1 /*- 2 * Copyright (c) 2003 Poul-Henning Kamp. 3 * Copyright (c) 1995 Jason R. Thorpe. 4 * Copyright (c) 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * All rights reserved. 7 * Copyright (c) 1988 University of Utah. 8 * 9 * This code is derived from software contributed to Berkeley by 10 * the Systems Programming Group of the University of Utah Computer 11 * Science Department. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed for the NetBSD Project 24 * by Jason R. Thorpe. 25 * 4. The names of the authors may not be used to endorse or promote products 26 * derived from this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 29 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 31 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 35 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 36 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * Dynamic configuration and disklabel support by: 41 * Jason R. Thorpe <thorpej@nas.nasa.gov> 42 * Numerical Aerodynamic Simulation Facility 43 * Mail Stop 258-6 44 * NASA Ames Research Center 45 * Moffett Field, CA 94035 46 * 47 * from: Utah $Hdr: cd.c 1.6 90/11/28$ 48 * @(#)cd.c 8.2 (Berkeley) 11/16/93 49 * $NetBSD: ccd.c,v 1.22 1995/12/08 19:13:26 thorpej Exp $ 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include <sys/param.h> 56 #include <sys/systm.h> 57 #include <sys/kernel.h> 58 #include <sys/module.h> 59 #include <sys/bio.h> 60 #include <sys/malloc.h> 61 #include <geom/geom.h> 62 63 /* 64 * Number of blocks to untouched in front of a component partition. 65 * This is to avoid violating its disklabel area when it starts at the 66 * beginning of the slice. 67 */ 68 #if !defined(CCD_OFFSET) 69 #define CCD_OFFSET 16 70 #endif 71 72 /* sc_flags */ 73 #define CCDF_UNIFORM 0x02 /* use LCCD of sizes for uniform interleave */ 74 #define CCDF_MIRROR 0x04 /* use mirroring */ 75 76 /* Mask of user-settable ccd flags. */ 77 #define CCDF_USERMASK (CCDF_UNIFORM|CCDF_MIRROR) 78 79 /* 80 * Interleave description table. 81 * Computed at boot time to speed irregular-interleave lookups. 82 * The idea is that we interleave in "groups". First we interleave 83 * evenly over all component disks up to the size of the smallest 84 * component (the first group), then we interleave evenly over all 85 * remaining disks up to the size of the next-smallest (second group), 86 * and so on. 87 * 88 * Each table entry describes the interleave characteristics of one 89 * of these groups. For example if a concatenated disk consisted of 90 * three components of 5, 3, and 7 DEV_BSIZE blocks interleaved at 91 * DEV_BSIZE (1), the table would have three entries: 92 * 93 * ndisk startblk startoff dev 94 * 3 0 0 0, 1, 2 95 * 2 9 3 0, 2 96 * 1 13 5 2 97 * 0 - - - 98 * 99 * which says that the first nine blocks (0-8) are interleaved over 100 * 3 disks (0, 1, 2) starting at block offset 0 on any component disk, 101 * the next 4 blocks (9-12) are interleaved over 2 disks (0, 2) starting 102 * at component block 3, and the remaining blocks (13-14) are on disk 103 * 2 starting at offset 5. 104 */ 105 struct ccdiinfo { 106 int ii_ndisk; /* # of disks range is interleaved over */ 107 daddr_t ii_startblk; /* starting scaled block # for range */ 108 daddr_t ii_startoff; /* starting component offset (block #) */ 109 int *ii_index; /* ordered list of components in range */ 110 }; 111 112 /* 113 * Component info table. 114 * Describes a single component of a concatenated disk. 115 */ 116 struct ccdcinfo { 117 daddr_t ci_size; /* size */ 118 struct g_provider *ci_provider; /* provider */ 119 struct g_consumer *ci_consumer; /* consumer */ 120 }; 121 122 /* 123 * A concatenated disk is described by this structure. 124 */ 125 126 struct ccd_s { 127 LIST_ENTRY(ccd_s) list; 128 129 int sc_unit; /* logical unit number */ 130 int sc_flags; /* flags */ 131 daddr_t sc_size; /* size of ccd */ 132 int sc_ileave; /* interleave */ 133 u_int sc_ndisks; /* number of components */ 134 struct ccdcinfo *sc_cinfo; /* component info */ 135 struct ccdiinfo *sc_itable; /* interleave table */ 136 u_int32_t sc_secsize; /* # bytes per sector */ 137 int sc_pick; /* side of mirror picked */ 138 daddr_t sc_blk[2]; /* mirror localization */ 139 }; 140 141 static g_start_t g_ccd_start; 142 static void ccdiodone(struct bio *bp); 143 static void ccdinterleave(struct ccd_s *); 144 static int ccdinit(struct gctl_req *req, struct ccd_s *); 145 static int ccdbuffer(struct bio **ret, struct ccd_s *, 146 struct bio *, daddr_t, caddr_t, long); 147 148 static void 149 g_ccd_orphan(struct g_consumer *cp) 150 { 151 /* 152 * XXX: We don't do anything here. It is not obvious 153 * XXX: what DTRT would be, so we do what the previous 154 * XXX: code did: ignore it and let the user cope. 155 */ 156 } 157 158 static int 159 g_ccd_access(struct g_provider *pp, int dr, int dw, int de) 160 { 161 struct g_geom *gp; 162 struct g_consumer *cp1, *cp2; 163 int error; 164 165 de += dr; 166 de += dw; 167 168 gp = pp->geom; 169 error = ENXIO; 170 LIST_FOREACH(cp1, &gp->consumer, consumer) { 171 error = g_access(cp1, dr, dw, de); 172 if (error) { 173 LIST_FOREACH(cp2, &gp->consumer, consumer) { 174 if (cp1 == cp2) 175 break; 176 g_access(cp2, -dr, -dw, -de); 177 } 178 break; 179 } 180 } 181 return (error); 182 } 183 184 /* 185 * Free the softc and its substructures. 186 */ 187 static void 188 g_ccd_freesc(struct ccd_s *sc) 189 { 190 struct ccdiinfo *ii; 191 192 g_free(sc->sc_cinfo); 193 if (sc->sc_itable != NULL) { 194 for (ii = sc->sc_itable; ii->ii_ndisk > 0; ii++) 195 if (ii->ii_index != NULL) 196 g_free(ii->ii_index); 197 g_free(sc->sc_itable); 198 } 199 g_free(sc); 200 } 201 202 203 static int 204 ccdinit(struct gctl_req *req, struct ccd_s *cs) 205 { 206 struct ccdcinfo *ci; 207 daddr_t size; 208 int ix; 209 daddr_t minsize; 210 int maxsecsize; 211 off_t mediasize; 212 u_int sectorsize; 213 214 cs->sc_size = 0; 215 216 maxsecsize = 0; 217 minsize = 0; 218 for (ix = 0; ix < cs->sc_ndisks; ix++) { 219 ci = &cs->sc_cinfo[ix]; 220 221 mediasize = ci->ci_provider->mediasize; 222 sectorsize = ci->ci_provider->sectorsize; 223 if (sectorsize > maxsecsize) 224 maxsecsize = sectorsize; 225 size = mediasize / DEV_BSIZE - CCD_OFFSET; 226 227 /* Truncate to interleave boundary */ 228 229 if (cs->sc_ileave > 1) 230 size -= size % cs->sc_ileave; 231 232 if (size == 0) { 233 gctl_error(req, "Component %s has effective size zero", 234 ci->ci_provider->name); 235 return(ENODEV); 236 } 237 238 if (minsize == 0 || size < minsize) 239 minsize = size; 240 ci->ci_size = size; 241 cs->sc_size += size; 242 } 243 244 /* 245 * Don't allow the interleave to be smaller than 246 * the biggest component sector. 247 */ 248 if ((cs->sc_ileave > 0) && 249 (cs->sc_ileave < (maxsecsize / DEV_BSIZE))) { 250 gctl_error(req, "Interleave to small for sector size"); 251 return(EINVAL); 252 } 253 254 /* 255 * If uniform interleave is desired set all sizes to that of 256 * the smallest component. This will guarentee that a single 257 * interleave table is generated. 258 * 259 * Lost space must be taken into account when calculating the 260 * overall size. Half the space is lost when CCDF_MIRROR is 261 * specified. 262 */ 263 if (cs->sc_flags & CCDF_UNIFORM) { 264 for (ix = 0; ix < cs->sc_ndisks; ix++) { 265 ci = &cs->sc_cinfo[ix]; 266 ci->ci_size = minsize; 267 } 268 cs->sc_size = cs->sc_ndisks * minsize; 269 } 270 271 if (cs->sc_flags & CCDF_MIRROR) { 272 /* 273 * Check to see if an even number of components 274 * have been specified. The interleave must also 275 * be non-zero in order for us to be able to 276 * guarentee the topology. 277 */ 278 if (cs->sc_ndisks % 2) { 279 gctl_error(req, 280 "Mirroring requires an even number of disks"); 281 return(EINVAL); 282 } 283 if (cs->sc_ileave == 0) { 284 gctl_error(req, 285 "An interleave must be specified when mirroring"); 286 return(EINVAL); 287 } 288 cs->sc_size = (cs->sc_ndisks/2) * minsize; 289 } 290 291 /* 292 * Construct the interleave table. 293 */ 294 ccdinterleave(cs); 295 296 /* 297 * Create pseudo-geometry based on 1MB cylinders. It's 298 * pretty close. 299 */ 300 cs->sc_secsize = maxsecsize; 301 302 return (0); 303 } 304 305 static void 306 ccdinterleave(struct ccd_s *cs) 307 { 308 struct ccdcinfo *ci, *smallci; 309 struct ccdiinfo *ii; 310 daddr_t bn, lbn; 311 int ix; 312 daddr_t size; 313 314 315 /* 316 * Allocate an interleave table. The worst case occurs when each 317 * of N disks is of a different size, resulting in N interleave 318 * tables. 319 * 320 * Chances are this is too big, but we don't care. 321 */ 322 size = (cs->sc_ndisks + 1) * sizeof(struct ccdiinfo); 323 cs->sc_itable = g_malloc(size, M_WAITOK | M_ZERO); 324 325 /* 326 * Trivial case: no interleave (actually interleave of disk size). 327 * Each table entry represents a single component in its entirety. 328 * 329 * An interleave of 0 may not be used with a mirror setup. 330 */ 331 if (cs->sc_ileave == 0) { 332 bn = 0; 333 ii = cs->sc_itable; 334 335 for (ix = 0; ix < cs->sc_ndisks; ix++) { 336 /* Allocate space for ii_index. */ 337 ii->ii_index = g_malloc(sizeof(int), M_WAITOK); 338 ii->ii_ndisk = 1; 339 ii->ii_startblk = bn; 340 ii->ii_startoff = 0; 341 ii->ii_index[0] = ix; 342 bn += cs->sc_cinfo[ix].ci_size; 343 ii++; 344 } 345 ii->ii_ndisk = 0; 346 return; 347 } 348 349 /* 350 * The following isn't fast or pretty; it doesn't have to be. 351 */ 352 size = 0; 353 bn = lbn = 0; 354 for (ii = cs->sc_itable; ; ii++) { 355 /* 356 * Allocate space for ii_index. We might allocate more then 357 * we use. 358 */ 359 ii->ii_index = g_malloc((sizeof(int) * cs->sc_ndisks), 360 M_WAITOK); 361 362 /* 363 * Locate the smallest of the remaining components 364 */ 365 smallci = NULL; 366 for (ci = cs->sc_cinfo; ci < &cs->sc_cinfo[cs->sc_ndisks]; 367 ci++) { 368 if (ci->ci_size > size && 369 (smallci == NULL || 370 ci->ci_size < smallci->ci_size)) { 371 smallci = ci; 372 } 373 } 374 375 /* 376 * Nobody left, all done 377 */ 378 if (smallci == NULL) { 379 ii->ii_ndisk = 0; 380 g_free(ii->ii_index); 381 ii->ii_index = NULL; 382 break; 383 } 384 385 /* 386 * Record starting logical block using an sc_ileave blocksize. 387 */ 388 ii->ii_startblk = bn / cs->sc_ileave; 389 390 /* 391 * Record starting component block using an sc_ileave 392 * blocksize. This value is relative to the beginning of 393 * a component disk. 394 */ 395 ii->ii_startoff = lbn; 396 397 /* 398 * Determine how many disks take part in this interleave 399 * and record their indices. 400 */ 401 ix = 0; 402 for (ci = cs->sc_cinfo; 403 ci < &cs->sc_cinfo[cs->sc_ndisks]; ci++) { 404 if (ci->ci_size >= smallci->ci_size) { 405 ii->ii_index[ix++] = ci - cs->sc_cinfo; 406 } 407 } 408 ii->ii_ndisk = ix; 409 bn += ix * (smallci->ci_size - size); 410 lbn = smallci->ci_size / cs->sc_ileave; 411 size = smallci->ci_size; 412 } 413 } 414 415 static void 416 g_ccd_start(struct bio *bp) 417 { 418 long bcount, rcount; 419 struct bio *cbp[2]; 420 caddr_t addr; 421 daddr_t bn; 422 int err; 423 struct ccd_s *cs; 424 425 cs = bp->bio_to->geom->softc; 426 427 /* 428 * Block all GETATTR requests, we wouldn't know which of our 429 * subdevices we should ship it off to. 430 * XXX: this may not be the right policy. 431 */ 432 if(bp->bio_cmd == BIO_GETATTR) { 433 g_io_deliver(bp, EINVAL); 434 return; 435 } 436 437 /* 438 * Translate the partition-relative block number to an absolute. 439 */ 440 bn = bp->bio_offset / cs->sc_secsize; 441 442 /* 443 * Allocate component buffers and fire off the requests 444 */ 445 addr = bp->bio_data; 446 for (bcount = bp->bio_length; bcount > 0; bcount -= rcount) { 447 err = ccdbuffer(cbp, cs, bp, bn, addr, bcount); 448 if (err) { 449 bp->bio_completed += bcount; 450 if (bp->bio_error == 0) 451 bp->bio_error = err; 452 if (bp->bio_completed == bp->bio_length) 453 g_io_deliver(bp, bp->bio_error); 454 return; 455 } 456 rcount = cbp[0]->bio_length; 457 458 if (cs->sc_flags & CCDF_MIRROR) { 459 /* 460 * Mirroring. Writes go to both disks, reads are 461 * taken from whichever disk seems most appropriate. 462 * 463 * We attempt to localize reads to the disk whos arm 464 * is nearest the read request. We ignore seeks due 465 * to writes when making this determination and we 466 * also try to avoid hogging. 467 */ 468 if (cbp[0]->bio_cmd != BIO_READ) { 469 g_io_request(cbp[0], cbp[0]->bio_from); 470 g_io_request(cbp[1], cbp[1]->bio_from); 471 } else { 472 int pick = cs->sc_pick; 473 daddr_t range = cs->sc_size / 16; 474 475 if (bn < cs->sc_blk[pick] - range || 476 bn > cs->sc_blk[pick] + range 477 ) { 478 cs->sc_pick = pick = 1 - pick; 479 } 480 cs->sc_blk[pick] = bn + btodb(rcount); 481 g_io_request(cbp[pick], cbp[pick]->bio_from); 482 } 483 } else { 484 /* 485 * Not mirroring 486 */ 487 g_io_request(cbp[0], cbp[0]->bio_from); 488 } 489 bn += btodb(rcount); 490 addr += rcount; 491 } 492 } 493 494 /* 495 * Build a component buffer header. 496 */ 497 static int 498 ccdbuffer(struct bio **cb, struct ccd_s *cs, struct bio *bp, daddr_t bn, caddr_t addr, long bcount) 499 { 500 struct ccdcinfo *ci, *ci2 = NULL; 501 struct bio *cbp; 502 daddr_t cbn, cboff; 503 off_t cbc; 504 505 /* 506 * Determine which component bn falls in. 507 */ 508 cbn = bn; 509 cboff = 0; 510 511 if (cs->sc_ileave == 0) { 512 /* 513 * Serially concatenated and neither a mirror nor a parity 514 * config. This is a special case. 515 */ 516 daddr_t sblk; 517 518 sblk = 0; 519 for (ci = cs->sc_cinfo; cbn >= sblk + ci->ci_size; ci++) 520 sblk += ci->ci_size; 521 cbn -= sblk; 522 } else { 523 struct ccdiinfo *ii; 524 int ccdisk, off; 525 526 /* 527 * Calculate cbn, the logical superblock (sc_ileave chunks), 528 * and cboff, a normal block offset (DEV_BSIZE chunks) relative 529 * to cbn. 530 */ 531 cboff = cbn % cs->sc_ileave; /* DEV_BSIZE gran */ 532 cbn = cbn / cs->sc_ileave; /* DEV_BSIZE * ileave gran */ 533 534 /* 535 * Figure out which interleave table to use. 536 */ 537 for (ii = cs->sc_itable; ii->ii_ndisk; ii++) { 538 if (ii->ii_startblk > cbn) 539 break; 540 } 541 ii--; 542 543 /* 544 * off is the logical superblock relative to the beginning 545 * of this interleave block. 546 */ 547 off = cbn - ii->ii_startblk; 548 549 /* 550 * We must calculate which disk component to use (ccdisk), 551 * and recalculate cbn to be the superblock relative to 552 * the beginning of the component. This is typically done by 553 * adding 'off' and ii->ii_startoff together. However, 'off' 554 * must typically be divided by the number of components in 555 * this interleave array to be properly convert it from a 556 * CCD-relative logical superblock number to a 557 * component-relative superblock number. 558 */ 559 if (ii->ii_ndisk == 1) { 560 /* 561 * When we have just one disk, it can't be a mirror 562 * or a parity config. 563 */ 564 ccdisk = ii->ii_index[0]; 565 cbn = ii->ii_startoff + off; 566 } else { 567 if (cs->sc_flags & CCDF_MIRROR) { 568 /* 569 * We have forced a uniform mapping, resulting 570 * in a single interleave array. We double 571 * up on the first half of the available 572 * components and our mirror is in the second 573 * half. This only works with a single 574 * interleave array because doubling up 575 * doubles the number of sectors, so there 576 * cannot be another interleave array because 577 * the next interleave array's calculations 578 * would be off. 579 */ 580 int ndisk2 = ii->ii_ndisk / 2; 581 ccdisk = ii->ii_index[off % ndisk2]; 582 cbn = ii->ii_startoff + off / ndisk2; 583 ci2 = &cs->sc_cinfo[ccdisk + ndisk2]; 584 } else { 585 ccdisk = ii->ii_index[off % ii->ii_ndisk]; 586 cbn = ii->ii_startoff + off / ii->ii_ndisk; 587 } 588 } 589 590 ci = &cs->sc_cinfo[ccdisk]; 591 592 /* 593 * Convert cbn from a superblock to a normal block so it 594 * can be used to calculate (along with cboff) the normal 595 * block index into this particular disk. 596 */ 597 cbn *= cs->sc_ileave; 598 } 599 600 /* 601 * Fill in the component buf structure. 602 */ 603 cbp = g_clone_bio(bp); 604 if (cbp == NULL) 605 return (ENOMEM); 606 cbp->bio_done = g_std_done; 607 cbp->bio_offset = dbtob(cbn + cboff + CCD_OFFSET); 608 cbp->bio_data = addr; 609 if (cs->sc_ileave == 0) 610 cbc = dbtob((off_t)(ci->ci_size - cbn)); 611 else 612 cbc = dbtob((off_t)(cs->sc_ileave - cboff)); 613 cbp->bio_length = (cbc < bcount) ? cbc : bcount; 614 615 cbp->bio_from = ci->ci_consumer; 616 cb[0] = cbp; 617 618 if (cs->sc_flags & CCDF_MIRROR) { 619 cbp = g_clone_bio(bp); 620 if (cbp == NULL) 621 return (ENOMEM); 622 cbp->bio_done = cb[0]->bio_done = ccdiodone; 623 cbp->bio_offset = cb[0]->bio_offset; 624 cbp->bio_data = cb[0]->bio_data; 625 cbp->bio_length = cb[0]->bio_length; 626 cbp->bio_from = ci2->ci_consumer; 627 cbp->bio_caller1 = cb[0]; 628 cb[0]->bio_caller1 = cbp; 629 cb[1] = cbp; 630 } 631 return (0); 632 } 633 634 /* 635 * Called only for mirrored operations. 636 */ 637 static void 638 ccdiodone(struct bio *cbp) 639 { 640 struct bio *mbp, *pbp; 641 642 mbp = cbp->bio_caller1; 643 pbp = cbp->bio_parent; 644 645 if (pbp->bio_cmd == BIO_READ) { 646 if (cbp->bio_error == 0) { 647 /* We will not be needing the partner bio */ 648 if (mbp != NULL) { 649 pbp->bio_inbed++; 650 g_destroy_bio(mbp); 651 } 652 g_std_done(cbp); 653 return; 654 } 655 if (mbp != NULL) { 656 /* Try partner the bio instead */ 657 mbp->bio_caller1 = NULL; 658 pbp->bio_inbed++; 659 g_destroy_bio(cbp); 660 g_io_request(mbp, mbp->bio_from); 661 /* 662 * XXX: If this comes back OK, we should actually 663 * try to write the good data on the failed mirror 664 */ 665 return; 666 } 667 g_std_done(cbp); 668 return; 669 } 670 if (mbp != NULL) { 671 mbp->bio_caller1 = NULL; 672 pbp->bio_inbed++; 673 if (cbp->bio_error != 0 && pbp->bio_error == 0) 674 pbp->bio_error = cbp->bio_error; 675 g_destroy_bio(cbp); 676 return; 677 } 678 g_std_done(cbp); 679 } 680 681 static void 682 g_ccd_create(struct gctl_req *req, struct g_class *mp) 683 { 684 int *unit, *ileave, *nprovider; 685 struct g_geom *gp; 686 struct g_consumer *cp; 687 struct g_provider *pp; 688 struct ccd_s *sc; 689 struct sbuf *sb; 690 char buf[20]; 691 int i, error; 692 693 g_topology_assert(); 694 unit = gctl_get_paraml(req, "unit", sizeof (*unit)); 695 ileave = gctl_get_paraml(req, "ileave", sizeof (*ileave)); 696 nprovider = gctl_get_paraml(req, "nprovider", sizeof (*nprovider)); 697 698 /* Check for duplicate unit */ 699 LIST_FOREACH(gp, &mp->geom, geom) { 700 sc = gp->softc; 701 if (sc != NULL && sc->sc_unit == *unit) { 702 gctl_error(req, "Unit %d already configured", *unit); 703 return; 704 } 705 } 706 707 if (*nprovider <= 0) { 708 gctl_error(req, "Bogus nprovider argument (= %d)", *nprovider); 709 return; 710 } 711 712 /* Check all providers are valid */ 713 for (i = 0; i < *nprovider; i++) { 714 sprintf(buf, "provider%d", i); 715 pp = gctl_get_provider(req, buf); 716 if (pp == NULL) 717 return; 718 } 719 720 gp = g_new_geomf(mp, "ccd%d", *unit); 721 sc = g_malloc(sizeof *sc, M_WAITOK | M_ZERO); 722 gp->softc = sc; 723 sc->sc_ndisks = *nprovider; 724 725 /* Allocate space for the component info. */ 726 sc->sc_cinfo = g_malloc(sc->sc_ndisks * sizeof(struct ccdcinfo), 727 M_WAITOK | M_ZERO); 728 729 /* Create consumers and attach to all providers */ 730 for (i = 0; i < *nprovider; i++) { 731 sprintf(buf, "provider%d", i); 732 pp = gctl_get_provider(req, buf); 733 cp = g_new_consumer(gp); 734 error = g_attach(cp, pp); 735 KASSERT(error == 0, ("attach to %s failed", pp->name)); 736 sc->sc_cinfo[i].ci_consumer = cp; 737 sc->sc_cinfo[i].ci_provider = pp; 738 } 739 740 sc->sc_unit = *unit; 741 sc->sc_ileave = *ileave; 742 743 if (gctl_get_param(req, "uniform", NULL)) 744 sc->sc_flags |= CCDF_UNIFORM; 745 if (gctl_get_param(req, "mirror", NULL)) 746 sc->sc_flags |= CCDF_MIRROR; 747 748 if (sc->sc_ileave == 0 && (sc->sc_flags & CCDF_MIRROR)) { 749 printf("%s: disabling mirror, interleave is 0\n", gp->name); 750 sc->sc_flags &= ~(CCDF_MIRROR); 751 } 752 753 if ((sc->sc_flags & CCDF_MIRROR) && !(sc->sc_flags & CCDF_UNIFORM)) { 754 printf("%s: mirror/parity forces uniform flag\n", gp->name); 755 sc->sc_flags |= CCDF_UNIFORM; 756 } 757 758 error = ccdinit(req, sc); 759 if (error != 0) { 760 g_ccd_freesc(sc); 761 gp->softc = NULL; 762 g_wither_geom(gp, ENXIO); 763 return; 764 } 765 766 pp = g_new_providerf(gp, "%s", gp->name); 767 pp->mediasize = sc->sc_size * (off_t)sc->sc_secsize; 768 pp->sectorsize = sc->sc_secsize; 769 g_error_provider(pp, 0); 770 771 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND); 772 sbuf_printf(sb, "ccd%d: %d components ", sc->sc_unit, *nprovider); 773 for (i = 0; i < *nprovider; i++) { 774 sbuf_printf(sb, "%s%s", 775 i == 0 ? "(" : ", ", 776 sc->sc_cinfo[i].ci_provider->name); 777 } 778 sbuf_printf(sb, "), %jd blocks ", (off_t)pp->mediasize / DEV_BSIZE); 779 if (sc->sc_ileave != 0) 780 sbuf_printf(sb, "interleaved at %d blocks\n", 781 sc->sc_ileave); 782 else 783 sbuf_printf(sb, "concatenated\n"); 784 sbuf_finish(sb); 785 gctl_set_param_err(req, "output", sbuf_data(sb), sbuf_len(sb) + 1); 786 sbuf_delete(sb); 787 } 788 789 static int 790 g_ccd_destroy_geom(struct gctl_req *req, struct g_class *mp, struct g_geom *gp) 791 { 792 struct g_provider *pp; 793 struct ccd_s *sc; 794 795 g_topology_assert(); 796 sc = gp->softc; 797 pp = LIST_FIRST(&gp->provider); 798 if (sc == NULL || pp == NULL) 799 return (EBUSY); 800 if (pp->acr != 0 || pp->acw != 0 || pp->ace != 0) { 801 gctl_error(req, "%s is open(r%dw%de%d)", gp->name, 802 pp->acr, pp->acw, pp->ace); 803 return (EBUSY); 804 } 805 g_ccd_freesc(sc); 806 gp->softc = NULL; 807 g_wither_geom(gp, ENXIO); 808 return (0); 809 } 810 811 static void 812 g_ccd_list(struct gctl_req *req, struct g_class *mp) 813 { 814 struct sbuf *sb; 815 struct ccd_s *cs; 816 struct g_geom *gp; 817 int i, unit, *up; 818 819 up = gctl_get_paraml(req, "unit", sizeof (int)); 820 unit = *up; 821 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND); 822 LIST_FOREACH(gp, &mp->geom, geom) { 823 cs = gp->softc; 824 if (cs == NULL || (unit >= 0 && unit != cs->sc_unit)) 825 continue; 826 sbuf_printf(sb, "ccd%d\t\t%d\t%d\t", 827 cs->sc_unit, cs->sc_ileave, cs->sc_flags & CCDF_USERMASK); 828 829 for (i = 0; i < cs->sc_ndisks; ++i) { 830 sbuf_printf(sb, "%s/dev/%s", i == 0 ? "" : " ", 831 cs->sc_cinfo[i].ci_provider->name); 832 } 833 sbuf_printf(sb, "\n"); 834 } 835 sbuf_finish(sb); 836 gctl_set_param_err(req, "output", sbuf_data(sb), sbuf_len(sb) + 1); 837 sbuf_delete(sb); 838 } 839 840 static void 841 g_ccd_config(struct gctl_req *req, struct g_class *mp, char const *verb) 842 { 843 struct g_geom *gp; 844 845 g_topology_assert(); 846 if (!strcmp(verb, "create geom")) { 847 g_ccd_create(req, mp); 848 } else if (!strcmp(verb, "destroy geom")) { 849 gp = gctl_get_geom(req, mp, "geom"); 850 if (gp != NULL) 851 g_ccd_destroy_geom(req, mp, gp); 852 } else if (!strcmp(verb, "list")) { 853 g_ccd_list(req, mp); 854 } else { 855 gctl_error(req, "unknown verb"); 856 } 857 } 858 859 static struct g_class g_ccd_class = { 860 .name = "CCD", 861 .version = G_VERSION, 862 .ctlreq = g_ccd_config, 863 .destroy_geom = g_ccd_destroy_geom, 864 .start = g_ccd_start, 865 .orphan = g_ccd_orphan, 866 .access = g_ccd_access, 867 }; 868 869 DECLARE_GEOM_CLASS(g_ccd_class, g_ccd); 870