xref: /freebsd/sys/geom/eli/g_eli_integrity.c (revision f856af0466c076beef4ea9b15d088e1119a945b8)
1 /*-
2  * Copyright (c) 2005-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/linker.h>
34 #include <sys/module.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/bio.h>
38 #include <sys/sysctl.h>
39 #include <sys/malloc.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/sched.h>
43 #include <sys/smp.h>
44 #include <sys/uio.h>
45 #include <sys/vnode.h>
46 
47 #include <vm/uma.h>
48 
49 #include <geom/geom.h>
50 #include <geom/eli/g_eli.h>
51 #include <geom/eli/pkcs5v2.h>
52 
53 /*
54  * The data layout description when integrity verification is configured.
55  *
56  * One of the most important assumption here is that authenticated data and its
57  * HMAC has to be stored in the same place (namely in the same sector) to make
58  * it work reliable.
59  * The problem is that file systems work only with sectors that are multiple of
60  * 512 bytes and a power of two number.
61  * My idea to implement it is as follows.
62  * Let's store HMAC in sector. This is a must. This leaves us 480 bytes for
63  * data. We can't use that directly (ie. we can't create provider with 480 bytes
64  * sector size). We need another sector from where we take only 32 bytes of data
65  * and we store HMAC of this data as well. This takes two sectors from the
66  * original provider at the input and leaves us one sector of authenticated data
67  * at the output. Not very efficient, but you got the idea.
68  * Now, let's assume, we want to create provider with 4096 bytes sector.
69  * To output 4096 bytes of authenticated data we need 8x480 plus 1x256, so we
70  * need nine 512-bytes sectors at the input to get one 4096-bytes sector at the
71  * output. That's better. With 4096 bytes sector we can use 89% of size of the
72  * original provider. I find it as an acceptable cost.
73  * The reliability comes from the fact, that every HMAC stored inside the sector
74  * is calculated only for the data in the same sector, so its impossible to
75  * write new data and leave old HMAC or vice versa.
76  *
77  * And here is the picture:
78  *
79  * da0: +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+-----+
80  *      |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |256b |
81  *      |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data |
82  *      +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+-----+
83  *      |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |288 bytes |
84  *      +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ |224 unused|
85  *                                                                                                      +----------+
86  * da0.eli: +----+----+----+----+----+----+----+----+----+
87  *          |480b|480b|480b|480b|480b|480b|480b|480b|256b|
88  *          +----+----+----+----+----+----+----+----+----+
89  *          |                 4096 bytes                 |
90  *          +--------------------------------------------+
91  *
92  * PS. You can use any sector size with geli(8). My example is using 4kB,
93  *     because it's most efficient. For 8kB sectors you need 2 extra sectors,
94  *     so the cost is the same as for 4kB sectors.
95  */
96 
97 /*
98  * Code paths:
99  * BIO_READ:
100  *	g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> g_eli_auth_run -> g_eli_auth_read_done -> g_io_deliver
101  * BIO_WRITE:
102  *	g_eli_start -> g_eli_auth_run -> g_eli_auth_write_done -> g_io_request -> g_eli_write_done -> g_io_deliver
103  */
104 
105 MALLOC_DECLARE(M_ELI);
106 
107 /*
108  * Here we generate key for HMAC. Every sector has its own HMAC key, so it is
109  * not possible to copy sectors.
110  * We cannot depend on fact, that every sector has its own IV, because different
111  * IV doesn't change HMAC, when we use encrypt-then-authenticate method.
112  */
113 static void
114 g_eli_auth_keygen(struct g_eli_softc *sc, off_t offset, u_char *key)
115 {
116 	SHA256_CTX ctx;
117 
118 	/* Copy precalculated SHA256 context. */
119 	bcopy(&sc->sc_akeyctx, &ctx, sizeof(ctx));
120 	SHA256_Update(&ctx, (uint8_t *)&offset, sizeof(offset));
121 	SHA256_Final(key, &ctx);
122 }
123 
124 /*
125  * The function is called after we read and decrypt data.
126  *
127  * g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> g_eli_auth_run -> G_ELI_AUTH_READ_DONE -> g_io_deliver
128  */
129 static int
130 g_eli_auth_read_done(struct cryptop *crp)
131 {
132 	struct bio *bp;
133 
134 	if (crp->crp_etype == EAGAIN) {
135 		if (g_eli_crypto_rerun(crp) == 0)
136 			return (0);
137 	}
138 	bp = (struct bio *)crp->crp_opaque;
139 	bp->bio_inbed++;
140 	if (crp->crp_etype == 0) {
141 		bp->bio_completed += crp->crp_olen;
142 		G_ELI_DEBUG(3, "Crypto READ request done (%d/%d) (add=%jd completed=%jd).",
143 		    bp->bio_inbed, bp->bio_children, (intmax_t)crp->crp_olen, (intmax_t)bp->bio_completed);
144 	} else {
145 		G_ELI_DEBUG(1, "Crypto READ request failed (%d/%d) error=%d.",
146 		    bp->bio_inbed, bp->bio_children, crp->crp_etype);
147 		if (bp->bio_error == 0)
148 			bp->bio_error = crp->crp_etype;
149 	}
150 	/*
151 	 * Do we have all sectors already?
152 	 */
153 	if (bp->bio_inbed < bp->bio_children)
154 		return (0);
155 	if (bp->bio_error == 0) {
156 		struct g_eli_softc *sc;
157 		u_int i, lsec, nsec, data_secsize, decr_secsize, encr_secsize;
158 		u_char *srcdata, *dstdata, *auth;
159 		off_t coroff, corsize;
160 
161 		/*
162 		 * Verify data integrity based on calculated and read HMACs.
163 		 */
164 		sc = bp->bio_to->geom->softc;
165 		/* Sectorsize of decrypted provider eg. 4096. */
166 		decr_secsize = bp->bio_to->sectorsize;
167 		/* The real sectorsize of encrypted provider, eg. 512. */
168 		encr_secsize = LIST_FIRST(&sc->sc_geom->consumer)->provider->sectorsize;
169 		/* Number of data bytes in one encrypted sector, eg. 480. */
170 		data_secsize = sc->sc_data_per_sector;
171 		/* Number of sectors from decrypted provider, eg. 2. */
172 		nsec = bp->bio_length / decr_secsize;
173 		/* Number of sectors from encrypted provider, eg. 18. */
174 		nsec = (nsec * sc->sc_bytes_per_sector) / encr_secsize;
175 		/* Last sector number in every big sector, eg. 9. */
176 		lsec = sc->sc_bytes_per_sector / encr_secsize;
177 
178 		srcdata = bp->bio_driver2;
179 		dstdata = bp->bio_data;
180 		auth = srcdata + encr_secsize * nsec;
181 		coroff = -1;
182 		corsize = 0;
183 
184 		for (i = 1; i <= nsec; i++) {
185 			data_secsize = sc->sc_data_per_sector;
186 			if ((i % lsec) == 0)
187 				data_secsize = decr_secsize % data_secsize;
188 			if (bcmp(srcdata, auth, sc->sc_alen) != 0) {
189 				/*
190 				 * Curruption detected, remember the offset if
191 				 * this is the first corrupted sector and
192 				 * increase size.
193 				 */
194 				if (bp->bio_error == 0)
195 					bp->bio_error = -1;
196 				if (coroff == -1) {
197 					coroff = bp->bio_offset +
198 					    (dstdata - (u_char *)bp->bio_data);
199 				}
200 				corsize += data_secsize;
201 			} else {
202 				/*
203 				 * No curruption, good.
204 				 * Report previous corruption if there was one.
205 				 */
206 				if (coroff != -1) {
207 					G_ELI_DEBUG(0, "%s: %jd bytes "
208 					    "corrupted at offset %jd.",
209 					    sc->sc_name, (intmax_t)corsize,
210 					    (intmax_t)coroff);
211 					coroff = -1;
212 					corsize = 0;
213 				}
214 				bcopy(srcdata + sc->sc_alen, dstdata,
215 				    data_secsize);
216 			}
217 			srcdata += encr_secsize;
218 			dstdata += data_secsize;
219 			auth += sc->sc_alen;
220 		}
221 		/* Report previous corruption if there was one. */
222 		if (coroff != -1) {
223 			G_ELI_DEBUG(0, "%s: %jd bytes corrupted at offset %jd.",
224 			    sc->sc_name, (intmax_t)corsize, (intmax_t)coroff);
225 		}
226 	}
227 	free(bp->bio_driver2, M_ELI);
228 	bp->bio_driver2 = NULL;
229 	if (bp->bio_error != 0) {
230 		if (bp->bio_error == -1)
231 			bp->bio_error = EINVAL;
232 		else {
233 			G_ELI_LOGREQ(0, bp,
234 			    "Crypto READ request failed (error=%d).",
235 			    bp->bio_error);
236 		}
237 		bp->bio_completed = 0;
238 	}
239 	/*
240 	 * Read is finished, send it up.
241 	 */
242 	g_io_deliver(bp, bp->bio_error);
243 	return (0);
244 }
245 
246 /*
247  * The function is called after data encryption.
248  *
249  * g_eli_start -> g_eli_auth_run -> G_ELI_AUTH_WRITE_DONE -> g_io_request -> g_eli_write_done -> g_io_deliver
250  */
251 static int
252 g_eli_auth_write_done(struct cryptop *crp)
253 {
254 	struct g_eli_softc *sc;
255 	struct g_consumer *cp;
256 	struct bio *bp, *cbp, *cbp2;
257 	u_int nsec;
258 
259 	if (crp->crp_etype == EAGAIN) {
260 		if (g_eli_crypto_rerun(crp) == 0)
261 			return (0);
262 	}
263 	bp = (struct bio *)crp->crp_opaque;
264 	bp->bio_inbed++;
265 	if (crp->crp_etype == 0) {
266 		G_ELI_DEBUG(3, "Crypto WRITE request done (%d/%d).",
267 		    bp->bio_inbed, bp->bio_children);
268 	} else {
269 		G_ELI_DEBUG(1, "Crypto WRITE request failed (%d/%d) error=%d.",
270 		    bp->bio_inbed, bp->bio_children, crp->crp_etype);
271 		if (bp->bio_error == 0)
272 			bp->bio_error = crp->crp_etype;
273 	}
274 	/*
275 	 * All sectors are already encrypted?
276 	 */
277 	if (bp->bio_inbed < bp->bio_children)
278 		return (0);
279 	if (bp->bio_error != 0) {
280 		G_ELI_LOGREQ(0, bp, "Crypto WRITE request failed (error=%d).",
281 		    bp->bio_error);
282 		free(bp->bio_driver2, M_ELI);
283 		bp->bio_driver2 = NULL;
284 		cbp = bp->bio_driver1;
285 		bp->bio_driver1 = NULL;
286 		g_destroy_bio(cbp);
287 		g_io_deliver(bp, bp->bio_error);
288 		return (0);
289 	}
290 	sc = bp->bio_to->geom->softc;
291 	cp = LIST_FIRST(&sc->sc_geom->consumer);
292 	cbp = bp->bio_driver1;
293 	bp->bio_driver1 = NULL;
294 	cbp->bio_to = cp->provider;
295 	cbp->bio_done = g_eli_write_done;
296 
297 	/* Number of sectors from decrypted provider, eg. 1. */
298 	nsec = bp->bio_length / bp->bio_to->sectorsize;
299 	/* Number of sectors from encrypted provider, eg. 9. */
300 	nsec = (nsec * sc->sc_bytes_per_sector) / cp->provider->sectorsize;
301 
302 	cbp->bio_length = cp->provider->sectorsize * nsec;
303 	cbp->bio_offset = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
304 	cbp->bio_data = bp->bio_driver2;
305 
306 	/*
307 	 * We write more than what is requested, so we have to be ready to write
308 	 * more than MAXPHYS.
309 	 */
310 	cbp2 = NULL;
311 	if (cbp->bio_length > MAXPHYS) {
312 		cbp2 = g_duplicate_bio(bp);
313 		cbp2->bio_length = cbp->bio_length - MAXPHYS;
314 		cbp2->bio_data = cbp->bio_data + MAXPHYS;
315 		cbp2->bio_offset = cbp->bio_offset + MAXPHYS;
316 		cbp2->bio_to = cp->provider;
317 		cbp2->bio_done = g_eli_write_done;
318 		cbp->bio_length = MAXPHYS;
319 	}
320 	/*
321 	 * Send encrypted data to the provider.
322 	 */
323 	G_ELI_LOGREQ(2, cbp, "Sending request.");
324 	bp->bio_inbed = 0;
325 	bp->bio_children = (cbp2 != NULL ? 2 : 1);
326 	g_io_request(cbp, cp);
327 	if (cbp2 != NULL) {
328 		G_ELI_LOGREQ(2, cbp2, "Sending request.");
329 		g_io_request(cbp2, cp);
330 	}
331 	return (0);
332 }
333 
334 void
335 g_eli_auth_read(struct g_eli_softc *sc, struct bio *bp)
336 {
337 	struct g_consumer *cp;
338 	struct bio *cbp, *cbp2;
339 	size_t size;
340 	off_t nsec;
341 
342 	bp->bio_pflags = 0;
343 
344 	cp = LIST_FIRST(&sc->sc_geom->consumer);
345 	cbp = bp->bio_driver1;
346 	bp->bio_driver1 = NULL;
347 	cbp->bio_to = cp->provider;
348 	cbp->bio_done = g_eli_read_done;
349 
350 	/* Number of sectors from decrypted provider, eg. 1. */
351 	nsec = bp->bio_length / bp->bio_to->sectorsize;
352 	/* Number of sectors from encrypted provider, eg. 9. */
353 	nsec = (nsec * sc->sc_bytes_per_sector) / cp->provider->sectorsize;
354 
355 	cbp->bio_length = cp->provider->sectorsize * nsec;
356 	size = cbp->bio_length;
357 	size += sc->sc_alen * nsec;
358 	size += sizeof(struct cryptop) * nsec;
359 	size += sizeof(struct cryptodesc) * nsec * 2;
360 	size += G_ELI_AUTH_SECKEYLEN * nsec;
361 	size += sizeof(struct uio) * nsec;
362 	size += sizeof(struct iovec) * nsec;
363 	cbp->bio_offset = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
364 	bp->bio_driver2 = malloc(size, M_ELI, M_WAITOK);
365 	cbp->bio_data = bp->bio_driver2;
366 
367 	/*
368 	 * We read more than what is requested, so we have to be ready to read
369 	 * more than MAXPHYS.
370 	 */
371 	cbp2 = NULL;
372 	if (cbp->bio_length > MAXPHYS) {
373 		cbp2 = g_duplicate_bio(bp);
374 		cbp2->bio_length = cbp->bio_length - MAXPHYS;
375 		cbp2->bio_data = cbp->bio_data + MAXPHYS;
376 		cbp2->bio_offset = cbp->bio_offset + MAXPHYS;
377 		cbp2->bio_to = cp->provider;
378 		cbp2->bio_done = g_eli_read_done;
379 		cbp->bio_length = MAXPHYS;
380 	}
381 	/*
382 	 * Read encrypted data from provider.
383 	 */
384 	G_ELI_LOGREQ(2, cbp, "Sending request.");
385 	g_io_request(cbp, cp);
386 	if (cbp2 != NULL) {
387 		G_ELI_LOGREQ(2, cbp2, "Sending request.");
388 		g_io_request(cbp2, cp);
389 	}
390 }
391 
392 /*
393  * This is the main function responsible for cryptography (ie. communication
394  * with crypto(9) subsystem).
395  */
396 void
397 g_eli_auth_run(struct g_eli_worker *wr, struct bio *bp)
398 {
399 	struct g_eli_softc *sc;
400 	struct cryptop *crp;
401 	struct cryptodesc *crde, *crda;
402 	struct uio *uio;
403 	struct iovec *iov;
404 	u_int i, lsec, nsec, data_secsize, decr_secsize, encr_secsize;
405 	off_t dstoff;
406 	int err, error;
407 	u_char *p, *data, *auth, *authkey, *plaindata;
408 
409 	G_ELI_LOGREQ(3, bp, "%s", __func__);
410 
411 	bp->bio_pflags = wr->w_number;
412 	sc = wr->w_softc;
413 	/* Sectorsize of decrypted provider eg. 4096. */
414 	decr_secsize = bp->bio_to->sectorsize;
415 	/* The real sectorsize of encrypted provider, eg. 512. */
416 	encr_secsize = LIST_FIRST(&sc->sc_geom->consumer)->provider->sectorsize;
417 	/* Number of data bytes in one encrypted sector, eg. 480. */
418 	data_secsize = sc->sc_data_per_sector;
419 	/* Number of sectors from decrypted provider, eg. 2. */
420 	nsec = bp->bio_length / decr_secsize;
421 	/* Number of sectors from encrypted provider, eg. 18. */
422 	nsec = (nsec * sc->sc_bytes_per_sector) / encr_secsize;
423 	/* Last sector number in every big sector, eg. 9. */
424 	lsec = sc->sc_bytes_per_sector / encr_secsize;
425 	/* Destination offset, used for IV generation. */
426 	dstoff = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
427 
428 	auth = NULL;	/* Silence compiler warning. */
429 	plaindata = bp->bio_data;
430 	if (bp->bio_cmd == BIO_READ) {
431 		data = bp->bio_driver2;
432 		auth = data + encr_secsize * nsec;
433 		p = auth + sc->sc_alen * nsec;
434 	} else {
435 		size_t size;
436 
437 		size = encr_secsize * nsec;
438 		size += sizeof(*crp) * nsec;
439 		size += sizeof(*crde) * nsec;
440 		size += sizeof(*crda) * nsec;
441 		size += G_ELI_AUTH_SECKEYLEN * nsec;
442 		size += sizeof(*uio) * nsec;
443 		size += sizeof(*iov) * nsec;
444 		data = malloc(size, M_ELI, M_WAITOK);
445 		bp->bio_driver2 = data;
446 		p = data + encr_secsize * nsec;
447 	}
448 	bp->bio_inbed = 0;
449 	bp->bio_children = nsec;
450 
451 	error = 0;
452 	for (i = 1; i <= nsec; i++, dstoff += encr_secsize) {
453 		crp = (struct cryptop *)p;	p += sizeof(*crp);
454 		crde = (struct cryptodesc *)p;	p += sizeof(*crde);
455 		crda = (struct cryptodesc *)p;	p += sizeof(*crda);
456 		authkey = (u_char *)p;		p += G_ELI_AUTH_SECKEYLEN;
457 		uio = (struct uio *)p;		p += sizeof(*uio);
458 		iov = (struct iovec *)p;	p += sizeof(*iov);
459 
460 		data_secsize = sc->sc_data_per_sector;
461 		if ((i % lsec) == 0)
462 			data_secsize = decr_secsize % data_secsize;
463 
464 		if (bp->bio_cmd == BIO_READ) {
465 			/* Remember read HMAC. */
466 			bcopy(data, auth, sc->sc_alen);
467 			auth += sc->sc_alen;
468 			/* TODO: bzero(9) can be commented out later. */
469 			bzero(data, sc->sc_alen);
470 		} else {
471 			bcopy(plaindata, data + sc->sc_alen, data_secsize);
472 			plaindata += data_secsize;
473 		}
474 
475 		iov->iov_len = sc->sc_alen + data_secsize;
476 		iov->iov_base = data;
477 		data += encr_secsize;
478 
479 		uio->uio_iov = iov;
480 		uio->uio_iovcnt = 1;
481 		uio->uio_segflg = UIO_SYSSPACE;
482 		uio->uio_resid = iov->iov_len;
483 
484 		crp->crp_sid = wr->w_sid;
485 		crp->crp_ilen = uio->uio_resid;
486 		crp->crp_olen = data_secsize;
487 		crp->crp_opaque = (void *)bp;
488 		crp->crp_buf = (void *)uio;
489 		crp->crp_flags = CRYPTO_F_IOV | CRYPTO_F_CBIFSYNC | CRYPTO_F_REL;
490 		if (g_eli_batch)
491 			crp->crp_flags |= CRYPTO_F_BATCH;
492 		if (bp->bio_cmd == BIO_WRITE) {
493 			crp->crp_callback = g_eli_auth_write_done;
494 			crp->crp_desc = crde;
495 			crde->crd_next = crda;
496 			crda->crd_next = NULL;
497 		} else {
498 			crp->crp_callback = g_eli_auth_read_done;
499 			crp->crp_desc = crda;
500 			crda->crd_next = crde;
501 			crde->crd_next = NULL;
502 		}
503 
504 		crde->crd_skip = sc->sc_alen;
505 		crde->crd_len = data_secsize;
506 		crde->crd_flags = CRD_F_IV_EXPLICIT | CRD_F_IV_PRESENT;
507 		if (bp->bio_cmd == BIO_WRITE)
508 			crde->crd_flags |= CRD_F_ENCRYPT;
509 		crde->crd_alg = sc->sc_ealgo;
510 		crde->crd_key = sc->sc_ekey;
511 		crde->crd_klen = sc->sc_ekeylen;
512 		g_eli_crypto_ivgen(sc, dstoff, crde->crd_iv,
513 		    sizeof(crde->crd_iv));
514 
515 		crda->crd_skip = sc->sc_alen;
516 		crda->crd_len = data_secsize;
517 		crda->crd_inject = 0;
518 		crda->crd_flags = CRD_F_KEY_EXPLICIT;
519 		crda->crd_alg = sc->sc_aalgo;
520 		g_eli_auth_keygen(sc, dstoff, authkey);
521 		crda->crd_key = authkey;
522 		crda->crd_klen = G_ELI_AUTH_SECKEYLEN * 8;
523 
524 		crp->crp_etype = 0;
525 		err = crypto_dispatch(crp);
526 		if (err != 0 && error == 0)
527 			error = err;
528 	}
529 	if (bp->bio_error == 0)
530 		bp->bio_error = error;
531 }
532