1 /*- 2 * Copyright (c) 2003 Poul-Henning Kamp. 3 * Copyright (c) 1995 Jason R. Thorpe. 4 * Copyright (c) 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * All rights reserved. 7 * Copyright (c) 1988 University of Utah. 8 * 9 * This code is derived from software contributed to Berkeley by 10 * the Systems Programming Group of the University of Utah Computer 11 * Science Department. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed for the NetBSD Project 24 * by Jason R. Thorpe. 25 * 4. The names of the authors may not be used to endorse or promote products 26 * derived from this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 29 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 31 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 35 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 36 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * Dynamic configuration and disklabel support by: 41 * Jason R. Thorpe <thorpej@nas.nasa.gov> 42 * Numerical Aerodynamic Simulation Facility 43 * Mail Stop 258-6 44 * NASA Ames Research Center 45 * Moffett Field, CA 94035 46 * 47 * from: Utah $Hdr: cd.c 1.6 90/11/28$ 48 * @(#)cd.c 8.2 (Berkeley) 11/16/93 49 * $NetBSD: ccd.c,v 1.22 1995/12/08 19:13:26 thorpej Exp $ 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include <sys/param.h> 56 #include <sys/systm.h> 57 #include <sys/kernel.h> 58 #include <sys/module.h> 59 #include <sys/bio.h> 60 #include <sys/malloc.h> 61 #include <geom/geom.h> 62 63 /* 64 * Number of blocks to untouched in front of a component partition. 65 * This is to avoid violating its disklabel area when it starts at the 66 * beginning of the slice. 67 */ 68 #if !defined(CCD_OFFSET) 69 #define CCD_OFFSET 16 70 #endif 71 72 /* sc_flags */ 73 #define CCDF_UNIFORM 0x02 /* use LCCD of sizes for uniform interleave */ 74 #define CCDF_MIRROR 0x04 /* use mirroring */ 75 #define CCDF_NO_OFFSET 0x08 /* do not leave space in front */ 76 #define CCDF_LINUX 0x10 /* use Linux compatibility mode */ 77 78 /* Mask of user-settable ccd flags. */ 79 #define CCDF_USERMASK (CCDF_UNIFORM|CCDF_MIRROR) 80 81 /* 82 * Interleave description table. 83 * Computed at boot time to speed irregular-interleave lookups. 84 * The idea is that we interleave in "groups". First we interleave 85 * evenly over all component disks up to the size of the smallest 86 * component (the first group), then we interleave evenly over all 87 * remaining disks up to the size of the next-smallest (second group), 88 * and so on. 89 * 90 * Each table entry describes the interleave characteristics of one 91 * of these groups. For example if a concatenated disk consisted of 92 * three components of 5, 3, and 7 DEV_BSIZE blocks interleaved at 93 * DEV_BSIZE (1), the table would have three entries: 94 * 95 * ndisk startblk startoff dev 96 * 3 0 0 0, 1, 2 97 * 2 9 3 0, 2 98 * 1 13 5 2 99 * 0 - - - 100 * 101 * which says that the first nine blocks (0-8) are interleaved over 102 * 3 disks (0, 1, 2) starting at block offset 0 on any component disk, 103 * the next 4 blocks (9-12) are interleaved over 2 disks (0, 2) starting 104 * at component block 3, and the remaining blocks (13-14) are on disk 105 * 2 starting at offset 5. 106 */ 107 struct ccdiinfo { 108 int ii_ndisk; /* # of disks range is interleaved over */ 109 daddr_t ii_startblk; /* starting scaled block # for range */ 110 daddr_t ii_startoff; /* starting component offset (block #) */ 111 int *ii_index; /* ordered list of components in range */ 112 }; 113 114 /* 115 * Component info table. 116 * Describes a single component of a concatenated disk. 117 */ 118 struct ccdcinfo { 119 daddr_t ci_size; /* size */ 120 struct g_provider *ci_provider; /* provider */ 121 struct g_consumer *ci_consumer; /* consumer */ 122 }; 123 124 /* 125 * A concatenated disk is described by this structure. 126 */ 127 128 struct ccd_s { 129 LIST_ENTRY(ccd_s) list; 130 131 int sc_unit; /* logical unit number */ 132 int sc_flags; /* flags */ 133 daddr_t sc_size; /* size of ccd */ 134 int sc_ileave; /* interleave */ 135 u_int sc_ndisks; /* number of components */ 136 struct ccdcinfo *sc_cinfo; /* component info */ 137 struct ccdiinfo *sc_itable; /* interleave table */ 138 u_int32_t sc_secsize; /* # bytes per sector */ 139 int sc_pick; /* side of mirror picked */ 140 daddr_t sc_blk[2]; /* mirror localization */ 141 u_int32_t sc_offset; /* actual offset used */ 142 }; 143 144 static g_start_t g_ccd_start; 145 static void ccdiodone(struct bio *bp); 146 static void ccdinterleave(struct ccd_s *); 147 static int ccdinit(struct gctl_req *req, struct ccd_s *); 148 static int ccdbuffer(struct bio **ret, struct ccd_s *, 149 struct bio *, daddr_t, caddr_t, long); 150 151 static void 152 g_ccd_orphan(struct g_consumer *cp) 153 { 154 /* 155 * XXX: We don't do anything here. It is not obvious 156 * XXX: what DTRT would be, so we do what the previous 157 * XXX: code did: ignore it and let the user cope. 158 */ 159 } 160 161 static int 162 g_ccd_access(struct g_provider *pp, int dr, int dw, int de) 163 { 164 struct g_geom *gp; 165 struct g_consumer *cp1, *cp2; 166 int error; 167 168 de += dr; 169 de += dw; 170 171 gp = pp->geom; 172 error = ENXIO; 173 LIST_FOREACH(cp1, &gp->consumer, consumer) { 174 error = g_access(cp1, dr, dw, de); 175 if (error) { 176 LIST_FOREACH(cp2, &gp->consumer, consumer) { 177 if (cp1 == cp2) 178 break; 179 g_access(cp2, -dr, -dw, -de); 180 } 181 break; 182 } 183 } 184 return (error); 185 } 186 187 /* 188 * Free the softc and its substructures. 189 */ 190 static void 191 g_ccd_freesc(struct ccd_s *sc) 192 { 193 struct ccdiinfo *ii; 194 195 g_free(sc->sc_cinfo); 196 if (sc->sc_itable != NULL) { 197 for (ii = sc->sc_itable; ii->ii_ndisk > 0; ii++) 198 if (ii->ii_index != NULL) 199 g_free(ii->ii_index); 200 g_free(sc->sc_itable); 201 } 202 g_free(sc); 203 } 204 205 206 static int 207 ccdinit(struct gctl_req *req, struct ccd_s *cs) 208 { 209 struct ccdcinfo *ci; 210 daddr_t size; 211 int ix; 212 daddr_t minsize; 213 int maxsecsize; 214 off_t mediasize; 215 u_int sectorsize; 216 217 cs->sc_size = 0; 218 219 maxsecsize = 0; 220 minsize = 0; 221 222 if (cs->sc_flags & CCDF_LINUX) { 223 cs->sc_offset = 0; 224 cs->sc_ileave *= 2; 225 if (cs->sc_flags & CCDF_MIRROR && cs->sc_ndisks != 2) 226 gctl_error(req, "Mirror mode for Linux raids is " 227 "only supported with 2 devices"); 228 } else { 229 if (cs->sc_flags & CCDF_NO_OFFSET) 230 cs->sc_offset = 0; 231 else 232 cs->sc_offset = CCD_OFFSET; 233 234 } 235 for (ix = 0; ix < cs->sc_ndisks; ix++) { 236 ci = &cs->sc_cinfo[ix]; 237 238 mediasize = ci->ci_provider->mediasize; 239 sectorsize = ci->ci_provider->sectorsize; 240 if (sectorsize > maxsecsize) 241 maxsecsize = sectorsize; 242 size = mediasize / DEV_BSIZE - cs->sc_offset; 243 244 /* Truncate to interleave boundary */ 245 246 if (cs->sc_ileave > 1) 247 size -= size % cs->sc_ileave; 248 249 if (size == 0) { 250 gctl_error(req, "Component %s has effective size zero", 251 ci->ci_provider->name); 252 return(ENODEV); 253 } 254 255 if (minsize == 0 || size < minsize) 256 minsize = size; 257 ci->ci_size = size; 258 cs->sc_size += size; 259 } 260 261 /* 262 * Don't allow the interleave to be smaller than 263 * the biggest component sector. 264 */ 265 if ((cs->sc_ileave > 0) && 266 (cs->sc_ileave < (maxsecsize / DEV_BSIZE))) { 267 gctl_error(req, "Interleave to small for sector size"); 268 return(EINVAL); 269 } 270 271 /* 272 * If uniform interleave is desired set all sizes to that of 273 * the smallest component. This will guarentee that a single 274 * interleave table is generated. 275 * 276 * Lost space must be taken into account when calculating the 277 * overall size. Half the space is lost when CCDF_MIRROR is 278 * specified. 279 */ 280 if (cs->sc_flags & CCDF_UNIFORM) { 281 for (ix = 0; ix < cs->sc_ndisks; ix++) { 282 ci = &cs->sc_cinfo[ix]; 283 ci->ci_size = minsize; 284 } 285 cs->sc_size = cs->sc_ndisks * minsize; 286 } 287 288 if (cs->sc_flags & CCDF_MIRROR) { 289 /* 290 * Check to see if an even number of components 291 * have been specified. The interleave must also 292 * be non-zero in order for us to be able to 293 * guarentee the topology. 294 */ 295 if (cs->sc_ndisks % 2) { 296 gctl_error(req, 297 "Mirroring requires an even number of disks"); 298 return(EINVAL); 299 } 300 if (cs->sc_ileave == 0) { 301 gctl_error(req, 302 "An interleave must be specified when mirroring"); 303 return(EINVAL); 304 } 305 cs->sc_size = (cs->sc_ndisks/2) * minsize; 306 } 307 308 /* 309 * Construct the interleave table. 310 */ 311 ccdinterleave(cs); 312 313 /* 314 * Create pseudo-geometry based on 1MB cylinders. It's 315 * pretty close. 316 */ 317 cs->sc_secsize = maxsecsize; 318 319 return (0); 320 } 321 322 static void 323 ccdinterleave(struct ccd_s *cs) 324 { 325 struct ccdcinfo *ci, *smallci; 326 struct ccdiinfo *ii; 327 daddr_t bn, lbn; 328 int ix; 329 daddr_t size; 330 331 332 /* 333 * Allocate an interleave table. The worst case occurs when each 334 * of N disks is of a different size, resulting in N interleave 335 * tables. 336 * 337 * Chances are this is too big, but we don't care. 338 */ 339 size = (cs->sc_ndisks + 1) * sizeof(struct ccdiinfo); 340 cs->sc_itable = g_malloc(size, M_WAITOK | M_ZERO); 341 342 /* 343 * Trivial case: no interleave (actually interleave of disk size). 344 * Each table entry represents a single component in its entirety. 345 * 346 * An interleave of 0 may not be used with a mirror setup. 347 */ 348 if (cs->sc_ileave == 0) { 349 bn = 0; 350 ii = cs->sc_itable; 351 352 for (ix = 0; ix < cs->sc_ndisks; ix++) { 353 /* Allocate space for ii_index. */ 354 ii->ii_index = g_malloc(sizeof(int), M_WAITOK); 355 ii->ii_ndisk = 1; 356 ii->ii_startblk = bn; 357 ii->ii_startoff = 0; 358 ii->ii_index[0] = ix; 359 bn += cs->sc_cinfo[ix].ci_size; 360 ii++; 361 } 362 ii->ii_ndisk = 0; 363 return; 364 } 365 366 /* 367 * The following isn't fast or pretty; it doesn't have to be. 368 */ 369 size = 0; 370 bn = lbn = 0; 371 for (ii = cs->sc_itable; ; ii++) { 372 /* 373 * Allocate space for ii_index. We might allocate more then 374 * we use. 375 */ 376 ii->ii_index = g_malloc((sizeof(int) * cs->sc_ndisks), 377 M_WAITOK); 378 379 /* 380 * Locate the smallest of the remaining components 381 */ 382 smallci = NULL; 383 for (ci = cs->sc_cinfo; ci < &cs->sc_cinfo[cs->sc_ndisks]; 384 ci++) { 385 if (ci->ci_size > size && 386 (smallci == NULL || 387 ci->ci_size < smallci->ci_size)) { 388 smallci = ci; 389 } 390 } 391 392 /* 393 * Nobody left, all done 394 */ 395 if (smallci == NULL) { 396 ii->ii_ndisk = 0; 397 g_free(ii->ii_index); 398 ii->ii_index = NULL; 399 break; 400 } 401 402 /* 403 * Record starting logical block using an sc_ileave blocksize. 404 */ 405 ii->ii_startblk = bn / cs->sc_ileave; 406 407 /* 408 * Record starting component block using an sc_ileave 409 * blocksize. This value is relative to the beginning of 410 * a component disk. 411 */ 412 ii->ii_startoff = lbn; 413 414 /* 415 * Determine how many disks take part in this interleave 416 * and record their indices. 417 */ 418 ix = 0; 419 for (ci = cs->sc_cinfo; 420 ci < &cs->sc_cinfo[cs->sc_ndisks]; ci++) { 421 if (ci->ci_size >= smallci->ci_size) { 422 ii->ii_index[ix++] = ci - cs->sc_cinfo; 423 } 424 } 425 ii->ii_ndisk = ix; 426 bn += ix * (smallci->ci_size - size); 427 lbn = smallci->ci_size / cs->sc_ileave; 428 size = smallci->ci_size; 429 } 430 } 431 432 static void 433 g_ccd_start(struct bio *bp) 434 { 435 long bcount, rcount; 436 struct bio *cbp[2]; 437 caddr_t addr; 438 daddr_t bn; 439 int err; 440 struct ccd_s *cs; 441 442 cs = bp->bio_to->geom->softc; 443 444 /* 445 * Block all GETATTR requests, we wouldn't know which of our 446 * subdevices we should ship it off to. 447 * XXX: this may not be the right policy. 448 */ 449 if(bp->bio_cmd == BIO_GETATTR) { 450 g_io_deliver(bp, EINVAL); 451 return; 452 } 453 454 /* 455 * Translate the partition-relative block number to an absolute. 456 */ 457 bn = bp->bio_offset / cs->sc_secsize; 458 459 /* 460 * Allocate component buffers and fire off the requests 461 */ 462 addr = bp->bio_data; 463 for (bcount = bp->bio_length; bcount > 0; bcount -= rcount) { 464 err = ccdbuffer(cbp, cs, bp, bn, addr, bcount); 465 if (err) { 466 bp->bio_completed += bcount; 467 if (bp->bio_error == 0) 468 bp->bio_error = err; 469 if (bp->bio_completed == bp->bio_length) 470 g_io_deliver(bp, bp->bio_error); 471 return; 472 } 473 rcount = cbp[0]->bio_length; 474 475 if (cs->sc_flags & CCDF_MIRROR) { 476 /* 477 * Mirroring. Writes go to both disks, reads are 478 * taken from whichever disk seems most appropriate. 479 * 480 * We attempt to localize reads to the disk whos arm 481 * is nearest the read request. We ignore seeks due 482 * to writes when making this determination and we 483 * also try to avoid hogging. 484 */ 485 if (cbp[0]->bio_cmd != BIO_READ) { 486 g_io_request(cbp[0], cbp[0]->bio_from); 487 g_io_request(cbp[1], cbp[1]->bio_from); 488 } else { 489 int pick = cs->sc_pick; 490 daddr_t range = cs->sc_size / 16; 491 492 if (bn < cs->sc_blk[pick] - range || 493 bn > cs->sc_blk[pick] + range 494 ) { 495 cs->sc_pick = pick = 1 - pick; 496 } 497 cs->sc_blk[pick] = bn + btodb(rcount); 498 g_io_request(cbp[pick], cbp[pick]->bio_from); 499 } 500 } else { 501 /* 502 * Not mirroring 503 */ 504 g_io_request(cbp[0], cbp[0]->bio_from); 505 } 506 bn += btodb(rcount); 507 addr += rcount; 508 } 509 } 510 511 /* 512 * Build a component buffer header. 513 */ 514 static int 515 ccdbuffer(struct bio **cb, struct ccd_s *cs, struct bio *bp, daddr_t bn, caddr_t addr, long bcount) 516 { 517 struct ccdcinfo *ci, *ci2 = NULL; 518 struct bio *cbp; 519 daddr_t cbn, cboff; 520 off_t cbc; 521 522 /* 523 * Determine which component bn falls in. 524 */ 525 cbn = bn; 526 cboff = 0; 527 528 if (cs->sc_ileave == 0) { 529 /* 530 * Serially concatenated and neither a mirror nor a parity 531 * config. This is a special case. 532 */ 533 daddr_t sblk; 534 535 sblk = 0; 536 for (ci = cs->sc_cinfo; cbn >= sblk + ci->ci_size; ci++) 537 sblk += ci->ci_size; 538 cbn -= sblk; 539 } else { 540 struct ccdiinfo *ii; 541 int ccdisk, off; 542 543 /* 544 * Calculate cbn, the logical superblock (sc_ileave chunks), 545 * and cboff, a normal block offset (DEV_BSIZE chunks) relative 546 * to cbn. 547 */ 548 cboff = cbn % cs->sc_ileave; /* DEV_BSIZE gran */ 549 cbn = cbn / cs->sc_ileave; /* DEV_BSIZE * ileave gran */ 550 551 /* 552 * Figure out which interleave table to use. 553 */ 554 for (ii = cs->sc_itable; ii->ii_ndisk; ii++) { 555 if (ii->ii_startblk > cbn) 556 break; 557 } 558 ii--; 559 560 /* 561 * off is the logical superblock relative to the beginning 562 * of this interleave block. 563 */ 564 off = cbn - ii->ii_startblk; 565 566 /* 567 * We must calculate which disk component to use (ccdisk), 568 * and recalculate cbn to be the superblock relative to 569 * the beginning of the component. This is typically done by 570 * adding 'off' and ii->ii_startoff together. However, 'off' 571 * must typically be divided by the number of components in 572 * this interleave array to be properly convert it from a 573 * CCD-relative logical superblock number to a 574 * component-relative superblock number. 575 */ 576 if (ii->ii_ndisk == 1) { 577 /* 578 * When we have just one disk, it can't be a mirror 579 * or a parity config. 580 */ 581 ccdisk = ii->ii_index[0]; 582 cbn = ii->ii_startoff + off; 583 } else { 584 if (cs->sc_flags & CCDF_MIRROR) { 585 /* 586 * We have forced a uniform mapping, resulting 587 * in a single interleave array. We double 588 * up on the first half of the available 589 * components and our mirror is in the second 590 * half. This only works with a single 591 * interleave array because doubling up 592 * doubles the number of sectors, so there 593 * cannot be another interleave array because 594 * the next interleave array's calculations 595 * would be off. 596 */ 597 int ndisk2 = ii->ii_ndisk / 2; 598 ccdisk = ii->ii_index[off % ndisk2]; 599 cbn = ii->ii_startoff + off / ndisk2; 600 ci2 = &cs->sc_cinfo[ccdisk + ndisk2]; 601 } else { 602 ccdisk = ii->ii_index[off % ii->ii_ndisk]; 603 cbn = ii->ii_startoff + off / ii->ii_ndisk; 604 } 605 } 606 607 ci = &cs->sc_cinfo[ccdisk]; 608 609 /* 610 * Convert cbn from a superblock to a normal block so it 611 * can be used to calculate (along with cboff) the normal 612 * block index into this particular disk. 613 */ 614 cbn *= cs->sc_ileave; 615 } 616 617 /* 618 * Fill in the component buf structure. 619 */ 620 cbp = g_clone_bio(bp); 621 if (cbp == NULL) 622 return (ENOMEM); 623 cbp->bio_done = g_std_done; 624 cbp->bio_offset = dbtob(cbn + cboff + cs->sc_offset); 625 cbp->bio_data = addr; 626 if (cs->sc_ileave == 0) 627 cbc = dbtob((off_t)(ci->ci_size - cbn)); 628 else 629 cbc = dbtob((off_t)(cs->sc_ileave - cboff)); 630 cbp->bio_length = (cbc < bcount) ? cbc : bcount; 631 632 cbp->bio_from = ci->ci_consumer; 633 cb[0] = cbp; 634 635 if (cs->sc_flags & CCDF_MIRROR) { 636 cbp = g_clone_bio(bp); 637 if (cbp == NULL) 638 return (ENOMEM); 639 cbp->bio_done = cb[0]->bio_done = ccdiodone; 640 cbp->bio_offset = cb[0]->bio_offset; 641 cbp->bio_data = cb[0]->bio_data; 642 cbp->bio_length = cb[0]->bio_length; 643 cbp->bio_from = ci2->ci_consumer; 644 cbp->bio_caller1 = cb[0]; 645 cb[0]->bio_caller1 = cbp; 646 cb[1] = cbp; 647 } 648 return (0); 649 } 650 651 /* 652 * Called only for mirrored operations. 653 */ 654 static void 655 ccdiodone(struct bio *cbp) 656 { 657 struct bio *mbp, *pbp; 658 659 mbp = cbp->bio_caller1; 660 pbp = cbp->bio_parent; 661 662 if (pbp->bio_cmd == BIO_READ) { 663 if (cbp->bio_error == 0) { 664 /* We will not be needing the partner bio */ 665 if (mbp != NULL) { 666 pbp->bio_inbed++; 667 g_destroy_bio(mbp); 668 } 669 g_std_done(cbp); 670 return; 671 } 672 if (mbp != NULL) { 673 /* Try partner the bio instead */ 674 mbp->bio_caller1 = NULL; 675 pbp->bio_inbed++; 676 g_destroy_bio(cbp); 677 g_io_request(mbp, mbp->bio_from); 678 /* 679 * XXX: If this comes back OK, we should actually 680 * try to write the good data on the failed mirror 681 */ 682 return; 683 } 684 g_std_done(cbp); 685 return; 686 } 687 if (mbp != NULL) { 688 mbp->bio_caller1 = NULL; 689 pbp->bio_inbed++; 690 if (cbp->bio_error != 0 && pbp->bio_error == 0) 691 pbp->bio_error = cbp->bio_error; 692 g_destroy_bio(cbp); 693 return; 694 } 695 g_std_done(cbp); 696 } 697 698 static void 699 g_ccd_create(struct gctl_req *req, struct g_class *mp) 700 { 701 int *unit, *ileave, *nprovider; 702 struct g_geom *gp; 703 struct g_consumer *cp; 704 struct g_provider *pp; 705 struct ccd_s *sc; 706 struct sbuf *sb; 707 char buf[20]; 708 int i, error; 709 710 g_topology_assert(); 711 unit = gctl_get_paraml(req, "unit", sizeof (*unit)); 712 if (unit == NULL) { 713 gctl_error(req, "unit parameter not given"); 714 return; 715 } 716 ileave = gctl_get_paraml(req, "ileave", sizeof (*ileave)); 717 if (ileave == NULL) { 718 gctl_error(req, "ileave parameter not given"); 719 return; 720 } 721 nprovider = gctl_get_paraml(req, "nprovider", sizeof (*nprovider)); 722 if (nprovider == NULL) { 723 gctl_error(req, "nprovider parameter not given"); 724 return; 725 } 726 727 /* Check for duplicate unit */ 728 LIST_FOREACH(gp, &mp->geom, geom) { 729 sc = gp->softc; 730 if (sc != NULL && sc->sc_unit == *unit) { 731 gctl_error(req, "Unit %d already configured", *unit); 732 return; 733 } 734 } 735 736 if (*nprovider <= 0) { 737 gctl_error(req, "Bogus nprovider argument (= %d)", *nprovider); 738 return; 739 } 740 741 /* Check all providers are valid */ 742 for (i = 0; i < *nprovider; i++) { 743 sprintf(buf, "provider%d", i); 744 pp = gctl_get_provider(req, buf); 745 if (pp == NULL) 746 return; 747 } 748 749 gp = g_new_geomf(mp, "ccd%d", *unit); 750 sc = g_malloc(sizeof *sc, M_WAITOK | M_ZERO); 751 gp->softc = sc; 752 sc->sc_ndisks = *nprovider; 753 754 /* Allocate space for the component info. */ 755 sc->sc_cinfo = g_malloc(sc->sc_ndisks * sizeof(struct ccdcinfo), 756 M_WAITOK | M_ZERO); 757 758 /* Create consumers and attach to all providers */ 759 for (i = 0; i < *nprovider; i++) { 760 sprintf(buf, "provider%d", i); 761 pp = gctl_get_provider(req, buf); 762 cp = g_new_consumer(gp); 763 error = g_attach(cp, pp); 764 KASSERT(error == 0, ("attach to %s failed", pp->name)); 765 sc->sc_cinfo[i].ci_consumer = cp; 766 sc->sc_cinfo[i].ci_provider = pp; 767 } 768 769 sc->sc_unit = *unit; 770 sc->sc_ileave = *ileave; 771 772 if (gctl_get_param(req, "no_offset", NULL)) 773 sc->sc_flags |= CCDF_NO_OFFSET; 774 if (gctl_get_param(req, "linux", NULL)) 775 sc->sc_flags |= CCDF_LINUX; 776 777 if (gctl_get_param(req, "uniform", NULL)) 778 sc->sc_flags |= CCDF_UNIFORM; 779 if (gctl_get_param(req, "mirror", NULL)) 780 sc->sc_flags |= CCDF_MIRROR; 781 782 if (sc->sc_ileave == 0 && (sc->sc_flags & CCDF_MIRROR)) { 783 printf("%s: disabling mirror, interleave is 0\n", gp->name); 784 sc->sc_flags &= ~(CCDF_MIRROR); 785 } 786 787 if ((sc->sc_flags & CCDF_MIRROR) && !(sc->sc_flags & CCDF_UNIFORM)) { 788 printf("%s: mirror/parity forces uniform flag\n", gp->name); 789 sc->sc_flags |= CCDF_UNIFORM; 790 } 791 792 error = ccdinit(req, sc); 793 if (error != 0) { 794 g_ccd_freesc(sc); 795 gp->softc = NULL; 796 g_wither_geom(gp, ENXIO); 797 return; 798 } 799 800 pp = g_new_providerf(gp, "%s", gp->name); 801 pp->mediasize = sc->sc_size * (off_t)sc->sc_secsize; 802 pp->sectorsize = sc->sc_secsize; 803 g_error_provider(pp, 0); 804 805 sb = sbuf_new_auto(); 806 sbuf_printf(sb, "ccd%d: %d components ", sc->sc_unit, *nprovider); 807 for (i = 0; i < *nprovider; i++) { 808 sbuf_printf(sb, "%s%s", 809 i == 0 ? "(" : ", ", 810 sc->sc_cinfo[i].ci_provider->name); 811 } 812 sbuf_printf(sb, "), %jd blocks ", (off_t)pp->mediasize / DEV_BSIZE); 813 if (sc->sc_ileave != 0) 814 sbuf_printf(sb, "interleaved at %d blocks\n", 815 sc->sc_ileave); 816 else 817 sbuf_printf(sb, "concatenated\n"); 818 sbuf_finish(sb); 819 gctl_set_param_err(req, "output", sbuf_data(sb), sbuf_len(sb) + 1); 820 sbuf_delete(sb); 821 } 822 823 static int 824 g_ccd_destroy_geom(struct gctl_req *req, struct g_class *mp, struct g_geom *gp) 825 { 826 struct g_provider *pp; 827 struct ccd_s *sc; 828 829 g_topology_assert(); 830 sc = gp->softc; 831 pp = LIST_FIRST(&gp->provider); 832 if (sc == NULL || pp == NULL) 833 return (EBUSY); 834 if (pp->acr != 0 || pp->acw != 0 || pp->ace != 0) { 835 gctl_error(req, "%s is open(r%dw%de%d)", gp->name, 836 pp->acr, pp->acw, pp->ace); 837 return (EBUSY); 838 } 839 g_ccd_freesc(sc); 840 gp->softc = NULL; 841 g_wither_geom(gp, ENXIO); 842 return (0); 843 } 844 845 static void 846 g_ccd_list(struct gctl_req *req, struct g_class *mp) 847 { 848 struct sbuf *sb; 849 struct ccd_s *cs; 850 struct g_geom *gp; 851 int i, unit, *up; 852 853 up = gctl_get_paraml(req, "unit", sizeof (*up)); 854 if (up == NULL) { 855 gctl_error(req, "unit parameter not given"); 856 return; 857 } 858 unit = *up; 859 sb = sbuf_new_auto(); 860 LIST_FOREACH(gp, &mp->geom, geom) { 861 cs = gp->softc; 862 if (cs == NULL || (unit >= 0 && unit != cs->sc_unit)) 863 continue; 864 sbuf_printf(sb, "ccd%d\t\t%d\t%d\t", 865 cs->sc_unit, cs->sc_ileave, cs->sc_flags & CCDF_USERMASK); 866 867 for (i = 0; i < cs->sc_ndisks; ++i) { 868 sbuf_printf(sb, "%s/dev/%s", i == 0 ? "" : " ", 869 cs->sc_cinfo[i].ci_provider->name); 870 } 871 sbuf_printf(sb, "\n"); 872 } 873 sbuf_finish(sb); 874 gctl_set_param_err(req, "output", sbuf_data(sb), sbuf_len(sb) + 1); 875 sbuf_delete(sb); 876 } 877 878 static void 879 g_ccd_config(struct gctl_req *req, struct g_class *mp, char const *verb) 880 { 881 struct g_geom *gp; 882 883 g_topology_assert(); 884 if (!strcmp(verb, "create geom")) { 885 g_ccd_create(req, mp); 886 } else if (!strcmp(verb, "destroy geom")) { 887 gp = gctl_get_geom(req, mp, "geom"); 888 if (gp != NULL) 889 g_ccd_destroy_geom(req, mp, gp); 890 } else if (!strcmp(verb, "list")) { 891 g_ccd_list(req, mp); 892 } else { 893 gctl_error(req, "unknown verb"); 894 } 895 } 896 897 static struct g_class g_ccd_class = { 898 .name = "CCD", 899 .version = G_VERSION, 900 .ctlreq = g_ccd_config, 901 .destroy_geom = g_ccd_destroy_geom, 902 .start = g_ccd_start, 903 .orphan = g_ccd_orphan, 904 .access = g_ccd_access, 905 }; 906 907 DECLARE_GEOM_CLASS(g_ccd_class, g_ccd); 908