1 /*- 2 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/bio.h> 32 #include <sys/diskmbr.h> 33 #include <sys/endian.h> 34 #include <sys/gpt.h> 35 #include <sys/kernel.h> 36 #include <sys/kobj.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/malloc.h> 40 #include <sys/mutex.h> 41 #include <sys/queue.h> 42 #include <sys/sbuf.h> 43 #include <sys/systm.h> 44 #include <sys/sysctl.h> 45 #include <sys/uuid.h> 46 #include <geom/geom.h> 47 #include <geom/part/g_part.h> 48 49 #include "g_part_if.h" 50 51 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support"); 52 53 CTASSERT(offsetof(struct gpt_hdr, padding) == 92); 54 CTASSERT(sizeof(struct gpt_ent) == 128); 55 56 #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) 57 58 #define MBRSIZE 512 59 60 enum gpt_elt { 61 GPT_ELT_PRIHDR, 62 GPT_ELT_PRITBL, 63 GPT_ELT_SECHDR, 64 GPT_ELT_SECTBL, 65 GPT_ELT_COUNT 66 }; 67 68 enum gpt_state { 69 GPT_STATE_UNKNOWN, /* Not determined. */ 70 GPT_STATE_MISSING, /* No signature found. */ 71 GPT_STATE_CORRUPT, /* Checksum mismatch. */ 72 GPT_STATE_INVALID, /* Nonconformant/invalid. */ 73 GPT_STATE_OK /* Perfectly fine. */ 74 }; 75 76 struct g_part_gpt_table { 77 struct g_part_table base; 78 u_char mbr[MBRSIZE]; 79 struct gpt_hdr *hdr; 80 quad_t lba[GPT_ELT_COUNT]; 81 enum gpt_state state[GPT_ELT_COUNT]; 82 int bootcamp; 83 }; 84 85 struct g_part_gpt_entry { 86 struct g_part_entry base; 87 struct gpt_ent ent; 88 }; 89 90 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); 91 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); 92 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *); 93 94 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, 95 struct g_part_parms *); 96 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); 97 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); 98 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); 99 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, 100 struct sbuf *, const char *); 101 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); 102 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, 103 struct g_part_parms *); 104 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, 105 char *, size_t); 106 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); 107 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); 108 static int g_part_gpt_setunset(struct g_part_table *table, 109 struct g_part_entry *baseentry, const char *attrib, unsigned int set); 110 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, 111 char *, size_t); 112 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); 113 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, 114 struct g_part_parms *); 115 static int g_part_gpt_recover(struct g_part_table *); 116 117 static kobj_method_t g_part_gpt_methods[] = { 118 KOBJMETHOD(g_part_add, g_part_gpt_add), 119 KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), 120 KOBJMETHOD(g_part_create, g_part_gpt_create), 121 KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), 122 KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), 123 KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), 124 KOBJMETHOD(g_part_modify, g_part_gpt_modify), 125 KOBJMETHOD(g_part_resize, g_part_gpt_resize), 126 KOBJMETHOD(g_part_name, g_part_gpt_name), 127 KOBJMETHOD(g_part_probe, g_part_gpt_probe), 128 KOBJMETHOD(g_part_read, g_part_gpt_read), 129 KOBJMETHOD(g_part_recover, g_part_gpt_recover), 130 KOBJMETHOD(g_part_setunset, g_part_gpt_setunset), 131 KOBJMETHOD(g_part_type, g_part_gpt_type), 132 KOBJMETHOD(g_part_write, g_part_gpt_write), 133 { 0, 0 } 134 }; 135 136 static struct g_part_scheme g_part_gpt_scheme = { 137 "GPT", 138 g_part_gpt_methods, 139 sizeof(struct g_part_gpt_table), 140 .gps_entrysz = sizeof(struct g_part_gpt_entry), 141 .gps_minent = 128, 142 .gps_maxent = 4096, 143 .gps_bootcodesz = MBRSIZE, 144 }; 145 G_PART_SCHEME_DECLARE(g_part_gpt); 146 147 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; 148 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; 149 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; 150 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; 151 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; 152 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; 153 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; 154 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT; 155 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; 156 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; 157 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; 158 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; 159 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; 160 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; 161 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; 162 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; 163 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; 164 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; 165 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; 166 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; 167 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; 168 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; 169 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; 170 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; 171 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; 172 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; 173 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; 174 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; 175 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; 176 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; 177 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; 178 179 static struct g_part_uuid_alias { 180 struct uuid *uuid; 181 int alias; 182 int mbrtype; 183 } gpt_uuid_alias_match[] = { 184 { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab }, 185 { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf }, 186 { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 }, 187 { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 }, 188 { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 }, 189 { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 }, 190 { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 }, 191 { &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 }, 192 { &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee }, 193 { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 }, 194 { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 }, 195 { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 }, 196 { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 }, 197 { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 }, 198 { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 }, 199 { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b }, 200 { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 }, 201 { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 }, 202 { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 }, 203 { &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 }, 204 { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b }, 205 { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 }, 206 { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 }, 207 { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 }, 208 { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 }, 209 { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 }, 210 { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 }, 211 { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 }, 212 { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 }, 213 { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 }, 214 { NULL, 0, 0 } 215 }; 216 217 static int 218 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start, 219 quad_t end) 220 { 221 222 if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX) 223 return (EINVAL); 224 225 mbr += DOSPARTOFF + idx * DOSPARTSIZE; 226 mbr[0] = 0; 227 if (start == 1) { 228 /* 229 * Treat the PMBR partition specially to maximize 230 * interoperability with BIOSes. 231 */ 232 mbr[1] = mbr[3] = 0; 233 mbr[2] = 2; 234 } else 235 mbr[1] = mbr[2] = mbr[3] = 0xff; 236 mbr[4] = typ; 237 mbr[5] = mbr[6] = mbr[7] = 0xff; 238 le32enc(mbr + 8, (uint32_t)start); 239 le32enc(mbr + 12, (uint32_t)(end - start + 1)); 240 return (0); 241 } 242 243 static int 244 gpt_map_type(struct uuid *t) 245 { 246 struct g_part_uuid_alias *uap; 247 248 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 249 if (EQUUID(t, uap->uuid)) 250 return (uap->mbrtype); 251 } 252 return (0); 253 } 254 255 /* 256 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the 257 * whole disk anymore. Rather, it covers the GPT table and the EFI 258 * system partition only. This way the HFS+ partition and any FAT 259 * partitions can be added to the MBR without creating an overlap. 260 */ 261 static int 262 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname) 263 { 264 uint8_t *p; 265 266 p = table->mbr + DOSPARTOFF; 267 if (p[4] != 0xee || le32dec(p + 8) != 1) 268 return (0); 269 270 p += DOSPARTSIZE; 271 if (p[4] != 0xaf) 272 return (0); 273 274 printf("GEOM: %s: enabling Boot Camp\n", provname); 275 return (1); 276 } 277 278 static void 279 gpt_update_bootcamp(struct g_part_table *basetable) 280 { 281 struct g_part_entry *baseentry; 282 struct g_part_gpt_entry *entry; 283 struct g_part_gpt_table *table; 284 int bootable, error, index, slices, typ; 285 286 table = (struct g_part_gpt_table *)basetable; 287 288 bootable = -1; 289 for (index = 0; index < NDOSPART; index++) { 290 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index]) 291 bootable = index; 292 } 293 294 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 295 slices = 0; 296 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 297 if (baseentry->gpe_deleted) 298 continue; 299 index = baseentry->gpe_index - 1; 300 if (index >= NDOSPART) 301 continue; 302 303 entry = (struct g_part_gpt_entry *)baseentry; 304 305 switch (index) { 306 case 0: /* This must be the EFI system partition. */ 307 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi)) 308 goto disable; 309 error = gpt_write_mbr_entry(table->mbr, index, 0xee, 310 1ull, entry->ent.ent_lba_end); 311 break; 312 case 1: /* This must be the HFS+ partition. */ 313 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs)) 314 goto disable; 315 error = gpt_write_mbr_entry(table->mbr, index, 0xaf, 316 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 317 break; 318 default: 319 typ = gpt_map_type(&entry->ent.ent_type); 320 error = gpt_write_mbr_entry(table->mbr, index, typ, 321 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 322 break; 323 } 324 if (error) 325 continue; 326 327 if (index == bootable) 328 table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80; 329 slices |= 1 << index; 330 } 331 if ((slices & 3) == 3) 332 return; 333 334 disable: 335 table->bootcamp = 0; 336 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 337 gpt_write_mbr_entry(table->mbr, 0, 0xee, 1ull, 338 MIN(table->lba[GPT_ELT_SECHDR], UINT32_MAX)); 339 } 340 341 static struct gpt_hdr * 342 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, 343 enum gpt_elt elt) 344 { 345 struct gpt_hdr *buf, *hdr; 346 struct g_provider *pp; 347 quad_t lba, last; 348 int error; 349 uint32_t crc, sz; 350 351 pp = cp->provider; 352 last = (pp->mediasize / pp->sectorsize) - 1; 353 table->state[elt] = GPT_STATE_MISSING; 354 /* 355 * If the primary header is valid look for secondary 356 * header in AlternateLBA, otherwise in the last medium's LBA. 357 */ 358 if (elt == GPT_ELT_SECHDR) { 359 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK) 360 table->lba[elt] = last; 361 } else 362 table->lba[elt] = 1; 363 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, 364 &error); 365 if (buf == NULL) 366 return (NULL); 367 hdr = NULL; 368 if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) 369 goto fail; 370 371 table->state[elt] = GPT_STATE_CORRUPT; 372 sz = le32toh(buf->hdr_size); 373 if (sz < 92 || sz > pp->sectorsize) 374 goto fail; 375 376 hdr = g_malloc(sz, M_WAITOK | M_ZERO); 377 bcopy(buf, hdr, sz); 378 hdr->hdr_size = sz; 379 380 crc = le32toh(buf->hdr_crc_self); 381 buf->hdr_crc_self = 0; 382 if (crc32(buf, sz) != crc) 383 goto fail; 384 hdr->hdr_crc_self = crc; 385 386 table->state[elt] = GPT_STATE_INVALID; 387 hdr->hdr_revision = le32toh(buf->hdr_revision); 388 if (hdr->hdr_revision < GPT_HDR_REVISION) 389 goto fail; 390 hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); 391 if (hdr->hdr_lba_self != table->lba[elt]) 392 goto fail; 393 hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); 394 if (hdr->hdr_lba_alt == hdr->hdr_lba_self || 395 hdr->hdr_lba_alt > last) 396 goto fail; 397 398 /* Check the managed area. */ 399 hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); 400 if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) 401 goto fail; 402 hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); 403 if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) 404 goto fail; 405 406 /* Check the table location and size of the table. */ 407 hdr->hdr_entries = le32toh(buf->hdr_entries); 408 hdr->hdr_entsz = le32toh(buf->hdr_entsz); 409 if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || 410 (hdr->hdr_entsz & 7) != 0) 411 goto fail; 412 hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); 413 if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) 414 goto fail; 415 if (hdr->hdr_lba_table >= hdr->hdr_lba_start && 416 hdr->hdr_lba_table <= hdr->hdr_lba_end) 417 goto fail; 418 lba = hdr->hdr_lba_table + 419 (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) / 420 pp->sectorsize - 1; 421 if (lba >= last) 422 goto fail; 423 if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) 424 goto fail; 425 426 table->state[elt] = GPT_STATE_OK; 427 le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); 428 hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); 429 430 /* save LBA for secondary header */ 431 if (elt == GPT_ELT_PRIHDR) 432 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt; 433 434 g_free(buf); 435 return (hdr); 436 437 fail: 438 if (hdr != NULL) 439 g_free(hdr); 440 g_free(buf); 441 return (NULL); 442 } 443 444 static struct gpt_ent * 445 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, 446 enum gpt_elt elt, struct gpt_hdr *hdr) 447 { 448 struct g_provider *pp; 449 struct gpt_ent *ent, *tbl; 450 char *buf, *p; 451 unsigned int idx, sectors, tblsz, size; 452 int error; 453 454 if (hdr == NULL) 455 return (NULL); 456 457 pp = cp->provider; 458 table->lba[elt] = hdr->hdr_lba_table; 459 460 table->state[elt] = GPT_STATE_MISSING; 461 tblsz = hdr->hdr_entries * hdr->hdr_entsz; 462 sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize; 463 buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO); 464 for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) { 465 size = (sectors - idx > MAXPHYS / pp->sectorsize) ? MAXPHYS: 466 (sectors - idx) * pp->sectorsize; 467 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize, 468 size, &error); 469 if (p == NULL) { 470 g_free(buf); 471 return (NULL); 472 } 473 bcopy(p, buf + idx * pp->sectorsize, size); 474 g_free(p); 475 } 476 table->state[elt] = GPT_STATE_CORRUPT; 477 if (crc32(buf, tblsz) != hdr->hdr_crc_table) { 478 g_free(buf); 479 return (NULL); 480 } 481 482 table->state[elt] = GPT_STATE_OK; 483 tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), 484 M_WAITOK | M_ZERO); 485 486 for (idx = 0, ent = tbl, p = buf; 487 idx < hdr->hdr_entries; 488 idx++, ent++, p += hdr->hdr_entsz) { 489 le_uuid_dec(p, &ent->ent_type); 490 le_uuid_dec(p + 16, &ent->ent_uuid); 491 ent->ent_lba_start = le64dec(p + 32); 492 ent->ent_lba_end = le64dec(p + 40); 493 ent->ent_attr = le64dec(p + 48); 494 /* Keep UTF-16 in little-endian. */ 495 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); 496 } 497 498 g_free(buf); 499 return (tbl); 500 } 501 502 static int 503 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) 504 { 505 506 if (pri == NULL || sec == NULL) 507 return (0); 508 509 if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) 510 return (0); 511 return ((pri->hdr_revision == sec->hdr_revision && 512 pri->hdr_size == sec->hdr_size && 513 pri->hdr_lba_start == sec->hdr_lba_start && 514 pri->hdr_lba_end == sec->hdr_lba_end && 515 pri->hdr_entries == sec->hdr_entries && 516 pri->hdr_entsz == sec->hdr_entsz && 517 pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); 518 } 519 520 static int 521 gpt_parse_type(const char *type, struct uuid *uuid) 522 { 523 struct uuid tmp; 524 const char *alias; 525 int error; 526 struct g_part_uuid_alias *uap; 527 528 if (type[0] == '!') { 529 error = parse_uuid(type + 1, &tmp); 530 if (error) 531 return (error); 532 if (EQUUID(&tmp, &gpt_uuid_unused)) 533 return (EINVAL); 534 *uuid = tmp; 535 return (0); 536 } 537 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 538 alias = g_part_alias_name(uap->alias); 539 if (!strcasecmp(type, alias)) { 540 *uuid = *uap->uuid; 541 return (0); 542 } 543 } 544 return (EINVAL); 545 } 546 547 static int 548 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, 549 struct g_part_parms *gpp) 550 { 551 struct g_part_gpt_entry *entry; 552 int error; 553 554 entry = (struct g_part_gpt_entry *)baseentry; 555 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 556 if (error) 557 return (error); 558 kern_uuidgen(&entry->ent.ent_uuid, 1); 559 entry->ent.ent_lba_start = baseentry->gpe_start; 560 entry->ent.ent_lba_end = baseentry->gpe_end; 561 if (baseentry->gpe_deleted) { 562 entry->ent.ent_attr = 0; 563 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); 564 } 565 if (gpp->gpp_parms & G_PART_PARM_LABEL) 566 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 567 sizeof(entry->ent.ent_name) / 568 sizeof(entry->ent.ent_name[0])); 569 return (0); 570 } 571 572 static int 573 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) 574 { 575 struct g_part_gpt_table *table; 576 size_t codesz; 577 578 codesz = DOSPARTOFF; 579 table = (struct g_part_gpt_table *)basetable; 580 bzero(table->mbr, codesz); 581 codesz = MIN(codesz, gpp->gpp_codesize); 582 if (codesz > 0) 583 bcopy(gpp->gpp_codeptr, table->mbr, codesz); 584 585 /* Mark the PMBR active since some BIOS require it. */ 586 if (!table->bootcamp) 587 table->mbr[DOSPARTOFF] = 0x80; /* status */ 588 return (0); 589 } 590 591 static int 592 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) 593 { 594 struct g_provider *pp; 595 struct g_part_gpt_table *table; 596 quad_t last; 597 size_t tblsz; 598 599 /* We don't nest, which means that our depth should be 0. */ 600 if (basetable->gpt_depth != 0) 601 return (ENXIO); 602 603 table = (struct g_part_gpt_table *)basetable; 604 pp = gpp->gpp_provider; 605 tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) + 606 pp->sectorsize - 1) / pp->sectorsize; 607 if (pp->sectorsize < MBRSIZE || 608 pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * 609 pp->sectorsize) 610 return (ENOSPC); 611 612 last = (pp->mediasize / pp->sectorsize) - 1; 613 614 le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); 615 gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, MIN(last, UINT32_MAX)); 616 617 /* Allocate space for the header */ 618 table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); 619 620 bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 621 table->hdr->hdr_revision = GPT_HDR_REVISION; 622 table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); 623 kern_uuidgen(&table->hdr->hdr_uuid, 1); 624 table->hdr->hdr_entries = basetable->gpt_entries; 625 table->hdr->hdr_entsz = sizeof(struct gpt_ent); 626 627 g_gpt_set_defaults(basetable, pp); 628 return (0); 629 } 630 631 static int 632 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) 633 { 634 struct g_part_gpt_table *table; 635 struct g_provider *pp; 636 637 table = (struct g_part_gpt_table *)basetable; 638 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 639 g_free(table->hdr); 640 table->hdr = NULL; 641 642 /* 643 * Wipe the first 2 sectors to clear the partitioning. Wipe the last 644 * sector only if it has valid secondary header. 645 */ 646 basetable->gpt_smhead |= 3; 647 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 648 table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1) 649 basetable->gpt_smtail |= 1; 650 return (0); 651 } 652 653 static void 654 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 655 struct sbuf *sb, const char *indent) 656 { 657 struct g_part_gpt_entry *entry; 658 659 entry = (struct g_part_gpt_entry *)baseentry; 660 if (indent == NULL) { 661 /* conftxt: libdisk compatibility */ 662 sbuf_printf(sb, " xs GPT xt "); 663 sbuf_printf_uuid(sb, &entry->ent.ent_type); 664 } else if (entry != NULL) { 665 /* confxml: partition entry information */ 666 sbuf_printf(sb, "%s<label>", indent); 667 g_gpt_printf_utf16(sb, entry->ent.ent_name, 668 sizeof(entry->ent.ent_name) >> 1); 669 sbuf_printf(sb, "</label>\n"); 670 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME) 671 sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent); 672 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) { 673 sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n", 674 indent); 675 } 676 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) { 677 sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n", 678 indent); 679 } 680 sbuf_printf(sb, "%s<rawtype>", indent); 681 sbuf_printf_uuid(sb, &entry->ent.ent_type); 682 sbuf_printf(sb, "</rawtype>\n"); 683 sbuf_printf(sb, "%s<rawuuid>", indent); 684 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 685 sbuf_printf(sb, "</rawuuid>\n"); 686 } else { 687 /* confxml: scheme information */ 688 } 689 } 690 691 static int 692 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) 693 { 694 struct g_part_gpt_entry *entry; 695 696 entry = (struct g_part_gpt_entry *)baseentry; 697 return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || 698 EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap)) ? 1 : 0); 699 } 700 701 static int 702 g_part_gpt_modify(struct g_part_table *basetable, 703 struct g_part_entry *baseentry, struct g_part_parms *gpp) 704 { 705 struct g_part_gpt_entry *entry; 706 int error; 707 708 entry = (struct g_part_gpt_entry *)baseentry; 709 if (gpp->gpp_parms & G_PART_PARM_TYPE) { 710 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 711 if (error) 712 return (error); 713 } 714 if (gpp->gpp_parms & G_PART_PARM_LABEL) 715 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 716 sizeof(entry->ent.ent_name) / 717 sizeof(entry->ent.ent_name[0])); 718 return (0); 719 } 720 721 static int 722 g_part_gpt_resize(struct g_part_table *basetable, 723 struct g_part_entry *baseentry, struct g_part_parms *gpp) 724 { 725 struct g_part_gpt_entry *entry; 726 entry = (struct g_part_gpt_entry *)baseentry; 727 728 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; 729 entry->ent.ent_lba_end = baseentry->gpe_end; 730 731 return (0); 732 } 733 734 static const char * 735 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, 736 char *buf, size_t bufsz) 737 { 738 struct g_part_gpt_entry *entry; 739 char c; 740 741 entry = (struct g_part_gpt_entry *)baseentry; 742 c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; 743 snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); 744 return (buf); 745 } 746 747 static int 748 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) 749 { 750 struct g_provider *pp; 751 char *buf; 752 int error, res; 753 754 /* We don't nest, which means that our depth should be 0. */ 755 if (table->gpt_depth != 0) 756 return (ENXIO); 757 758 pp = cp->provider; 759 760 /* 761 * Sanity-check the provider. Since the first sector on the provider 762 * must be a PMBR and a PMBR is 512 bytes large, the sector size 763 * must be at least 512 bytes. Also, since the theoretical minimum 764 * number of sectors needed by GPT is 6, any medium that has less 765 * than 6 sectors is never going to be able to hold a GPT. The 766 * number 6 comes from: 767 * 1 sector for the PMBR 768 * 2 sectors for the GPT headers (each 1 sector) 769 * 2 sectors for the GPT tables (each 1 sector) 770 * 1 sector for an actual partition 771 * It's better to catch this pathological case early than behaving 772 * pathologically later on... 773 */ 774 if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) 775 return (ENOSPC); 776 777 /* Check that there's a MBR. */ 778 buf = g_read_data(cp, 0L, pp->sectorsize, &error); 779 if (buf == NULL) 780 return (error); 781 res = le16dec(buf + DOSMAGICOFFSET); 782 g_free(buf); 783 if (res != DOSMAGIC) 784 return (ENXIO); 785 786 /* Check that there's a primary header. */ 787 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); 788 if (buf == NULL) 789 return (error); 790 res = memcmp(buf, GPT_HDR_SIG, 8); 791 g_free(buf); 792 if (res == 0) 793 return (G_PART_PROBE_PRI_HIGH); 794 795 /* No primary? Check that there's a secondary. */ 796 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 797 &error); 798 if (buf == NULL) 799 return (error); 800 res = memcmp(buf, GPT_HDR_SIG, 8); 801 g_free(buf); 802 return ((res == 0) ? G_PART_PROBE_PRI_HIGH : ENXIO); 803 } 804 805 static int 806 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) 807 { 808 struct gpt_hdr *prihdr, *sechdr; 809 struct gpt_ent *tbl, *pritbl, *sectbl; 810 struct g_provider *pp; 811 struct g_part_gpt_table *table; 812 struct g_part_gpt_entry *entry; 813 u_char *buf; 814 uint64_t last; 815 int error, index; 816 817 table = (struct g_part_gpt_table *)basetable; 818 pp = cp->provider; 819 last = (pp->mediasize / pp->sectorsize) - 1; 820 821 /* Read the PMBR */ 822 buf = g_read_data(cp, 0, pp->sectorsize, &error); 823 if (buf == NULL) 824 return (error); 825 bcopy(buf, table->mbr, MBRSIZE); 826 g_free(buf); 827 828 /* Read the primary header and table. */ 829 prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); 830 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { 831 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); 832 } else { 833 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 834 pritbl = NULL; 835 } 836 837 /* Read the secondary header and table. */ 838 sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); 839 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { 840 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); 841 } else { 842 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 843 sectbl = NULL; 844 } 845 846 /* Fail if we haven't got any good tables at all. */ 847 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && 848 table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 849 printf("GEOM: %s: corrupt or invalid GPT detected.\n", 850 pp->name); 851 printf("GEOM: %s: GPT rejected -- may not be recoverable.\n", 852 pp->name); 853 return (EINVAL); 854 } 855 856 /* 857 * If both headers are good but they disagree with each other, 858 * then invalidate one. We prefer to keep the primary header, 859 * unless the primary table is corrupt. 860 */ 861 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && 862 table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 863 !gpt_matched_hdrs(prihdr, sechdr)) { 864 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { 865 table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; 866 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 867 g_free(sechdr); 868 sechdr = NULL; 869 } else { 870 table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; 871 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 872 g_free(prihdr); 873 prihdr = NULL; 874 } 875 } 876 877 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { 878 printf("GEOM: %s: the primary GPT table is corrupt or " 879 "invalid.\n", pp->name); 880 printf("GEOM: %s: using the secondary instead -- recovery " 881 "strongly advised.\n", pp->name); 882 table->hdr = sechdr; 883 basetable->gpt_corrupt = 1; 884 if (prihdr != NULL) 885 g_free(prihdr); 886 tbl = sectbl; 887 if (pritbl != NULL) 888 g_free(pritbl); 889 } else { 890 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 891 printf("GEOM: %s: the secondary GPT table is corrupt " 892 "or invalid.\n", pp->name); 893 printf("GEOM: %s: using the primary only -- recovery " 894 "suggested.\n", pp->name); 895 basetable->gpt_corrupt = 1; 896 } else if (table->lba[GPT_ELT_SECHDR] != last) { 897 printf( "GEOM: %s: the secondary GPT header is not in " 898 "the last LBA.\n", pp->name); 899 basetable->gpt_corrupt = 1; 900 } 901 table->hdr = prihdr; 902 if (sechdr != NULL) 903 g_free(sechdr); 904 tbl = pritbl; 905 if (sectbl != NULL) 906 g_free(sectbl); 907 } 908 909 basetable->gpt_first = table->hdr->hdr_lba_start; 910 basetable->gpt_last = table->hdr->hdr_lba_end; 911 basetable->gpt_entries = table->hdr->hdr_entries; 912 913 for (index = basetable->gpt_entries - 1; index >= 0; index--) { 914 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) 915 continue; 916 entry = (struct g_part_gpt_entry *)g_part_new_entry( 917 basetable, index + 1, tbl[index].ent_lba_start, 918 tbl[index].ent_lba_end); 919 entry->ent = tbl[index]; 920 } 921 922 g_free(tbl); 923 924 /* 925 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions 926 * if (and only if) any FAT32 or FAT16 partitions have been 927 * created. This happens irrespective of whether Boot Camp is 928 * used/enabled, though it's generally understood to be done 929 * to support legacy Windows under Boot Camp. We refer to this 930 * mirroring simply as Boot Camp. We try to detect Boot Camp 931 * so that we can update the MBR if and when GPT changes have 932 * been made. Note that we do not enable Boot Camp if not 933 * previously enabled because we can't assume that we're on a 934 * Mac alongside Mac OS X. 935 */ 936 table->bootcamp = gpt_is_bootcamp(table, pp->name); 937 938 return (0); 939 } 940 941 static int 942 g_part_gpt_recover(struct g_part_table *basetable) 943 { 944 945 g_gpt_set_defaults(basetable, 946 LIST_FIRST(&basetable->gpt_gp->consumer)->provider); 947 basetable->gpt_corrupt = 0; 948 return (0); 949 } 950 951 static int 952 g_part_gpt_setunset(struct g_part_table *basetable, 953 struct g_part_entry *baseentry, const char *attrib, unsigned int set) 954 { 955 struct g_part_gpt_entry *entry; 956 struct g_part_gpt_table *table; 957 uint64_t attr; 958 int i; 959 960 table = (struct g_part_gpt_table *)basetable; 961 entry = (struct g_part_gpt_entry *)baseentry; 962 963 if (strcasecmp(attrib, "active") == 0) { 964 if (!table->bootcamp || baseentry->gpe_index > NDOSPART) 965 return (EINVAL); 966 for (i = 0; i < NDOSPART; i++) { 967 table->mbr[DOSPARTOFF + i * DOSPARTSIZE] = 968 (i == baseentry->gpe_index - 1) ? 0x80 : 0; 969 } 970 return (0); 971 } 972 973 attr = 0; 974 if (strcasecmp(attrib, "bootme") == 0) { 975 attr |= GPT_ENT_ATTR_BOOTME; 976 } else if (strcasecmp(attrib, "bootonce") == 0) { 977 attr |= GPT_ENT_ATTR_BOOTONCE; 978 if (set) 979 attr |= GPT_ENT_ATTR_BOOTME; 980 } else if (strcasecmp(attrib, "bootfailed") == 0) { 981 /* 982 * It should only be possible to unset BOOTFAILED, but it might 983 * be useful for test purposes to also be able to set it. 984 */ 985 attr |= GPT_ENT_ATTR_BOOTFAILED; 986 } 987 if (attr == 0) 988 return (EINVAL); 989 990 if (set) 991 attr = entry->ent.ent_attr | attr; 992 else 993 attr = entry->ent.ent_attr & ~attr; 994 if (attr != entry->ent.ent_attr) { 995 entry->ent.ent_attr = attr; 996 if (!baseentry->gpe_created) 997 baseentry->gpe_modified = 1; 998 } 999 return (0); 1000 } 1001 1002 static const char * 1003 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 1004 char *buf, size_t bufsz) 1005 { 1006 struct g_part_gpt_entry *entry; 1007 struct uuid *type; 1008 struct g_part_uuid_alias *uap; 1009 1010 entry = (struct g_part_gpt_entry *)baseentry; 1011 type = &entry->ent.ent_type; 1012 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) 1013 if (EQUUID(type, uap->uuid)) 1014 return (g_part_alias_name(uap->alias)); 1015 buf[0] = '!'; 1016 snprintf_uuid(buf + 1, bufsz - 1, type); 1017 1018 return (buf); 1019 } 1020 1021 static int 1022 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) 1023 { 1024 unsigned char *buf, *bp; 1025 struct g_provider *pp; 1026 struct g_part_entry *baseentry; 1027 struct g_part_gpt_entry *entry; 1028 struct g_part_gpt_table *table; 1029 size_t tblsz; 1030 uint32_t crc; 1031 int error, index; 1032 1033 pp = cp->provider; 1034 table = (struct g_part_gpt_table *)basetable; 1035 tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz + 1036 pp->sectorsize - 1) / pp->sectorsize; 1037 1038 /* Reconstruct the MBR from the GPT if under Boot Camp. */ 1039 if (table->bootcamp) 1040 gpt_update_bootcamp(basetable); 1041 1042 /* Write the PMBR */ 1043 buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); 1044 bcopy(table->mbr, buf, MBRSIZE); 1045 error = g_write_data(cp, 0, buf, pp->sectorsize); 1046 g_free(buf); 1047 if (error) 1048 return (error); 1049 1050 /* Allocate space for the header and entries. */ 1051 buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); 1052 1053 memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 1054 le32enc(buf + 8, table->hdr->hdr_revision); 1055 le32enc(buf + 12, table->hdr->hdr_size); 1056 le64enc(buf + 40, table->hdr->hdr_lba_start); 1057 le64enc(buf + 48, table->hdr->hdr_lba_end); 1058 le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); 1059 le32enc(buf + 80, table->hdr->hdr_entries); 1060 le32enc(buf + 84, table->hdr->hdr_entsz); 1061 1062 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1063 if (baseentry->gpe_deleted) 1064 continue; 1065 entry = (struct g_part_gpt_entry *)baseentry; 1066 index = baseentry->gpe_index - 1; 1067 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; 1068 le_uuid_enc(bp, &entry->ent.ent_type); 1069 le_uuid_enc(bp + 16, &entry->ent.ent_uuid); 1070 le64enc(bp + 32, entry->ent.ent_lba_start); 1071 le64enc(bp + 40, entry->ent.ent_lba_end); 1072 le64enc(bp + 48, entry->ent.ent_attr); 1073 memcpy(bp + 56, entry->ent.ent_name, 1074 sizeof(entry->ent.ent_name)); 1075 } 1076 1077 crc = crc32(buf + pp->sectorsize, 1078 table->hdr->hdr_entries * table->hdr->hdr_entsz); 1079 le32enc(buf + 88, crc); 1080 1081 /* Write primary meta-data. */ 1082 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1083 le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ 1084 le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ 1085 le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ 1086 crc = crc32(buf, table->hdr->hdr_size); 1087 le32enc(buf + 16, crc); 1088 1089 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1090 error = g_write_data(cp, 1091 (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize, 1092 buf + (index + 1) * pp->sectorsize, 1093 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1094 (tblsz - index) * pp->sectorsize); 1095 if (error) 1096 goto out; 1097 } 1098 error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, 1099 buf, pp->sectorsize); 1100 if (error) 1101 goto out; 1102 1103 /* Write secondary meta-data. */ 1104 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1105 le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ 1106 le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ 1107 le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ 1108 crc = crc32(buf, table->hdr->hdr_size); 1109 le32enc(buf + 16, crc); 1110 1111 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1112 error = g_write_data(cp, 1113 (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize, 1114 buf + (index + 1) * pp->sectorsize, 1115 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1116 (tblsz - index) * pp->sectorsize); 1117 if (error) 1118 goto out; 1119 } 1120 error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, 1121 buf, pp->sectorsize); 1122 1123 out: 1124 g_free(buf); 1125 return (error); 1126 } 1127 1128 static void 1129 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp) 1130 { 1131 struct g_part_gpt_table *table; 1132 quad_t last; 1133 size_t tblsz; 1134 1135 table = (struct g_part_gpt_table *)basetable; 1136 last = pp->mediasize / pp->sectorsize - 1; 1137 tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) + 1138 pp->sectorsize - 1) / pp->sectorsize; 1139 1140 table->lba[GPT_ELT_PRIHDR] = 1; 1141 table->lba[GPT_ELT_PRITBL] = 2; 1142 table->lba[GPT_ELT_SECHDR] = last; 1143 table->lba[GPT_ELT_SECTBL] = last - tblsz; 1144 table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK; 1145 table->state[GPT_ELT_PRITBL] = GPT_STATE_OK; 1146 table->state[GPT_ELT_SECHDR] = GPT_STATE_OK; 1147 table->state[GPT_ELT_SECTBL] = GPT_STATE_OK; 1148 1149 table->hdr->hdr_lba_start = 2 + tblsz; 1150 table->hdr->hdr_lba_end = last - tblsz - 1; 1151 1152 basetable->gpt_first = table->hdr->hdr_lba_start; 1153 basetable->gpt_last = table->hdr->hdr_lba_end; 1154 } 1155 1156 static void 1157 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) 1158 { 1159 u_int bo; 1160 uint32_t ch; 1161 uint16_t c; 1162 1163 bo = LITTLE_ENDIAN; /* GPT is little-endian */ 1164 while (len > 0 && *str != 0) { 1165 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); 1166 str++, len--; 1167 if ((ch & 0xf800) == 0xd800) { 1168 if (len > 0) { 1169 c = (bo == BIG_ENDIAN) ? be16toh(*str) 1170 : le16toh(*str); 1171 str++, len--; 1172 } else 1173 c = 0xfffd; 1174 if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { 1175 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); 1176 ch += 0x10000; 1177 } else 1178 ch = 0xfffd; 1179 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ 1180 bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; 1181 continue; 1182 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ 1183 continue; 1184 1185 /* Write the Unicode character in UTF-8 */ 1186 if (ch < 0x80) 1187 sbuf_printf(sb, "%c", ch); 1188 else if (ch < 0x800) 1189 sbuf_printf(sb, "%c%c", 0xc0 | (ch >> 6), 1190 0x80 | (ch & 0x3f)); 1191 else if (ch < 0x10000) 1192 sbuf_printf(sb, "%c%c%c", 0xe0 | (ch >> 12), 1193 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1194 else if (ch < 0x200000) 1195 sbuf_printf(sb, "%c%c%c%c", 0xf0 | (ch >> 18), 1196 0x80 | ((ch >> 12) & 0x3f), 1197 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1198 } 1199 } 1200 1201 static void 1202 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) 1203 { 1204 size_t s16idx, s8idx; 1205 uint32_t utfchar; 1206 unsigned int c, utfbytes; 1207 1208 s8idx = s16idx = 0; 1209 utfchar = 0; 1210 utfbytes = 0; 1211 bzero(s16, s16len << 1); 1212 while (s8[s8idx] != 0 && s16idx < s16len) { 1213 c = s8[s8idx++]; 1214 if ((c & 0xc0) != 0x80) { 1215 /* Initial characters. */ 1216 if (utfbytes != 0) { 1217 /* Incomplete encoding of previous char. */ 1218 s16[s16idx++] = htole16(0xfffd); 1219 } 1220 if ((c & 0xf8) == 0xf0) { 1221 utfchar = c & 0x07; 1222 utfbytes = 3; 1223 } else if ((c & 0xf0) == 0xe0) { 1224 utfchar = c & 0x0f; 1225 utfbytes = 2; 1226 } else if ((c & 0xe0) == 0xc0) { 1227 utfchar = c & 0x1f; 1228 utfbytes = 1; 1229 } else { 1230 utfchar = c & 0x7f; 1231 utfbytes = 0; 1232 } 1233 } else { 1234 /* Followup characters. */ 1235 if (utfbytes > 0) { 1236 utfchar = (utfchar << 6) + (c & 0x3f); 1237 utfbytes--; 1238 } else if (utfbytes == 0) 1239 utfbytes = ~0; 1240 } 1241 /* 1242 * Write the complete Unicode character as UTF-16 when we 1243 * have all the UTF-8 charactars collected. 1244 */ 1245 if (utfbytes == 0) { 1246 /* 1247 * If we need to write 2 UTF-16 characters, but 1248 * we only have room for 1, then we truncate the 1249 * string by writing a 0 instead. 1250 */ 1251 if (utfchar >= 0x10000 && s16idx < s16len - 1) { 1252 s16[s16idx++] = 1253 htole16(0xd800 | ((utfchar >> 10) - 0x40)); 1254 s16[s16idx++] = 1255 htole16(0xdc00 | (utfchar & 0x3ff)); 1256 } else 1257 s16[s16idx++] = (utfchar >= 0x10000) ? 0 : 1258 htole16(utfchar); 1259 } 1260 } 1261 /* 1262 * If our input string was truncated, append an invalid encoding 1263 * character to the output string. 1264 */ 1265 if (utfbytes != 0 && s16idx < s16len) 1266 s16[s16idx++] = htole16(0xfffd); 1267 } 1268