xref: /freebsd/sys/geom/eli/g_eli_integrity.c (revision ef36b3f75658d201edb495068db5e1be49593de5)
1 /*-
2  * Copyright (c) 2005-2011 Pawel Jakub Dawidek <pawel@dawidek.net>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/linker.h>
34 #include <sys/module.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/bio.h>
38 #include <sys/sysctl.h>
39 #include <sys/malloc.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/sched.h>
43 #include <sys/smp.h>
44 #include <sys/vnode.h>
45 
46 #include <vm/uma.h>
47 
48 #include <geom/geom.h>
49 #include <geom/eli/g_eli.h>
50 #include <geom/eli/pkcs5v2.h>
51 
52 /*
53  * The data layout description when integrity verification is configured.
54  *
55  * One of the most important assumption here is that authenticated data and its
56  * HMAC has to be stored in the same place (namely in the same sector) to make
57  * it work reliable.
58  * The problem is that file systems work only with sectors that are multiple of
59  * 512 bytes and a power of two number.
60  * My idea to implement it is as follows.
61  * Let's store HMAC in sector. This is a must. This leaves us 480 bytes for
62  * data. We can't use that directly (ie. we can't create provider with 480 bytes
63  * sector size). We need another sector from where we take only 32 bytes of data
64  * and we store HMAC of this data as well. This takes two sectors from the
65  * original provider at the input and leaves us one sector of authenticated data
66  * at the output. Not very efficient, but you got the idea.
67  * Now, let's assume, we want to create provider with 4096 bytes sector.
68  * To output 4096 bytes of authenticated data we need 8x480 plus 1x256, so we
69  * need nine 512-bytes sectors at the input to get one 4096-bytes sector at the
70  * output. That's better. With 4096 bytes sector we can use 89% of size of the
71  * original provider. I find it as an acceptable cost.
72  * The reliability comes from the fact, that every HMAC stored inside the sector
73  * is calculated only for the data in the same sector, so its impossible to
74  * write new data and leave old HMAC or vice versa.
75  *
76  * And here is the picture:
77  *
78  * da0: +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+-----+
79  *      |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |256b |
80  *      |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data |
81  *      +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+-----+
82  *      |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |288 bytes |
83  *      +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ |224 unused|
84  *                                                                                                      +----------+
85  * da0.eli: +----+----+----+----+----+----+----+----+----+
86  *          |480b|480b|480b|480b|480b|480b|480b|480b|256b|
87  *          +----+----+----+----+----+----+----+----+----+
88  *          |                 4096 bytes                 |
89  *          +--------------------------------------------+
90  *
91  * PS. You can use any sector size with geli(8). My example is using 4kB,
92  *     because it's most efficient. For 8kB sectors you need 2 extra sectors,
93  *     so the cost is the same as for 4kB sectors.
94  */
95 
96 /*
97  * Code paths:
98  * BIO_READ:
99  *	g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> g_eli_auth_run -> g_eli_auth_read_done -> g_io_deliver
100  * BIO_WRITE:
101  *	g_eli_start -> g_eli_auth_run -> g_eli_auth_write_done -> g_io_request -> g_eli_write_done -> g_io_deliver
102  */
103 
104 MALLOC_DECLARE(M_ELI);
105 
106 /*
107  * Here we generate key for HMAC. Every sector has its own HMAC key, so it is
108  * not possible to copy sectors.
109  * We cannot depend on fact, that every sector has its own IV, because different
110  * IV doesn't change HMAC, when we use encrypt-then-authenticate method.
111  */
112 static void
113 g_eli_auth_keygen(struct g_eli_softc *sc, off_t offset, u_char *key)
114 {
115 	SHA256_CTX ctx;
116 
117 	/* Copy precalculated SHA256 context. */
118 	bcopy(&sc->sc_akeyctx, &ctx, sizeof(ctx));
119 	SHA256_Update(&ctx, (uint8_t *)&offset, sizeof(offset));
120 	SHA256_Final(key, &ctx);
121 }
122 
123 /*
124  * The function is called after we read and decrypt data.
125  *
126  * g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> g_eli_auth_run -> G_ELI_AUTH_READ_DONE -> g_io_deliver
127  */
128 static int
129 g_eli_auth_read_done(struct cryptop *crp)
130 {
131 	struct g_eli_softc *sc;
132 	struct bio *bp;
133 
134 	if (crp->crp_etype == EAGAIN) {
135 		if (g_eli_crypto_rerun(crp) == 0)
136 			return (0);
137 	}
138 	bp = (struct bio *)crp->crp_opaque;
139 	bp->bio_inbed++;
140 	if (crp->crp_etype == 0) {
141 		bp->bio_completed += crp->crp_olen;
142 		G_ELI_DEBUG(3, "Crypto READ request done (%d/%d) (add=%jd completed=%jd).",
143 		    bp->bio_inbed, bp->bio_children, (intmax_t)crp->crp_olen, (intmax_t)bp->bio_completed);
144 	} else {
145 		G_ELI_DEBUG(1, "Crypto READ request failed (%d/%d) error=%d.",
146 		    bp->bio_inbed, bp->bio_children, crp->crp_etype);
147 		if (bp->bio_error == 0)
148 			bp->bio_error = crp->crp_etype;
149 	}
150 	sc = bp->bio_to->geom->softc;
151 	g_eli_key_drop(sc, crp->crp_desc->crd_next->crd_key);
152 	/*
153 	 * Do we have all sectors already?
154 	 */
155 	if (bp->bio_inbed < bp->bio_children)
156 		return (0);
157 	if (bp->bio_error == 0) {
158 		u_int i, lsec, nsec, data_secsize, decr_secsize, encr_secsize;
159 		u_char *srcdata, *dstdata, *auth;
160 		off_t coroff, corsize;
161 
162 		/*
163 		 * Verify data integrity based on calculated and read HMACs.
164 		 */
165 		/* Sectorsize of decrypted provider eg. 4096. */
166 		decr_secsize = bp->bio_to->sectorsize;
167 		/* The real sectorsize of encrypted provider, eg. 512. */
168 		encr_secsize = LIST_FIRST(&sc->sc_geom->consumer)->provider->sectorsize;
169 		/* Number of data bytes in one encrypted sector, eg. 480. */
170 		data_secsize = sc->sc_data_per_sector;
171 		/* Number of sectors from decrypted provider, eg. 2. */
172 		nsec = bp->bio_length / decr_secsize;
173 		/* Number of sectors from encrypted provider, eg. 18. */
174 		nsec = (nsec * sc->sc_bytes_per_sector) / encr_secsize;
175 		/* Last sector number in every big sector, eg. 9. */
176 		lsec = sc->sc_bytes_per_sector / encr_secsize;
177 
178 		srcdata = bp->bio_driver2;
179 		dstdata = bp->bio_data;
180 		auth = srcdata + encr_secsize * nsec;
181 		coroff = -1;
182 		corsize = 0;
183 
184 		for (i = 1; i <= nsec; i++) {
185 			data_secsize = sc->sc_data_per_sector;
186 			if ((i % lsec) == 0)
187 				data_secsize = decr_secsize % data_secsize;
188 			if (bcmp(srcdata, auth, sc->sc_alen) != 0) {
189 				/*
190 				 * Curruption detected, remember the offset if
191 				 * this is the first corrupted sector and
192 				 * increase size.
193 				 */
194 				if (bp->bio_error == 0)
195 					bp->bio_error = -1;
196 				if (coroff == -1) {
197 					coroff = bp->bio_offset +
198 					    (dstdata - (u_char *)bp->bio_data);
199 				}
200 				corsize += data_secsize;
201 			} else {
202 				/*
203 				 * No curruption, good.
204 				 * Report previous corruption if there was one.
205 				 */
206 				if (coroff != -1) {
207 					G_ELI_DEBUG(0, "%s: Failed to authenticate %jd "
208 					    "bytes of data at offset %jd.",
209 					    sc->sc_name, (intmax_t)corsize,
210 					    (intmax_t)coroff);
211 					coroff = -1;
212 					corsize = 0;
213 				}
214 				bcopy(srcdata + sc->sc_alen, dstdata,
215 				    data_secsize);
216 			}
217 			srcdata += encr_secsize;
218 			dstdata += data_secsize;
219 			auth += sc->sc_alen;
220 		}
221 		/* Report previous corruption if there was one. */
222 		if (coroff != -1) {
223 			G_ELI_DEBUG(0, "%s: Failed to authenticate %jd "
224 			    "bytes of data at offset %jd.",
225 			    sc->sc_name, (intmax_t)corsize, (intmax_t)coroff);
226 		}
227 	}
228 	free(bp->bio_driver2, M_ELI);
229 	bp->bio_driver2 = NULL;
230 	if (bp->bio_error != 0) {
231 		if (bp->bio_error == -1)
232 			bp->bio_error = EINVAL;
233 		else {
234 			G_ELI_LOGREQ(0, bp,
235 			    "Crypto READ request failed (error=%d).",
236 			    bp->bio_error);
237 		}
238 		bp->bio_completed = 0;
239 	}
240 	/*
241 	 * Read is finished, send it up.
242 	 */
243 	g_io_deliver(bp, bp->bio_error);
244 	atomic_subtract_int(&sc->sc_inflight, 1);
245 	return (0);
246 }
247 
248 /*
249  * The function is called after data encryption.
250  *
251  * g_eli_start -> g_eli_auth_run -> G_ELI_AUTH_WRITE_DONE -> g_io_request -> g_eli_write_done -> g_io_deliver
252  */
253 static int
254 g_eli_auth_write_done(struct cryptop *crp)
255 {
256 	struct g_eli_softc *sc;
257 	struct g_consumer *cp;
258 	struct bio *bp, *cbp, *cbp2;
259 	u_int nsec;
260 
261 	if (crp->crp_etype == EAGAIN) {
262 		if (g_eli_crypto_rerun(crp) == 0)
263 			return (0);
264 	}
265 	bp = (struct bio *)crp->crp_opaque;
266 	bp->bio_inbed++;
267 	if (crp->crp_etype == 0) {
268 		G_ELI_DEBUG(3, "Crypto WRITE request done (%d/%d).",
269 		    bp->bio_inbed, bp->bio_children);
270 	} else {
271 		G_ELI_DEBUG(1, "Crypto WRITE request failed (%d/%d) error=%d.",
272 		    bp->bio_inbed, bp->bio_children, crp->crp_etype);
273 		if (bp->bio_error == 0)
274 			bp->bio_error = crp->crp_etype;
275 	}
276 	sc = bp->bio_to->geom->softc;
277 	g_eli_key_drop(sc, crp->crp_desc->crd_key);
278 	/*
279 	 * All sectors are already encrypted?
280 	 */
281 	if (bp->bio_inbed < bp->bio_children)
282 		return (0);
283 	if (bp->bio_error != 0) {
284 		G_ELI_LOGREQ(0, bp, "Crypto WRITE request failed (error=%d).",
285 		    bp->bio_error);
286 		free(bp->bio_driver2, M_ELI);
287 		bp->bio_driver2 = NULL;
288 		cbp = bp->bio_driver1;
289 		bp->bio_driver1 = NULL;
290 		g_destroy_bio(cbp);
291 		g_io_deliver(bp, bp->bio_error);
292 		atomic_subtract_int(&sc->sc_inflight, 1);
293 		return (0);
294 	}
295 	cp = LIST_FIRST(&sc->sc_geom->consumer);
296 	cbp = bp->bio_driver1;
297 	bp->bio_driver1 = NULL;
298 	cbp->bio_to = cp->provider;
299 	cbp->bio_done = g_eli_write_done;
300 
301 	/* Number of sectors from decrypted provider, eg. 1. */
302 	nsec = bp->bio_length / bp->bio_to->sectorsize;
303 	/* Number of sectors from encrypted provider, eg. 9. */
304 	nsec = (nsec * sc->sc_bytes_per_sector) / cp->provider->sectorsize;
305 
306 	cbp->bio_length = cp->provider->sectorsize * nsec;
307 	cbp->bio_offset = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
308 	cbp->bio_data = bp->bio_driver2;
309 
310 	/*
311 	 * We write more than what is requested, so we have to be ready to write
312 	 * more than MAXPHYS.
313 	 */
314 	cbp2 = NULL;
315 	if (cbp->bio_length > MAXPHYS) {
316 		cbp2 = g_duplicate_bio(bp);
317 		cbp2->bio_length = cbp->bio_length - MAXPHYS;
318 		cbp2->bio_data = cbp->bio_data + MAXPHYS;
319 		cbp2->bio_offset = cbp->bio_offset + MAXPHYS;
320 		cbp2->bio_to = cp->provider;
321 		cbp2->bio_done = g_eli_write_done;
322 		cbp->bio_length = MAXPHYS;
323 	}
324 	/*
325 	 * Send encrypted data to the provider.
326 	 */
327 	G_ELI_LOGREQ(2, cbp, "Sending request.");
328 	bp->bio_inbed = 0;
329 	bp->bio_children = (cbp2 != NULL ? 2 : 1);
330 	g_io_request(cbp, cp);
331 	if (cbp2 != NULL) {
332 		G_ELI_LOGREQ(2, cbp2, "Sending request.");
333 		g_io_request(cbp2, cp);
334 	}
335 	return (0);
336 }
337 
338 void
339 g_eli_auth_read(struct g_eli_softc *sc, struct bio *bp)
340 {
341 	struct g_consumer *cp;
342 	struct bio *cbp, *cbp2;
343 	size_t size;
344 	off_t nsec;
345 
346 	bp->bio_pflags = 0;
347 
348 	cp = LIST_FIRST(&sc->sc_geom->consumer);
349 	cbp = bp->bio_driver1;
350 	bp->bio_driver1 = NULL;
351 	cbp->bio_to = cp->provider;
352 	cbp->bio_done = g_eli_read_done;
353 
354 	/* Number of sectors from decrypted provider, eg. 1. */
355 	nsec = bp->bio_length / bp->bio_to->sectorsize;
356 	/* Number of sectors from encrypted provider, eg. 9. */
357 	nsec = (nsec * sc->sc_bytes_per_sector) / cp->provider->sectorsize;
358 
359 	cbp->bio_length = cp->provider->sectorsize * nsec;
360 	size = cbp->bio_length;
361 	size += sc->sc_alen * nsec;
362 	size += sizeof(struct cryptop) * nsec;
363 	size += sizeof(struct cryptodesc) * nsec * 2;
364 	size += G_ELI_AUTH_SECKEYLEN * nsec;
365 	cbp->bio_offset = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
366 	bp->bio_driver2 = malloc(size, M_ELI, M_WAITOK);
367 	cbp->bio_data = bp->bio_driver2;
368 
369 	/*
370 	 * We read more than what is requested, so we have to be ready to read
371 	 * more than MAXPHYS.
372 	 */
373 	cbp2 = NULL;
374 	if (cbp->bio_length > MAXPHYS) {
375 		cbp2 = g_duplicate_bio(bp);
376 		cbp2->bio_length = cbp->bio_length - MAXPHYS;
377 		cbp2->bio_data = cbp->bio_data + MAXPHYS;
378 		cbp2->bio_offset = cbp->bio_offset + MAXPHYS;
379 		cbp2->bio_to = cp->provider;
380 		cbp2->bio_done = g_eli_read_done;
381 		cbp->bio_length = MAXPHYS;
382 	}
383 	/*
384 	 * Read encrypted data from provider.
385 	 */
386 	G_ELI_LOGREQ(2, cbp, "Sending request.");
387 	g_io_request(cbp, cp);
388 	if (cbp2 != NULL) {
389 		G_ELI_LOGREQ(2, cbp2, "Sending request.");
390 		g_io_request(cbp2, cp);
391 	}
392 }
393 
394 /*
395  * This is the main function responsible for cryptography (ie. communication
396  * with crypto(9) subsystem).
397  *
398  * BIO_READ:
399  *	g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> G_ELI_AUTH_RUN -> g_eli_auth_read_done -> g_io_deliver
400  * BIO_WRITE:
401  *	g_eli_start -> G_ELI_AUTH_RUN -> g_eli_auth_write_done -> g_io_request -> g_eli_write_done -> g_io_deliver
402  */
403 void
404 g_eli_auth_run(struct g_eli_worker *wr, struct bio *bp)
405 {
406 	struct g_eli_softc *sc;
407 	struct cryptop *crp;
408 	struct cryptodesc *crde, *crda;
409 	u_int i, lsec, nsec, data_secsize, decr_secsize, encr_secsize;
410 	off_t dstoff;
411 	u_char *p, *data, *auth, *authkey, *plaindata;
412 	int error;
413 
414 	G_ELI_LOGREQ(3, bp, "%s", __func__);
415 
416 	bp->bio_pflags = wr->w_number;
417 	sc = wr->w_softc;
418 	/* Sectorsize of decrypted provider eg. 4096. */
419 	decr_secsize = bp->bio_to->sectorsize;
420 	/* The real sectorsize of encrypted provider, eg. 512. */
421 	encr_secsize = LIST_FIRST(&sc->sc_geom->consumer)->provider->sectorsize;
422 	/* Number of data bytes in one encrypted sector, eg. 480. */
423 	data_secsize = sc->sc_data_per_sector;
424 	/* Number of sectors from decrypted provider, eg. 2. */
425 	nsec = bp->bio_length / decr_secsize;
426 	/* Number of sectors from encrypted provider, eg. 18. */
427 	nsec = (nsec * sc->sc_bytes_per_sector) / encr_secsize;
428 	/* Last sector number in every big sector, eg. 9. */
429 	lsec = sc->sc_bytes_per_sector / encr_secsize;
430 	/* Destination offset, used for IV generation. */
431 	dstoff = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
432 
433 	auth = NULL;	/* Silence compiler warning. */
434 	plaindata = bp->bio_data;
435 	if (bp->bio_cmd == BIO_READ) {
436 		data = bp->bio_driver2;
437 		auth = data + encr_secsize * nsec;
438 		p = auth + sc->sc_alen * nsec;
439 	} else {
440 		size_t size;
441 
442 		size = encr_secsize * nsec;
443 		size += sizeof(*crp) * nsec;
444 		size += sizeof(*crde) * nsec;
445 		size += sizeof(*crda) * nsec;
446 		size += G_ELI_AUTH_SECKEYLEN * nsec;
447 		size += sizeof(uintptr_t);	/* Space for alignment. */
448 		data = malloc(size, M_ELI, M_WAITOK);
449 		bp->bio_driver2 = data;
450 		p = data + encr_secsize * nsec;
451 	}
452 	bp->bio_inbed = 0;
453 	bp->bio_children = nsec;
454 
455 #if defined(__mips_n64) || defined(__mips_o64)
456 	p = (char *)roundup((uintptr_t)p, sizeof(uintptr_t));
457 #endif
458 
459 	for (i = 1; i <= nsec; i++, dstoff += encr_secsize) {
460 		crp = (struct cryptop *)p;	p += sizeof(*crp);
461 		crde = (struct cryptodesc *)p;	p += sizeof(*crde);
462 		crda = (struct cryptodesc *)p;	p += sizeof(*crda);
463 		authkey = (u_char *)p;		p += G_ELI_AUTH_SECKEYLEN;
464 
465 		data_secsize = sc->sc_data_per_sector;
466 		if ((i % lsec) == 0) {
467 			data_secsize = decr_secsize % data_secsize;
468 			/*
469 			 * Last encrypted sector of each decrypted sector is
470 			 * only partially filled.
471 			 */
472 			if (bp->bio_cmd == BIO_WRITE)
473 				memset(data + sc->sc_alen + data_secsize, 0,
474 				    encr_secsize - sc->sc_alen - data_secsize);
475 		}
476 
477 		if (bp->bio_cmd == BIO_READ) {
478 			/* Remember read HMAC. */
479 			bcopy(data, auth, sc->sc_alen);
480 			auth += sc->sc_alen;
481 			/* TODO: bzero(9) can be commented out later. */
482 			bzero(data, sc->sc_alen);
483 		} else {
484 			bcopy(plaindata, data + sc->sc_alen, data_secsize);
485 			plaindata += data_secsize;
486 		}
487 
488 		crp->crp_sid = wr->w_sid;
489 		crp->crp_ilen = sc->sc_alen + data_secsize;
490 		crp->crp_olen = data_secsize;
491 		crp->crp_opaque = (void *)bp;
492 		crp->crp_buf = (void *)data;
493 		data += encr_secsize;
494 		crp->crp_flags = CRYPTO_F_CBIFSYNC;
495 		if (g_eli_batch)
496 			crp->crp_flags |= CRYPTO_F_BATCH;
497 		if (bp->bio_cmd == BIO_WRITE) {
498 			crp->crp_callback = g_eli_auth_write_done;
499 			crp->crp_desc = crde;
500 			crde->crd_next = crda;
501 			crda->crd_next = NULL;
502 		} else {
503 			crp->crp_callback = g_eli_auth_read_done;
504 			crp->crp_desc = crda;
505 			crda->crd_next = crde;
506 			crde->crd_next = NULL;
507 		}
508 
509 		crde->crd_skip = sc->sc_alen;
510 		crde->crd_len = data_secsize;
511 		crde->crd_flags = CRD_F_IV_EXPLICIT | CRD_F_IV_PRESENT;
512 		if ((sc->sc_flags & G_ELI_FLAG_FIRST_KEY) == 0)
513 			crde->crd_flags |= CRD_F_KEY_EXPLICIT;
514 		if (bp->bio_cmd == BIO_WRITE)
515 			crde->crd_flags |= CRD_F_ENCRYPT;
516 		crde->crd_alg = sc->sc_ealgo;
517 		crde->crd_key = g_eli_key_hold(sc, dstoff, encr_secsize);
518 		crde->crd_klen = sc->sc_ekeylen;
519 		if (sc->sc_ealgo == CRYPTO_AES_XTS)
520 			crde->crd_klen <<= 1;
521 		g_eli_crypto_ivgen(sc, dstoff, crde->crd_iv,
522 		    sizeof(crde->crd_iv));
523 
524 		crda->crd_skip = sc->sc_alen;
525 		crda->crd_len = data_secsize;
526 		crda->crd_inject = 0;
527 		crda->crd_flags = CRD_F_KEY_EXPLICIT;
528 		crda->crd_alg = sc->sc_aalgo;
529 		g_eli_auth_keygen(sc, dstoff, authkey);
530 		crda->crd_key = authkey;
531 		crda->crd_klen = G_ELI_AUTH_SECKEYLEN * 8;
532 
533 		crp->crp_etype = 0;
534 		error = crypto_dispatch(crp);
535 		KASSERT(error == 0, ("crypto_dispatch() failed (error=%d)",
536 		    error));
537 	}
538 }
539