xref: /freebsd/sys/geom/part/g_part_bsd64.c (revision 550cb4ab85c7e514629c8bacbbb07085b81d916b)
1 /*-
2  * Copyright (c) 2014 Andrey V. Elsukov <ae@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/bio.h>
32 #include <sys/gsb_crc32.h>
33 #include <sys/disklabel.h>
34 #include <sys/endian.h>
35 #include <sys/gpt.h>
36 #include <sys/kernel.h>
37 #include <sys/kobj.h>
38 #include <sys/limits.h>
39 #include <sys/lock.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/queue.h>
43 #include <sys/sbuf.h>
44 #include <sys/systm.h>
45 #include <sys/sysctl.h>
46 #include <geom/geom.h>
47 #include <geom/geom_int.h>
48 #include <geom/part/g_part.h>
49 
50 #include "g_part_if.h"
51 
52 FEATURE(geom_part_bsd64, "GEOM partitioning class for 64-bit BSD disklabels");
53 
54 /* XXX: move this to sys/disklabel64.h */
55 #define	DISKMAGIC64     ((uint32_t)0xc4464c59)
56 #define	MAXPARTITIONS64	16
57 #define	RESPARTITIONS64	32
58 
59 struct disklabel64 {
60 	char	  d_reserved0[512];	/* reserved or unused */
61 	u_int32_t d_magic;		/* the magic number */
62 	u_int32_t d_crc;		/* crc32() d_magic through last part */
63 	u_int32_t d_align;		/* partition alignment requirement */
64 	u_int32_t d_npartitions;	/* number of partitions */
65 	struct uuid d_stor_uuid;	/* unique uuid for label */
66 
67 	u_int64_t d_total_size;		/* total size incl everything (bytes) */
68 	u_int64_t d_bbase;		/* boot area base offset (bytes) */
69 					/* boot area is pbase - bbase */
70 	u_int64_t d_pbase;		/* first allocatable offset (bytes) */
71 	u_int64_t d_pstop;		/* last allocatable offset+1 (bytes) */
72 	u_int64_t d_abase;		/* location of backup copy if not 0 */
73 
74 	u_char	  d_packname[64];
75 	u_char    d_reserved[64];
76 
77 	/*
78 	 * Note: offsets are relative to the base of the slice, NOT to
79 	 * d_pbase.  Unlike 32 bit disklabels the on-disk format for
80 	 * a 64 bit disklabel remains slice-relative.
81 	 *
82 	 * An uninitialized partition has a p_boffset and p_bsize of 0.
83 	 *
84 	 * If p_fstype is not supported for a live partition it is set
85 	 * to FS_OTHER.  This is typically the case when the filesystem
86 	 * is identified by its uuid.
87 	 */
88 	struct partition64 {		/* the partition table */
89 		u_int64_t p_boffset;	/* slice relative offset, in bytes */
90 		u_int64_t p_bsize;	/* size of partition, in bytes */
91 		u_int8_t  p_fstype;
92 		u_int8_t  p_unused01;	/* reserved, must be 0 */
93 		u_int8_t  p_unused02;	/* reserved, must be 0 */
94 		u_int8_t  p_unused03;	/* reserved, must be 0 */
95 		u_int32_t p_unused04;	/* reserved, must be 0 */
96 		u_int32_t p_unused05;	/* reserved, must be 0 */
97 		u_int32_t p_unused06;	/* reserved, must be 0 */
98 		struct uuid p_type_uuid;/* mount type as UUID */
99 		struct uuid p_stor_uuid;/* unique uuid for storage */
100 	} d_partitions[MAXPARTITIONS64];/* actually may be more */
101 };
102 
103 struct g_part_bsd64_table {
104 	struct g_part_table	base;
105 
106 	uint32_t		d_align;
107 	uint64_t		d_bbase;
108 	uint64_t		d_abase;
109 	struct uuid		d_stor_uuid;
110 	char			d_reserved0[512];
111 	u_char			d_packname[64];
112 	u_char			d_reserved[64];
113 };
114 
115 struct g_part_bsd64_entry {
116 	struct g_part_entry	base;
117 
118 	uint8_t			fstype;
119 	struct uuid		type_uuid;
120 	struct uuid		stor_uuid;
121 };
122 
123 static int g_part_bsd64_add(struct g_part_table *, struct g_part_entry *,
124     struct g_part_parms *);
125 static int g_part_bsd64_bootcode(struct g_part_table *, struct g_part_parms *);
126 static int g_part_bsd64_create(struct g_part_table *, struct g_part_parms *);
127 static int g_part_bsd64_destroy(struct g_part_table *, struct g_part_parms *);
128 static void g_part_bsd64_dumpconf(struct g_part_table *, struct g_part_entry *,
129     struct sbuf *, const char *);
130 static int g_part_bsd64_dumpto(struct g_part_table *, struct g_part_entry *);
131 static int g_part_bsd64_modify(struct g_part_table *, struct g_part_entry *,
132     struct g_part_parms *);
133 static const char *g_part_bsd64_name(struct g_part_table *, struct g_part_entry *,
134     char *, size_t);
135 static int g_part_bsd64_probe(struct g_part_table *, struct g_consumer *);
136 static int g_part_bsd64_read(struct g_part_table *, struct g_consumer *);
137 static const char *g_part_bsd64_type(struct g_part_table *, struct g_part_entry *,
138     char *, size_t);
139 static int g_part_bsd64_write(struct g_part_table *, struct g_consumer *);
140 static int g_part_bsd64_resize(struct g_part_table *, struct g_part_entry *,
141     struct g_part_parms *);
142 
143 static kobj_method_t g_part_bsd64_methods[] = {
144 	KOBJMETHOD(g_part_add,		g_part_bsd64_add),
145 	KOBJMETHOD(g_part_bootcode,	g_part_bsd64_bootcode),
146 	KOBJMETHOD(g_part_create,	g_part_bsd64_create),
147 	KOBJMETHOD(g_part_destroy,	g_part_bsd64_destroy),
148 	KOBJMETHOD(g_part_dumpconf,	g_part_bsd64_dumpconf),
149 	KOBJMETHOD(g_part_dumpto,	g_part_bsd64_dumpto),
150 	KOBJMETHOD(g_part_modify,	g_part_bsd64_modify),
151 	KOBJMETHOD(g_part_resize,	g_part_bsd64_resize),
152 	KOBJMETHOD(g_part_name,		g_part_bsd64_name),
153 	KOBJMETHOD(g_part_probe,	g_part_bsd64_probe),
154 	KOBJMETHOD(g_part_read,		g_part_bsd64_read),
155 	KOBJMETHOD(g_part_type,		g_part_bsd64_type),
156 	KOBJMETHOD(g_part_write,	g_part_bsd64_write),
157 	{ 0, 0 }
158 };
159 
160 static struct g_part_scheme g_part_bsd64_scheme = {
161 	"BSD64",
162 	g_part_bsd64_methods,
163 	sizeof(struct g_part_bsd64_table),
164 	.gps_entrysz = sizeof(struct g_part_bsd64_entry),
165 	.gps_minent = MAXPARTITIONS64,
166 	.gps_maxent = MAXPARTITIONS64
167 };
168 G_PART_SCHEME_DECLARE(g_part_bsd64);
169 MODULE_VERSION(geom_part_bsd64, 0);
170 
171 #define	EQUUID(a, b)	(memcmp(a, b, sizeof(struct uuid)) == 0)
172 static struct uuid bsd64_uuid_unused = GPT_ENT_TYPE_UNUSED;
173 static struct uuid bsd64_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP;
174 static struct uuid bsd64_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1;
175 static struct uuid bsd64_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM;
176 static struct uuid bsd64_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD;
177 static struct uuid bsd64_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY;
178 static struct uuid bsd64_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER;
179 static struct uuid bsd64_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2;
180 static struct uuid bsd64_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
181 static struct uuid bsd64_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
182 static struct uuid bsd64_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
183 static struct uuid bsd64_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
184 static struct uuid bsd64_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
185 static struct uuid bsd64_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
186 
187 struct bsd64_uuid_alias {
188 	struct uuid *uuid;
189 	uint8_t fstype;
190 	int alias;
191 };
192 static struct bsd64_uuid_alias dfbsd_alias_match[] = {
193 	{ &bsd64_uuid_dfbsd_swap, FS_SWAP, G_PART_ALIAS_DFBSD_SWAP },
194 	{ &bsd64_uuid_dfbsd_ufs1, FS_BSDFFS, G_PART_ALIAS_DFBSD_UFS },
195 	{ &bsd64_uuid_dfbsd_vinum, FS_VINUM, G_PART_ALIAS_DFBSD_VINUM },
196 	{ &bsd64_uuid_dfbsd_ccd, FS_CCD, G_PART_ALIAS_DFBSD_CCD },
197 	{ &bsd64_uuid_dfbsd_legacy, FS_OTHER, G_PART_ALIAS_DFBSD_LEGACY },
198 	{ &bsd64_uuid_dfbsd_hammer, FS_HAMMER, G_PART_ALIAS_DFBSD_HAMMER },
199 	{ &bsd64_uuid_dfbsd_hammer2, FS_HAMMER2, G_PART_ALIAS_DFBSD_HAMMER2 },
200 	{ NULL, 0, 0}
201 };
202 static struct bsd64_uuid_alias fbsd_alias_match[] = {
203 	{ &bsd64_uuid_freebsd_boot, FS_OTHER, G_PART_ALIAS_FREEBSD_BOOT },
204 	{ &bsd64_uuid_freebsd_swap, FS_OTHER, G_PART_ALIAS_FREEBSD_SWAP },
205 	{ &bsd64_uuid_freebsd_ufs, FS_OTHER, G_PART_ALIAS_FREEBSD_UFS },
206 	{ &bsd64_uuid_freebsd_zfs, FS_OTHER, G_PART_ALIAS_FREEBSD_ZFS },
207 	{ &bsd64_uuid_freebsd_vinum, FS_OTHER, G_PART_ALIAS_FREEBSD_VINUM },
208 	{ &bsd64_uuid_freebsd_nandfs, FS_OTHER, G_PART_ALIAS_FREEBSD_NANDFS },
209 	{ NULL, 0, 0}
210 };
211 
212 static int
213 bsd64_parse_type(const char *type, struct g_part_bsd64_entry *entry)
214 {
215 	struct uuid tmp;
216 	const struct bsd64_uuid_alias *uap;
217 	const char *alias;
218 	char *p;
219 	long lt;
220 	int error;
221 
222 	if (type[0] == '!') {
223 		if (type[1] == '\0')
224 			return (EINVAL);
225 		lt = strtol(type + 1, &p, 0);
226 		/* The type specified as number */
227 		if (*p == '\0') {
228 			if (lt <= 0 || lt > 255)
229 				return (EINVAL);
230 			entry->fstype = lt;
231 			entry->type_uuid = bsd64_uuid_unused;
232 			return (0);
233 		}
234 		/* The type specified as uuid */
235 		error = parse_uuid(type + 1, &tmp);
236 		if (error != 0)
237 			return (error);
238 		if (EQUUID(&tmp, &bsd64_uuid_unused))
239 			return (EINVAL);
240 		for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++) {
241 			if (EQUUID(&tmp, uap->uuid)) {
242 				/* Prefer fstype for known uuids */
243 				entry->type_uuid = bsd64_uuid_unused;
244 				entry->fstype = uap->fstype;
245 				return (0);
246 			}
247 		}
248 		entry->type_uuid = tmp;
249 		entry->fstype = FS_OTHER;
250 		return (0);
251 	}
252 	/* The type specified as symbolic alias name */
253 	for (uap = &fbsd_alias_match[0]; uap->uuid != NULL; uap++) {
254 		alias = g_part_alias_name(uap->alias);
255 		if (!strcasecmp(type, alias)) {
256 			entry->type_uuid = *uap->uuid;
257 			entry->fstype = uap->fstype;
258 			return (0);
259 		}
260 	}
261 	for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++) {
262 		alias = g_part_alias_name(uap->alias);
263 		if (!strcasecmp(type, alias)) {
264 			entry->type_uuid = bsd64_uuid_unused;
265 			entry->fstype = uap->fstype;
266 			return (0);
267 		}
268 	}
269 	return (EINVAL);
270 }
271 
272 static int
273 g_part_bsd64_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
274     struct g_part_parms *gpp)
275 {
276 	struct g_part_bsd64_entry *entry;
277 
278 	if (gpp->gpp_parms & G_PART_PARM_LABEL)
279 		return (EINVAL);
280 
281 	entry = (struct g_part_bsd64_entry *)baseentry;
282 	if (bsd64_parse_type(gpp->gpp_type, entry) != 0)
283 		return (EINVAL);
284 	kern_uuidgen(&entry->stor_uuid, 1);
285 	return (0);
286 }
287 
288 static int
289 g_part_bsd64_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
290 {
291 
292 	return (EOPNOTSUPP);
293 }
294 
295 #define	PALIGN_SIZE	(1024 * 1024)
296 #define	PALIGN_MASK	(PALIGN_SIZE - 1)
297 #define	BLKSIZE		(4 * 1024)
298 #define	BOOTSIZE	(32 * 1024)
299 #define	DALIGN_SIZE	(32 * 1024)
300 static int
301 g_part_bsd64_create(struct g_part_table *basetable, struct g_part_parms *gpp)
302 {
303 	struct g_part_bsd64_table *table;
304 	struct g_part_entry *baseentry;
305 	struct g_provider *pp;
306 	uint64_t blkmask, pbase;
307 	uint32_t blksize, ressize;
308 
309 	pp = gpp->gpp_provider;
310 	if (pp->mediasize < 2* PALIGN_SIZE)
311 		return (ENOSPC);
312 
313 	/*
314 	 * Use at least 4KB block size. Blksize is stored in the d_align.
315 	 * XXX: Actually it is used just for calculate d_bbase and used
316 	 * for better alignment in bsdlabel64(8).
317 	 */
318 	blksize = pp->sectorsize < BLKSIZE ? BLKSIZE: pp->sectorsize;
319 	blkmask = blksize - 1;
320 	/* Reserve enough space for RESPARTITIONS64 partitions. */
321 	ressize = offsetof(struct disklabel64, d_partitions[RESPARTITIONS64]);
322 	ressize = (ressize + blkmask) & ~blkmask;
323 	/*
324 	 * Reserve enough space for bootcode and align first allocatable
325 	 * offset to PALIGN_SIZE.
326 	 * XXX: Currently DragonFlyBSD has 32KB bootcode, but the size could
327 	 * be bigger, because it is possible change it (it is equal pbase-bbase)
328 	 * in the bsdlabel64(8).
329 	 */
330 	pbase = ressize + ((BOOTSIZE + blkmask) & ~blkmask);
331 	pbase = (pbase + PALIGN_MASK) & ~PALIGN_MASK;
332 	/*
333 	 * Take physical offset into account and make first allocatable
334 	 * offset 32KB aligned to the start of the physical disk.
335 	 * XXX: Actually there are no such restrictions, this is how
336 	 * DragonFlyBSD behaves.
337 	 */
338 	pbase += DALIGN_SIZE - pp->stripeoffset % DALIGN_SIZE;
339 
340 	table = (struct g_part_bsd64_table *)basetable;
341 	table->d_align = blksize;
342 	table->d_bbase = ressize / pp->sectorsize;
343 	table->d_abase = ((pp->mediasize - ressize) &
344 	    ~blkmask) / pp->sectorsize;
345 	kern_uuidgen(&table->d_stor_uuid, 1);
346 	basetable->gpt_first = pbase / pp->sectorsize;
347 	basetable->gpt_last = table->d_abase - 1; /* XXX */
348 	/*
349 	 * Create 'c' partition and make it internal, so user will not be
350 	 * able use it.
351 	 */
352 	baseentry = g_part_new_entry(basetable, RAW_PART + 1, 0, 0);
353 	baseentry->gpe_internal = 1;
354 	return (0);
355 }
356 
357 static int
358 g_part_bsd64_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
359 {
360 	struct g_provider *pp;
361 
362 	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
363 	if (pp->sectorsize > offsetof(struct disklabel64, d_magic))
364 		basetable->gpt_smhead |= 1;
365 	else
366 		basetable->gpt_smhead |= 3;
367 	return (0);
368 }
369 
370 static void
371 g_part_bsd64_dumpconf(struct g_part_table *basetable,
372     struct g_part_entry *baseentry, struct sbuf *sb, const char *indent)
373 {
374 	struct g_part_bsd64_table *table;
375 	struct g_part_bsd64_entry *entry;
376 	char buf[sizeof(table->d_packname)];
377 
378 	entry = (struct g_part_bsd64_entry *)baseentry;
379 	if (indent == NULL) {
380 		/* conftxt: libdisk compatibility */
381 		sbuf_printf(sb, " xs BSD64 xt %u", entry->fstype);
382 	} else if (entry != NULL) {
383 		/* confxml: partition entry information */
384 		sbuf_printf(sb, "%s<rawtype>%u</rawtype>\n", indent,
385 		    entry->fstype);
386 		if (!EQUUID(&bsd64_uuid_unused, &entry->type_uuid)) {
387 			sbuf_printf(sb, "%s<type_uuid>", indent);
388 			sbuf_printf_uuid(sb, &entry->type_uuid);
389 			sbuf_cat(sb, "</type_uuid>\n");
390 		}
391 		sbuf_printf(sb, "%s<stor_uuid>", indent);
392 		sbuf_printf_uuid(sb, &entry->stor_uuid);
393 		sbuf_cat(sb, "</stor_uuid>\n");
394 	} else {
395 		/* confxml: scheme information */
396 		table = (struct g_part_bsd64_table *)basetable;
397 		sbuf_printf(sb, "%s<bootbase>%ju</bootbase>\n", indent,
398 		    (uintmax_t)table->d_bbase);
399 		if (table->d_abase)
400 			sbuf_printf(sb, "%s<backupbase>%ju</backupbase>\n",
401 			    indent, (uintmax_t)table->d_abase);
402 		sbuf_printf(sb, "%s<stor_uuid>", indent);
403 		sbuf_printf_uuid(sb, &table->d_stor_uuid);
404 		sbuf_cat(sb, "</stor_uuid>\n");
405 		sbuf_printf(sb, "%s<label>", indent);
406 		strncpy(buf, table->d_packname, sizeof(buf) - 1);
407 		buf[sizeof(buf) - 1] = '\0';
408 		g_conf_cat_escaped(sb, buf);
409 		sbuf_cat(sb, "</label>\n");
410 	}
411 }
412 
413 static int
414 g_part_bsd64_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
415 {
416 	struct g_part_bsd64_entry *entry;
417 
418 	/* Allow dumping to a swap partition. */
419 	entry = (struct g_part_bsd64_entry *)baseentry;
420 	if (entry->fstype == FS_SWAP ||
421 	    EQUUID(&entry->type_uuid, &bsd64_uuid_dfbsd_swap) ||
422 	    EQUUID(&entry->type_uuid, &bsd64_uuid_freebsd_swap))
423 		return (1);
424 	return (0);
425 }
426 
427 static int
428 g_part_bsd64_modify(struct g_part_table *basetable,
429     struct g_part_entry *baseentry, struct g_part_parms *gpp)
430 {
431 	struct g_part_bsd64_entry *entry;
432 
433 	if (gpp->gpp_parms & G_PART_PARM_LABEL)
434 		return (EINVAL);
435 
436 	entry = (struct g_part_bsd64_entry *)baseentry;
437 	if (gpp->gpp_parms & G_PART_PARM_TYPE)
438 		return (bsd64_parse_type(gpp->gpp_type, entry));
439 	return (0);
440 }
441 
442 static int
443 g_part_bsd64_resize(struct g_part_table *basetable,
444     struct g_part_entry *baseentry, struct g_part_parms *gpp)
445 {
446 	struct g_part_bsd64_table *table;
447 	struct g_provider *pp;
448 
449 	if (baseentry == NULL) {
450 		pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
451 		table = (struct g_part_bsd64_table *)basetable;
452 		table->d_abase =
453 		    rounddown2(pp->mediasize - table->d_bbase * pp->sectorsize,
454 		        table->d_align) / pp->sectorsize;
455 		basetable->gpt_last = table->d_abase - 1;
456 		return (0);
457 	}
458 	baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
459 	return (0);
460 }
461 
462 static const char *
463 g_part_bsd64_name(struct g_part_table *table, struct g_part_entry *baseentry,
464     char *buf, size_t bufsz)
465 {
466 
467 	snprintf(buf, bufsz, "%c", 'a' + baseentry->gpe_index - 1);
468 	return (buf);
469 }
470 
471 static int
472 g_part_bsd64_probe(struct g_part_table *table, struct g_consumer *cp)
473 {
474 	struct g_provider *pp;
475 	uint32_t v;
476 	int error;
477 	u_char *buf;
478 
479 	pp = cp->provider;
480 	if (pp->mediasize < 2 * PALIGN_SIZE)
481 		return (ENOSPC);
482 	v = rounddown2(pp->sectorsize + offsetof(struct disklabel64, d_magic),
483 		       pp->sectorsize);
484 	buf = g_read_data(cp, 0, v, &error);
485 	if (buf == NULL)
486 		return (error);
487 	v = le32dec(buf + offsetof(struct disklabel64, d_magic));
488 	g_free(buf);
489 	return (v == DISKMAGIC64 ? G_PART_PROBE_PRI_HIGH: ENXIO);
490 }
491 
492 static int
493 g_part_bsd64_read(struct g_part_table *basetable, struct g_consumer *cp)
494 {
495 	struct g_part_bsd64_table *table;
496 	struct g_part_bsd64_entry *entry;
497 	struct g_part_entry *baseentry;
498 	struct g_provider *pp;
499 	struct disklabel64 *dlp;
500 	uint64_t v64, sz;
501 	uint32_t v32;
502 	int error, index;
503 	u_char *buf;
504 
505 	pp = cp->provider;
506 	table = (struct g_part_bsd64_table *)basetable;
507 	v32 = roundup2(sizeof(struct disklabel64), pp->sectorsize);
508 	buf = g_read_data(cp, 0, v32, &error);
509 	if (buf == NULL)
510 		return (error);
511 
512 	dlp = (struct disklabel64 *)buf;
513 	basetable->gpt_entries = le32toh(dlp->d_npartitions);
514 	if (basetable->gpt_entries > MAXPARTITIONS64 ||
515 	    basetable->gpt_entries < 1)
516 		goto invalid_label;
517 	v32 = le32toh(dlp->d_crc);
518 	dlp->d_crc = 0;
519 	if (crc32(&dlp->d_magic, offsetof(struct disklabel64,
520 	    d_partitions[basetable->gpt_entries]) -
521 	    offsetof(struct disklabel64, d_magic)) != v32)
522 		goto invalid_label;
523 	table->d_align = le32toh(dlp->d_align);
524 	if (table->d_align == 0 || (table->d_align & (pp->sectorsize - 1)))
525 		goto invalid_label;
526 	if (le64toh(dlp->d_total_size) > pp->mediasize)
527 		goto invalid_label;
528 	v64 = le64toh(dlp->d_pbase);
529 	if (v64 % pp->sectorsize)
530 		goto invalid_label;
531 	basetable->gpt_first = v64 / pp->sectorsize;
532 	v64 = le64toh(dlp->d_pstop);
533 	if (v64 % pp->sectorsize)
534 		goto invalid_label;
535 	basetable->gpt_last = v64 / pp->sectorsize;
536 	basetable->gpt_isleaf = 1;
537 	v64 = le64toh(dlp->d_bbase);
538 	if (v64 % pp->sectorsize)
539 		goto invalid_label;
540 	table->d_bbase = v64 / pp->sectorsize;
541 	v64 = le64toh(dlp->d_abase);
542 	if (v64 % pp->sectorsize)
543 		goto invalid_label;
544 	table->d_abase = v64 / pp->sectorsize;
545 	le_uuid_dec(&dlp->d_stor_uuid, &table->d_stor_uuid);
546 	for (index = basetable->gpt_entries - 1; index >= 0; index--) {
547 		if (index == RAW_PART) {
548 			/* Skip 'c' partition. */
549 			baseentry = g_part_new_entry(basetable,
550 			    index + 1, 0, 0);
551 			baseentry->gpe_internal = 1;
552 			continue;
553 		}
554 		v64 = le64toh(dlp->d_partitions[index].p_boffset);
555 		sz = le64toh(dlp->d_partitions[index].p_bsize);
556 		if (sz == 0 && v64 == 0)
557 			continue;
558 		if (sz == 0 || (v64 % pp->sectorsize) || (sz % pp->sectorsize))
559 			goto invalid_label;
560 		baseentry = g_part_new_entry(basetable, index + 1,
561 		    v64 / pp->sectorsize, (v64 + sz) / pp->sectorsize - 1);
562 		entry = (struct g_part_bsd64_entry *)baseentry;
563 		le_uuid_dec(&dlp->d_partitions[index].p_type_uuid,
564 		    &entry->type_uuid);
565 		le_uuid_dec(&dlp->d_partitions[index].p_stor_uuid,
566 		    &entry->stor_uuid);
567 		entry->fstype = dlp->d_partitions[index].p_fstype;
568 	}
569 	bcopy(dlp->d_reserved0, table->d_reserved0,
570 	    sizeof(table->d_reserved0));
571 	bcopy(dlp->d_packname, table->d_packname, sizeof(table->d_packname));
572 	bcopy(dlp->d_reserved, table->d_reserved, sizeof(table->d_reserved));
573 	g_free(buf);
574 	return (0);
575 
576 invalid_label:
577 	g_free(buf);
578 	return (EINVAL);
579 }
580 
581 static const char *
582 g_part_bsd64_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
583     char *buf, size_t bufsz)
584 {
585 	struct g_part_bsd64_entry *entry;
586 	struct bsd64_uuid_alias *uap;
587 
588 	entry = (struct g_part_bsd64_entry *)baseentry;
589 	if (entry->fstype != FS_OTHER) {
590 		for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++)
591 			if (uap->fstype == entry->fstype)
592 				return (g_part_alias_name(uap->alias));
593 	} else {
594 		for (uap = &fbsd_alias_match[0]; uap->uuid != NULL; uap++)
595 			if (EQUUID(uap->uuid, &entry->type_uuid))
596 				return (g_part_alias_name(uap->alias));
597 		for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++)
598 			if (EQUUID(uap->uuid, &entry->type_uuid))
599 				return (g_part_alias_name(uap->alias));
600 	}
601 	if (EQUUID(&bsd64_uuid_unused, &entry->type_uuid))
602 		snprintf(buf, bufsz, "!%d", entry->fstype);
603 	else {
604 		buf[0] = '!';
605 		snprintf_uuid(buf + 1, bufsz - 1, &entry->type_uuid);
606 	}
607 	return (buf);
608 }
609 
610 static int
611 g_part_bsd64_write(struct g_part_table *basetable, struct g_consumer *cp)
612 {
613 	struct g_provider *pp;
614 	struct g_part_entry *baseentry;
615 	struct g_part_bsd64_entry *entry;
616 	struct g_part_bsd64_table *table;
617 	struct disklabel64 *dlp;
618 	uint32_t v, sz;
619 	int error, index;
620 
621 	pp = cp->provider;
622 	table = (struct g_part_bsd64_table *)basetable;
623 	sz = roundup2(sizeof(struct disklabel64), pp->sectorsize);
624 	dlp = g_malloc(sz, M_WAITOK | M_ZERO);
625 
626 	memcpy(dlp->d_reserved0, table->d_reserved0,
627 	    sizeof(table->d_reserved0));
628 	memcpy(dlp->d_packname, table->d_packname, sizeof(table->d_packname));
629 	memcpy(dlp->d_reserved, table->d_reserved, sizeof(table->d_reserved));
630 	le32enc(&dlp->d_magic, DISKMAGIC64);
631 	le32enc(&dlp->d_align, table->d_align);
632 	le32enc(&dlp->d_npartitions, basetable->gpt_entries);
633 	le_uuid_enc(&dlp->d_stor_uuid, &table->d_stor_uuid);
634 	le64enc(&dlp->d_total_size, pp->mediasize);
635 	le64enc(&dlp->d_bbase, table->d_bbase * pp->sectorsize);
636 	le64enc(&dlp->d_pbase, basetable->gpt_first * pp->sectorsize);
637 	le64enc(&dlp->d_pstop, basetable->gpt_last * pp->sectorsize);
638 	le64enc(&dlp->d_abase, table->d_abase * pp->sectorsize);
639 
640 	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
641 		if (baseentry->gpe_deleted)
642 			continue;
643 		index = baseentry->gpe_index - 1;
644 		entry = (struct g_part_bsd64_entry *)baseentry;
645 		if (index == RAW_PART)
646 			continue;
647 		le64enc(&dlp->d_partitions[index].p_boffset,
648 		    baseentry->gpe_start * pp->sectorsize);
649 		le64enc(&dlp->d_partitions[index].p_bsize, pp->sectorsize *
650 		    (baseentry->gpe_end - baseentry->gpe_start + 1));
651 		dlp->d_partitions[index].p_fstype = entry->fstype;
652 		le_uuid_enc(&dlp->d_partitions[index].p_type_uuid,
653 		    &entry->type_uuid);
654 		le_uuid_enc(&dlp->d_partitions[index].p_stor_uuid,
655 		    &entry->stor_uuid);
656 	}
657 	/* Calculate checksum. */
658 	v = offsetof(struct disklabel64,
659 	    d_partitions[basetable->gpt_entries]) -
660 	    offsetof(struct disklabel64, d_magic);
661 	le32enc(&dlp->d_crc, crc32(&dlp->d_magic, v));
662 	error = g_write_data(cp, 0, dlp, sz);
663 	g_free(dlp);
664 	return (error);
665 }
666