 16, crc); 1230 1231 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1232 error = g_write_data(cp, 1233 (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize, 1234 buf + (index + 1) * pp->sectorsize, 1235 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1236 (tblsz - index) * pp->sectorsize); 1237 if (error) 1238 goto out; 1239 } 1240 error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, 1241 buf, pp->sectorsize); 1242 1243 out: 1244 g_free(buf); 1245 return (error); 1246 } 1247 1248 static void 1249 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp) 1250 { 1251 struct g_part_entry *baseentry; 1252 struct g_part_gpt_entry *entry; 1253 struct g_part_gpt_table *table; 1254 quad_t start, end, min, max; 1255 quad_t lba, last; 1256 size_t spb, tblsz; 1257 1258 table = (struct g_part_gpt_table *)basetable; 1259 last = pp->mediasize / pp->sectorsize - 1; 1260 tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent), 1261 pp->sectorsize); 1262 1263 table->lba[GPT_ELT_PRIHDR] = 1; 1264 table->lba[GPT_ELT_PRITBL] = 2; 1265 table->lba[GPT_ELT_SECHDR] = last; 1266 table->lba[GPT_ELT_SECTBL] = last - tblsz; 1267 table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK; 1268 table->state[GPT_ELT_PRITBL] = GPT_STATE_OK; 1269 table->state[GPT_ELT_SECHDR] = GPT_STATE_OK; 1270 table->state[GPT_ELT_SECTBL] = GPT_STATE_OK; 1271 1272 max = start = 2 + tblsz; 1273 min = end = last - tblsz - 1; 1274 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1275 if (baseentry->gpe_deleted) 1276 continue; 1277 entry = (struct g_part_gpt_entry *)baseentry; 1278 if (entry->ent.ent_lba_start < min) 1279 min = entry->ent.ent_lba_start; 1280 if (entry->ent.ent_lba_end > max) 1281 max = entry->ent.ent_lba_end; 1282 } 1283 spb = 4096 / pp->sectorsize; 1284 if (spb > 1) { 1285 lba = start + ((start % spb) ? spb - start % spb : 0); 1286 if (lba <= min) 1287 start = lba; 1288 lba = end - (end + 1) % spb; 1289 if (max <= lba) 1290 end = lba; 1291 } 1292 table->hdr->hdr_lba_start = start; 1293 table->hdr->hdr_lba_end = end; 1294 1295 basetable->gpt_first = start; 1296 basetable->gpt_last = end; 1297 } 1298 1299 static void 1300 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) 1301 { 1302 u_int bo; 1303 uint32_t ch; 1304 uint16_t c; 1305 1306 bo = LITTLE_ENDIAN; /* GPT is little-endian */ 1307 while (len > 0 && *str != 0) { 1308 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); 1309 str++, len--; 1310 if ((ch & 0xf800) == 0xd800) { 1311 if (len > 0) { 1312 c = (bo == BIG_ENDIAN) ? be16toh(*str) 1313 : le16toh(*str); 1314 str++, len--; 1315 } else 1316 c = 0xfffd; 1317 if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { 1318 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); 1319 ch += 0x10000; 1320 } else 1321 ch = 0xfffd; 1322 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ 1323 bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; 1324 continue; 1325 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ 1326 continue; 1327 1328 /* Write the Unicode character in UTF-8 */ 1329 if (ch < 0x80) 1330 g_conf_printf_escaped(sb, "%c", ch); 1331 else if (ch < 0x800) 1332 g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6), 1333 0x80 | (ch & 0x3f)); 1334 else if (ch < 0x10000) 1335 g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12), 1336 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1337 else if (ch < 0x200000) 1338 g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 | 1339 (ch >> 18), 0x80 | ((ch >> 12) & 0x3f), 1340 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1341 } 1342 } 1343 1344 static void 1345 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) 1346 { 1347 size_t s16idx, s8idx; 1348 uint32_t utfchar; 1349 unsigned int c, utfbytes; 1350 1351 s8idx = s16idx = 0; 1352 utfchar = 0; 1353 utfbytes = 0; 1354 bzero(s16, s16len << 1); 1355 while (s8[s8idx] != 0 && s16idx < s16len) { 1356 c = s8[s8idx++]; 1357 if ((c & 0xc0) != 0x80) { 1358 /* Initial characters. */ 1359 if (utfbytes != 0) { 1360 /* Incomplete encoding of previous char. */ 1361 s16[s16idx++] = htole16(0xfffd); 1362 } 1363 if ((c & 0xf8) == 0xf0) { 1364 utfchar = c & 0x07; 1365 utfbytes = 3; 1366 } else if ((c & 0xf0) == 0xe0) { 1367 utfchar = c & 0x0f; 1368 utfbytes = 2; 1369 } else if ((c & 0xe0) == 0xc0) { 1370 utfchar = c & 0x1f; 1371 utfbytes = 1; 1372 } else { 1373 utfchar = c & 0x7f; 1374 utfbytes = 0; 1375 } 1376 } else { 1377 /* Followup characters. */ 1378 if (utfbytes > 0) { 1379 utfchar = (utfchar << 6) + (c & 0x3f); 1380 utfbytes--; 1381 } else if (utfbytes == 0) 1382 utfbytes = ~0; 1383 } 1384 /* 1385 * Write the complete Unicode character as UTF-16 when we 1386 * have all the UTF-8 charactars collected. 1387 */ 1388 if (utfbytes == 0) { 1389 /* 1390 * If we need to write 2 UTF-16 characters, but 1391 * we only have room for 1, then we truncate the 1392 * string by writing a 0 instead. 1393 */ 1394 if (utfchar >= 0x10000 && s16idx < s16len - 1) { 1395 s16[s16idx++] = 1396 htole16(0xd800 | ((utfchar >> 10) - 0x40)); 1397 s16[s16idx++] = 1398 htole16(0xdc00 | (utfchar & 0x3ff)); 1399 } else 1400 s16[s16idx++] = (utfchar >= 0x10000) ? 0 : 1401 htole16(utfchar); 1402 } 1403 } 1404 /* 1405 * If our input string was truncated, append an invalid encoding 1406 * character to the output string. 1407 */ 1408 if (utfbytes != 0 && s16idx < s16len) 1409 s16[s16idx++] = htole16(0xfffd); 1410 } 1411