1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/bio.h> 34 #include <sys/diskmbr.h> 35 #include <sys/gsb_crc32.h> 36 #include <sys/endian.h> 37 #include <sys/gpt.h> 38 #include <sys/kernel.h> 39 #include <sys/kobj.h> 40 #include <sys/limits.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mutex.h> 44 #include <sys/queue.h> 45 #include <sys/sbuf.h> 46 #include <sys/systm.h> 47 #include <sys/sysctl.h> 48 #include <sys/uuid.h> 49 #include <geom/geom.h> 50 #include <geom/geom_int.h> 51 #include <geom/part/g_part.h> 52 53 #include "g_part_if.h" 54 55 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support"); 56 57 SYSCTL_DECL(_kern_geom_part); 58 static SYSCTL_NODE(_kern_geom_part, OID_AUTO, gpt, CTLFLAG_RW, 0, 59 "GEOM_PART_GPT GUID Partition Table"); 60 61 static u_int allow_nesting = 0; 62 SYSCTL_UINT(_kern_geom_part_gpt, OID_AUTO, allow_nesting, 63 CTLFLAG_RWTUN, &allow_nesting, 0, "Allow GPT to be nested inside other schemes"); 64 65 CTASSERT(offsetof(struct gpt_hdr, padding) == 92); 66 CTASSERT(sizeof(struct gpt_ent) == 128); 67 68 #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) 69 70 #define MBRSIZE 512 71 72 enum gpt_elt { 73 GPT_ELT_PRIHDR, 74 GPT_ELT_PRITBL, 75 GPT_ELT_SECHDR, 76 GPT_ELT_SECTBL, 77 GPT_ELT_COUNT 78 }; 79 80 enum gpt_state { 81 GPT_STATE_UNKNOWN, /* Not determined. */ 82 GPT_STATE_MISSING, /* No signature found. */ 83 GPT_STATE_CORRUPT, /* Checksum mismatch. */ 84 GPT_STATE_INVALID, /* Nonconformant/invalid. */ 85 GPT_STATE_OK /* Perfectly fine. */ 86 }; 87 88 struct g_part_gpt_table { 89 struct g_part_table base; 90 u_char mbr[MBRSIZE]; 91 struct gpt_hdr *hdr; 92 quad_t lba[GPT_ELT_COUNT]; 93 enum gpt_state state[GPT_ELT_COUNT]; 94 int bootcamp; 95 }; 96 97 struct g_part_gpt_entry { 98 struct g_part_entry base; 99 struct gpt_ent ent; 100 }; 101 102 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); 103 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); 104 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *); 105 106 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, 107 struct g_part_parms *); 108 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); 109 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); 110 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); 111 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, 112 struct sbuf *, const char *); 113 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); 114 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, 115 struct g_part_parms *); 116 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, 117 char *, size_t); 118 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); 119 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); 120 static int g_part_gpt_setunset(struct g_part_table *table, 121 struct g_part_entry *baseentry, const char *attrib, unsigned int set); 122 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, 123 char *, size_t); 124 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); 125 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, 126 struct g_part_parms *); 127 static int g_part_gpt_recover(struct g_part_table *); 128 129 static kobj_method_t g_part_gpt_methods[] = { 130 KOBJMETHOD(g_part_add, g_part_gpt_add), 131 KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), 132 KOBJMETHOD(g_part_create, g_part_gpt_create), 133 KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), 134 KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), 135 KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), 136 KOBJMETHOD(g_part_modify, g_part_gpt_modify), 137 KOBJMETHOD(g_part_resize, g_part_gpt_resize), 138 KOBJMETHOD(g_part_name, g_part_gpt_name), 139 KOBJMETHOD(g_part_probe, g_part_gpt_probe), 140 KOBJMETHOD(g_part_read, g_part_gpt_read), 141 KOBJMETHOD(g_part_recover, g_part_gpt_recover), 142 KOBJMETHOD(g_part_setunset, g_part_gpt_setunset), 143 KOBJMETHOD(g_part_type, g_part_gpt_type), 144 KOBJMETHOD(g_part_write, g_part_gpt_write), 145 { 0, 0 } 146 }; 147 148 static struct g_part_scheme g_part_gpt_scheme = { 149 "GPT", 150 g_part_gpt_methods, 151 sizeof(struct g_part_gpt_table), 152 .gps_entrysz = sizeof(struct g_part_gpt_entry), 153 .gps_minent = 128, 154 .gps_maxent = 4096, 155 .gps_bootcodesz = MBRSIZE, 156 }; 157 G_PART_SCHEME_DECLARE(g_part_gpt); 158 MODULE_VERSION(geom_part_gpt, 0); 159 160 static struct uuid gpt_uuid_apple_apfs = GPT_ENT_TYPE_APPLE_APFS; 161 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; 162 static struct uuid gpt_uuid_apple_core_storage = 163 GPT_ENT_TYPE_APPLE_CORE_STORAGE; 164 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; 165 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; 166 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; 167 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; 168 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; 169 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; 170 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT; 171 static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE; 172 static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL; 173 static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED; 174 static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT; 175 static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD; 176 static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER; 177 static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2; 178 static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32; 179 static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64; 180 static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY; 181 static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP; 182 static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1; 183 static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM; 184 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; 185 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; 186 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; 187 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS; 188 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; 189 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; 190 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; 191 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; 192 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; 193 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; 194 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; 195 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; 196 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; 197 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; 198 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; 199 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; 200 static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY; 201 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; 202 static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES; 203 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; 204 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; 205 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; 206 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; 207 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; 208 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; 209 static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA; 210 static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT; 211 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; 212 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS; 213 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG; 214 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED; 215 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR; 216 217 static struct g_part_uuid_alias { 218 struct uuid *uuid; 219 int alias; 220 int mbrtype; 221 } gpt_uuid_alias_match[] = { 222 { &gpt_uuid_apple_apfs, G_PART_ALIAS_APPLE_APFS, 0 }, 223 { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab }, 224 { &gpt_uuid_apple_core_storage, G_PART_ALIAS_APPLE_CORE_STORAGE, 0 }, 225 { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf }, 226 { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 }, 227 { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 }, 228 { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 }, 229 { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 }, 230 { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 }, 231 { &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 }, 232 { &gpt_uuid_chromeos_firmware, G_PART_ALIAS_CHROMEOS_FIRMWARE, 0 }, 233 { &gpt_uuid_chromeos_kernel, G_PART_ALIAS_CHROMEOS_KERNEL, 0 }, 234 { &gpt_uuid_chromeos_reserved, G_PART_ALIAS_CHROMEOS_RESERVED, 0 }, 235 { &gpt_uuid_chromeos_root, G_PART_ALIAS_CHROMEOS_ROOT, 0 }, 236 { &gpt_uuid_dfbsd_ccd, G_PART_ALIAS_DFBSD_CCD, 0 }, 237 { &gpt_uuid_dfbsd_hammer, G_PART_ALIAS_DFBSD_HAMMER, 0 }, 238 { &gpt_uuid_dfbsd_hammer2, G_PART_ALIAS_DFBSD_HAMMER2, 0 }, 239 { &gpt_uuid_dfbsd_label32, G_PART_ALIAS_DFBSD, 0xa5 }, 240 { &gpt_uuid_dfbsd_label64, G_PART_ALIAS_DFBSD64, 0xa5 }, 241 { &gpt_uuid_dfbsd_legacy, G_PART_ALIAS_DFBSD_LEGACY, 0 }, 242 { &gpt_uuid_dfbsd_swap, G_PART_ALIAS_DFBSD_SWAP, 0 }, 243 { &gpt_uuid_dfbsd_ufs1, G_PART_ALIAS_DFBSD_UFS, 0 }, 244 { &gpt_uuid_dfbsd_vinum, G_PART_ALIAS_DFBSD_VINUM, 0 }, 245 { &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee }, 246 { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 }, 247 { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 }, 248 { &gpt_uuid_freebsd_nandfs, G_PART_ALIAS_FREEBSD_NANDFS, 0 }, 249 { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 }, 250 { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 }, 251 { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 }, 252 { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 }, 253 { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b }, 254 { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 }, 255 { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 }, 256 { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 }, 257 { &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 }, 258 { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b }, 259 { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 }, 260 { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 }, 261 { &gpt_uuid_ms_recovery, G_PART_ALIAS_MS_RECOVERY, 0 }, 262 { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 }, 263 { &gpt_uuid_ms_spaces, G_PART_ALIAS_MS_SPACES, 0 }, 264 { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 }, 265 { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 }, 266 { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 }, 267 { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 }, 268 { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 }, 269 { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 }, 270 { &gpt_uuid_openbsd_data, G_PART_ALIAS_OPENBSD_DATA, 0 }, 271 { &gpt_uuid_prep_boot, G_PART_ALIAS_PREP_BOOT, 0x41 }, 272 { &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 }, 273 { &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 }, 274 { &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 }, 275 { &gpt_uuid_vmvsanhdr, G_PART_ALIAS_VMVSANHDR, 0 }, 276 { NULL, 0, 0 } 277 }; 278 279 static int 280 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start, 281 quad_t end) 282 { 283 284 if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX) 285 return (EINVAL); 286 287 mbr += DOSPARTOFF + idx * DOSPARTSIZE; 288 mbr[0] = 0; 289 if (start == 1) { 290 /* 291 * Treat the PMBR partition specially to maximize 292 * interoperability with BIOSes. 293 */ 294 mbr[1] = mbr[3] = 0; 295 mbr[2] = 2; 296 } else 297 mbr[1] = mbr[2] = mbr[3] = 0xff; 298 mbr[4] = typ; 299 mbr[5] = mbr[6] = mbr[7] = 0xff; 300 le32enc(mbr + 8, (uint32_t)start); 301 le32enc(mbr + 12, (uint32_t)(end - start + 1)); 302 return (0); 303 } 304 305 static int 306 gpt_map_type(struct uuid *t) 307 { 308 struct g_part_uuid_alias *uap; 309 310 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 311 if (EQUUID(t, uap->uuid)) 312 return (uap->mbrtype); 313 } 314 return (0); 315 } 316 317 static void 318 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp) 319 { 320 321 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 322 gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, 323 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 324 le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); 325 } 326 327 /* 328 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the 329 * whole disk anymore. Rather, it covers the GPT table and the EFI 330 * system partition only. This way the HFS+ partition and any FAT 331 * partitions can be added to the MBR without creating an overlap. 332 */ 333 static int 334 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname) 335 { 336 uint8_t *p; 337 338 p = table->mbr + DOSPARTOFF; 339 if (p[4] != 0xee || le32dec(p + 8) != 1) 340 return (0); 341 342 p += DOSPARTSIZE; 343 if (p[4] != 0xaf) 344 return (0); 345 346 printf("GEOM: %s: enabling Boot Camp\n", provname); 347 return (1); 348 } 349 350 static void 351 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp) 352 { 353 struct g_part_entry *baseentry; 354 struct g_part_gpt_entry *entry; 355 struct g_part_gpt_table *table; 356 int bootable, error, index, slices, typ; 357 358 table = (struct g_part_gpt_table *)basetable; 359 360 bootable = -1; 361 for (index = 0; index < NDOSPART; index++) { 362 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index]) 363 bootable = index; 364 } 365 366 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 367 slices = 0; 368 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 369 if (baseentry->gpe_deleted) 370 continue; 371 index = baseentry->gpe_index - 1; 372 if (index >= NDOSPART) 373 continue; 374 375 entry = (struct g_part_gpt_entry *)baseentry; 376 377 switch (index) { 378 case 0: /* This must be the EFI system partition. */ 379 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi)) 380 goto disable; 381 error = gpt_write_mbr_entry(table->mbr, index, 0xee, 382 1ull, entry->ent.ent_lba_end); 383 break; 384 case 1: /* This must be the HFS+ partition. */ 385 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs)) 386 goto disable; 387 error = gpt_write_mbr_entry(table->mbr, index, 0xaf, 388 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 389 break; 390 default: 391 typ = gpt_map_type(&entry->ent.ent_type); 392 error = gpt_write_mbr_entry(table->mbr, index, typ, 393 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 394 break; 395 } 396 if (error) 397 continue; 398 399 if (index == bootable) 400 table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80; 401 slices |= 1 << index; 402 } 403 if ((slices & 3) == 3) 404 return; 405 406 disable: 407 table->bootcamp = 0; 408 gpt_create_pmbr(table, pp); 409 } 410 411 static struct gpt_hdr * 412 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, 413 enum gpt_elt elt) 414 { 415 struct gpt_hdr *buf, *hdr; 416 struct g_provider *pp; 417 quad_t lba, last; 418 int error; 419 uint32_t crc, sz; 420 421 pp = cp->provider; 422 last = (pp->mediasize / pp->sectorsize) - 1; 423 table->state[elt] = GPT_STATE_MISSING; 424 /* 425 * If the primary header is valid look for secondary 426 * header in AlternateLBA, otherwise in the last medium's LBA. 427 */ 428 if (elt == GPT_ELT_SECHDR) { 429 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK) 430 table->lba[elt] = last; 431 } else 432 table->lba[elt] = 1; 433 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, 434 &error); 435 if (buf == NULL) 436 return (NULL); 437 hdr = NULL; 438 if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) 439 goto fail; 440 441 table->state[elt] = GPT_STATE_CORRUPT; 442 sz = le32toh(buf->hdr_size); 443 if (sz < 92 || sz > pp->sectorsize) 444 goto fail; 445 446 hdr = g_malloc(sz, M_WAITOK | M_ZERO); 447 bcopy(buf, hdr, sz); 448 hdr->hdr_size = sz; 449 450 crc = le32toh(buf->hdr_crc_self); 451 buf->hdr_crc_self = 0; 452 if (crc32(buf, sz) != crc) 453 goto fail; 454 hdr->hdr_crc_self = crc; 455 456 table->state[elt] = GPT_STATE_INVALID; 457 hdr->hdr_revision = le32toh(buf->hdr_revision); 458 if (hdr->hdr_revision < GPT_HDR_REVISION) 459 goto fail; 460 hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); 461 if (hdr->hdr_lba_self != table->lba[elt]) 462 goto fail; 463 hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); 464 if (hdr->hdr_lba_alt == hdr->hdr_lba_self || 465 hdr->hdr_lba_alt > last) 466 goto fail; 467 468 /* Check the managed area. */ 469 hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); 470 if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) 471 goto fail; 472 hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); 473 if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) 474 goto fail; 475 476 /* Check the table location and size of the table. */ 477 hdr->hdr_entries = le32toh(buf->hdr_entries); 478 hdr->hdr_entsz = le32toh(buf->hdr_entsz); 479 if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || 480 (hdr->hdr_entsz & 7) != 0) 481 goto fail; 482 hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); 483 if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) 484 goto fail; 485 if (hdr->hdr_lba_table >= hdr->hdr_lba_start && 486 hdr->hdr_lba_table <= hdr->hdr_lba_end) 487 goto fail; 488 lba = hdr->hdr_lba_table + 489 howmany(hdr->hdr_entries * hdr->hdr_entsz, pp->sectorsize) - 1; 490 if (lba >= last) 491 goto fail; 492 if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) 493 goto fail; 494 495 table->state[elt] = GPT_STATE_OK; 496 le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); 497 hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); 498 499 /* save LBA for secondary header */ 500 if (elt == GPT_ELT_PRIHDR) 501 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt; 502 503 g_free(buf); 504 return (hdr); 505 506 fail: 507 if (hdr != NULL) 508 g_free(hdr); 509 g_free(buf); 510 return (NULL); 511 } 512 513 static struct gpt_ent * 514 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, 515 enum gpt_elt elt, struct gpt_hdr *hdr) 516 { 517 struct g_provider *pp; 518 struct gpt_ent *ent, *tbl; 519 char *buf, *p; 520 unsigned int idx, sectors, tblsz, size; 521 int error; 522 523 if (hdr == NULL) 524 return (NULL); 525 526 pp = cp->provider; 527 table->lba[elt] = hdr->hdr_lba_table; 528 529 table->state[elt] = GPT_STATE_MISSING; 530 tblsz = hdr->hdr_entries * hdr->hdr_entsz; 531 sectors = howmany(tblsz, pp->sectorsize); 532 buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO); 533 for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) { 534 size = (sectors - idx > MAXPHYS / pp->sectorsize) ? MAXPHYS: 535 (sectors - idx) * pp->sectorsize; 536 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize, 537 size, &error); 538 if (p == NULL) { 539 g_free(buf); 540 return (NULL); 541 } 542 bcopy(p, buf + idx * pp->sectorsize, size); 543 g_free(p); 544 } 545 table->state[elt] = GPT_STATE_CORRUPT; 546 if (crc32(buf, tblsz) != hdr->hdr_crc_table) { 547 g_free(buf); 548 return (NULL); 549 } 550 551 table->state[elt] = GPT_STATE_OK; 552 tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), 553 M_WAITOK | M_ZERO); 554 555 for (idx = 0, ent = tbl, p = buf; 556 idx < hdr->hdr_entries; 557 idx++, ent++, p += hdr->hdr_entsz) { 558 le_uuid_dec(p, &ent->ent_type); 559 le_uuid_dec(p + 16, &ent->ent_uuid); 560 ent->ent_lba_start = le64dec(p + 32); 561 ent->ent_lba_end = le64dec(p + 40); 562 ent->ent_attr = le64dec(p + 48); 563 /* Keep UTF-16 in little-endian. */ 564 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); 565 } 566 567 g_free(buf); 568 return (tbl); 569 } 570 571 static int 572 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) 573 { 574 575 if (pri == NULL || sec == NULL) 576 return (0); 577 578 if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) 579 return (0); 580 return ((pri->hdr_revision == sec->hdr_revision && 581 pri->hdr_size == sec->hdr_size && 582 pri->hdr_lba_start == sec->hdr_lba_start && 583 pri->hdr_lba_end == sec->hdr_lba_end && 584 pri->hdr_entries == sec->hdr_entries && 585 pri->hdr_entsz == sec->hdr_entsz && 586 pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); 587 } 588 589 static int 590 gpt_parse_type(const char *type, struct uuid *uuid) 591 { 592 struct uuid tmp; 593 const char *alias; 594 int error; 595 struct g_part_uuid_alias *uap; 596 597 if (type[0] == '!') { 598 error = parse_uuid(type + 1, &tmp); 599 if (error) 600 return (error); 601 if (EQUUID(&tmp, &gpt_uuid_unused)) 602 return (EINVAL); 603 *uuid = tmp; 604 return (0); 605 } 606 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 607 alias = g_part_alias_name(uap->alias); 608 if (!strcasecmp(type, alias)) { 609 *uuid = *uap->uuid; 610 return (0); 611 } 612 } 613 return (EINVAL); 614 } 615 616 static int 617 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, 618 struct g_part_parms *gpp) 619 { 620 struct g_part_gpt_entry *entry; 621 int error; 622 623 entry = (struct g_part_gpt_entry *)baseentry; 624 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 625 if (error) 626 return (error); 627 kern_uuidgen(&entry->ent.ent_uuid, 1); 628 entry->ent.ent_lba_start = baseentry->gpe_start; 629 entry->ent.ent_lba_end = baseentry->gpe_end; 630 if (baseentry->gpe_deleted) { 631 entry->ent.ent_attr = 0; 632 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); 633 } 634 if (gpp->gpp_parms & G_PART_PARM_LABEL) 635 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 636 sizeof(entry->ent.ent_name) / 637 sizeof(entry->ent.ent_name[0])); 638 return (0); 639 } 640 641 static int 642 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) 643 { 644 struct g_part_gpt_table *table; 645 size_t codesz; 646 647 codesz = DOSPARTOFF; 648 table = (struct g_part_gpt_table *)basetable; 649 bzero(table->mbr, codesz); 650 codesz = MIN(codesz, gpp->gpp_codesize); 651 if (codesz > 0) 652 bcopy(gpp->gpp_codeptr, table->mbr, codesz); 653 return (0); 654 } 655 656 static int 657 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) 658 { 659 struct g_provider *pp; 660 struct g_part_gpt_table *table; 661 size_t tblsz; 662 663 /* Our depth should be 0 unless nesting was explicitly enabled. */ 664 if (!allow_nesting && basetable->gpt_depth != 0) 665 return (ENXIO); 666 667 table = (struct g_part_gpt_table *)basetable; 668 pp = gpp->gpp_provider; 669 tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent), 670 pp->sectorsize); 671 if (pp->sectorsize < MBRSIZE || 672 pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * 673 pp->sectorsize) 674 return (ENOSPC); 675 676 gpt_create_pmbr(table, pp); 677 678 /* Allocate space for the header */ 679 table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); 680 681 bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 682 table->hdr->hdr_revision = GPT_HDR_REVISION; 683 table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); 684 kern_uuidgen(&table->hdr->hdr_uuid, 1); 685 table->hdr->hdr_entries = basetable->gpt_entries; 686 table->hdr->hdr_entsz = sizeof(struct gpt_ent); 687 688 g_gpt_set_defaults(basetable, pp); 689 return (0); 690 } 691 692 static int 693 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) 694 { 695 struct g_part_gpt_table *table; 696 struct g_provider *pp; 697 698 table = (struct g_part_gpt_table *)basetable; 699 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 700 g_free(table->hdr); 701 table->hdr = NULL; 702 703 /* 704 * Wipe the first 2 sectors and last one to clear the partitioning. 705 * Wipe sectors only if they have valid metadata. 706 */ 707 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) 708 basetable->gpt_smhead |= 3; 709 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 710 table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1) 711 basetable->gpt_smtail |= 1; 712 return (0); 713 } 714 715 static void 716 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 717 struct sbuf *sb, const char *indent) 718 { 719 struct g_part_gpt_entry *entry; 720 721 entry = (struct g_part_gpt_entry *)baseentry; 722 if (indent == NULL) { 723 /* conftxt: libdisk compatibility */ 724 sbuf_cat(sb, " xs GPT xt "); 725 sbuf_printf_uuid(sb, &entry->ent.ent_type); 726 } else if (entry != NULL) { 727 /* confxml: partition entry information */ 728 sbuf_printf(sb, "%s<label>", indent); 729 g_gpt_printf_utf16(sb, entry->ent.ent_name, 730 sizeof(entry->ent.ent_name) >> 1); 731 sbuf_cat(sb, "</label>\n"); 732 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME) 733 sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent); 734 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) { 735 sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n", 736 indent); 737 } 738 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) { 739 sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n", 740 indent); 741 } 742 sbuf_printf(sb, "%s<rawtype>", indent); 743 sbuf_printf_uuid(sb, &entry->ent.ent_type); 744 sbuf_cat(sb, "</rawtype>\n"); 745 sbuf_printf(sb, "%s<rawuuid>", indent); 746 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 747 sbuf_cat(sb, "</rawuuid>\n"); 748 sbuf_printf(sb, "%s<efimedia>", indent); 749 sbuf_printf(sb, "HD(%d,GPT,", entry->base.gpe_index); 750 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 751 sbuf_printf(sb, ",%#jx,%#jx)", (intmax_t)entry->base.gpe_start, 752 (intmax_t)(entry->base.gpe_end - entry->base.gpe_start + 1)); 753 sbuf_cat(sb, "</efimedia>\n"); 754 } else { 755 /* confxml: scheme information */ 756 } 757 } 758 759 static int 760 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) 761 { 762 struct g_part_gpt_entry *entry; 763 764 entry = (struct g_part_gpt_entry *)baseentry; 765 return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || 766 EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) || 767 EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0); 768 } 769 770 static int 771 g_part_gpt_modify(struct g_part_table *basetable, 772 struct g_part_entry *baseentry, struct g_part_parms *gpp) 773 { 774 struct g_part_gpt_entry *entry; 775 int error; 776 777 entry = (struct g_part_gpt_entry *)baseentry; 778 if (gpp->gpp_parms & G_PART_PARM_TYPE) { 779 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 780 if (error) 781 return (error); 782 } 783 if (gpp->gpp_parms & G_PART_PARM_LABEL) 784 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 785 sizeof(entry->ent.ent_name) / 786 sizeof(entry->ent.ent_name[0])); 787 return (0); 788 } 789 790 static int 791 g_part_gpt_resize(struct g_part_table *basetable, 792 struct g_part_entry *baseentry, struct g_part_parms *gpp) 793 { 794 struct g_part_gpt_entry *entry; 795 796 if (baseentry == NULL) 797 return (g_part_gpt_recover(basetable)); 798 799 entry = (struct g_part_gpt_entry *)baseentry; 800 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; 801 entry->ent.ent_lba_end = baseentry->gpe_end; 802 803 return (0); 804 } 805 806 static const char * 807 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, 808 char *buf, size_t bufsz) 809 { 810 struct g_part_gpt_entry *entry; 811 char c; 812 813 entry = (struct g_part_gpt_entry *)baseentry; 814 c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; 815 snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); 816 return (buf); 817 } 818 819 static int 820 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) 821 { 822 struct g_provider *pp; 823 u_char *buf; 824 int error, index, pri, res; 825 826 /* Our depth should be 0 unless nesting was explicitly enabled. */ 827 if (!allow_nesting && table->gpt_depth != 0) 828 return (ENXIO); 829 830 pp = cp->provider; 831 832 /* 833 * Sanity-check the provider. Since the first sector on the provider 834 * must be a PMBR and a PMBR is 512 bytes large, the sector size 835 * must be at least 512 bytes. Also, since the theoretical minimum 836 * number of sectors needed by GPT is 6, any medium that has less 837 * than 6 sectors is never going to be able to hold a GPT. The 838 * number 6 comes from: 839 * 1 sector for the PMBR 840 * 2 sectors for the GPT headers (each 1 sector) 841 * 2 sectors for the GPT tables (each 1 sector) 842 * 1 sector for an actual partition 843 * It's better to catch this pathological case early than behaving 844 * pathologically later on... 845 */ 846 if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) 847 return (ENOSPC); 848 849 /* 850 * Check that there's a MBR or a PMBR. If it's a PMBR, we return 851 * as the highest priority on a match, otherwise we assume some 852 * GPT-unaware tool has destroyed the GPT by recreating a MBR and 853 * we really want the MBR scheme to take precedence. 854 */ 855 buf = g_read_data(cp, 0L, pp->sectorsize, &error); 856 if (buf == NULL) 857 return (error); 858 res = le16dec(buf + DOSMAGICOFFSET); 859 pri = G_PART_PROBE_PRI_LOW; 860 if (res == DOSMAGIC) { 861 for (index = 0; index < NDOSPART; index++) { 862 if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee) 863 pri = G_PART_PROBE_PRI_HIGH; 864 } 865 g_free(buf); 866 867 /* Check that there's a primary header. */ 868 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); 869 if (buf == NULL) 870 return (error); 871 res = memcmp(buf, GPT_HDR_SIG, 8); 872 g_free(buf); 873 if (res == 0) 874 return (pri); 875 } else 876 g_free(buf); 877 878 /* No primary? Check that there's a secondary. */ 879 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 880 &error); 881 if (buf == NULL) 882 return (error); 883 res = memcmp(buf, GPT_HDR_SIG, 8); 884 g_free(buf); 885 return ((res == 0) ? pri : ENXIO); 886 } 887 888 static int 889 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) 890 { 891 struct gpt_hdr *prihdr, *sechdr; 892 struct gpt_ent *tbl, *pritbl, *sectbl; 893 struct g_provider *pp; 894 struct g_part_gpt_table *table; 895 struct g_part_gpt_entry *entry; 896 u_char *buf; 897 uint64_t last; 898 int error, index; 899 900 table = (struct g_part_gpt_table *)basetable; 901 pp = cp->provider; 902 last = (pp->mediasize / pp->sectorsize) - 1; 903 904 /* Read the PMBR */ 905 buf = g_read_data(cp, 0, pp->sectorsize, &error); 906 if (buf == NULL) 907 return (error); 908 bcopy(buf, table->mbr, MBRSIZE); 909 g_free(buf); 910 911 /* Read the primary header and table. */ 912 prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); 913 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { 914 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); 915 } else { 916 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 917 pritbl = NULL; 918 } 919 920 /* Read the secondary header and table. */ 921 sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); 922 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { 923 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); 924 } else { 925 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 926 sectbl = NULL; 927 } 928 929 /* Fail if we haven't got any good tables at all. */ 930 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && 931 table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 932 printf("GEOM: %s: corrupt or invalid GPT detected.\n", 933 pp->name); 934 printf("GEOM: %s: GPT rejected -- may not be recoverable.\n", 935 pp->name); 936 if (prihdr != NULL) 937 g_free(prihdr); 938 if (pritbl != NULL) 939 g_free(pritbl); 940 if (sechdr != NULL) 941 g_free(sechdr); 942 if (sectbl != NULL) 943 g_free(sectbl); 944 return (EINVAL); 945 } 946 947 /* 948 * If both headers are good but they disagree with each other, 949 * then invalidate one. We prefer to keep the primary header, 950 * unless the primary table is corrupt. 951 */ 952 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && 953 table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 954 !gpt_matched_hdrs(prihdr, sechdr)) { 955 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { 956 table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; 957 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 958 g_free(sechdr); 959 sechdr = NULL; 960 } else { 961 table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; 962 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 963 g_free(prihdr); 964 prihdr = NULL; 965 } 966 } 967 968 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { 969 printf("GEOM: %s: the primary GPT table is corrupt or " 970 "invalid.\n", pp->name); 971 printf("GEOM: %s: using the secondary instead -- recovery " 972 "strongly advised.\n", pp->name); 973 table->hdr = sechdr; 974 basetable->gpt_corrupt = 1; 975 if (prihdr != NULL) 976 g_free(prihdr); 977 tbl = sectbl; 978 if (pritbl != NULL) 979 g_free(pritbl); 980 } else { 981 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 982 printf("GEOM: %s: the secondary GPT table is corrupt " 983 "or invalid.\n", pp->name); 984 printf("GEOM: %s: using the primary only -- recovery " 985 "suggested.\n", pp->name); 986 basetable->gpt_corrupt = 1; 987 } else if (table->lba[GPT_ELT_SECHDR] != last) { 988 printf( "GEOM: %s: the secondary GPT header is not in " 989 "the last LBA.\n", pp->name); 990 basetable->gpt_corrupt = 1; 991 } 992 table->hdr = prihdr; 993 if (sechdr != NULL) 994 g_free(sechdr); 995 tbl = pritbl; 996 if (sectbl != NULL) 997 g_free(sectbl); 998 } 999 1000 basetable->gpt_first = table->hdr->hdr_lba_start; 1001 basetable->gpt_last = table->hdr->hdr_lba_end; 1002 basetable->gpt_entries = table->hdr->hdr_entries; 1003 1004 for (index = basetable->gpt_entries - 1; index >= 0; index--) { 1005 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) 1006 continue; 1007 entry = (struct g_part_gpt_entry *)g_part_new_entry( 1008 basetable, index + 1, tbl[index].ent_lba_start, 1009 tbl[index].ent_lba_end); 1010 entry->ent = tbl[index]; 1011 } 1012 1013 g_free(tbl); 1014 1015 /* 1016 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions 1017 * if (and only if) any FAT32 or FAT16 partitions have been 1018 * created. This happens irrespective of whether Boot Camp is 1019 * used/enabled, though it's generally understood to be done 1020 * to support legacy Windows under Boot Camp. We refer to this 1021 * mirroring simply as Boot Camp. We try to detect Boot Camp 1022 * so that we can update the MBR if and when GPT changes have 1023 * been made. Note that we do not enable Boot Camp if not 1024 * previously enabled because we can't assume that we're on a 1025 * Mac alongside Mac OS X. 1026 */ 1027 table->bootcamp = gpt_is_bootcamp(table, pp->name); 1028 1029 return (0); 1030 } 1031 1032 static int 1033 g_part_gpt_recover(struct g_part_table *basetable) 1034 { 1035 struct g_part_gpt_table *table; 1036 struct g_provider *pp; 1037 1038 table = (struct g_part_gpt_table *)basetable; 1039 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 1040 gpt_create_pmbr(table, pp); 1041 g_gpt_set_defaults(basetable, pp); 1042 basetable->gpt_corrupt = 0; 1043 return (0); 1044 } 1045 1046 static int 1047 g_part_gpt_setunset(struct g_part_table *basetable, 1048 struct g_part_entry *baseentry, const char *attrib, unsigned int set) 1049 { 1050 struct g_part_gpt_entry *entry; 1051 struct g_part_gpt_table *table; 1052 struct g_provider *pp; 1053 uint8_t *p; 1054 uint64_t attr; 1055 int i; 1056 1057 table = (struct g_part_gpt_table *)basetable; 1058 entry = (struct g_part_gpt_entry *)baseentry; 1059 1060 if (strcasecmp(attrib, "active") == 0) { 1061 if (table->bootcamp) { 1062 /* The active flag must be set on a valid entry. */ 1063 if (entry == NULL) 1064 return (ENXIO); 1065 if (baseentry->gpe_index > NDOSPART) 1066 return (EINVAL); 1067 for (i = 0; i < NDOSPART; i++) { 1068 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1069 p[0] = (i == baseentry->gpe_index - 1) 1070 ? ((set) ? 0x80 : 0) : 0; 1071 } 1072 } else { 1073 /* The PMBR is marked as active without an entry. */ 1074 if (entry != NULL) 1075 return (ENXIO); 1076 for (i = 0; i < NDOSPART; i++) { 1077 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1078 p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0; 1079 } 1080 } 1081 return (0); 1082 } else if (strcasecmp(attrib, "lenovofix") == 0) { 1083 /* 1084 * Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR. 1085 * This workaround allows Lenovo X220, T420, T520, etc to boot 1086 * from GPT Partitions in BIOS mode. 1087 */ 1088 1089 if (entry != NULL) 1090 return (ENXIO); 1091 1092 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 1093 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 1094 gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1, 1095 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 1096 return (0); 1097 } 1098 1099 if (entry == NULL) 1100 return (ENODEV); 1101 1102 attr = 0; 1103 if (strcasecmp(attrib, "bootme") == 0) { 1104 attr |= GPT_ENT_ATTR_BOOTME; 1105 } else if (strcasecmp(attrib, "bootonce") == 0) { 1106 attr |= GPT_ENT_ATTR_BOOTONCE; 1107 if (set) 1108 attr |= GPT_ENT_ATTR_BOOTME; 1109 } else if (strcasecmp(attrib, "bootfailed") == 0) { 1110 /* 1111 * It should only be possible to unset BOOTFAILED, but it might 1112 * be useful for test purposes to also be able to set it. 1113 */ 1114 attr |= GPT_ENT_ATTR_BOOTFAILED; 1115 } 1116 if (attr == 0) 1117 return (EINVAL); 1118 1119 if (set) 1120 attr = entry->ent.ent_attr | attr; 1121 else 1122 attr = entry->ent.ent_attr & ~attr; 1123 if (attr != entry->ent.ent_attr) { 1124 entry->ent.ent_attr = attr; 1125 if (!baseentry->gpe_created) 1126 baseentry->gpe_modified = 1; 1127 } 1128 return (0); 1129 } 1130 1131 static const char * 1132 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 1133 char *buf, size_t bufsz) 1134 { 1135 struct g_part_gpt_entry *entry; 1136 struct uuid *type; 1137 struct g_part_uuid_alias *uap; 1138 1139 entry = (struct g_part_gpt_entry *)baseentry; 1140 type = &entry->ent.ent_type; 1141 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) 1142 if (EQUUID(type, uap->uuid)) 1143 return (g_part_alias_name(uap->alias)); 1144 buf[0] = '!'; 1145 snprintf_uuid(buf + 1, bufsz - 1, type); 1146 1147 return (buf); 1148 } 1149 1150 static int 1151 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) 1152 { 1153 unsigned char *buf, *bp; 1154 struct g_provider *pp; 1155 struct g_part_entry *baseentry; 1156 struct g_part_gpt_entry *entry; 1157 struct g_part_gpt_table *table; 1158 size_t tblsz; 1159 uint32_t crc; 1160 int error, index; 1161 1162 pp = cp->provider; 1163 table = (struct g_part_gpt_table *)basetable; 1164 tblsz = howmany(table->hdr->hdr_entries * table->hdr->hdr_entsz, 1165 pp->sectorsize); 1166 1167 /* Reconstruct the MBR from the GPT if under Boot Camp. */ 1168 if (table->bootcamp) 1169 gpt_update_bootcamp(basetable, pp); 1170 1171 /* Write the PMBR */ 1172 buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); 1173 bcopy(table->mbr, buf, MBRSIZE); 1174 error = g_write_data(cp, 0, buf, pp->sectorsize); 1175 g_free(buf); 1176 if (error) 1177 return (error); 1178 1179 /* Allocate space for the header and entries. */ 1180 buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); 1181 1182 memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 1183 le32enc(buf + 8, table->hdr->hdr_revision); 1184 le32enc(buf + 12, table->hdr->hdr_size); 1185 le64enc(buf + 40, table->hdr->hdr_lba_start); 1186 le64enc(buf + 48, table->hdr->hdr_lba_end); 1187 le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); 1188 le32enc(buf + 80, table->hdr->hdr_entries); 1189 le32enc(buf + 84, table->hdr->hdr_entsz); 1190 1191 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1192 if (baseentry->gpe_deleted) 1193 continue; 1194 entry = (struct g_part_gpt_entry *)baseentry; 1195 index = baseentry->gpe_index - 1; 1196 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; 1197 le_uuid_enc(bp, &entry->ent.ent_type); 1198 le_uuid_enc(bp + 16, &entry->ent.ent_uuid); 1199 le64enc(bp + 32, entry->ent.ent_lba_start); 1200 le64enc(bp + 40, entry->ent.ent_lba_end); 1201 le64enc(bp + 48, entry->ent.ent_attr); 1202 memcpy(bp + 56, entry->ent.ent_name, 1203 sizeof(entry->ent.ent_name)); 1204 } 1205 1206 crc = crc32(buf + pp->sectorsize, 1207 table->hdr->hdr_entries * table->hdr->hdr_entsz); 1208 le32enc(buf + 88, crc); 1209 1210 /* Write primary meta-data. */ 1211 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1212 le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ 1213 le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ 1214 le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ 1215 crc = crc32(buf, table->hdr->hdr_size); 1216 le32enc(buf + 16, crc); 1217 1218 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1219 error = g_write_data(cp, 1220 (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize, 1221 buf + (index + 1) * pp->sectorsize, 1222 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1223 (tblsz - index) * pp->sectorsize); 1224 if (error) 1225 goto out; 1226 } 1227 error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, 1228 buf, pp->sectorsize); 1229 if (error) 1230 goto out; 1231 1232 /* Write secondary meta-data. */ 1233 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1234 le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ 1235 le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ 1236 le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ 1237 crc = crc32(buf, table->hdr->hdr_size); 1238 le32enc(buf + 16, crc); 1239 1240 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1241 error = g_write_data(cp, 1242 (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize, 1243 buf + (index + 1) * pp->sectorsize, 1244 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1245 (tblsz - index) * pp->sectorsize); 1246 if (error) 1247 goto out; 1248 } 1249 error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, 1250 buf, pp->sectorsize); 1251 1252 out: 1253 g_free(buf); 1254 return (error); 1255 } 1256 1257 static void 1258 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp) 1259 { 1260 struct g_part_entry *baseentry; 1261 struct g_part_gpt_entry *entry; 1262 struct g_part_gpt_table *table; 1263 quad_t start, end, min, max; 1264 quad_t lba, last; 1265 size_t spb, tblsz; 1266 1267 table = (struct g_part_gpt_table *)basetable; 1268 last = pp->mediasize / pp->sectorsize - 1; 1269 tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent), 1270 pp->sectorsize); 1271 1272 table->lba[GPT_ELT_PRIHDR] = 1; 1273 table->lba[GPT_ELT_PRITBL] = 2; 1274 table->lba[GPT_ELT_SECHDR] = last; 1275 table->lba[GPT_ELT_SECTBL] = last - tblsz; 1276 table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK; 1277 table->state[GPT_ELT_PRITBL] = GPT_STATE_OK; 1278 table->state[GPT_ELT_SECHDR] = GPT_STATE_OK; 1279 table->state[GPT_ELT_SECTBL] = GPT_STATE_OK; 1280 1281 max = start = 2 + tblsz; 1282 min = end = last - tblsz - 1; 1283 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1284 if (baseentry->gpe_deleted) 1285 continue; 1286 entry = (struct g_part_gpt_entry *)baseentry; 1287 if (entry->ent.ent_lba_start < min) 1288 min = entry->ent.ent_lba_start; 1289 if (entry->ent.ent_lba_end > max) 1290 max = entry->ent.ent_lba_end; 1291 } 1292 spb = 4096 / pp->sectorsize; 1293 if (spb > 1) { 1294 lba = start + ((start % spb) ? spb - start % spb : 0); 1295 if (lba <= min) 1296 start = lba; 1297 lba = end - (end + 1) % spb; 1298 if (max <= lba) 1299 end = lba; 1300 } 1301 table->hdr->hdr_lba_start = start; 1302 table->hdr->hdr_lba_end = end; 1303 1304 basetable->gpt_first = start; 1305 basetable->gpt_last = end; 1306 } 1307 1308 static void 1309 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) 1310 { 1311 u_int bo; 1312 uint32_t ch; 1313 uint16_t c; 1314 1315 bo = LITTLE_ENDIAN; /* GPT is little-endian */ 1316 while (len > 0 && *str != 0) { 1317 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); 1318 str++, len--; 1319 if ((ch & 0xf800) == 0xd800) { 1320 if (len > 0) { 1321 c = (bo == BIG_ENDIAN) ? be16toh(*str) 1322 : le16toh(*str); 1323 str++, len--; 1324 } else 1325 c = 0xfffd; 1326 if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { 1327 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); 1328 ch += 0x10000; 1329 } else 1330 ch = 0xfffd; 1331 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ 1332 bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; 1333 continue; 1334 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ 1335 continue; 1336 1337 /* Write the Unicode character in UTF-8 */ 1338 if (ch < 0x80) 1339 g_conf_printf_escaped(sb, "%c", ch); 1340 else if (ch < 0x800) 1341 g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6), 1342 0x80 | (ch & 0x3f)); 1343 else if (ch < 0x10000) 1344 g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12), 1345 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1346 else if (ch < 0x200000) 1347 g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 | 1348 (ch >> 18), 0x80 | ((ch >> 12) & 0x3f), 1349 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1350 } 1351 } 1352 1353 static void 1354 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) 1355 { 1356 size_t s16idx, s8idx; 1357 uint32_t utfchar; 1358 unsigned int c, utfbytes; 1359 1360 s8idx = s16idx = 0; 1361 utfchar = 0; 1362 utfbytes = 0; 1363 bzero(s16, s16len << 1); 1364 while (s8[s8idx] != 0 && s16idx < s16len) { 1365 c = s8[s8idx++]; 1366 if ((c & 0xc0) != 0x80) { 1367 /* Initial characters. */ 1368 if (utfbytes != 0) { 1369 /* Incomplete encoding of previous char. */ 1370 s16[s16idx++] = htole16(0xfffd); 1371 } 1372 if ((c & 0xf8) == 0xf0) { 1373 utfchar = c & 0x07; 1374 utfbytes = 3; 1375 } else if ((c & 0xf0) == 0xe0) { 1376 utfchar = c & 0x0f; 1377 utfbytes = 2; 1378 } else if ((c & 0xe0) == 0xc0) { 1379 utfchar = c & 0x1f; 1380 utfbytes = 1; 1381 } else { 1382 utfchar = c & 0x7f; 1383 utfbytes = 0; 1384 } 1385 } else { 1386 /* Followup characters. */ 1387 if (utfbytes > 0) { 1388 utfchar = (utfchar << 6) + (c & 0x3f); 1389 utfbytes--; 1390 } else if (utfbytes == 0) 1391 utfbytes = ~0; 1392 } 1393 /* 1394 * Write the complete Unicode character as UTF-16 when we 1395 * have all the UTF-8 charactars collected. 1396 */ 1397 if (utfbytes == 0) { 1398 /* 1399 * If we need to write 2 UTF-16 characters, but 1400 * we only have room for 1, then we truncate the 1401 * string by writing a 0 instead. 1402 */ 1403 if (utfchar >= 0x10000 && s16idx < s16len - 1) { 1404 s16[s16idx++] = 1405 htole16(0xd800 | ((utfchar >> 10) - 0x40)); 1406 s16[s16idx++] = 1407 htole16(0xdc00 | (utfchar & 0x3ff)); 1408 } else 1409 s16[s16idx++] = (utfchar >= 0x10000) ? 0 : 1410 htole16(utfchar); 1411 } 1412 } 1413 /* 1414 * If our input string was truncated, append an invalid encoding 1415 * character to the output string. 1416 */ 1417 if (utfbytes != 0 && s16idx < s16len) 1418 s16[s16idx++] = htole16(0xfffd); 1419 } 1420