1 /*- 2 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/bio.h> 32 #include <sys/diskmbr.h> 33 #include <sys/endian.h> 34 #include <sys/gpt.h> 35 #include <sys/kernel.h> 36 #include <sys/kobj.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/malloc.h> 40 #include <sys/mutex.h> 41 #include <sys/queue.h> 42 #include <sys/sbuf.h> 43 #include <sys/systm.h> 44 #include <sys/sysctl.h> 45 #include <sys/uuid.h> 46 #include <geom/geom.h> 47 #include <geom/part/g_part.h> 48 49 #include "g_part_if.h" 50 51 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support"); 52 53 CTASSERT(offsetof(struct gpt_hdr, padding) == 92); 54 CTASSERT(sizeof(struct gpt_ent) == 128); 55 56 #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) 57 58 #define MBRSIZE 512 59 60 enum gpt_elt { 61 GPT_ELT_PRIHDR, 62 GPT_ELT_PRITBL, 63 GPT_ELT_SECHDR, 64 GPT_ELT_SECTBL, 65 GPT_ELT_COUNT 66 }; 67 68 enum gpt_state { 69 GPT_STATE_UNKNOWN, /* Not determined. */ 70 GPT_STATE_MISSING, /* No signature found. */ 71 GPT_STATE_CORRUPT, /* Checksum mismatch. */ 72 GPT_STATE_INVALID, /* Nonconformant/invalid. */ 73 GPT_STATE_OK /* Perfectly fine. */ 74 }; 75 76 struct g_part_gpt_table { 77 struct g_part_table base; 78 u_char mbr[MBRSIZE]; 79 struct gpt_hdr *hdr; 80 quad_t lba[GPT_ELT_COUNT]; 81 enum gpt_state state[GPT_ELT_COUNT]; 82 int bootcamp; 83 }; 84 85 struct g_part_gpt_entry { 86 struct g_part_entry base; 87 struct gpt_ent ent; 88 }; 89 90 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); 91 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); 92 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *); 93 94 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, 95 struct g_part_parms *); 96 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); 97 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); 98 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); 99 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, 100 struct sbuf *, const char *); 101 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); 102 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, 103 struct g_part_parms *); 104 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, 105 char *, size_t); 106 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); 107 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); 108 static int g_part_gpt_setunset(struct g_part_table *table, 109 struct g_part_entry *baseentry, const char *attrib, unsigned int set); 110 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, 111 char *, size_t); 112 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); 113 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, 114 struct g_part_parms *); 115 static int g_part_gpt_recover(struct g_part_table *); 116 117 static kobj_method_t g_part_gpt_methods[] = { 118 KOBJMETHOD(g_part_add, g_part_gpt_add), 119 KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), 120 KOBJMETHOD(g_part_create, g_part_gpt_create), 121 KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), 122 KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), 123 KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), 124 KOBJMETHOD(g_part_modify, g_part_gpt_modify), 125 KOBJMETHOD(g_part_resize, g_part_gpt_resize), 126 KOBJMETHOD(g_part_name, g_part_gpt_name), 127 KOBJMETHOD(g_part_probe, g_part_gpt_probe), 128 KOBJMETHOD(g_part_read, g_part_gpt_read), 129 KOBJMETHOD(g_part_recover, g_part_gpt_recover), 130 KOBJMETHOD(g_part_setunset, g_part_gpt_setunset), 131 KOBJMETHOD(g_part_type, g_part_gpt_type), 132 KOBJMETHOD(g_part_write, g_part_gpt_write), 133 { 0, 0 } 134 }; 135 136 static struct g_part_scheme g_part_gpt_scheme = { 137 "GPT", 138 g_part_gpt_methods, 139 sizeof(struct g_part_gpt_table), 140 .gps_entrysz = sizeof(struct g_part_gpt_entry), 141 .gps_minent = 128, 142 .gps_maxent = 4096, 143 .gps_bootcodesz = MBRSIZE, 144 }; 145 G_PART_SCHEME_DECLARE(g_part_gpt); 146 147 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; 148 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; 149 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; 150 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; 151 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; 152 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; 153 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; 154 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT; 155 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; 156 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; 157 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; 158 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS; 159 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; 160 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; 161 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; 162 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; 163 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; 164 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; 165 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; 166 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; 167 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS; 168 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG; 169 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED; 170 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR; 171 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; 172 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; 173 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; 174 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; 175 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; 176 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; 177 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; 178 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; 179 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; 180 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; 181 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; 182 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; 183 184 static struct g_part_uuid_alias { 185 struct uuid *uuid; 186 int alias; 187 int mbrtype; 188 } gpt_uuid_alias_match[] = { 189 { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab }, 190 { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf }, 191 { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 }, 192 { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 }, 193 { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 }, 194 { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 }, 195 { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 }, 196 { &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 }, 197 { &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee }, 198 { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 }, 199 { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 }, 200 { &gpt_uuid_freebsd_nandfs, G_PART_ALIAS_FREEBSD_NANDFS, 0 }, 201 { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 }, 202 { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 }, 203 { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 }, 204 { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 }, 205 { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b }, 206 { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 }, 207 { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 }, 208 { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 }, 209 { &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 }, 210 { &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 }, 211 { &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 }, 212 { &gpt_uuid_vmvsanhdr, G_PART_ALIAS_VMVSANHDR, 0 }, 213 { &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 }, 214 { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b }, 215 { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 }, 216 { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 }, 217 { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 }, 218 { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 }, 219 { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 }, 220 { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 }, 221 { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 }, 222 { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 }, 223 { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 }, 224 { NULL, 0, 0 } 225 }; 226 227 static int 228 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start, 229 quad_t end) 230 { 231 232 if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX) 233 return (EINVAL); 234 235 mbr += DOSPARTOFF + idx * DOSPARTSIZE; 236 mbr[0] = 0; 237 if (start == 1) { 238 /* 239 * Treat the PMBR partition specially to maximize 240 * interoperability with BIOSes. 241 */ 242 mbr[1] = mbr[3] = 0; 243 mbr[2] = 2; 244 } else 245 mbr[1] = mbr[2] = mbr[3] = 0xff; 246 mbr[4] = typ; 247 mbr[5] = mbr[6] = mbr[7] = 0xff; 248 le32enc(mbr + 8, (uint32_t)start); 249 le32enc(mbr + 12, (uint32_t)(end - start + 1)); 250 return (0); 251 } 252 253 static int 254 gpt_map_type(struct uuid *t) 255 { 256 struct g_part_uuid_alias *uap; 257 258 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 259 if (EQUUID(t, uap->uuid)) 260 return (uap->mbrtype); 261 } 262 return (0); 263 } 264 265 static void 266 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp) 267 { 268 269 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 270 gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, 271 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 272 le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); 273 } 274 275 /* 276 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the 277 * whole disk anymore. Rather, it covers the GPT table and the EFI 278 * system partition only. This way the HFS+ partition and any FAT 279 * partitions can be added to the MBR without creating an overlap. 280 */ 281 static int 282 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname) 283 { 284 uint8_t *p; 285 286 p = table->mbr + DOSPARTOFF; 287 if (p[4] != 0xee || le32dec(p + 8) != 1) 288 return (0); 289 290 p += DOSPARTSIZE; 291 if (p[4] != 0xaf) 292 return (0); 293 294 printf("GEOM: %s: enabling Boot Camp\n", provname); 295 return (1); 296 } 297 298 static void 299 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp) 300 { 301 struct g_part_entry *baseentry; 302 struct g_part_gpt_entry *entry; 303 struct g_part_gpt_table *table; 304 int bootable, error, index, slices, typ; 305 306 table = (struct g_part_gpt_table *)basetable; 307 308 bootable = -1; 309 for (index = 0; index < NDOSPART; index++) { 310 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index]) 311 bootable = index; 312 } 313 314 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 315 slices = 0; 316 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 317 if (baseentry->gpe_deleted) 318 continue; 319 index = baseentry->gpe_index - 1; 320 if (index >= NDOSPART) 321 continue; 322 323 entry = (struct g_part_gpt_entry *)baseentry; 324 325 switch (index) { 326 case 0: /* This must be the EFI system partition. */ 327 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi)) 328 goto disable; 329 error = gpt_write_mbr_entry(table->mbr, index, 0xee, 330 1ull, entry->ent.ent_lba_end); 331 break; 332 case 1: /* This must be the HFS+ partition. */ 333 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs)) 334 goto disable; 335 error = gpt_write_mbr_entry(table->mbr, index, 0xaf, 336 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 337 break; 338 default: 339 typ = gpt_map_type(&entry->ent.ent_type); 340 error = gpt_write_mbr_entry(table->mbr, index, typ, 341 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 342 break; 343 } 344 if (error) 345 continue; 346 347 if (index == bootable) 348 table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80; 349 slices |= 1 << index; 350 } 351 if ((slices & 3) == 3) 352 return; 353 354 disable: 355 table->bootcamp = 0; 356 gpt_create_pmbr(table, pp); 357 } 358 359 static struct gpt_hdr * 360 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, 361 enum gpt_elt elt) 362 { 363 struct gpt_hdr *buf, *hdr; 364 struct g_provider *pp; 365 quad_t lba, last; 366 int error; 367 uint32_t crc, sz; 368 369 pp = cp->provider; 370 last = (pp->mediasize / pp->sectorsize) - 1; 371 table->state[elt] = GPT_STATE_MISSING; 372 /* 373 * If the primary header is valid look for secondary 374 * header in AlternateLBA, otherwise in the last medium's LBA. 375 */ 376 if (elt == GPT_ELT_SECHDR) { 377 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK) 378 table->lba[elt] = last; 379 } else 380 table->lba[elt] = 1; 381 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, 382 &error); 383 if (buf == NULL) 384 return (NULL); 385 hdr = NULL; 386 if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) 387 goto fail; 388 389 table->state[elt] = GPT_STATE_CORRUPT; 390 sz = le32toh(buf->hdr_size); 391 if (sz < 92 || sz > pp->sectorsize) 392 goto fail; 393 394 hdr = g_malloc(sz, M_WAITOK | M_ZERO); 395 bcopy(buf, hdr, sz); 396 hdr->hdr_size = sz; 397 398 crc = le32toh(buf->hdr_crc_self); 399 buf->hdr_crc_self = 0; 400 if (crc32(buf, sz) != crc) 401 goto fail; 402 hdr->hdr_crc_self = crc; 403 404 table->state[elt] = GPT_STATE_INVALID; 405 hdr->hdr_revision = le32toh(buf->hdr_revision); 406 if (hdr->hdr_revision < GPT_HDR_REVISION) 407 goto fail; 408 hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); 409 if (hdr->hdr_lba_self != table->lba[elt]) 410 goto fail; 411 hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); 412 if (hdr->hdr_lba_alt == hdr->hdr_lba_self || 413 hdr->hdr_lba_alt > last) 414 goto fail; 415 416 /* Check the managed area. */ 417 hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); 418 if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) 419 goto fail; 420 hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); 421 if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) 422 goto fail; 423 424 /* Check the table location and size of the table. */ 425 hdr->hdr_entries = le32toh(buf->hdr_entries); 426 hdr->hdr_entsz = le32toh(buf->hdr_entsz); 427 if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || 428 (hdr->hdr_entsz & 7) != 0) 429 goto fail; 430 hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); 431 if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) 432 goto fail; 433 if (hdr->hdr_lba_table >= hdr->hdr_lba_start && 434 hdr->hdr_lba_table <= hdr->hdr_lba_end) 435 goto fail; 436 lba = hdr->hdr_lba_table + 437 (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) / 438 pp->sectorsize - 1; 439 if (lba >= last) 440 goto fail; 441 if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) 442 goto fail; 443 444 table->state[elt] = GPT_STATE_OK; 445 le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); 446 hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); 447 448 /* save LBA for secondary header */ 449 if (elt == GPT_ELT_PRIHDR) 450 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt; 451 452 g_free(buf); 453 return (hdr); 454 455 fail: 456 if (hdr != NULL) 457 g_free(hdr); 458 g_free(buf); 459 return (NULL); 460 } 461 462 static struct gpt_ent * 463 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, 464 enum gpt_elt elt, struct gpt_hdr *hdr) 465 { 466 struct g_provider *pp; 467 struct gpt_ent *ent, *tbl; 468 char *buf, *p; 469 unsigned int idx, sectors, tblsz, size; 470 int error; 471 472 if (hdr == NULL) 473 return (NULL); 474 475 pp = cp->provider; 476 table->lba[elt] = hdr->hdr_lba_table; 477 478 table->state[elt] = GPT_STATE_MISSING; 479 tblsz = hdr->hdr_entries * hdr->hdr_entsz; 480 sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize; 481 buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO); 482 for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) { 483 size = (sectors - idx > MAXPHYS / pp->sectorsize) ? MAXPHYS: 484 (sectors - idx) * pp->sectorsize; 485 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize, 486 size, &error); 487 if (p == NULL) { 488 g_free(buf); 489 return (NULL); 490 } 491 bcopy(p, buf + idx * pp->sectorsize, size); 492 g_free(p); 493 } 494 table->state[elt] = GPT_STATE_CORRUPT; 495 if (crc32(buf, tblsz) != hdr->hdr_crc_table) { 496 g_free(buf); 497 return (NULL); 498 } 499 500 table->state[elt] = GPT_STATE_OK; 501 tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), 502 M_WAITOK | M_ZERO); 503 504 for (idx = 0, ent = tbl, p = buf; 505 idx < hdr->hdr_entries; 506 idx++, ent++, p += hdr->hdr_entsz) { 507 le_uuid_dec(p, &ent->ent_type); 508 le_uuid_dec(p + 16, &ent->ent_uuid); 509 ent->ent_lba_start = le64dec(p + 32); 510 ent->ent_lba_end = le64dec(p + 40); 511 ent->ent_attr = le64dec(p + 48); 512 /* Keep UTF-16 in little-endian. */ 513 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); 514 } 515 516 g_free(buf); 517 return (tbl); 518 } 519 520 static int 521 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) 522 { 523 524 if (pri == NULL || sec == NULL) 525 return (0); 526 527 if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) 528 return (0); 529 return ((pri->hdr_revision == sec->hdr_revision && 530 pri->hdr_size == sec->hdr_size && 531 pri->hdr_lba_start == sec->hdr_lba_start && 532 pri->hdr_lba_end == sec->hdr_lba_end && 533 pri->hdr_entries == sec->hdr_entries && 534 pri->hdr_entsz == sec->hdr_entsz && 535 pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); 536 } 537 538 static int 539 gpt_parse_type(const char *type, struct uuid *uuid) 540 { 541 struct uuid tmp; 542 const char *alias; 543 int error; 544 struct g_part_uuid_alias *uap; 545 546 if (type[0] == '!') { 547 error = parse_uuid(type + 1, &tmp); 548 if (error) 549 return (error); 550 if (EQUUID(&tmp, &gpt_uuid_unused)) 551 return (EINVAL); 552 *uuid = tmp; 553 return (0); 554 } 555 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 556 alias = g_part_alias_name(uap->alias); 557 if (!strcasecmp(type, alias)) { 558 *uuid = *uap->uuid; 559 return (0); 560 } 561 } 562 return (EINVAL); 563 } 564 565 static int 566 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, 567 struct g_part_parms *gpp) 568 { 569 struct g_part_gpt_entry *entry; 570 int error; 571 572 entry = (struct g_part_gpt_entry *)baseentry; 573 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 574 if (error) 575 return (error); 576 kern_uuidgen(&entry->ent.ent_uuid, 1); 577 entry->ent.ent_lba_start = baseentry->gpe_start; 578 entry->ent.ent_lba_end = baseentry->gpe_end; 579 if (baseentry->gpe_deleted) { 580 entry->ent.ent_attr = 0; 581 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); 582 } 583 if (gpp->gpp_parms & G_PART_PARM_LABEL) 584 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 585 sizeof(entry->ent.ent_name) / 586 sizeof(entry->ent.ent_name[0])); 587 return (0); 588 } 589 590 static int 591 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) 592 { 593 struct g_part_gpt_table *table; 594 size_t codesz; 595 596 codesz = DOSPARTOFF; 597 table = (struct g_part_gpt_table *)basetable; 598 bzero(table->mbr, codesz); 599 codesz = MIN(codesz, gpp->gpp_codesize); 600 if (codesz > 0) 601 bcopy(gpp->gpp_codeptr, table->mbr, codesz); 602 return (0); 603 } 604 605 static int 606 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) 607 { 608 struct g_provider *pp; 609 struct g_part_gpt_table *table; 610 size_t tblsz; 611 612 /* We don't nest, which means that our depth should be 0. */ 613 if (basetable->gpt_depth != 0) 614 return (ENXIO); 615 616 table = (struct g_part_gpt_table *)basetable; 617 pp = gpp->gpp_provider; 618 tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) + 619 pp->sectorsize - 1) / pp->sectorsize; 620 if (pp->sectorsize < MBRSIZE || 621 pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * 622 pp->sectorsize) 623 return (ENOSPC); 624 625 gpt_create_pmbr(table, pp); 626 627 /* Allocate space for the header */ 628 table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); 629 630 bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 631 table->hdr->hdr_revision = GPT_HDR_REVISION; 632 table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); 633 kern_uuidgen(&table->hdr->hdr_uuid, 1); 634 table->hdr->hdr_entries = basetable->gpt_entries; 635 table->hdr->hdr_entsz = sizeof(struct gpt_ent); 636 637 g_gpt_set_defaults(basetable, pp); 638 return (0); 639 } 640 641 static int 642 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) 643 { 644 struct g_part_gpt_table *table; 645 struct g_provider *pp; 646 647 table = (struct g_part_gpt_table *)basetable; 648 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 649 g_free(table->hdr); 650 table->hdr = NULL; 651 652 /* 653 * Wipe the first 2 sectors to clear the partitioning. Wipe the last 654 * sector only if it has valid secondary header. 655 */ 656 basetable->gpt_smhead |= 3; 657 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 658 table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1) 659 basetable->gpt_smtail |= 1; 660 return (0); 661 } 662 663 static void 664 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 665 struct sbuf *sb, const char *indent) 666 { 667 struct g_part_gpt_entry *entry; 668 669 entry = (struct g_part_gpt_entry *)baseentry; 670 if (indent == NULL) { 671 /* conftxt: libdisk compatibility */ 672 sbuf_printf(sb, " xs GPT xt "); 673 sbuf_printf_uuid(sb, &entry->ent.ent_type); 674 } else if (entry != NULL) { 675 /* confxml: partition entry information */ 676 sbuf_printf(sb, "%s<label>", indent); 677 g_gpt_printf_utf16(sb, entry->ent.ent_name, 678 sizeof(entry->ent.ent_name) >> 1); 679 sbuf_printf(sb, "</label>\n"); 680 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME) 681 sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent); 682 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) { 683 sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n", 684 indent); 685 } 686 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) { 687 sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n", 688 indent); 689 } 690 sbuf_printf(sb, "%s<rawtype>", indent); 691 sbuf_printf_uuid(sb, &entry->ent.ent_type); 692 sbuf_printf(sb, "</rawtype>\n"); 693 sbuf_printf(sb, "%s<rawuuid>", indent); 694 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 695 sbuf_printf(sb, "</rawuuid>\n"); 696 } else { 697 /* confxml: scheme information */ 698 } 699 } 700 701 static int 702 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) 703 { 704 struct g_part_gpt_entry *entry; 705 706 entry = (struct g_part_gpt_entry *)baseentry; 707 return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || 708 EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap)) ? 1 : 0); 709 } 710 711 static int 712 g_part_gpt_modify(struct g_part_table *basetable, 713 struct g_part_entry *baseentry, struct g_part_parms *gpp) 714 { 715 struct g_part_gpt_entry *entry; 716 int error; 717 718 entry = (struct g_part_gpt_entry *)baseentry; 719 if (gpp->gpp_parms & G_PART_PARM_TYPE) { 720 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 721 if (error) 722 return (error); 723 } 724 if (gpp->gpp_parms & G_PART_PARM_LABEL) 725 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 726 sizeof(entry->ent.ent_name) / 727 sizeof(entry->ent.ent_name[0])); 728 return (0); 729 } 730 731 static int 732 g_part_gpt_resize(struct g_part_table *basetable, 733 struct g_part_entry *baseentry, struct g_part_parms *gpp) 734 { 735 struct g_part_gpt_entry *entry; 736 737 if (baseentry == NULL) 738 return (EOPNOTSUPP); 739 740 entry = (struct g_part_gpt_entry *)baseentry; 741 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; 742 entry->ent.ent_lba_end = baseentry->gpe_end; 743 744 return (0); 745 } 746 747 static const char * 748 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, 749 char *buf, size_t bufsz) 750 { 751 struct g_part_gpt_entry *entry; 752 char c; 753 754 entry = (struct g_part_gpt_entry *)baseentry; 755 c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; 756 snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); 757 return (buf); 758 } 759 760 static int 761 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) 762 { 763 struct g_provider *pp; 764 u_char *buf; 765 int error, index, pri, res; 766 767 /* We don't nest, which means that our depth should be 0. */ 768 if (table->gpt_depth != 0) 769 return (ENXIO); 770 771 pp = cp->provider; 772 773 /* 774 * Sanity-check the provider. Since the first sector on the provider 775 * must be a PMBR and a PMBR is 512 bytes large, the sector size 776 * must be at least 512 bytes. Also, since the theoretical minimum 777 * number of sectors needed by GPT is 6, any medium that has less 778 * than 6 sectors is never going to be able to hold a GPT. The 779 * number 6 comes from: 780 * 1 sector for the PMBR 781 * 2 sectors for the GPT headers (each 1 sector) 782 * 2 sectors for the GPT tables (each 1 sector) 783 * 1 sector for an actual partition 784 * It's better to catch this pathological case early than behaving 785 * pathologically later on... 786 */ 787 if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) 788 return (ENOSPC); 789 790 /* 791 * Check that there's a MBR or a PMBR. If it's a PMBR, we return 792 * as the highest priority on a match, otherwise we assume some 793 * GPT-unaware tool has destroyed the GPT by recreating a MBR and 794 * we really want the MBR scheme to take precedence. 795 */ 796 buf = g_read_data(cp, 0L, pp->sectorsize, &error); 797 if (buf == NULL) 798 return (error); 799 res = le16dec(buf + DOSMAGICOFFSET); 800 pri = G_PART_PROBE_PRI_LOW; 801 for (index = 0; index < NDOSPART; index++) { 802 if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee) 803 pri = G_PART_PROBE_PRI_HIGH; 804 } 805 g_free(buf); 806 if (res != DOSMAGIC) 807 return (ENXIO); 808 809 /* Check that there's a primary header. */ 810 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); 811 if (buf == NULL) 812 return (error); 813 res = memcmp(buf, GPT_HDR_SIG, 8); 814 g_free(buf); 815 if (res == 0) 816 return (pri); 817 818 /* No primary? Check that there's a secondary. */ 819 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 820 &error); 821 if (buf == NULL) 822 return (error); 823 res = memcmp(buf, GPT_HDR_SIG, 8); 824 g_free(buf); 825 return ((res == 0) ? pri : ENXIO); 826 } 827 828 static int 829 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) 830 { 831 struct gpt_hdr *prihdr, *sechdr; 832 struct gpt_ent *tbl, *pritbl, *sectbl; 833 struct g_provider *pp; 834 struct g_part_gpt_table *table; 835 struct g_part_gpt_entry *entry; 836 u_char *buf; 837 uint64_t last; 838 int error, index; 839 840 table = (struct g_part_gpt_table *)basetable; 841 pp = cp->provider; 842 last = (pp->mediasize / pp->sectorsize) - 1; 843 844 /* Read the PMBR */ 845 buf = g_read_data(cp, 0, pp->sectorsize, &error); 846 if (buf == NULL) 847 return (error); 848 bcopy(buf, table->mbr, MBRSIZE); 849 g_free(buf); 850 851 /* Read the primary header and table. */ 852 prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); 853 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { 854 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); 855 } else { 856 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 857 pritbl = NULL; 858 } 859 860 /* Read the secondary header and table. */ 861 sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); 862 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { 863 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); 864 } else { 865 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 866 sectbl = NULL; 867 } 868 869 /* Fail if we haven't got any good tables at all. */ 870 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && 871 table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 872 printf("GEOM: %s: corrupt or invalid GPT detected.\n", 873 pp->name); 874 printf("GEOM: %s: GPT rejected -- may not be recoverable.\n", 875 pp->name); 876 return (EINVAL); 877 } 878 879 /* 880 * If both headers are good but they disagree with each other, 881 * then invalidate one. We prefer to keep the primary header, 882 * unless the primary table is corrupt. 883 */ 884 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && 885 table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 886 !gpt_matched_hdrs(prihdr, sechdr)) { 887 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { 888 table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; 889 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 890 g_free(sechdr); 891 sechdr = NULL; 892 } else { 893 table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; 894 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 895 g_free(prihdr); 896 prihdr = NULL; 897 } 898 } 899 900 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { 901 printf("GEOM: %s: the primary GPT table is corrupt or " 902 "invalid.\n", pp->name); 903 printf("GEOM: %s: using the secondary instead -- recovery " 904 "strongly advised.\n", pp->name); 905 table->hdr = sechdr; 906 basetable->gpt_corrupt = 1; 907 if (prihdr != NULL) 908 g_free(prihdr); 909 tbl = sectbl; 910 if (pritbl != NULL) 911 g_free(pritbl); 912 } else { 913 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 914 printf("GEOM: %s: the secondary GPT table is corrupt " 915 "or invalid.\n", pp->name); 916 printf("GEOM: %s: using the primary only -- recovery " 917 "suggested.\n", pp->name); 918 basetable->gpt_corrupt = 1; 919 } else if (table->lba[GPT_ELT_SECHDR] != last) { 920 printf( "GEOM: %s: the secondary GPT header is not in " 921 "the last LBA.\n", pp->name); 922 basetable->gpt_corrupt = 1; 923 } 924 table->hdr = prihdr; 925 if (sechdr != NULL) 926 g_free(sechdr); 927 tbl = pritbl; 928 if (sectbl != NULL) 929 g_free(sectbl); 930 } 931 932 basetable->gpt_first = table->hdr->hdr_lba_start; 933 basetable->gpt_last = table->hdr->hdr_lba_end; 934 basetable->gpt_entries = (table->hdr->hdr_lba_start - 2) * 935 pp->sectorsize / table->hdr->hdr_entsz; 936 937 for (index = table->hdr->hdr_entries - 1; index >= 0; index--) { 938 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) 939 continue; 940 entry = (struct g_part_gpt_entry *)g_part_new_entry( 941 basetable, index + 1, tbl[index].ent_lba_start, 942 tbl[index].ent_lba_end); 943 entry->ent = tbl[index]; 944 } 945 946 g_free(tbl); 947 948 /* 949 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions 950 * if (and only if) any FAT32 or FAT16 partitions have been 951 * created. This happens irrespective of whether Boot Camp is 952 * used/enabled, though it's generally understood to be done 953 * to support legacy Windows under Boot Camp. We refer to this 954 * mirroring simply as Boot Camp. We try to detect Boot Camp 955 * so that we can update the MBR if and when GPT changes have 956 * been made. Note that we do not enable Boot Camp if not 957 * previously enabled because we can't assume that we're on a 958 * Mac alongside Mac OS X. 959 */ 960 table->bootcamp = gpt_is_bootcamp(table, pp->name); 961 962 return (0); 963 } 964 965 static int 966 g_part_gpt_recover(struct g_part_table *basetable) 967 { 968 struct g_part_gpt_table *table; 969 struct g_provider *pp; 970 971 table = (struct g_part_gpt_table *)basetable; 972 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 973 gpt_create_pmbr(table, pp); 974 g_gpt_set_defaults(basetable, pp); 975 basetable->gpt_corrupt = 0; 976 return (0); 977 } 978 979 static int 980 g_part_gpt_setunset(struct g_part_table *basetable, 981 struct g_part_entry *baseentry, const char *attrib, unsigned int set) 982 { 983 struct g_part_gpt_entry *entry; 984 struct g_part_gpt_table *table; 985 uint8_t *p; 986 uint64_t attr; 987 int i; 988 989 table = (struct g_part_gpt_table *)basetable; 990 entry = (struct g_part_gpt_entry *)baseentry; 991 992 if (strcasecmp(attrib, "active") == 0) { 993 if (table->bootcamp) { 994 /* The active flag must be set on a valid entry. */ 995 if (entry == NULL) 996 return (ENXIO); 997 if (baseentry->gpe_index > NDOSPART) 998 return (EINVAL); 999 for (i = 0; i < NDOSPART; i++) { 1000 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1001 p[0] = (i == baseentry->gpe_index - 1) 1002 ? ((set) ? 0x80 : 0) : 0; 1003 } 1004 } else { 1005 /* The PMBR is marked as active without an entry. */ 1006 if (entry != NULL) 1007 return (ENXIO); 1008 for (i = 0; i < NDOSPART; i++) { 1009 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1010 p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0; 1011 } 1012 } 1013 return (0); 1014 } 1015 1016 if (entry == NULL) 1017 return (ENODEV); 1018 1019 attr = 0; 1020 if (strcasecmp(attrib, "bootme") == 0) { 1021 attr |= GPT_ENT_ATTR_BOOTME; 1022 } else if (strcasecmp(attrib, "bootonce") == 0) { 1023 attr |= GPT_ENT_ATTR_BOOTONCE; 1024 if (set) 1025 attr |= GPT_ENT_ATTR_BOOTME; 1026 } else if (strcasecmp(attrib, "bootfailed") == 0) { 1027 /* 1028 * It should only be possible to unset BOOTFAILED, but it might 1029 * be useful for test purposes to also be able to set it. 1030 */ 1031 attr |= GPT_ENT_ATTR_BOOTFAILED; 1032 } 1033 if (attr == 0) 1034 return (EINVAL); 1035 1036 if (set) 1037 attr = entry->ent.ent_attr | attr; 1038 else 1039 attr = entry->ent.ent_attr & ~attr; 1040 if (attr != entry->ent.ent_attr) { 1041 entry->ent.ent_attr = attr; 1042 if (!baseentry->gpe_created) 1043 baseentry->gpe_modified = 1; 1044 } 1045 return (0); 1046 } 1047 1048 static const char * 1049 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 1050 char *buf, size_t bufsz) 1051 { 1052 struct g_part_gpt_entry *entry; 1053 struct uuid *type; 1054 struct g_part_uuid_alias *uap; 1055 1056 entry = (struct g_part_gpt_entry *)baseentry; 1057 type = &entry->ent.ent_type; 1058 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) 1059 if (EQUUID(type, uap->uuid)) 1060 return (g_part_alias_name(uap->alias)); 1061 buf[0] = '!'; 1062 snprintf_uuid(buf + 1, bufsz - 1, type); 1063 1064 return (buf); 1065 } 1066 1067 static int 1068 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) 1069 { 1070 unsigned char *buf, *bp; 1071 struct g_provider *pp; 1072 struct g_part_entry *baseentry; 1073 struct g_part_gpt_entry *entry; 1074 struct g_part_gpt_table *table; 1075 size_t tblsz; 1076 uint32_t crc; 1077 int error, index; 1078 1079 pp = cp->provider; 1080 table = (struct g_part_gpt_table *)basetable; 1081 tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz + 1082 pp->sectorsize - 1) / pp->sectorsize; 1083 1084 /* Reconstruct the MBR from the GPT if under Boot Camp. */ 1085 if (table->bootcamp) 1086 gpt_update_bootcamp(basetable, pp); 1087 1088 /* Write the PMBR */ 1089 buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); 1090 bcopy(table->mbr, buf, MBRSIZE); 1091 error = g_write_data(cp, 0, buf, pp->sectorsize); 1092 g_free(buf); 1093 if (error) 1094 return (error); 1095 1096 /* Allocate space for the header and entries. */ 1097 buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); 1098 1099 memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 1100 le32enc(buf + 8, table->hdr->hdr_revision); 1101 le32enc(buf + 12, table->hdr->hdr_size); 1102 le64enc(buf + 40, table->hdr->hdr_lba_start); 1103 le64enc(buf + 48, table->hdr->hdr_lba_end); 1104 le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); 1105 le32enc(buf + 80, table->hdr->hdr_entries); 1106 le32enc(buf + 84, table->hdr->hdr_entsz); 1107 1108 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1109 if (baseentry->gpe_deleted) 1110 continue; 1111 entry = (struct g_part_gpt_entry *)baseentry; 1112 index = baseentry->gpe_index - 1; 1113 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; 1114 le_uuid_enc(bp, &entry->ent.ent_type); 1115 le_uuid_enc(bp + 16, &entry->ent.ent_uuid); 1116 le64enc(bp + 32, entry->ent.ent_lba_start); 1117 le64enc(bp + 40, entry->ent.ent_lba_end); 1118 le64enc(bp + 48, entry->ent.ent_attr); 1119 memcpy(bp + 56, entry->ent.ent_name, 1120 sizeof(entry->ent.ent_name)); 1121 } 1122 1123 crc = crc32(buf + pp->sectorsize, 1124 table->hdr->hdr_entries * table->hdr->hdr_entsz); 1125 le32enc(buf + 88, crc); 1126 1127 /* Write primary meta-data. */ 1128 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1129 le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ 1130 le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ 1131 le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ 1132 crc = crc32(buf, table->hdr->hdr_size); 1133 le32enc(buf + 16, crc); 1134 1135 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1136 error = g_write_data(cp, 1137 (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize, 1138 buf + (index + 1) * pp->sectorsize, 1139 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1140 (tblsz - index) * pp->sectorsize); 1141 if (error) 1142 goto out; 1143 } 1144 error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, 1145 buf, pp->sectorsize); 1146 if (error) 1147 goto out; 1148 1149 /* Write secondary meta-data. */ 1150 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1151 le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ 1152 le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ 1153 le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ 1154 crc = crc32(buf, table->hdr->hdr_size); 1155 le32enc(buf + 16, crc); 1156 1157 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1158 error = g_write_data(cp, 1159 (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize, 1160 buf + (index + 1) * pp->sectorsize, 1161 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1162 (tblsz - index) * pp->sectorsize); 1163 if (error) 1164 goto out; 1165 } 1166 error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, 1167 buf, pp->sectorsize); 1168 1169 out: 1170 g_free(buf); 1171 return (error); 1172 } 1173 1174 static void 1175 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp) 1176 { 1177 struct g_part_entry *baseentry; 1178 struct g_part_gpt_entry *entry; 1179 struct g_part_gpt_table *table; 1180 quad_t start, end, min, max; 1181 quad_t lba, last; 1182 size_t spb, tblsz; 1183 1184 table = (struct g_part_gpt_table *)basetable; 1185 last = pp->mediasize / pp->sectorsize - 1; 1186 tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) + 1187 pp->sectorsize - 1) / pp->sectorsize; 1188 1189 table->lba[GPT_ELT_PRIHDR] = 1; 1190 table->lba[GPT_ELT_PRITBL] = 2; 1191 table->lba[GPT_ELT_SECHDR] = last; 1192 table->lba[GPT_ELT_SECTBL] = last - tblsz; 1193 table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK; 1194 table->state[GPT_ELT_PRITBL] = GPT_STATE_OK; 1195 table->state[GPT_ELT_SECHDR] = GPT_STATE_OK; 1196 table->state[GPT_ELT_SECTBL] = GPT_STATE_OK; 1197 1198 max = start = 2 + tblsz; 1199 min = end = last - tblsz - 1; 1200 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1201 if (baseentry->gpe_deleted) 1202 continue; 1203 entry = (struct g_part_gpt_entry *)baseentry; 1204 if (entry->ent.ent_lba_start < min) 1205 min = entry->ent.ent_lba_start; 1206 if (entry->ent.ent_lba_end > max) 1207 max = entry->ent.ent_lba_end; 1208 } 1209 spb = 4096 / pp->sectorsize; 1210 if (spb > 1) { 1211 lba = start + ((start % spb) ? spb - start % spb : 0); 1212 if (lba <= min) 1213 start = lba; 1214 lba = end - (end + 1) % spb; 1215 if (max <= lba) 1216 end = lba; 1217 } 1218 table->hdr->hdr_lba_start = start; 1219 table->hdr->hdr_lba_end = end; 1220 1221 basetable->gpt_first = start; 1222 basetable->gpt_last = end; 1223 } 1224 1225 static void 1226 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) 1227 { 1228 u_int bo; 1229 uint32_t ch; 1230 uint16_t c; 1231 1232 bo = LITTLE_ENDIAN; /* GPT is little-endian */ 1233 while (len > 0 && *str != 0) { 1234 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); 1235 str++, len--; 1236 if ((ch & 0xf800) == 0xd800) { 1237 if (len > 0) { 1238 c = (bo == BIG_ENDIAN) ? be16toh(*str) 1239 : le16toh(*str); 1240 str++, len--; 1241 } else 1242 c = 0xfffd; 1243 if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { 1244 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); 1245 ch += 0x10000; 1246 } else 1247 ch = 0xfffd; 1248 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ 1249 bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; 1250 continue; 1251 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ 1252 continue; 1253 1254 /* Write the Unicode character in UTF-8 */ 1255 if (ch < 0x80) 1256 sbuf_printf(sb, "%c", ch); 1257 else if (ch < 0x800) 1258 sbuf_printf(sb, "%c%c", 0xc0 | (ch >> 6), 1259 0x80 | (ch & 0x3f)); 1260 else if (ch < 0x10000) 1261 sbuf_printf(sb, "%c%c%c", 0xe0 | (ch >> 12), 1262 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1263 else if (ch < 0x200000) 1264 sbuf_printf(sb, "%c%c%c%c", 0xf0 | (ch >> 18), 1265 0x80 | ((ch >> 12) & 0x3f), 1266 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1267 } 1268 } 1269 1270 static void 1271 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) 1272 { 1273 size_t s16idx, s8idx; 1274 uint32_t utfchar; 1275 unsigned int c, utfbytes; 1276 1277 s8idx = s16idx = 0; 1278 utfchar = 0; 1279 utfbytes = 0; 1280 bzero(s16, s16len << 1); 1281 while (s8[s8idx] != 0 && s16idx < s16len) { 1282 c = s8[s8idx++]; 1283 if ((c & 0xc0) != 0x80) { 1284 /* Initial characters. */ 1285 if (utfbytes != 0) { 1286 /* Incomplete encoding of previous char. */ 1287 s16[s16idx++] = htole16(0xfffd); 1288 } 1289 if ((c & 0xf8) == 0xf0) { 1290 utfchar = c & 0x07; 1291 utfbytes = 3; 1292 } else if ((c & 0xf0) == 0xe0) { 1293 utfchar = c & 0x0f; 1294 utfbytes = 2; 1295 } else if ((c & 0xe0) == 0xc0) { 1296 utfchar = c & 0x1f; 1297 utfbytes = 1; 1298 } else { 1299 utfchar = c & 0x7f; 1300 utfbytes = 0; 1301 } 1302 } else { 1303 /* Followup characters. */ 1304 if (utfbytes > 0) { 1305 utfchar = (utfchar << 6) + (c & 0x3f); 1306 utfbytes--; 1307 } else if (utfbytes == 0) 1308 utfbytes = ~0; 1309 } 1310 /* 1311 * Write the complete Unicode character as UTF-16 when we 1312 * have all the UTF-8 charactars collected. 1313 */ 1314 if (utfbytes == 0) { 1315 /* 1316 * If we need to write 2 UTF-16 characters, but 1317 * we only have room for 1, then we truncate the 1318 * string by writing a 0 instead. 1319 */ 1320 if (utfchar >= 0x10000 && s16idx < s16len - 1) { 1321 s16[s16idx++] = 1322 htole16(0xd800 | ((utfchar >> 10) - 0x40)); 1323 s16[s16idx++] = 1324 htole16(0xdc00 | (utfchar & 0x3ff)); 1325 } else 1326 s16[s16idx++] = (utfchar >= 0x10000) ? 0 : 1327 htole16(utfchar); 1328 } 1329 } 1330 /* 1331 * If our input string was truncated, append an invalid encoding 1332 * character to the output string. 1333 */ 1334 if (utfbytes != 0 && s16idx < s16len) 1335 s16[s16idx++] = htole16(0xfffd); 1336 } 1337