xref: /freebsd/sys/geom/part/g_part_gpt.c (revision 10b59a9b4add0320d52c15ce057dd697261e7dfc)
1 /*-
2  * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/bio.h>
32 #include <sys/diskmbr.h>
33 #include <sys/endian.h>
34 #include <sys/gpt.h>
35 #include <sys/kernel.h>
36 #include <sys/kobj.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mutex.h>
41 #include <sys/queue.h>
42 #include <sys/sbuf.h>
43 #include <sys/systm.h>
44 #include <sys/sysctl.h>
45 #include <sys/uuid.h>
46 #include <geom/geom.h>
47 #include <geom/part/g_part.h>
48 
49 #include "g_part_if.h"
50 
51 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support");
52 
53 CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
54 CTASSERT(sizeof(struct gpt_ent) == 128);
55 
56 #define	EQUUID(a,b)	(memcmp(a, b, sizeof(struct uuid)) == 0)
57 
58 #define	MBRSIZE		512
59 
60 enum gpt_elt {
61 	GPT_ELT_PRIHDR,
62 	GPT_ELT_PRITBL,
63 	GPT_ELT_SECHDR,
64 	GPT_ELT_SECTBL,
65 	GPT_ELT_COUNT
66 };
67 
68 enum gpt_state {
69 	GPT_STATE_UNKNOWN,	/* Not determined. */
70 	GPT_STATE_MISSING,	/* No signature found. */
71 	GPT_STATE_CORRUPT,	/* Checksum mismatch. */
72 	GPT_STATE_INVALID,	/* Nonconformant/invalid. */
73 	GPT_STATE_OK		/* Perfectly fine. */
74 };
75 
76 struct g_part_gpt_table {
77 	struct g_part_table	base;
78 	u_char			mbr[MBRSIZE];
79 	struct gpt_hdr		*hdr;
80 	quad_t			lba[GPT_ELT_COUNT];
81 	enum gpt_state		state[GPT_ELT_COUNT];
82 	int			bootcamp;
83 };
84 
85 struct g_part_gpt_entry {
86 	struct g_part_entry	base;
87 	struct gpt_ent		ent;
88 };
89 
90 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
91 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
92 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *);
93 
94 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
95     struct g_part_parms *);
96 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
97 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
98 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
99 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
100     struct sbuf *, const char *);
101 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
102 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,
103     struct g_part_parms *);
104 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
105     char *, size_t);
106 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
107 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
108 static int g_part_gpt_setunset(struct g_part_table *table,
109     struct g_part_entry *baseentry, const char *attrib, unsigned int set);
110 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
111     char *, size_t);
112 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
113 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *,
114     struct g_part_parms *);
115 static int g_part_gpt_recover(struct g_part_table *);
116 
117 static kobj_method_t g_part_gpt_methods[] = {
118 	KOBJMETHOD(g_part_add,		g_part_gpt_add),
119 	KOBJMETHOD(g_part_bootcode,	g_part_gpt_bootcode),
120 	KOBJMETHOD(g_part_create,	g_part_gpt_create),
121 	KOBJMETHOD(g_part_destroy,	g_part_gpt_destroy),
122 	KOBJMETHOD(g_part_dumpconf,	g_part_gpt_dumpconf),
123 	KOBJMETHOD(g_part_dumpto,	g_part_gpt_dumpto),
124 	KOBJMETHOD(g_part_modify,	g_part_gpt_modify),
125 	KOBJMETHOD(g_part_resize,	g_part_gpt_resize),
126 	KOBJMETHOD(g_part_name,		g_part_gpt_name),
127 	KOBJMETHOD(g_part_probe,	g_part_gpt_probe),
128 	KOBJMETHOD(g_part_read,		g_part_gpt_read),
129 	KOBJMETHOD(g_part_recover,	g_part_gpt_recover),
130 	KOBJMETHOD(g_part_setunset,	g_part_gpt_setunset),
131 	KOBJMETHOD(g_part_type,		g_part_gpt_type),
132 	KOBJMETHOD(g_part_write,	g_part_gpt_write),
133 	{ 0, 0 }
134 };
135 
136 static struct g_part_scheme g_part_gpt_scheme = {
137 	"GPT",
138 	g_part_gpt_methods,
139 	sizeof(struct g_part_gpt_table),
140 	.gps_entrysz = sizeof(struct g_part_gpt_entry),
141 	.gps_minent = 128,
142 	.gps_maxent = 4096,
143 	.gps_bootcodesz = MBRSIZE,
144 };
145 G_PART_SCHEME_DECLARE(g_part_gpt);
146 
147 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT;
148 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
149 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL;
150 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID;
151 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE;
152 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY;
153 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS;
154 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT;
155 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
156 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
157 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
158 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
159 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
160 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
161 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
162 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
163 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM;
164 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID;
165 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
166 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
167 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED;
168 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA;
169 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA;
170 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD;
171 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD;
172 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS;
173 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS;
174 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID;
175 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP;
176 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
177 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
178 
179 static struct g_part_uuid_alias {
180 	struct uuid *uuid;
181 	int alias;
182 	int mbrtype;
183 } gpt_uuid_alias_match[] = {
184 	{ &gpt_uuid_apple_boot,		G_PART_ALIAS_APPLE_BOOT,	 0xab },
185 	{ &gpt_uuid_apple_hfs,		G_PART_ALIAS_APPLE_HFS,		 0xaf },
186 	{ &gpt_uuid_apple_label,	G_PART_ALIAS_APPLE_LABEL,	 0 },
187 	{ &gpt_uuid_apple_raid,		G_PART_ALIAS_APPLE_RAID,	 0 },
188 	{ &gpt_uuid_apple_raid_offline,	G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 },
189 	{ &gpt_uuid_apple_tv_recovery,	G_PART_ALIAS_APPLE_TV_RECOVERY,	 0 },
190 	{ &gpt_uuid_apple_ufs,		G_PART_ALIAS_APPLE_UFS,		 0 },
191 	{ &gpt_uuid_bios_boot,		G_PART_ALIAS_BIOS_BOOT,		 0 },
192 	{ &gpt_uuid_efi, 		G_PART_ALIAS_EFI,		 0xee },
193 	{ &gpt_uuid_freebsd,		G_PART_ALIAS_FREEBSD,		 0xa5 },
194 	{ &gpt_uuid_freebsd_boot, 	G_PART_ALIAS_FREEBSD_BOOT,	 0 },
195 	{ &gpt_uuid_freebsd_swap,	G_PART_ALIAS_FREEBSD_SWAP,	 0 },
196 	{ &gpt_uuid_freebsd_ufs,	G_PART_ALIAS_FREEBSD_UFS,	 0 },
197 	{ &gpt_uuid_freebsd_vinum,	G_PART_ALIAS_FREEBSD_VINUM,	 0 },
198 	{ &gpt_uuid_freebsd_zfs,	G_PART_ALIAS_FREEBSD_ZFS,	 0 },
199 	{ &gpt_uuid_linux_data,		G_PART_ALIAS_LINUX_DATA,	 0x0b },
200 	{ &gpt_uuid_linux_lvm,		G_PART_ALIAS_LINUX_LVM,		 0 },
201 	{ &gpt_uuid_linux_raid,		G_PART_ALIAS_LINUX_RAID,	 0 },
202 	{ &gpt_uuid_linux_swap,		G_PART_ALIAS_LINUX_SWAP,	 0 },
203 	{ &gpt_uuid_mbr,		G_PART_ALIAS_MBR,		 0 },
204 	{ &gpt_uuid_ms_basic_data,	G_PART_ALIAS_MS_BASIC_DATA,	 0x0b },
205 	{ &gpt_uuid_ms_ldm_data,	G_PART_ALIAS_MS_LDM_DATA,	 0 },
206 	{ &gpt_uuid_ms_ldm_metadata,	G_PART_ALIAS_MS_LDM_METADATA,	 0 },
207 	{ &gpt_uuid_ms_reserved,	G_PART_ALIAS_MS_RESERVED,	 0 },
208 	{ &gpt_uuid_netbsd_ccd,		G_PART_ALIAS_NETBSD_CCD,	 0 },
209 	{ &gpt_uuid_netbsd_cgd,		G_PART_ALIAS_NETBSD_CGD,	 0 },
210 	{ &gpt_uuid_netbsd_ffs,		G_PART_ALIAS_NETBSD_FFS,	 0 },
211 	{ &gpt_uuid_netbsd_lfs,		G_PART_ALIAS_NETBSD_LFS,	 0 },
212 	{ &gpt_uuid_netbsd_raid,	G_PART_ALIAS_NETBSD_RAID,	 0 },
213 	{ &gpt_uuid_netbsd_swap,	G_PART_ALIAS_NETBSD_SWAP,	 0 },
214 	{ NULL, 0, 0 }
215 };
216 
217 static int
218 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start,
219     quad_t end)
220 {
221 
222 	if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX)
223 		return (EINVAL);
224 
225 	mbr += DOSPARTOFF + idx * DOSPARTSIZE;
226 	mbr[0] = 0;
227 	if (start == 1) {
228 		/*
229 		 * Treat the PMBR partition specially to maximize
230 		 * interoperability with BIOSes.
231 		 */
232 		mbr[1] = mbr[3] = 0;
233 		mbr[2] = 2;
234 	} else
235 		mbr[1] = mbr[2] = mbr[3] = 0xff;
236 	mbr[4] = typ;
237 	mbr[5] = mbr[6] = mbr[7] = 0xff;
238 	le32enc(mbr + 8, (uint32_t)start);
239 	le32enc(mbr + 12, (uint32_t)(end - start + 1));
240 	return (0);
241 }
242 
243 static int
244 gpt_map_type(struct uuid *t)
245 {
246 	struct g_part_uuid_alias *uap;
247 
248 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
249 		if (EQUUID(t, uap->uuid))
250 			return (uap->mbrtype);
251 	}
252 	return (0);
253 }
254 
255 /*
256  * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the
257  * whole disk anymore. Rather, it covers the GPT table and the EFI
258  * system partition only. This way the HFS+ partition and any FAT
259  * partitions can be added to the MBR without creating an overlap.
260  */
261 static int
262 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname)
263 {
264 	uint8_t *p;
265 
266 	p = table->mbr + DOSPARTOFF;
267 	if (p[4] != 0xee || le32dec(p + 8) != 1)
268 		return (0);
269 
270 	p += DOSPARTSIZE;
271 	if (p[4] != 0xaf)
272 		return (0);
273 
274 	printf("GEOM: %s: enabling Boot Camp\n", provname);
275 	return (1);
276 }
277 
278 static void
279 gpt_update_bootcamp(struct g_part_table *basetable)
280 {
281 	struct g_part_entry *baseentry;
282 	struct g_part_gpt_entry *entry;
283 	struct g_part_gpt_table *table;
284 	int bootable, error, index, slices, typ;
285 
286 	table = (struct g_part_gpt_table *)basetable;
287 
288 	bootable = -1;
289 	for (index = 0; index < NDOSPART; index++) {
290 		if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index])
291 			bootable = index;
292 	}
293 
294 	bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
295 	slices = 0;
296 	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
297 		if (baseentry->gpe_deleted)
298 			continue;
299 		index = baseentry->gpe_index - 1;
300 		if (index >= NDOSPART)
301 			continue;
302 
303 		entry = (struct g_part_gpt_entry *)baseentry;
304 
305 		switch (index) {
306 		case 0:	/* This must be the EFI system partition. */
307 			if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi))
308 				goto disable;
309 			error = gpt_write_mbr_entry(table->mbr, index, 0xee,
310 			    1ull, entry->ent.ent_lba_end);
311 			break;
312 		case 1:	/* This must be the HFS+ partition. */
313 			if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs))
314 				goto disable;
315 			error = gpt_write_mbr_entry(table->mbr, index, 0xaf,
316 			    entry->ent.ent_lba_start, entry->ent.ent_lba_end);
317 			break;
318 		default:
319 			typ = gpt_map_type(&entry->ent.ent_type);
320 			error = gpt_write_mbr_entry(table->mbr, index, typ,
321 			    entry->ent.ent_lba_start, entry->ent.ent_lba_end);
322 			break;
323 		}
324 		if (error)
325 			continue;
326 
327 		if (index == bootable)
328 			table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80;
329 		slices |= 1 << index;
330 	}
331 	if ((slices & 3) == 3)
332 		return;
333 
334  disable:
335 	table->bootcamp = 0;
336 	bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
337 	gpt_write_mbr_entry(table->mbr, 0, 0xee, 1ull,
338 	    MIN(table->lba[GPT_ELT_SECHDR], UINT32_MAX));
339 }
340 
341 static struct gpt_hdr *
342 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
343     enum gpt_elt elt)
344 {
345 	struct gpt_hdr *buf, *hdr;
346 	struct g_provider *pp;
347 	quad_t lba, last;
348 	int error;
349 	uint32_t crc, sz;
350 
351 	pp = cp->provider;
352 	last = (pp->mediasize / pp->sectorsize) - 1;
353 	table->state[elt] = GPT_STATE_MISSING;
354 	/*
355 	 * If the primary header is valid look for secondary
356 	 * header in AlternateLBA, otherwise in the last medium's LBA.
357 	 */
358 	if (elt == GPT_ELT_SECHDR) {
359 		if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK)
360 			table->lba[elt] = last;
361 	} else
362 		table->lba[elt] = 1;
363 	buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
364 	    &error);
365 	if (buf == NULL)
366 		return (NULL);
367 	hdr = NULL;
368 	if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0)
369 		goto fail;
370 
371 	table->state[elt] = GPT_STATE_CORRUPT;
372 	sz = le32toh(buf->hdr_size);
373 	if (sz < 92 || sz > pp->sectorsize)
374 		goto fail;
375 
376 	hdr = g_malloc(sz, M_WAITOK | M_ZERO);
377 	bcopy(buf, hdr, sz);
378 	hdr->hdr_size = sz;
379 
380 	crc = le32toh(buf->hdr_crc_self);
381 	buf->hdr_crc_self = 0;
382 	if (crc32(buf, sz) != crc)
383 		goto fail;
384 	hdr->hdr_crc_self = crc;
385 
386 	table->state[elt] = GPT_STATE_INVALID;
387 	hdr->hdr_revision = le32toh(buf->hdr_revision);
388 	if (hdr->hdr_revision < GPT_HDR_REVISION)
389 		goto fail;
390 	hdr->hdr_lba_self = le64toh(buf->hdr_lba_self);
391 	if (hdr->hdr_lba_self != table->lba[elt])
392 		goto fail;
393 	hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt);
394 	if (hdr->hdr_lba_alt == hdr->hdr_lba_self ||
395 	    hdr->hdr_lba_alt > last)
396 		goto fail;
397 
398 	/* Check the managed area. */
399 	hdr->hdr_lba_start = le64toh(buf->hdr_lba_start);
400 	if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
401 		goto fail;
402 	hdr->hdr_lba_end = le64toh(buf->hdr_lba_end);
403 	if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
404 		goto fail;
405 
406 	/* Check the table location and size of the table. */
407 	hdr->hdr_entries = le32toh(buf->hdr_entries);
408 	hdr->hdr_entsz = le32toh(buf->hdr_entsz);
409 	if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
410 	    (hdr->hdr_entsz & 7) != 0)
411 		goto fail;
412 	hdr->hdr_lba_table = le64toh(buf->hdr_lba_table);
413 	if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
414 		goto fail;
415 	if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
416 	    hdr->hdr_lba_table <= hdr->hdr_lba_end)
417 		goto fail;
418 	lba = hdr->hdr_lba_table +
419 	    (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) /
420 	    pp->sectorsize - 1;
421 	if (lba >= last)
422 		goto fail;
423 	if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
424 		goto fail;
425 
426 	table->state[elt] = GPT_STATE_OK;
427 	le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid);
428 	hdr->hdr_crc_table = le32toh(buf->hdr_crc_table);
429 
430 	/* save LBA for secondary header */
431 	if (elt == GPT_ELT_PRIHDR)
432 		table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt;
433 
434 	g_free(buf);
435 	return (hdr);
436 
437  fail:
438 	if (hdr != NULL)
439 		g_free(hdr);
440 	g_free(buf);
441 	return (NULL);
442 }
443 
444 static struct gpt_ent *
445 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
446     enum gpt_elt elt, struct gpt_hdr *hdr)
447 {
448 	struct g_provider *pp;
449 	struct gpt_ent *ent, *tbl;
450 	char *buf, *p;
451 	unsigned int idx, sectors, tblsz, size;
452 	int error;
453 
454 	if (hdr == NULL)
455 		return (NULL);
456 
457 	pp = cp->provider;
458 	table->lba[elt] = hdr->hdr_lba_table;
459 
460 	table->state[elt] = GPT_STATE_MISSING;
461 	tblsz = hdr->hdr_entries * hdr->hdr_entsz;
462 	sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize;
463 	buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO);
464 	for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) {
465 		size = (sectors - idx > MAXPHYS / pp->sectorsize) ?  MAXPHYS:
466 		    (sectors - idx) * pp->sectorsize;
467 		p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize,
468 		    size, &error);
469 		if (p == NULL) {
470 			g_free(buf);
471 			return (NULL);
472 		}
473 		bcopy(p, buf + idx * pp->sectorsize, size);
474 		g_free(p);
475 	}
476 	table->state[elt] = GPT_STATE_CORRUPT;
477 	if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
478 		g_free(buf);
479 		return (NULL);
480 	}
481 
482 	table->state[elt] = GPT_STATE_OK;
483 	tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
484 	    M_WAITOK | M_ZERO);
485 
486 	for (idx = 0, ent = tbl, p = buf;
487 	     idx < hdr->hdr_entries;
488 	     idx++, ent++, p += hdr->hdr_entsz) {
489 		le_uuid_dec(p, &ent->ent_type);
490 		le_uuid_dec(p + 16, &ent->ent_uuid);
491 		ent->ent_lba_start = le64dec(p + 32);
492 		ent->ent_lba_end = le64dec(p + 40);
493 		ent->ent_attr = le64dec(p + 48);
494 		/* Keep UTF-16 in little-endian. */
495 		bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
496 	}
497 
498 	g_free(buf);
499 	return (tbl);
500 }
501 
502 static int
503 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
504 {
505 
506 	if (pri == NULL || sec == NULL)
507 		return (0);
508 
509 	if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
510 		return (0);
511 	return ((pri->hdr_revision == sec->hdr_revision &&
512 	    pri->hdr_size == sec->hdr_size &&
513 	    pri->hdr_lba_start == sec->hdr_lba_start &&
514 	    pri->hdr_lba_end == sec->hdr_lba_end &&
515 	    pri->hdr_entries == sec->hdr_entries &&
516 	    pri->hdr_entsz == sec->hdr_entsz &&
517 	    pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
518 }
519 
520 static int
521 gpt_parse_type(const char *type, struct uuid *uuid)
522 {
523 	struct uuid tmp;
524 	const char *alias;
525 	int error;
526 	struct g_part_uuid_alias *uap;
527 
528 	if (type[0] == '!') {
529 		error = parse_uuid(type + 1, &tmp);
530 		if (error)
531 			return (error);
532 		if (EQUUID(&tmp, &gpt_uuid_unused))
533 			return (EINVAL);
534 		*uuid = tmp;
535 		return (0);
536 	}
537 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
538 		alias = g_part_alias_name(uap->alias);
539 		if (!strcasecmp(type, alias)) {
540 			*uuid = *uap->uuid;
541 			return (0);
542 		}
543 	}
544 	return (EINVAL);
545 }
546 
547 static int
548 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
549     struct g_part_parms *gpp)
550 {
551 	struct g_part_gpt_entry *entry;
552 	int error;
553 
554 	entry = (struct g_part_gpt_entry *)baseentry;
555 	error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
556 	if (error)
557 		return (error);
558 	kern_uuidgen(&entry->ent.ent_uuid, 1);
559 	entry->ent.ent_lba_start = baseentry->gpe_start;
560 	entry->ent.ent_lba_end = baseentry->gpe_end;
561 	if (baseentry->gpe_deleted) {
562 		entry->ent.ent_attr = 0;
563 		bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
564 	}
565 	if (gpp->gpp_parms & G_PART_PARM_LABEL)
566 		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
567 		    sizeof(entry->ent.ent_name) /
568 		    sizeof(entry->ent.ent_name[0]));
569 	return (0);
570 }
571 
572 static int
573 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
574 {
575 	struct g_part_gpt_table *table;
576 	size_t codesz;
577 
578 	codesz = DOSPARTOFF;
579 	table = (struct g_part_gpt_table *)basetable;
580 	bzero(table->mbr, codesz);
581 	codesz = MIN(codesz, gpp->gpp_codesize);
582 	if (codesz > 0)
583 		bcopy(gpp->gpp_codeptr, table->mbr, codesz);
584 
585 	/* Mark the PMBR active since some BIOS require it. */
586 	if (!table->bootcamp)
587 		table->mbr[DOSPARTOFF] = 0x80;		/* status */
588 	return (0);
589 }
590 
591 static int
592 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
593 {
594 	struct g_provider *pp;
595 	struct g_part_gpt_table *table;
596 	quad_t last;
597 	size_t tblsz;
598 
599 	/* We don't nest, which means that our depth should be 0. */
600 	if (basetable->gpt_depth != 0)
601 		return (ENXIO);
602 
603 	table = (struct g_part_gpt_table *)basetable;
604 	pp = gpp->gpp_provider;
605 	tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
606 	    pp->sectorsize - 1) / pp->sectorsize;
607 	if (pp->sectorsize < MBRSIZE ||
608 	    pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
609 	    pp->sectorsize)
610 		return (ENOSPC);
611 
612 	last = (pp->mediasize / pp->sectorsize) - 1;
613 
614 	le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
615 	gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, MIN(last, UINT32_MAX));
616 
617 	/* Allocate space for the header */
618 	table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO);
619 
620 	bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
621 	table->hdr->hdr_revision = GPT_HDR_REVISION;
622 	table->hdr->hdr_size = offsetof(struct gpt_hdr, padding);
623 	kern_uuidgen(&table->hdr->hdr_uuid, 1);
624 	table->hdr->hdr_entries = basetable->gpt_entries;
625 	table->hdr->hdr_entsz = sizeof(struct gpt_ent);
626 
627 	g_gpt_set_defaults(basetable, pp);
628 	return (0);
629 }
630 
631 static int
632 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
633 {
634 	struct g_part_gpt_table *table;
635 	struct g_provider *pp;
636 
637 	table = (struct g_part_gpt_table *)basetable;
638 	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
639 	g_free(table->hdr);
640 	table->hdr = NULL;
641 
642 	/*
643 	 * Wipe the first 2 sectors to clear the partitioning. Wipe the last
644 	 * sector only if it has valid secondary header.
645 	 */
646 	basetable->gpt_smhead |= 3;
647 	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
648 	    table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1)
649 		basetable->gpt_smtail |= 1;
650 	return (0);
651 }
652 
653 static void
654 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry,
655     struct sbuf *sb, const char *indent)
656 {
657 	struct g_part_gpt_entry *entry;
658 
659 	entry = (struct g_part_gpt_entry *)baseentry;
660 	if (indent == NULL) {
661 		/* conftxt: libdisk compatibility */
662 		sbuf_printf(sb, " xs GPT xt ");
663 		sbuf_printf_uuid(sb, &entry->ent.ent_type);
664 	} else if (entry != NULL) {
665 		/* confxml: partition entry information */
666 		sbuf_printf(sb, "%s<label>", indent);
667 		g_gpt_printf_utf16(sb, entry->ent.ent_name,
668 		    sizeof(entry->ent.ent_name) >> 1);
669 		sbuf_printf(sb, "</label>\n");
670 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)
671 			sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent);
672 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) {
673 			sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n",
674 			    indent);
675 		}
676 		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) {
677 			sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n",
678 			    indent);
679 		}
680 		sbuf_printf(sb, "%s<rawtype>", indent);
681 		sbuf_printf_uuid(sb, &entry->ent.ent_type);
682 		sbuf_printf(sb, "</rawtype>\n");
683 		sbuf_printf(sb, "%s<rawuuid>", indent);
684 		sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
685 		sbuf_printf(sb, "</rawuuid>\n");
686 	} else {
687 		/* confxml: scheme information */
688 	}
689 }
690 
691 static int
692 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
693 {
694 	struct g_part_gpt_entry *entry;
695 
696 	entry = (struct g_part_gpt_entry *)baseentry;
697 	return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
698 	    EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap)) ? 1 : 0);
699 }
700 
701 static int
702 g_part_gpt_modify(struct g_part_table *basetable,
703     struct g_part_entry *baseentry, struct g_part_parms *gpp)
704 {
705 	struct g_part_gpt_entry *entry;
706 	int error;
707 
708 	entry = (struct g_part_gpt_entry *)baseentry;
709 	if (gpp->gpp_parms & G_PART_PARM_TYPE) {
710 		error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
711 		if (error)
712 			return (error);
713 	}
714 	if (gpp->gpp_parms & G_PART_PARM_LABEL)
715 		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
716 		    sizeof(entry->ent.ent_name) /
717 		    sizeof(entry->ent.ent_name[0]));
718 	return (0);
719 }
720 
721 static int
722 g_part_gpt_resize(struct g_part_table *basetable,
723     struct g_part_entry *baseentry, struct g_part_parms *gpp)
724 {
725 	struct g_part_gpt_entry *entry;
726 	entry = (struct g_part_gpt_entry *)baseentry;
727 
728 	baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
729 	entry->ent.ent_lba_end = baseentry->gpe_end;
730 
731 	return (0);
732 }
733 
734 static const char *
735 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
736     char *buf, size_t bufsz)
737 {
738 	struct g_part_gpt_entry *entry;
739 	char c;
740 
741 	entry = (struct g_part_gpt_entry *)baseentry;
742 	c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
743 	snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
744 	return (buf);
745 }
746 
747 static int
748 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
749 {
750 	struct g_provider *pp;
751 	char *buf;
752 	int error, res;
753 
754 	/* We don't nest, which means that our depth should be 0. */
755 	if (table->gpt_depth != 0)
756 		return (ENXIO);
757 
758 	pp = cp->provider;
759 
760 	/*
761 	 * Sanity-check the provider. Since the first sector on the provider
762 	 * must be a PMBR and a PMBR is 512 bytes large, the sector size
763 	 * must be at least 512 bytes.  Also, since the theoretical minimum
764 	 * number of sectors needed by GPT is 6, any medium that has less
765 	 * than 6 sectors is never going to be able to hold a GPT. The
766 	 * number 6 comes from:
767 	 *	1 sector for the PMBR
768 	 *	2 sectors for the GPT headers (each 1 sector)
769 	 *	2 sectors for the GPT tables (each 1 sector)
770 	 *	1 sector for an actual partition
771 	 * It's better to catch this pathological case early than behaving
772 	 * pathologically later on...
773 	 */
774 	if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
775 		return (ENOSPC);
776 
777 	/* Check that there's a MBR. */
778 	buf = g_read_data(cp, 0L, pp->sectorsize, &error);
779 	if (buf == NULL)
780 		return (error);
781 	res = le16dec(buf + DOSMAGICOFFSET);
782 	g_free(buf);
783 	if (res != DOSMAGIC)
784 		return (ENXIO);
785 
786 	/* Check that there's a primary header. */
787 	buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
788 	if (buf == NULL)
789 		return (error);
790 	res = memcmp(buf, GPT_HDR_SIG, 8);
791 	g_free(buf);
792 	if (res == 0)
793 		return (G_PART_PROBE_PRI_HIGH);
794 
795 	/* No primary? Check that there's a secondary. */
796 	buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
797 	    &error);
798 	if (buf == NULL)
799 		return (error);
800 	res = memcmp(buf, GPT_HDR_SIG, 8);
801 	g_free(buf);
802 	return ((res == 0) ? G_PART_PROBE_PRI_HIGH : ENXIO);
803 }
804 
805 static int
806 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
807 {
808 	struct gpt_hdr *prihdr, *sechdr;
809 	struct gpt_ent *tbl, *pritbl, *sectbl;
810 	struct g_provider *pp;
811 	struct g_part_gpt_table *table;
812 	struct g_part_gpt_entry *entry;
813 	u_char *buf;
814 	uint64_t last;
815 	int error, index;
816 
817 	table = (struct g_part_gpt_table *)basetable;
818 	pp = cp->provider;
819 	last = (pp->mediasize / pp->sectorsize) - 1;
820 
821 	/* Read the PMBR */
822 	buf = g_read_data(cp, 0, pp->sectorsize, &error);
823 	if (buf == NULL)
824 		return (error);
825 	bcopy(buf, table->mbr, MBRSIZE);
826 	g_free(buf);
827 
828 	/* Read the primary header and table. */
829 	prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR);
830 	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
831 		pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr);
832 	} else {
833 		table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
834 		pritbl = NULL;
835 	}
836 
837 	/* Read the secondary header and table. */
838 	sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR);
839 	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
840 		sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr);
841 	} else {
842 		table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
843 		sectbl = NULL;
844 	}
845 
846 	/* Fail if we haven't got any good tables at all. */
847 	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
848 	    table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
849 		printf("GEOM: %s: corrupt or invalid GPT detected.\n",
850 		    pp->name);
851 		printf("GEOM: %s: GPT rejected -- may not be recoverable.\n",
852 		    pp->name);
853 		return (EINVAL);
854 	}
855 
856 	/*
857 	 * If both headers are good but they disagree with each other,
858 	 * then invalidate one. We prefer to keep the primary header,
859 	 * unless the primary table is corrupt.
860 	 */
861 	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
862 	    table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
863 	    !gpt_matched_hdrs(prihdr, sechdr)) {
864 		if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
865 			table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
866 			table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
867 			g_free(sechdr);
868 			sechdr = NULL;
869 		} else {
870 			table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
871 			table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
872 			g_free(prihdr);
873 			prihdr = NULL;
874 		}
875 	}
876 
877 	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
878 		printf("GEOM: %s: the primary GPT table is corrupt or "
879 		    "invalid.\n", pp->name);
880 		printf("GEOM: %s: using the secondary instead -- recovery "
881 		    "strongly advised.\n", pp->name);
882 		table->hdr = sechdr;
883 		basetable->gpt_corrupt = 1;
884 		if (prihdr != NULL)
885 			g_free(prihdr);
886 		tbl = sectbl;
887 		if (pritbl != NULL)
888 			g_free(pritbl);
889 	} else {
890 		if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
891 			printf("GEOM: %s: the secondary GPT table is corrupt "
892 			    "or invalid.\n", pp->name);
893 			printf("GEOM: %s: using the primary only -- recovery "
894 			    "suggested.\n", pp->name);
895 			basetable->gpt_corrupt = 1;
896 		} else if (table->lba[GPT_ELT_SECHDR] != last) {
897 			printf( "GEOM: %s: the secondary GPT header is not in "
898 			    "the last LBA.\n", pp->name);
899 			basetable->gpt_corrupt = 1;
900 		}
901 		table->hdr = prihdr;
902 		if (sechdr != NULL)
903 			g_free(sechdr);
904 		tbl = pritbl;
905 		if (sectbl != NULL)
906 			g_free(sectbl);
907 	}
908 
909 	basetable->gpt_first = table->hdr->hdr_lba_start;
910 	basetable->gpt_last = table->hdr->hdr_lba_end;
911 	basetable->gpt_entries = table->hdr->hdr_entries;
912 
913 	for (index = basetable->gpt_entries - 1; index >= 0; index--) {
914 		if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
915 			continue;
916 		entry = (struct g_part_gpt_entry *)g_part_new_entry(
917 		    basetable, index + 1, tbl[index].ent_lba_start,
918 		    tbl[index].ent_lba_end);
919 		entry->ent = tbl[index];
920 	}
921 
922 	g_free(tbl);
923 
924 	/*
925 	 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions
926 	 * if (and only if) any FAT32 or FAT16 partitions have been
927 	 * created. This happens irrespective of whether Boot Camp is
928 	 * used/enabled, though it's generally understood to be done
929 	 * to support legacy Windows under Boot Camp. We refer to this
930 	 * mirroring simply as Boot Camp. We try to detect Boot Camp
931 	 * so that we can update the MBR if and when GPT changes have
932 	 * been made. Note that we do not enable Boot Camp if not
933 	 * previously enabled because we can't assume that we're on a
934 	 * Mac alongside Mac OS X.
935 	 */
936 	table->bootcamp = gpt_is_bootcamp(table, pp->name);
937 
938 	return (0);
939 }
940 
941 static int
942 g_part_gpt_recover(struct g_part_table *basetable)
943 {
944 
945 	g_gpt_set_defaults(basetable,
946 	    LIST_FIRST(&basetable->gpt_gp->consumer)->provider);
947 	basetable->gpt_corrupt = 0;
948 	return (0);
949 }
950 
951 static int
952 g_part_gpt_setunset(struct g_part_table *basetable,
953     struct g_part_entry *baseentry, const char *attrib, unsigned int set)
954 {
955 	struct g_part_gpt_entry *entry;
956 	struct g_part_gpt_table *table;
957 	uint64_t attr;
958 	int i;
959 
960 	table = (struct g_part_gpt_table *)basetable;
961 	entry = (struct g_part_gpt_entry *)baseentry;
962 
963 	if (strcasecmp(attrib, "active") == 0) {
964 		if (!table->bootcamp || baseentry->gpe_index > NDOSPART)
965 			return (EINVAL);
966 		for (i = 0; i < NDOSPART; i++) {
967 			table->mbr[DOSPARTOFF + i * DOSPARTSIZE] =
968 			    (i == baseentry->gpe_index - 1) ? 0x80 : 0;
969 		}
970 		return (0);
971 	}
972 
973 	attr = 0;
974 	if (strcasecmp(attrib, "bootme") == 0) {
975 		attr |= GPT_ENT_ATTR_BOOTME;
976 	} else if (strcasecmp(attrib, "bootonce") == 0) {
977 		attr |= GPT_ENT_ATTR_BOOTONCE;
978 		if (set)
979 			attr |= GPT_ENT_ATTR_BOOTME;
980 	} else if (strcasecmp(attrib, "bootfailed") == 0) {
981 		/*
982 		 * It should only be possible to unset BOOTFAILED, but it might
983 		 * be useful for test purposes to also be able to set it.
984 		 */
985 		attr |= GPT_ENT_ATTR_BOOTFAILED;
986 	}
987 	if (attr == 0)
988 		return (EINVAL);
989 
990 	if (set)
991 		attr = entry->ent.ent_attr | attr;
992 	else
993 		attr = entry->ent.ent_attr & ~attr;
994 	if (attr != entry->ent.ent_attr) {
995 		entry->ent.ent_attr = attr;
996 		if (!baseentry->gpe_created)
997 			baseentry->gpe_modified = 1;
998 	}
999 	return (0);
1000 }
1001 
1002 static const char *
1003 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
1004     char *buf, size_t bufsz)
1005 {
1006 	struct g_part_gpt_entry *entry;
1007 	struct uuid *type;
1008 	struct g_part_uuid_alias *uap;
1009 
1010 	entry = (struct g_part_gpt_entry *)baseentry;
1011 	type = &entry->ent.ent_type;
1012 	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++)
1013 		if (EQUUID(type, uap->uuid))
1014 			return (g_part_alias_name(uap->alias));
1015 	buf[0] = '!';
1016 	snprintf_uuid(buf + 1, bufsz - 1, type);
1017 
1018 	return (buf);
1019 }
1020 
1021 static int
1022 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
1023 {
1024 	unsigned char *buf, *bp;
1025 	struct g_provider *pp;
1026 	struct g_part_entry *baseentry;
1027 	struct g_part_gpt_entry *entry;
1028 	struct g_part_gpt_table *table;
1029 	size_t tblsz;
1030 	uint32_t crc;
1031 	int error, index;
1032 
1033 	pp = cp->provider;
1034 	table = (struct g_part_gpt_table *)basetable;
1035 	tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz +
1036 	    pp->sectorsize - 1) / pp->sectorsize;
1037 
1038 	/* Reconstruct the MBR from the GPT if under Boot Camp. */
1039 	if (table->bootcamp)
1040 		gpt_update_bootcamp(basetable);
1041 
1042 	/* Write the PMBR */
1043 	buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
1044 	bcopy(table->mbr, buf, MBRSIZE);
1045 	error = g_write_data(cp, 0, buf, pp->sectorsize);
1046 	g_free(buf);
1047 	if (error)
1048 		return (error);
1049 
1050 	/* Allocate space for the header and entries. */
1051 	buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
1052 
1053 	memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
1054 	le32enc(buf + 8, table->hdr->hdr_revision);
1055 	le32enc(buf + 12, table->hdr->hdr_size);
1056 	le64enc(buf + 40, table->hdr->hdr_lba_start);
1057 	le64enc(buf + 48, table->hdr->hdr_lba_end);
1058 	le_uuid_enc(buf + 56, &table->hdr->hdr_uuid);
1059 	le32enc(buf + 80, table->hdr->hdr_entries);
1060 	le32enc(buf + 84, table->hdr->hdr_entsz);
1061 
1062 	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1063 		if (baseentry->gpe_deleted)
1064 			continue;
1065 		entry = (struct g_part_gpt_entry *)baseentry;
1066 		index = baseentry->gpe_index - 1;
1067 		bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index;
1068 		le_uuid_enc(bp, &entry->ent.ent_type);
1069 		le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
1070 		le64enc(bp + 32, entry->ent.ent_lba_start);
1071 		le64enc(bp + 40, entry->ent.ent_lba_end);
1072 		le64enc(bp + 48, entry->ent.ent_attr);
1073 		memcpy(bp + 56, entry->ent.ent_name,
1074 		    sizeof(entry->ent.ent_name));
1075 	}
1076 
1077 	crc = crc32(buf + pp->sectorsize,
1078 	    table->hdr->hdr_entries * table->hdr->hdr_entsz);
1079 	le32enc(buf + 88, crc);
1080 
1081 	/* Write primary meta-data. */
1082 	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1083 	le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_self. */
1084 	le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_alt. */
1085 	le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]);	/* hdr_lba_table. */
1086 	crc = crc32(buf, table->hdr->hdr_size);
1087 	le32enc(buf + 16, crc);
1088 
1089 	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1090 		error = g_write_data(cp,
1091 		    (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize,
1092 		    buf + (index + 1) * pp->sectorsize,
1093 		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1094 		    (tblsz - index) * pp->sectorsize);
1095 		if (error)
1096 			goto out;
1097 	}
1098 	error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
1099 	    buf, pp->sectorsize);
1100 	if (error)
1101 		goto out;
1102 
1103 	/* Write secondary meta-data. */
1104 	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1105 	le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_self. */
1106 	le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_alt. */
1107 	le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]);	/* hdr_lba_table. */
1108 	crc = crc32(buf, table->hdr->hdr_size);
1109 	le32enc(buf + 16, crc);
1110 
1111 	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1112 		error = g_write_data(cp,
1113 		    (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize,
1114 		    buf + (index + 1) * pp->sectorsize,
1115 		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1116 		    (tblsz - index) * pp->sectorsize);
1117 		if (error)
1118 			goto out;
1119 	}
1120 	error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
1121 	    buf, pp->sectorsize);
1122 
1123  out:
1124 	g_free(buf);
1125 	return (error);
1126 }
1127 
1128 static void
1129 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp)
1130 {
1131 	struct g_part_gpt_table *table;
1132 	quad_t last;
1133 	size_t tblsz;
1134 
1135 	table = (struct g_part_gpt_table *)basetable;
1136 	last = pp->mediasize / pp->sectorsize - 1;
1137 	tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
1138 	    pp->sectorsize - 1) / pp->sectorsize;
1139 
1140 	table->lba[GPT_ELT_PRIHDR] = 1;
1141 	table->lba[GPT_ELT_PRITBL] = 2;
1142 	table->lba[GPT_ELT_SECHDR] = last;
1143 	table->lba[GPT_ELT_SECTBL] = last - tblsz;
1144 	table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK;
1145 	table->state[GPT_ELT_PRITBL] = GPT_STATE_OK;
1146 	table->state[GPT_ELT_SECHDR] = GPT_STATE_OK;
1147 	table->state[GPT_ELT_SECTBL] = GPT_STATE_OK;
1148 
1149 	table->hdr->hdr_lba_start = 2 + tblsz;
1150 	table->hdr->hdr_lba_end = last - tblsz - 1;
1151 
1152 	basetable->gpt_first = table->hdr->hdr_lba_start;
1153 	basetable->gpt_last = table->hdr->hdr_lba_end;
1154 }
1155 
1156 static void
1157 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
1158 {
1159 	u_int bo;
1160 	uint32_t ch;
1161 	uint16_t c;
1162 
1163 	bo = LITTLE_ENDIAN;	/* GPT is little-endian */
1164 	while (len > 0 && *str != 0) {
1165 		ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
1166 		str++, len--;
1167 		if ((ch & 0xf800) == 0xd800) {
1168 			if (len > 0) {
1169 				c = (bo == BIG_ENDIAN) ? be16toh(*str)
1170 				    : le16toh(*str);
1171 				str++, len--;
1172 			} else
1173 				c = 0xfffd;
1174 			if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
1175 				ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
1176 				ch += 0x10000;
1177 			} else
1178 				ch = 0xfffd;
1179 		} else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
1180 			bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
1181 			continue;
1182 		} else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
1183 			continue;
1184 
1185 		/* Write the Unicode character in UTF-8 */
1186 		if (ch < 0x80)
1187 			sbuf_printf(sb, "%c", ch);
1188 		else if (ch < 0x800)
1189 			sbuf_printf(sb, "%c%c", 0xc0 | (ch >> 6),
1190 			    0x80 | (ch & 0x3f));
1191 		else if (ch < 0x10000)
1192 			sbuf_printf(sb, "%c%c%c", 0xe0 | (ch >> 12),
1193 			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1194 		else if (ch < 0x200000)
1195 			sbuf_printf(sb, "%c%c%c%c", 0xf0 | (ch >> 18),
1196 			    0x80 | ((ch >> 12) & 0x3f),
1197 			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1198 	}
1199 }
1200 
1201 static void
1202 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
1203 {
1204 	size_t s16idx, s8idx;
1205 	uint32_t utfchar;
1206 	unsigned int c, utfbytes;
1207 
1208 	s8idx = s16idx = 0;
1209 	utfchar = 0;
1210 	utfbytes = 0;
1211 	bzero(s16, s16len << 1);
1212 	while (s8[s8idx] != 0 && s16idx < s16len) {
1213 		c = s8[s8idx++];
1214 		if ((c & 0xc0) != 0x80) {
1215 			/* Initial characters. */
1216 			if (utfbytes != 0) {
1217 				/* Incomplete encoding of previous char. */
1218 				s16[s16idx++] = htole16(0xfffd);
1219 			}
1220 			if ((c & 0xf8) == 0xf0) {
1221 				utfchar = c & 0x07;
1222 				utfbytes = 3;
1223 			} else if ((c & 0xf0) == 0xe0) {
1224 				utfchar = c & 0x0f;
1225 				utfbytes = 2;
1226 			} else if ((c & 0xe0) == 0xc0) {
1227 				utfchar = c & 0x1f;
1228 				utfbytes = 1;
1229 			} else {
1230 				utfchar = c & 0x7f;
1231 				utfbytes = 0;
1232 			}
1233 		} else {
1234 			/* Followup characters. */
1235 			if (utfbytes > 0) {
1236 				utfchar = (utfchar << 6) + (c & 0x3f);
1237 				utfbytes--;
1238 			} else if (utfbytes == 0)
1239 				utfbytes = ~0;
1240 		}
1241 		/*
1242 		 * Write the complete Unicode character as UTF-16 when we
1243 		 * have all the UTF-8 charactars collected.
1244 		 */
1245 		if (utfbytes == 0) {
1246 			/*
1247 			 * If we need to write 2 UTF-16 characters, but
1248 			 * we only have room for 1, then we truncate the
1249 			 * string by writing a 0 instead.
1250 			 */
1251 			if (utfchar >= 0x10000 && s16idx < s16len - 1) {
1252 				s16[s16idx++] =
1253 				    htole16(0xd800 | ((utfchar >> 10) - 0x40));
1254 				s16[s16idx++] =
1255 				    htole16(0xdc00 | (utfchar & 0x3ff));
1256 			} else
1257 				s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
1258 				    htole16(utfchar);
1259 		}
1260 	}
1261 	/*
1262 	 * If our input string was truncated, append an invalid encoding
1263 	 * character to the output string.
1264 	 */
1265 	if (utfbytes != 0 && s16idx < s16len)
1266 		s16[s16idx++] = htole16(0xfffd);
1267 }
1268