1 /*- 2 * Copyright (c) 2005-2011 Pawel Jakub Dawidek <pawel@dawidek.net> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/kernel.h> 33 #include <sys/linker.h> 34 #include <sys/module.h> 35 #include <sys/lock.h> 36 #include <sys/mutex.h> 37 #include <sys/bio.h> 38 #include <sys/sysctl.h> 39 #include <sys/malloc.h> 40 #include <sys/kthread.h> 41 #include <sys/proc.h> 42 #include <sys/sched.h> 43 #include <sys/smp.h> 44 #include <sys/uio.h> 45 #include <sys/vnode.h> 46 47 #include <vm/uma.h> 48 49 #include <geom/geom.h> 50 #include <geom/eli/g_eli.h> 51 #include <geom/eli/pkcs5v2.h> 52 53 /* 54 * The data layout description when integrity verification is configured. 55 * 56 * One of the most important assumption here is that authenticated data and its 57 * HMAC has to be stored in the same place (namely in the same sector) to make 58 * it work reliable. 59 * The problem is that file systems work only with sectors that are multiple of 60 * 512 bytes and a power of two number. 61 * My idea to implement it is as follows. 62 * Let's store HMAC in sector. This is a must. This leaves us 480 bytes for 63 * data. We can't use that directly (ie. we can't create provider with 480 bytes 64 * sector size). We need another sector from where we take only 32 bytes of data 65 * and we store HMAC of this data as well. This takes two sectors from the 66 * original provider at the input and leaves us one sector of authenticated data 67 * at the output. Not very efficient, but you got the idea. 68 * Now, let's assume, we want to create provider with 4096 bytes sector. 69 * To output 4096 bytes of authenticated data we need 8x480 plus 1x256, so we 70 * need nine 512-bytes sectors at the input to get one 4096-bytes sector at the 71 * output. That's better. With 4096 bytes sector we can use 89% of size of the 72 * original provider. I find it as an acceptable cost. 73 * The reliability comes from the fact, that every HMAC stored inside the sector 74 * is calculated only for the data in the same sector, so its impossible to 75 * write new data and leave old HMAC or vice versa. 76 * 77 * And here is the picture: 78 * 79 * da0: +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+-----+ 80 * |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |256b | 81 * |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data | 82 * +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+-----+ 83 * |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |288 bytes | 84 * +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ |224 unused| 85 * +----------+ 86 * da0.eli: +----+----+----+----+----+----+----+----+----+ 87 * |480b|480b|480b|480b|480b|480b|480b|480b|256b| 88 * +----+----+----+----+----+----+----+----+----+ 89 * | 4096 bytes | 90 * +--------------------------------------------+ 91 * 92 * PS. You can use any sector size with geli(8). My example is using 4kB, 93 * because it's most efficient. For 8kB sectors you need 2 extra sectors, 94 * so the cost is the same as for 4kB sectors. 95 */ 96 97 /* 98 * Code paths: 99 * BIO_READ: 100 * g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> g_eli_auth_run -> g_eli_auth_read_done -> g_io_deliver 101 * BIO_WRITE: 102 * g_eli_start -> g_eli_auth_run -> g_eli_auth_write_done -> g_io_request -> g_eli_write_done -> g_io_deliver 103 */ 104 105 MALLOC_DECLARE(M_ELI); 106 107 /* 108 * Here we generate key for HMAC. Every sector has its own HMAC key, so it is 109 * not possible to copy sectors. 110 * We cannot depend on fact, that every sector has its own IV, because different 111 * IV doesn't change HMAC, when we use encrypt-then-authenticate method. 112 */ 113 static void 114 g_eli_auth_keygen(struct g_eli_softc *sc, off_t offset, u_char *key) 115 { 116 SHA256_CTX ctx; 117 118 /* Copy precalculated SHA256 context. */ 119 bcopy(&sc->sc_akeyctx, &ctx, sizeof(ctx)); 120 SHA256_Update(&ctx, (uint8_t *)&offset, sizeof(offset)); 121 SHA256_Final(key, &ctx); 122 } 123 124 /* 125 * The function is called after we read and decrypt data. 126 * 127 * g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> g_eli_auth_run -> G_ELI_AUTH_READ_DONE -> g_io_deliver 128 */ 129 static int 130 g_eli_auth_read_done(struct cryptop *crp) 131 { 132 struct g_eli_softc *sc; 133 struct bio *bp; 134 135 if (crp->crp_etype == EAGAIN) { 136 if (g_eli_crypto_rerun(crp) == 0) 137 return (0); 138 } 139 bp = (struct bio *)crp->crp_opaque; 140 bp->bio_inbed++; 141 if (crp->crp_etype == 0) { 142 bp->bio_completed += crp->crp_olen; 143 G_ELI_DEBUG(3, "Crypto READ request done (%d/%d) (add=%jd completed=%jd).", 144 bp->bio_inbed, bp->bio_children, (intmax_t)crp->crp_olen, (intmax_t)bp->bio_completed); 145 } else { 146 G_ELI_DEBUG(1, "Crypto READ request failed (%d/%d) error=%d.", 147 bp->bio_inbed, bp->bio_children, crp->crp_etype); 148 if (bp->bio_error == 0) 149 bp->bio_error = crp->crp_etype; 150 } 151 sc = bp->bio_to->geom->softc; 152 g_eli_key_drop(sc, crp->crp_desc->crd_next->crd_key); 153 /* 154 * Do we have all sectors already? 155 */ 156 if (bp->bio_inbed < bp->bio_children) 157 return (0); 158 if (bp->bio_error == 0) { 159 u_int i, lsec, nsec, data_secsize, decr_secsize, encr_secsize; 160 u_char *srcdata, *dstdata, *auth; 161 off_t coroff, corsize; 162 163 /* 164 * Verify data integrity based on calculated and read HMACs. 165 */ 166 /* Sectorsize of decrypted provider eg. 4096. */ 167 decr_secsize = bp->bio_to->sectorsize; 168 /* The real sectorsize of encrypted provider, eg. 512. */ 169 encr_secsize = LIST_FIRST(&sc->sc_geom->consumer)->provider->sectorsize; 170 /* Number of data bytes in one encrypted sector, eg. 480. */ 171 data_secsize = sc->sc_data_per_sector; 172 /* Number of sectors from decrypted provider, eg. 2. */ 173 nsec = bp->bio_length / decr_secsize; 174 /* Number of sectors from encrypted provider, eg. 18. */ 175 nsec = (nsec * sc->sc_bytes_per_sector) / encr_secsize; 176 /* Last sector number in every big sector, eg. 9. */ 177 lsec = sc->sc_bytes_per_sector / encr_secsize; 178 179 srcdata = bp->bio_driver2; 180 dstdata = bp->bio_data; 181 auth = srcdata + encr_secsize * nsec; 182 coroff = -1; 183 corsize = 0; 184 185 for (i = 1; i <= nsec; i++) { 186 data_secsize = sc->sc_data_per_sector; 187 if ((i % lsec) == 0) 188 data_secsize = decr_secsize % data_secsize; 189 if (bcmp(srcdata, auth, sc->sc_alen) != 0) { 190 /* 191 * Curruption detected, remember the offset if 192 * this is the first corrupted sector and 193 * increase size. 194 */ 195 if (bp->bio_error == 0) 196 bp->bio_error = -1; 197 if (coroff == -1) { 198 coroff = bp->bio_offset + 199 (dstdata - (u_char *)bp->bio_data); 200 } 201 corsize += data_secsize; 202 } else { 203 /* 204 * No curruption, good. 205 * Report previous corruption if there was one. 206 */ 207 if (coroff != -1) { 208 G_ELI_DEBUG(0, "%s: Failed to authenticate %jd " 209 "bytes of data at offset %jd.", 210 sc->sc_name, (intmax_t)corsize, 211 (intmax_t)coroff); 212 coroff = -1; 213 corsize = 0; 214 } 215 bcopy(srcdata + sc->sc_alen, dstdata, 216 data_secsize); 217 } 218 srcdata += encr_secsize; 219 dstdata += data_secsize; 220 auth += sc->sc_alen; 221 } 222 /* Report previous corruption if there was one. */ 223 if (coroff != -1) { 224 G_ELI_DEBUG(0, "%s: Failed to authenticate %jd " 225 "bytes of data at offset %jd.", 226 sc->sc_name, (intmax_t)corsize, (intmax_t)coroff); 227 } 228 } 229 free(bp->bio_driver2, M_ELI); 230 bp->bio_driver2 = NULL; 231 if (bp->bio_error != 0) { 232 if (bp->bio_error == -1) 233 bp->bio_error = EINVAL; 234 else { 235 G_ELI_LOGREQ(0, bp, 236 "Crypto READ request failed (error=%d).", 237 bp->bio_error); 238 } 239 bp->bio_completed = 0; 240 } 241 /* 242 * Read is finished, send it up. 243 */ 244 g_io_deliver(bp, bp->bio_error); 245 atomic_subtract_int(&sc->sc_inflight, 1); 246 return (0); 247 } 248 249 /* 250 * The function is called after data encryption. 251 * 252 * g_eli_start -> g_eli_auth_run -> G_ELI_AUTH_WRITE_DONE -> g_io_request -> g_eli_write_done -> g_io_deliver 253 */ 254 static int 255 g_eli_auth_write_done(struct cryptop *crp) 256 { 257 struct g_eli_softc *sc; 258 struct g_consumer *cp; 259 struct bio *bp, *cbp, *cbp2; 260 u_int nsec; 261 262 if (crp->crp_etype == EAGAIN) { 263 if (g_eli_crypto_rerun(crp) == 0) 264 return (0); 265 } 266 bp = (struct bio *)crp->crp_opaque; 267 bp->bio_inbed++; 268 if (crp->crp_etype == 0) { 269 G_ELI_DEBUG(3, "Crypto WRITE request done (%d/%d).", 270 bp->bio_inbed, bp->bio_children); 271 } else { 272 G_ELI_DEBUG(1, "Crypto WRITE request failed (%d/%d) error=%d.", 273 bp->bio_inbed, bp->bio_children, crp->crp_etype); 274 if (bp->bio_error == 0) 275 bp->bio_error = crp->crp_etype; 276 } 277 sc = bp->bio_to->geom->softc; 278 g_eli_key_drop(sc, crp->crp_desc->crd_key); 279 /* 280 * All sectors are already encrypted? 281 */ 282 if (bp->bio_inbed < bp->bio_children) 283 return (0); 284 if (bp->bio_error != 0) { 285 G_ELI_LOGREQ(0, bp, "Crypto WRITE request failed (error=%d).", 286 bp->bio_error); 287 free(bp->bio_driver2, M_ELI); 288 bp->bio_driver2 = NULL; 289 cbp = bp->bio_driver1; 290 bp->bio_driver1 = NULL; 291 g_destroy_bio(cbp); 292 g_io_deliver(bp, bp->bio_error); 293 atomic_subtract_int(&sc->sc_inflight, 1); 294 return (0); 295 } 296 cp = LIST_FIRST(&sc->sc_geom->consumer); 297 cbp = bp->bio_driver1; 298 bp->bio_driver1 = NULL; 299 cbp->bio_to = cp->provider; 300 cbp->bio_done = g_eli_write_done; 301 302 /* Number of sectors from decrypted provider, eg. 1. */ 303 nsec = bp->bio_length / bp->bio_to->sectorsize; 304 /* Number of sectors from encrypted provider, eg. 9. */ 305 nsec = (nsec * sc->sc_bytes_per_sector) / cp->provider->sectorsize; 306 307 cbp->bio_length = cp->provider->sectorsize * nsec; 308 cbp->bio_offset = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector; 309 cbp->bio_data = bp->bio_driver2; 310 311 /* 312 * We write more than what is requested, so we have to be ready to write 313 * more than MAXPHYS. 314 */ 315 cbp2 = NULL; 316 if (cbp->bio_length > MAXPHYS) { 317 cbp2 = g_duplicate_bio(bp); 318 cbp2->bio_length = cbp->bio_length - MAXPHYS; 319 cbp2->bio_data = cbp->bio_data + MAXPHYS; 320 cbp2->bio_offset = cbp->bio_offset + MAXPHYS; 321 cbp2->bio_to = cp->provider; 322 cbp2->bio_done = g_eli_write_done; 323 cbp->bio_length = MAXPHYS; 324 } 325 /* 326 * Send encrypted data to the provider. 327 */ 328 G_ELI_LOGREQ(2, cbp, "Sending request."); 329 bp->bio_inbed = 0; 330 bp->bio_children = (cbp2 != NULL ? 2 : 1); 331 g_io_request(cbp, cp); 332 if (cbp2 != NULL) { 333 G_ELI_LOGREQ(2, cbp2, "Sending request."); 334 g_io_request(cbp2, cp); 335 } 336 return (0); 337 } 338 339 void 340 g_eli_auth_read(struct g_eli_softc *sc, struct bio *bp) 341 { 342 struct g_consumer *cp; 343 struct bio *cbp, *cbp2; 344 size_t size; 345 off_t nsec; 346 347 bp->bio_pflags = 0; 348 349 cp = LIST_FIRST(&sc->sc_geom->consumer); 350 cbp = bp->bio_driver1; 351 bp->bio_driver1 = NULL; 352 cbp->bio_to = cp->provider; 353 cbp->bio_done = g_eli_read_done; 354 355 /* Number of sectors from decrypted provider, eg. 1. */ 356 nsec = bp->bio_length / bp->bio_to->sectorsize; 357 /* Number of sectors from encrypted provider, eg. 9. */ 358 nsec = (nsec * sc->sc_bytes_per_sector) / cp->provider->sectorsize; 359 360 cbp->bio_length = cp->provider->sectorsize * nsec; 361 size = cbp->bio_length; 362 size += sc->sc_alen * nsec; 363 size += sizeof(struct cryptop) * nsec; 364 size += sizeof(struct cryptodesc) * nsec * 2; 365 size += G_ELI_AUTH_SECKEYLEN * nsec; 366 size += sizeof(struct uio) * nsec; 367 size += sizeof(struct iovec) * nsec; 368 cbp->bio_offset = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector; 369 bp->bio_driver2 = malloc(size, M_ELI, M_WAITOK); 370 cbp->bio_data = bp->bio_driver2; 371 372 /* 373 * We read more than what is requested, so we have to be ready to read 374 * more than MAXPHYS. 375 */ 376 cbp2 = NULL; 377 if (cbp->bio_length > MAXPHYS) { 378 cbp2 = g_duplicate_bio(bp); 379 cbp2->bio_length = cbp->bio_length - MAXPHYS; 380 cbp2->bio_data = cbp->bio_data + MAXPHYS; 381 cbp2->bio_offset = cbp->bio_offset + MAXPHYS; 382 cbp2->bio_to = cp->provider; 383 cbp2->bio_done = g_eli_read_done; 384 cbp->bio_length = MAXPHYS; 385 } 386 /* 387 * Read encrypted data from provider. 388 */ 389 G_ELI_LOGREQ(2, cbp, "Sending request."); 390 g_io_request(cbp, cp); 391 if (cbp2 != NULL) { 392 G_ELI_LOGREQ(2, cbp2, "Sending request."); 393 g_io_request(cbp2, cp); 394 } 395 } 396 397 /* 398 * This is the main function responsible for cryptography (ie. communication 399 * with crypto(9) subsystem). 400 * 401 * BIO_READ: 402 * g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> G_ELI_AUTH_RUN -> g_eli_auth_read_done -> g_io_deliver 403 * BIO_WRITE: 404 * g_eli_start -> G_ELI_AUTH_RUN -> g_eli_auth_write_done -> g_io_request -> g_eli_write_done -> g_io_deliver 405 */ 406 void 407 g_eli_auth_run(struct g_eli_worker *wr, struct bio *bp) 408 { 409 struct g_eli_softc *sc; 410 struct cryptop *crp; 411 struct cryptodesc *crde, *crda; 412 struct uio *uio; 413 struct iovec *iov; 414 u_int i, lsec, nsec, data_secsize, decr_secsize, encr_secsize; 415 off_t dstoff; 416 int err, error; 417 u_char *p, *data, *auth, *authkey, *plaindata; 418 419 G_ELI_LOGREQ(3, bp, "%s", __func__); 420 421 bp->bio_pflags = wr->w_number; 422 sc = wr->w_softc; 423 /* Sectorsize of decrypted provider eg. 4096. */ 424 decr_secsize = bp->bio_to->sectorsize; 425 /* The real sectorsize of encrypted provider, eg. 512. */ 426 encr_secsize = LIST_FIRST(&sc->sc_geom->consumer)->provider->sectorsize; 427 /* Number of data bytes in one encrypted sector, eg. 480. */ 428 data_secsize = sc->sc_data_per_sector; 429 /* Number of sectors from decrypted provider, eg. 2. */ 430 nsec = bp->bio_length / decr_secsize; 431 /* Number of sectors from encrypted provider, eg. 18. */ 432 nsec = (nsec * sc->sc_bytes_per_sector) / encr_secsize; 433 /* Last sector number in every big sector, eg. 9. */ 434 lsec = sc->sc_bytes_per_sector / encr_secsize; 435 /* Destination offset, used for IV generation. */ 436 dstoff = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector; 437 438 auth = NULL; /* Silence compiler warning. */ 439 plaindata = bp->bio_data; 440 if (bp->bio_cmd == BIO_READ) { 441 data = bp->bio_driver2; 442 auth = data + encr_secsize * nsec; 443 p = auth + sc->sc_alen * nsec; 444 } else { 445 size_t size; 446 447 size = encr_secsize * nsec; 448 size += sizeof(*crp) * nsec; 449 size += sizeof(*crde) * nsec; 450 size += sizeof(*crda) * nsec; 451 size += G_ELI_AUTH_SECKEYLEN * nsec; 452 size += sizeof(*uio) * nsec; 453 size += sizeof(*iov) * nsec; 454 data = malloc(size, M_ELI, M_WAITOK); 455 bp->bio_driver2 = data; 456 p = data + encr_secsize * nsec; 457 } 458 bp->bio_inbed = 0; 459 bp->bio_children = nsec; 460 461 error = 0; 462 for (i = 1; i <= nsec; i++, dstoff += encr_secsize) { 463 crp = (struct cryptop *)p; p += sizeof(*crp); 464 crde = (struct cryptodesc *)p; p += sizeof(*crde); 465 crda = (struct cryptodesc *)p; p += sizeof(*crda); 466 authkey = (u_char *)p; p += G_ELI_AUTH_SECKEYLEN; 467 uio = (struct uio *)p; p += sizeof(*uio); 468 iov = (struct iovec *)p; p += sizeof(*iov); 469 470 data_secsize = sc->sc_data_per_sector; 471 if ((i % lsec) == 0) 472 data_secsize = decr_secsize % data_secsize; 473 474 if (bp->bio_cmd == BIO_READ) { 475 /* Remember read HMAC. */ 476 bcopy(data, auth, sc->sc_alen); 477 auth += sc->sc_alen; 478 /* TODO: bzero(9) can be commented out later. */ 479 bzero(data, sc->sc_alen); 480 } else { 481 bcopy(plaindata, data + sc->sc_alen, data_secsize); 482 plaindata += data_secsize; 483 } 484 485 iov->iov_len = sc->sc_alen + data_secsize; 486 iov->iov_base = data; 487 data += encr_secsize; 488 489 uio->uio_iov = iov; 490 uio->uio_iovcnt = 1; 491 uio->uio_segflg = UIO_SYSSPACE; 492 uio->uio_resid = iov->iov_len; 493 494 crp->crp_sid = wr->w_sid; 495 crp->crp_ilen = uio->uio_resid; 496 crp->crp_olen = data_secsize; 497 crp->crp_opaque = (void *)bp; 498 crp->crp_buf = (void *)uio; 499 crp->crp_flags = CRYPTO_F_IOV | CRYPTO_F_CBIFSYNC | CRYPTO_F_REL; 500 if (g_eli_batch) 501 crp->crp_flags |= CRYPTO_F_BATCH; 502 if (bp->bio_cmd == BIO_WRITE) { 503 crp->crp_callback = g_eli_auth_write_done; 504 crp->crp_desc = crde; 505 crde->crd_next = crda; 506 crda->crd_next = NULL; 507 } else { 508 crp->crp_callback = g_eli_auth_read_done; 509 crp->crp_desc = crda; 510 crda->crd_next = crde; 511 crde->crd_next = NULL; 512 } 513 514 crde->crd_skip = sc->sc_alen; 515 crde->crd_len = data_secsize; 516 crde->crd_flags = CRD_F_IV_EXPLICIT | CRD_F_IV_PRESENT; 517 if ((sc->sc_flags & G_ELI_FLAG_FIRST_KEY) == 0) 518 crde->crd_flags |= CRD_F_KEY_EXPLICIT; 519 if (bp->bio_cmd == BIO_WRITE) 520 crde->crd_flags |= CRD_F_ENCRYPT; 521 crde->crd_alg = sc->sc_ealgo; 522 crde->crd_key = g_eli_key_hold(sc, dstoff, encr_secsize); 523 crde->crd_klen = sc->sc_ekeylen; 524 if (sc->sc_ealgo == CRYPTO_AES_XTS) 525 crde->crd_klen <<= 1; 526 g_eli_crypto_ivgen(sc, dstoff, crde->crd_iv, 527 sizeof(crde->crd_iv)); 528 529 crda->crd_skip = sc->sc_alen; 530 crda->crd_len = data_secsize; 531 crda->crd_inject = 0; 532 crda->crd_flags = CRD_F_KEY_EXPLICIT; 533 crda->crd_alg = sc->sc_aalgo; 534 g_eli_auth_keygen(sc, dstoff, authkey); 535 crda->crd_key = authkey; 536 crda->crd_klen = G_ELI_AUTH_SECKEYLEN * 8; 537 538 crp->crp_etype = 0; 539 err = crypto_dispatch(crp); 540 if (err != 0 && error == 0) 541 error = err; 542 } 543 if (bp->bio_error == 0) 544 bp->bio_error = error; 545 } 546