xref: /freebsd/sys/geom/eli/g_eli_integrity.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 2005-2011 Pawel Jakub Dawidek <pawel@dawidek.net>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/linker.h>
34 #include <sys/module.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/bio.h>
38 #include <sys/sysctl.h>
39 #include <sys/malloc.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/sched.h>
43 #include <sys/smp.h>
44 #include <sys/uio.h>
45 #include <sys/vnode.h>
46 
47 #include <vm/uma.h>
48 
49 #include <geom/geom.h>
50 #include <geom/eli/g_eli.h>
51 #include <geom/eli/pkcs5v2.h>
52 
53 /*
54  * The data layout description when integrity verification is configured.
55  *
56  * One of the most important assumption here is that authenticated data and its
57  * HMAC has to be stored in the same place (namely in the same sector) to make
58  * it work reliable.
59  * The problem is that file systems work only with sectors that are multiple of
60  * 512 bytes and a power of two number.
61  * My idea to implement it is as follows.
62  * Let's store HMAC in sector. This is a must. This leaves us 480 bytes for
63  * data. We can't use that directly (ie. we can't create provider with 480 bytes
64  * sector size). We need another sector from where we take only 32 bytes of data
65  * and we store HMAC of this data as well. This takes two sectors from the
66  * original provider at the input and leaves us one sector of authenticated data
67  * at the output. Not very efficient, but you got the idea.
68  * Now, let's assume, we want to create provider with 4096 bytes sector.
69  * To output 4096 bytes of authenticated data we need 8x480 plus 1x256, so we
70  * need nine 512-bytes sectors at the input to get one 4096-bytes sector at the
71  * output. That's better. With 4096 bytes sector we can use 89% of size of the
72  * original provider. I find it as an acceptable cost.
73  * The reliability comes from the fact, that every HMAC stored inside the sector
74  * is calculated only for the data in the same sector, so its impossible to
75  * write new data and leave old HMAC or vice versa.
76  *
77  * And here is the picture:
78  *
79  * da0: +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+-----+
80  *      |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |256b |
81  *      |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data |
82  *      +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+-----+
83  *      |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |288 bytes |
84  *      +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ |224 unused|
85  *                                                                                                      +----------+
86  * da0.eli: +----+----+----+----+----+----+----+----+----+
87  *          |480b|480b|480b|480b|480b|480b|480b|480b|256b|
88  *          +----+----+----+----+----+----+----+----+----+
89  *          |                 4096 bytes                 |
90  *          +--------------------------------------------+
91  *
92  * PS. You can use any sector size with geli(8). My example is using 4kB,
93  *     because it's most efficient. For 8kB sectors you need 2 extra sectors,
94  *     so the cost is the same as for 4kB sectors.
95  */
96 
97 /*
98  * Code paths:
99  * BIO_READ:
100  *	g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> g_eli_auth_run -> g_eli_auth_read_done -> g_io_deliver
101  * BIO_WRITE:
102  *	g_eli_start -> g_eli_auth_run -> g_eli_auth_write_done -> g_io_request -> g_eli_write_done -> g_io_deliver
103  */
104 
105 MALLOC_DECLARE(M_ELI);
106 
107 /*
108  * Here we generate key for HMAC. Every sector has its own HMAC key, so it is
109  * not possible to copy sectors.
110  * We cannot depend on fact, that every sector has its own IV, because different
111  * IV doesn't change HMAC, when we use encrypt-then-authenticate method.
112  */
113 static void
114 g_eli_auth_keygen(struct g_eli_softc *sc, off_t offset, u_char *key)
115 {
116 	SHA256_CTX ctx;
117 
118 	/* Copy precalculated SHA256 context. */
119 	bcopy(&sc->sc_akeyctx, &ctx, sizeof(ctx));
120 	SHA256_Update(&ctx, (uint8_t *)&offset, sizeof(offset));
121 	SHA256_Final(key, &ctx);
122 }
123 
124 /*
125  * The function is called after we read and decrypt data.
126  *
127  * g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> g_eli_auth_run -> G_ELI_AUTH_READ_DONE -> g_io_deliver
128  */
129 static int
130 g_eli_auth_read_done(struct cryptop *crp)
131 {
132 	struct g_eli_softc *sc;
133 	struct bio *bp;
134 
135 	if (crp->crp_etype == EAGAIN) {
136 		if (g_eli_crypto_rerun(crp) == 0)
137 			return (0);
138 	}
139 	bp = (struct bio *)crp->crp_opaque;
140 	bp->bio_inbed++;
141 	if (crp->crp_etype == 0) {
142 		bp->bio_completed += crp->crp_olen;
143 		G_ELI_DEBUG(3, "Crypto READ request done (%d/%d) (add=%jd completed=%jd).",
144 		    bp->bio_inbed, bp->bio_children, (intmax_t)crp->crp_olen, (intmax_t)bp->bio_completed);
145 	} else {
146 		G_ELI_DEBUG(1, "Crypto READ request failed (%d/%d) error=%d.",
147 		    bp->bio_inbed, bp->bio_children, crp->crp_etype);
148 		if (bp->bio_error == 0)
149 			bp->bio_error = crp->crp_etype;
150 	}
151 	sc = bp->bio_to->geom->softc;
152 	g_eli_key_drop(sc, crp->crp_desc->crd_next->crd_key);
153 	/*
154 	 * Do we have all sectors already?
155 	 */
156 	if (bp->bio_inbed < bp->bio_children)
157 		return (0);
158 	if (bp->bio_error == 0) {
159 		u_int i, lsec, nsec, data_secsize, decr_secsize, encr_secsize;
160 		u_char *srcdata, *dstdata, *auth;
161 		off_t coroff, corsize;
162 
163 		/*
164 		 * Verify data integrity based on calculated and read HMACs.
165 		 */
166 		/* Sectorsize of decrypted provider eg. 4096. */
167 		decr_secsize = bp->bio_to->sectorsize;
168 		/* The real sectorsize of encrypted provider, eg. 512. */
169 		encr_secsize = LIST_FIRST(&sc->sc_geom->consumer)->provider->sectorsize;
170 		/* Number of data bytes in one encrypted sector, eg. 480. */
171 		data_secsize = sc->sc_data_per_sector;
172 		/* Number of sectors from decrypted provider, eg. 2. */
173 		nsec = bp->bio_length / decr_secsize;
174 		/* Number of sectors from encrypted provider, eg. 18. */
175 		nsec = (nsec * sc->sc_bytes_per_sector) / encr_secsize;
176 		/* Last sector number in every big sector, eg. 9. */
177 		lsec = sc->sc_bytes_per_sector / encr_secsize;
178 
179 		srcdata = bp->bio_driver2;
180 		dstdata = bp->bio_data;
181 		auth = srcdata + encr_secsize * nsec;
182 		coroff = -1;
183 		corsize = 0;
184 
185 		for (i = 1; i <= nsec; i++) {
186 			data_secsize = sc->sc_data_per_sector;
187 			if ((i % lsec) == 0)
188 				data_secsize = decr_secsize % data_secsize;
189 			if (bcmp(srcdata, auth, sc->sc_alen) != 0) {
190 				/*
191 				 * Curruption detected, remember the offset if
192 				 * this is the first corrupted sector and
193 				 * increase size.
194 				 */
195 				if (bp->bio_error == 0)
196 					bp->bio_error = -1;
197 				if (coroff == -1) {
198 					coroff = bp->bio_offset +
199 					    (dstdata - (u_char *)bp->bio_data);
200 				}
201 				corsize += data_secsize;
202 			} else {
203 				/*
204 				 * No curruption, good.
205 				 * Report previous corruption if there was one.
206 				 */
207 				if (coroff != -1) {
208 					G_ELI_DEBUG(0, "%s: %jd bytes "
209 					    "corrupted at offset %jd.",
210 					    sc->sc_name, (intmax_t)corsize,
211 					    (intmax_t)coroff);
212 					coroff = -1;
213 					corsize = 0;
214 				}
215 				bcopy(srcdata + sc->sc_alen, dstdata,
216 				    data_secsize);
217 			}
218 			srcdata += encr_secsize;
219 			dstdata += data_secsize;
220 			auth += sc->sc_alen;
221 		}
222 		/* Report previous corruption if there was one. */
223 		if (coroff != -1) {
224 			G_ELI_DEBUG(0, "%s: %jd bytes corrupted at offset %jd.",
225 			    sc->sc_name, (intmax_t)corsize, (intmax_t)coroff);
226 		}
227 	}
228 	free(bp->bio_driver2, M_ELI);
229 	bp->bio_driver2 = NULL;
230 	if (bp->bio_error != 0) {
231 		if (bp->bio_error == -1)
232 			bp->bio_error = EINVAL;
233 		else {
234 			G_ELI_LOGREQ(0, bp,
235 			    "Crypto READ request failed (error=%d).",
236 			    bp->bio_error);
237 		}
238 		bp->bio_completed = 0;
239 	}
240 	/*
241 	 * Read is finished, send it up.
242 	 */
243 	g_io_deliver(bp, bp->bio_error);
244 	atomic_subtract_int(&sc->sc_inflight, 1);
245 	return (0);
246 }
247 
248 /*
249  * The function is called after data encryption.
250  *
251  * g_eli_start -> g_eli_auth_run -> G_ELI_AUTH_WRITE_DONE -> g_io_request -> g_eli_write_done -> g_io_deliver
252  */
253 static int
254 g_eli_auth_write_done(struct cryptop *crp)
255 {
256 	struct g_eli_softc *sc;
257 	struct g_consumer *cp;
258 	struct bio *bp, *cbp, *cbp2;
259 	u_int nsec;
260 
261 	if (crp->crp_etype == EAGAIN) {
262 		if (g_eli_crypto_rerun(crp) == 0)
263 			return (0);
264 	}
265 	bp = (struct bio *)crp->crp_opaque;
266 	bp->bio_inbed++;
267 	if (crp->crp_etype == 0) {
268 		G_ELI_DEBUG(3, "Crypto WRITE request done (%d/%d).",
269 		    bp->bio_inbed, bp->bio_children);
270 	} else {
271 		G_ELI_DEBUG(1, "Crypto WRITE request failed (%d/%d) error=%d.",
272 		    bp->bio_inbed, bp->bio_children, crp->crp_etype);
273 		if (bp->bio_error == 0)
274 			bp->bio_error = crp->crp_etype;
275 	}
276 	sc = bp->bio_to->geom->softc;
277 	g_eli_key_drop(sc, crp->crp_desc->crd_key);
278 	/*
279 	 * All sectors are already encrypted?
280 	 */
281 	if (bp->bio_inbed < bp->bio_children)
282 		return (0);
283 	if (bp->bio_error != 0) {
284 		G_ELI_LOGREQ(0, bp, "Crypto WRITE request failed (error=%d).",
285 		    bp->bio_error);
286 		free(bp->bio_driver2, M_ELI);
287 		bp->bio_driver2 = NULL;
288 		cbp = bp->bio_driver1;
289 		bp->bio_driver1 = NULL;
290 		g_destroy_bio(cbp);
291 		g_io_deliver(bp, bp->bio_error);
292 		atomic_subtract_int(&sc->sc_inflight, 1);
293 		return (0);
294 	}
295 	cp = LIST_FIRST(&sc->sc_geom->consumer);
296 	cbp = bp->bio_driver1;
297 	bp->bio_driver1 = NULL;
298 	cbp->bio_to = cp->provider;
299 	cbp->bio_done = g_eli_write_done;
300 
301 	/* Number of sectors from decrypted provider, eg. 1. */
302 	nsec = bp->bio_length / bp->bio_to->sectorsize;
303 	/* Number of sectors from encrypted provider, eg. 9. */
304 	nsec = (nsec * sc->sc_bytes_per_sector) / cp->provider->sectorsize;
305 
306 	cbp->bio_length = cp->provider->sectorsize * nsec;
307 	cbp->bio_offset = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
308 	cbp->bio_data = bp->bio_driver2;
309 
310 	/*
311 	 * We write more than what is requested, so we have to be ready to write
312 	 * more than MAXPHYS.
313 	 */
314 	cbp2 = NULL;
315 	if (cbp->bio_length > MAXPHYS) {
316 		cbp2 = g_duplicate_bio(bp);
317 		cbp2->bio_length = cbp->bio_length - MAXPHYS;
318 		cbp2->bio_data = cbp->bio_data + MAXPHYS;
319 		cbp2->bio_offset = cbp->bio_offset + MAXPHYS;
320 		cbp2->bio_to = cp->provider;
321 		cbp2->bio_done = g_eli_write_done;
322 		cbp->bio_length = MAXPHYS;
323 	}
324 	/*
325 	 * Send encrypted data to the provider.
326 	 */
327 	G_ELI_LOGREQ(2, cbp, "Sending request.");
328 	bp->bio_inbed = 0;
329 	bp->bio_children = (cbp2 != NULL ? 2 : 1);
330 	g_io_request(cbp, cp);
331 	if (cbp2 != NULL) {
332 		G_ELI_LOGREQ(2, cbp2, "Sending request.");
333 		g_io_request(cbp2, cp);
334 	}
335 	return (0);
336 }
337 
338 void
339 g_eli_auth_read(struct g_eli_softc *sc, struct bio *bp)
340 {
341 	struct g_consumer *cp;
342 	struct bio *cbp, *cbp2;
343 	size_t size;
344 	off_t nsec;
345 
346 	bp->bio_pflags = 0;
347 
348 	cp = LIST_FIRST(&sc->sc_geom->consumer);
349 	cbp = bp->bio_driver1;
350 	bp->bio_driver1 = NULL;
351 	cbp->bio_to = cp->provider;
352 	cbp->bio_done = g_eli_read_done;
353 
354 	/* Number of sectors from decrypted provider, eg. 1. */
355 	nsec = bp->bio_length / bp->bio_to->sectorsize;
356 	/* Number of sectors from encrypted provider, eg. 9. */
357 	nsec = (nsec * sc->sc_bytes_per_sector) / cp->provider->sectorsize;
358 
359 	cbp->bio_length = cp->provider->sectorsize * nsec;
360 	size = cbp->bio_length;
361 	size += sc->sc_alen * nsec;
362 	size += sizeof(struct cryptop) * nsec;
363 	size += sizeof(struct cryptodesc) * nsec * 2;
364 	size += G_ELI_AUTH_SECKEYLEN * nsec;
365 	size += sizeof(struct uio) * nsec;
366 	size += sizeof(struct iovec) * nsec;
367 	cbp->bio_offset = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
368 	bp->bio_driver2 = malloc(size, M_ELI, M_WAITOK);
369 	cbp->bio_data = bp->bio_driver2;
370 
371 	/*
372 	 * We read more than what is requested, so we have to be ready to read
373 	 * more than MAXPHYS.
374 	 */
375 	cbp2 = NULL;
376 	if (cbp->bio_length > MAXPHYS) {
377 		cbp2 = g_duplicate_bio(bp);
378 		cbp2->bio_length = cbp->bio_length - MAXPHYS;
379 		cbp2->bio_data = cbp->bio_data + MAXPHYS;
380 		cbp2->bio_offset = cbp->bio_offset + MAXPHYS;
381 		cbp2->bio_to = cp->provider;
382 		cbp2->bio_done = g_eli_read_done;
383 		cbp->bio_length = MAXPHYS;
384 	}
385 	/*
386 	 * Read encrypted data from provider.
387 	 */
388 	G_ELI_LOGREQ(2, cbp, "Sending request.");
389 	g_io_request(cbp, cp);
390 	if (cbp2 != NULL) {
391 		G_ELI_LOGREQ(2, cbp2, "Sending request.");
392 		g_io_request(cbp2, cp);
393 	}
394 }
395 
396 /*
397  * This is the main function responsible for cryptography (ie. communication
398  * with crypto(9) subsystem).
399  *
400  * BIO_READ:
401  *	g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> G_ELI_AUTH_RUN -> g_eli_auth_read_done -> g_io_deliver
402  * BIO_WRITE:
403  *	g_eli_start -> G_ELI_AUTH_RUN -> g_eli_auth_write_done -> g_io_request -> g_eli_write_done -> g_io_deliver
404  */
405 void
406 g_eli_auth_run(struct g_eli_worker *wr, struct bio *bp)
407 {
408 	struct g_eli_softc *sc;
409 	struct cryptop *crp;
410 	struct cryptodesc *crde, *crda;
411 	struct uio *uio;
412 	struct iovec *iov;
413 	u_int i, lsec, nsec, data_secsize, decr_secsize, encr_secsize;
414 	off_t dstoff;
415 	int err, error;
416 	u_char *p, *data, *auth, *authkey, *plaindata;
417 
418 	G_ELI_LOGREQ(3, bp, "%s", __func__);
419 
420 	bp->bio_pflags = wr->w_number;
421 	sc = wr->w_softc;
422 	/* Sectorsize of decrypted provider eg. 4096. */
423 	decr_secsize = bp->bio_to->sectorsize;
424 	/* The real sectorsize of encrypted provider, eg. 512. */
425 	encr_secsize = LIST_FIRST(&sc->sc_geom->consumer)->provider->sectorsize;
426 	/* Number of data bytes in one encrypted sector, eg. 480. */
427 	data_secsize = sc->sc_data_per_sector;
428 	/* Number of sectors from decrypted provider, eg. 2. */
429 	nsec = bp->bio_length / decr_secsize;
430 	/* Number of sectors from encrypted provider, eg. 18. */
431 	nsec = (nsec * sc->sc_bytes_per_sector) / encr_secsize;
432 	/* Last sector number in every big sector, eg. 9. */
433 	lsec = sc->sc_bytes_per_sector / encr_secsize;
434 	/* Destination offset, used for IV generation. */
435 	dstoff = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
436 
437 	auth = NULL;	/* Silence compiler warning. */
438 	plaindata = bp->bio_data;
439 	if (bp->bio_cmd == BIO_READ) {
440 		data = bp->bio_driver2;
441 		auth = data + encr_secsize * nsec;
442 		p = auth + sc->sc_alen * nsec;
443 	} else {
444 		size_t size;
445 
446 		size = encr_secsize * nsec;
447 		size += sizeof(*crp) * nsec;
448 		size += sizeof(*crde) * nsec;
449 		size += sizeof(*crda) * nsec;
450 		size += G_ELI_AUTH_SECKEYLEN * nsec;
451 		size += sizeof(*uio) * nsec;
452 		size += sizeof(*iov) * nsec;
453 		data = malloc(size, M_ELI, M_WAITOK);
454 		bp->bio_driver2 = data;
455 		p = data + encr_secsize * nsec;
456 	}
457 	bp->bio_inbed = 0;
458 	bp->bio_children = nsec;
459 
460 	error = 0;
461 	for (i = 1; i <= nsec; i++, dstoff += encr_secsize) {
462 		crp = (struct cryptop *)p;	p += sizeof(*crp);
463 		crde = (struct cryptodesc *)p;	p += sizeof(*crde);
464 		crda = (struct cryptodesc *)p;	p += sizeof(*crda);
465 		authkey = (u_char *)p;		p += G_ELI_AUTH_SECKEYLEN;
466 		uio = (struct uio *)p;		p += sizeof(*uio);
467 		iov = (struct iovec *)p;	p += sizeof(*iov);
468 
469 		data_secsize = sc->sc_data_per_sector;
470 		if ((i % lsec) == 0)
471 			data_secsize = decr_secsize % data_secsize;
472 
473 		if (bp->bio_cmd == BIO_READ) {
474 			/* Remember read HMAC. */
475 			bcopy(data, auth, sc->sc_alen);
476 			auth += sc->sc_alen;
477 			/* TODO: bzero(9) can be commented out later. */
478 			bzero(data, sc->sc_alen);
479 		} else {
480 			bcopy(plaindata, data + sc->sc_alen, data_secsize);
481 			plaindata += data_secsize;
482 		}
483 
484 		iov->iov_len = sc->sc_alen + data_secsize;
485 		iov->iov_base = data;
486 		data += encr_secsize;
487 
488 		uio->uio_iov = iov;
489 		uio->uio_iovcnt = 1;
490 		uio->uio_segflg = UIO_SYSSPACE;
491 		uio->uio_resid = iov->iov_len;
492 
493 		crp->crp_sid = wr->w_sid;
494 		crp->crp_ilen = uio->uio_resid;
495 		crp->crp_olen = data_secsize;
496 		crp->crp_opaque = (void *)bp;
497 		crp->crp_buf = (void *)uio;
498 		crp->crp_flags = CRYPTO_F_IOV | CRYPTO_F_CBIFSYNC | CRYPTO_F_REL;
499 		if (g_eli_batch)
500 			crp->crp_flags |= CRYPTO_F_BATCH;
501 		if (bp->bio_cmd == BIO_WRITE) {
502 			crp->crp_callback = g_eli_auth_write_done;
503 			crp->crp_desc = crde;
504 			crde->crd_next = crda;
505 			crda->crd_next = NULL;
506 		} else {
507 			crp->crp_callback = g_eli_auth_read_done;
508 			crp->crp_desc = crda;
509 			crda->crd_next = crde;
510 			crde->crd_next = NULL;
511 		}
512 
513 		crde->crd_skip = sc->sc_alen;
514 		crde->crd_len = data_secsize;
515 		crde->crd_flags = CRD_F_IV_EXPLICIT | CRD_F_IV_PRESENT;
516 		if ((sc->sc_flags & G_ELI_FLAG_FIRST_KEY) == 0)
517 			crde->crd_flags |= CRD_F_KEY_EXPLICIT;
518 		if (bp->bio_cmd == BIO_WRITE)
519 			crde->crd_flags |= CRD_F_ENCRYPT;
520 		crde->crd_alg = sc->sc_ealgo;
521 		crde->crd_key = g_eli_key_hold(sc, dstoff, encr_secsize);
522 		crde->crd_klen = sc->sc_ekeylen;
523 		if (sc->sc_ealgo == CRYPTO_AES_XTS)
524 			crde->crd_klen <<= 1;
525 		g_eli_crypto_ivgen(sc, dstoff, crde->crd_iv,
526 		    sizeof(crde->crd_iv));
527 
528 		crda->crd_skip = sc->sc_alen;
529 		crda->crd_len = data_secsize;
530 		crda->crd_inject = 0;
531 		crda->crd_flags = CRD_F_KEY_EXPLICIT;
532 		crda->crd_alg = sc->sc_aalgo;
533 		g_eli_auth_keygen(sc, dstoff, authkey);
534 		crda->crd_key = authkey;
535 		crda->crd_klen = G_ELI_AUTH_SECKEYLEN * 8;
536 
537 		crp->crp_etype = 0;
538 		err = crypto_dispatch(crp);
539 		if (err != 0 && error == 0)
540 			error = err;
541 	}
542 	if (bp->bio_error == 0)
543 		bp->bio_error = error;
544 }
545