xref: /freebsd/sys/fs/unionfs/union_subr.c (revision e0649a35a670c4b625d1de289b3886d9b3c9654f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1994 Jan-Simon Pendry
5  * Copyright (c) 1994
6  *	The Regents of the University of California.  All rights reserved.
7  * Copyright (c) 2005, 2006, 2012 Masanori Ozawa <ozawa@ongs.co.jp>, ONGS Inc.
8  * Copyright (c) 2006, 2012 Daichi Goto <daichi@freebsd.org>
9  *
10  * This code is derived from software contributed to Berkeley by
11  * Jan-Simon Pendry.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/ktr.h>
42 #include <sys/lock.h>
43 #include <sys/mutex.h>
44 #include <sys/malloc.h>
45 #include <sys/mount.h>
46 #include <sys/namei.h>
47 #include <sys/proc.h>
48 #include <sys/vnode.h>
49 #include <sys/dirent.h>
50 #include <sys/fcntl.h>
51 #include <sys/filedesc.h>
52 #include <sys/stat.h>
53 #include <sys/sysctl.h>
54 #include <sys/taskqueue.h>
55 #include <sys/resourcevar.h>
56 
57 #include <machine/atomic.h>
58 
59 #include <security/mac/mac_framework.h>
60 
61 #include <vm/uma.h>
62 
63 #include <fs/unionfs/union.h>
64 
65 #define NUNIONFSNODECACHE 16
66 #define UNIONFSHASHMASK (NUNIONFSNODECACHE - 1)
67 
68 static MALLOC_DEFINE(M_UNIONFSHASH, "UNIONFS hash", "UNIONFS hash table");
69 MALLOC_DEFINE(M_UNIONFSNODE, "UNIONFS node", "UNIONFS vnode private part");
70 MALLOC_DEFINE(M_UNIONFSPATH, "UNIONFS path", "UNIONFS path private part");
71 
72 static struct task unionfs_deferred_rele_task;
73 static struct mtx unionfs_deferred_rele_lock;
74 static STAILQ_HEAD(, unionfs_node) unionfs_deferred_rele_list =
75     STAILQ_HEAD_INITIALIZER(unionfs_deferred_rele_list);
76 static TASKQUEUE_DEFINE_THREAD(unionfs_rele);
77 
78 unsigned int unionfs_ndeferred = 0;
79 SYSCTL_UINT(_vfs, OID_AUTO, unionfs_ndeferred, CTLFLAG_RD,
80     &unionfs_ndeferred, 0, "unionfs deferred vnode release");
81 
82 static void unionfs_deferred_rele(void *, int);
83 
84 /*
85  * Initialize
86  */
87 int
88 unionfs_init(struct vfsconf *vfsp)
89 {
90 	UNIONFSDEBUG("unionfs_init\n");	/* printed during system boot */
91 	TASK_INIT(&unionfs_deferred_rele_task, 0, unionfs_deferred_rele, NULL);
92 	mtx_init(&unionfs_deferred_rele_lock, "uniondefr", NULL, MTX_DEF);
93 	return (0);
94 }
95 
96 /*
97  * Uninitialize
98  */
99 int
100 unionfs_uninit(struct vfsconf *vfsp)
101 {
102 	taskqueue_quiesce(taskqueue_unionfs_rele);
103 	taskqueue_free(taskqueue_unionfs_rele);
104 	mtx_destroy(&unionfs_deferred_rele_lock);
105 	return (0);
106 }
107 
108 static void
109 unionfs_deferred_rele(void *arg __unused, int pending __unused)
110 {
111 	STAILQ_HEAD(, unionfs_node) local_rele_list;
112 	struct unionfs_node *unp, *tunp;
113 	unsigned int ndeferred;
114 
115 	ndeferred = 0;
116 	STAILQ_INIT(&local_rele_list);
117 	mtx_lock(&unionfs_deferred_rele_lock);
118 	STAILQ_CONCAT(&local_rele_list, &unionfs_deferred_rele_list);
119 	mtx_unlock(&unionfs_deferred_rele_lock);
120 	STAILQ_FOREACH_SAFE(unp, &local_rele_list, un_rele, tunp) {
121 		++ndeferred;
122 		MPASS(unp->un_dvp != NULL);
123 		vrele(unp->un_dvp);
124 		free(unp, M_UNIONFSNODE);
125 	}
126 
127 	/* We expect this function to be single-threaded, thus no atomic */
128 	unionfs_ndeferred += ndeferred;
129 }
130 
131 static struct unionfs_node_hashhead *
132 unionfs_get_hashhead(struct vnode *dvp, struct vnode *lookup)
133 {
134 	struct unionfs_node *unp;
135 
136 	unp = VTOUNIONFS(dvp);
137 
138 	return (&(unp->un_hashtbl[vfs_hash_index(lookup) & UNIONFSHASHMASK]));
139 }
140 
141 /*
142  * Attempt to lookup a cached unionfs vnode by upper/lower vp
143  * from dvp, with dvp's interlock held.
144  */
145 static struct vnode *
146 unionfs_get_cached_vnode_locked(struct vnode *lookup, struct vnode *dvp)
147 {
148 	struct unionfs_node *unp;
149 	struct unionfs_node_hashhead *hd;
150 	struct vnode *vp;
151 
152 	hd = unionfs_get_hashhead(dvp, lookup);
153 
154 	LIST_FOREACH(unp, hd, un_hash) {
155 		if (unp->un_uppervp == lookup ||
156 		    unp->un_lowervp == lookup) {
157 			vp = UNIONFSTOV(unp);
158 			VI_LOCK_FLAGS(vp, MTX_DUPOK);
159 			vp->v_iflag &= ~VI_OWEINACT;
160 			if (VN_IS_DOOMED(vp) ||
161 			    ((vp->v_iflag & VI_DOINGINACT) != 0)) {
162 				VI_UNLOCK(vp);
163 				vp = NULLVP;
164 			} else {
165 				vrefl(vp);
166 				VI_UNLOCK(vp);
167 			}
168 			return (vp);
169 		}
170 	}
171 
172 	return (NULLVP);
173 }
174 
175 
176 /*
177  * Get the cached vnode.
178  */
179 static struct vnode *
180 unionfs_get_cached_vnode(struct vnode *uvp, struct vnode *lvp,
181     struct vnode *dvp)
182 {
183 	struct vnode *vp;
184 
185 	vp = NULLVP;
186 	VI_LOCK(dvp);
187 	if (uvp != NULLVP)
188 		vp = unionfs_get_cached_vnode_locked(uvp, dvp);
189 	else if (lvp != NULLVP)
190 		vp = unionfs_get_cached_vnode_locked(lvp, dvp);
191 	VI_UNLOCK(dvp);
192 
193 	return (vp);
194 }
195 
196 /*
197  * Add the new vnode into cache.
198  */
199 static struct vnode *
200 unionfs_ins_cached_vnode(struct unionfs_node *uncp,
201     struct vnode *dvp)
202 {
203 	struct unionfs_node_hashhead *hd;
204 	struct vnode *vp;
205 
206 	vp = NULLVP;
207 	VI_LOCK(dvp);
208 	if (uncp->un_uppervp != NULLVP) {
209 		ASSERT_VOP_ELOCKED(uncp->un_uppervp, __func__);
210 		KASSERT(uncp->un_uppervp->v_type == VDIR,
211 		    ("%s: v_type != VDIR", __func__));
212 		vp = unionfs_get_cached_vnode_locked(uncp->un_uppervp, dvp);
213 	} else if (uncp->un_lowervp != NULLVP) {
214 		ASSERT_VOP_ELOCKED(uncp->un_lowervp, __func__);
215 		KASSERT(uncp->un_lowervp->v_type == VDIR,
216 		    ("%s: v_type != VDIR", __func__));
217 		vp = unionfs_get_cached_vnode_locked(uncp->un_lowervp, dvp);
218 	}
219 	if (vp == NULLVP) {
220 		hd = unionfs_get_hashhead(dvp, (uncp->un_uppervp != NULLVP ?
221 		    uncp->un_uppervp : uncp->un_lowervp));
222 		LIST_INSERT_HEAD(hd, uncp, un_hash);
223 	}
224 	VI_UNLOCK(dvp);
225 
226 	return (vp);
227 }
228 
229 /*
230  * Remove the vnode.
231  */
232 static void
233 unionfs_rem_cached_vnode(struct unionfs_node *unp, struct vnode *dvp)
234 {
235 	KASSERT(unp != NULL, ("%s: null node", __func__));
236 	KASSERT(dvp != NULLVP,
237 	    ("%s: null parent vnode", __func__));
238 
239 	VI_LOCK(dvp);
240 	if (unp->un_hash.le_prev != NULL) {
241 		LIST_REMOVE(unp, un_hash);
242 		unp->un_hash.le_next = NULL;
243 		unp->un_hash.le_prev = NULL;
244 	}
245 	VI_UNLOCK(dvp);
246 }
247 
248 /*
249  * Common cleanup handling for unionfs_nodeget
250  * Upper, lower, and parent directory vnodes are expected to be referenced by
251  * the caller.  Upper and lower vnodes, if non-NULL, are also expected to be
252  * exclusively locked by the caller.
253  * This function will return with the caller's locks and references undone.
254  */
255 static void
256 unionfs_nodeget_cleanup(struct vnode *vp, struct unionfs_node *unp)
257 {
258 
259 	/*
260 	 * Lock and reset the default vnode lock; vgone() expects a locked
261 	 * vnode, and we're going to reset the vnode ops.
262 	 */
263 	lockmgr(&vp->v_lock, LK_EXCLUSIVE, NULL);
264 
265 	/*
266 	 * Clear out private data and reset the vnode ops to avoid use of
267 	 * unionfs vnode ops on a partially constructed vnode.
268 	 */
269 	VI_LOCK(vp);
270 	vp->v_data = NULL;
271 	vp->v_vnlock = &vp->v_lock;
272 	vp->v_op = &dead_vnodeops;
273 	VI_UNLOCK(vp);
274 	vgone(vp);
275 	vput(vp);
276 
277 	if (unp->un_dvp != NULLVP)
278 		vrele(unp->un_dvp);
279 	if (unp->un_uppervp != NULLVP) {
280 		vput(unp->un_uppervp);
281 		if (unp->un_lowervp != NULLVP)
282 			vrele(unp->un_lowervp);
283 	} else if (unp->un_lowervp != NULLVP)
284 		vput(unp->un_lowervp);
285 	if (unp->un_hashtbl != NULL)
286 		hashdestroy(unp->un_hashtbl, M_UNIONFSHASH, UNIONFSHASHMASK);
287 	free(unp->un_path, M_UNIONFSPATH);
288 	free(unp, M_UNIONFSNODE);
289 }
290 
291 /*
292  * Make a new or get existing unionfs node.
293  *
294  * uppervp and lowervp should be unlocked. Because if new unionfs vnode is
295  * locked, uppervp or lowervp is locked too. In order to prevent dead lock,
296  * you should not lock plurality simultaneously.
297  */
298 int
299 unionfs_nodeget(struct mount *mp, struct vnode *uppervp,
300     struct vnode *lowervp, struct vnode *dvp, struct vnode **vpp,
301     struct componentname *cnp)
302 {
303 	char	       *path;
304 	struct unionfs_mount *ump;
305 	struct unionfs_node *unp;
306 	struct vnode   *vp;
307 	u_long		hashmask;
308 	int		error;
309 	int		lkflags;
310 	__enum_uint8(vtype)	vt;
311 
312 	error = 0;
313 	ump = MOUNTTOUNIONFSMOUNT(mp);
314 	lkflags = (cnp ? cnp->cn_lkflags : 0);
315 	path = (cnp ? cnp->cn_nameptr : NULL);
316 	*vpp = NULLVP;
317 
318 	if (uppervp == NULLVP && lowervp == NULLVP)
319 		panic("%s: upper and lower are both null", __func__);
320 
321 	vt = (uppervp != NULLVP ? uppervp->v_type : lowervp->v_type);
322 
323 	/* If it has no ISLASTCN flag, path check is skipped. */
324 	if (cnp && !(cnp->cn_flags & ISLASTCN))
325 		path = NULL;
326 
327 	/* check the cache */
328 	if (dvp != NULLVP && vt == VDIR) {
329 		vp = unionfs_get_cached_vnode(uppervp, lowervp, dvp);
330 		if (vp != NULLVP) {
331 			*vpp = vp;
332 			if (lkflags != 0)
333 				vn_lock(*vpp, lkflags | LK_RETRY);
334 			return (0);
335 		}
336 	}
337 
338 	unp = malloc(sizeof(struct unionfs_node),
339 	    M_UNIONFSNODE, M_WAITOK | M_ZERO);
340 
341 	error = getnewvnode("unionfs", mp, &unionfs_vnodeops, &vp);
342 	if (error != 0) {
343 		free(unp, M_UNIONFSNODE);
344 		return (error);
345 	}
346 	if (dvp != NULLVP)
347 		vref(dvp);
348 	if (uppervp != NULLVP)
349 		vref(uppervp);
350 	if (lowervp != NULLVP)
351 		vref(lowervp);
352 
353 	if (vt == VDIR) {
354 		unp->un_hashtbl = hashinit(NUNIONFSNODECACHE, M_UNIONFSHASH,
355 		    &hashmask);
356 		KASSERT(hashmask == UNIONFSHASHMASK,
357 		    ("unexpected unionfs hash mask 0x%lx", hashmask));
358 	}
359 
360 	unp->un_vnode = vp;
361 	unp->un_uppervp = uppervp;
362 	unp->un_lowervp = lowervp;
363 	unp->un_dvp = dvp;
364 	if (uppervp != NULLVP)
365 		vp->v_vnlock = uppervp->v_vnlock;
366 	else
367 		vp->v_vnlock = lowervp->v_vnlock;
368 
369 	if (path != NULL) {
370 		unp->un_path = malloc(cnp->cn_namelen + 1,
371 		    M_UNIONFSPATH, M_WAITOK | M_ZERO);
372 		bcopy(cnp->cn_nameptr, unp->un_path, cnp->cn_namelen);
373 		unp->un_path[cnp->cn_namelen] = '\0';
374 		unp->un_pathlen = cnp->cn_namelen;
375 	}
376 	vp->v_type = vt;
377 	vp->v_data = unp;
378 
379 	/*
380 	 * TODO: This is an imperfect check, as there's no guarantee that
381 	 * the underlying filesystems will always return vnode pointers
382 	 * for the root inodes that match our cached values.  To reduce
383 	 * the likelihood of failure, for example in the case where either
384 	 * vnode has been forcibly doomed, we check both pointers and set
385 	 * VV_ROOT if either matches.
386 	 */
387 	if (ump->um_uppervp == uppervp || ump->um_lowervp == lowervp)
388 		vp->v_vflag |= VV_ROOT;
389 	KASSERT(dvp != NULL || (vp->v_vflag & VV_ROOT) != 0,
390 	    ("%s: NULL dvp for non-root vp %p", __func__, vp));
391 
392 
393 	/*
394 	 * NOTE: There is still a possibility for cross-filesystem locking here.
395 	 * If dvp has an upper FS component and is locked, while the new vnode
396 	 * created here only has a lower-layer FS component, then we will end
397 	 * up taking a lower-FS lock while holding an upper-FS lock.
398 	 * That situation could be dealt with here using vn_lock_pair().
399 	 * However, that would only address one instance out of many in which
400 	 * a child vnode lock is taken while holding a lock on its parent
401 	 * directory. This is done in many places in common VFS code, as well as
402 	 * a few places within unionfs (which could lead to the same cross-FS
403 	 * locking issue if, for example, the upper FS is another nested unionfs
404 	 * instance).  Additionally, it is unclear under what circumstances this
405 	 * specific lock sequence (a directory on one FS followed by a child of
406 	 * its 'peer' directory on another FS) would present the practical
407 	 * possibility of deadlock due to some other agent on the system
408 	 * attempting to lock those two specific vnodes in the opposite order.
409 	 */
410 	if (uppervp != NULLVP)
411 		vn_lock(uppervp, LK_EXCLUSIVE | LK_RETRY);
412 	else
413 		vn_lock(lowervp, LK_EXCLUSIVE | LK_RETRY);
414 	error = insmntque1(vp, mp);
415 	if (error != 0) {
416 		unionfs_nodeget_cleanup(vp, unp);
417 		return (error);
418 	}
419 	/*
420 	 * lowervp and uppervp should only be doomed by a forced unmount of
421 	 * their respective filesystems, but that can only happen if the
422 	 * unionfs instance is first unmounted.  We also effectively hold the
423 	 * lock on the new unionfs vnode at this point.  Therefore, if a
424 	 * unionfs umount has not yet reached the point at which the above
425 	 * insmntque1() would fail, then its vflush() call will end up
426 	 * blocked on our vnode lock, effectively also preventing unmount
427 	 * of the underlying filesystems.
428 	 */
429 	VNASSERT(lowervp == NULLVP || !VN_IS_DOOMED(lowervp), vp,
430 	    ("%s: doomed lowervp %p", __func__, lowervp));
431 	VNASSERT(uppervp == NULLVP || !VN_IS_DOOMED(uppervp), vp,
432 	    ("%s: doomed lowervp %p", __func__, uppervp));
433 
434 	vn_set_state(vp, VSTATE_CONSTRUCTED);
435 
436 	if (dvp != NULLVP && vt == VDIR)
437 		*vpp = unionfs_ins_cached_vnode(unp, dvp);
438 	if (*vpp != NULLVP) {
439 		unionfs_nodeget_cleanup(vp, unp);
440 		if (lkflags != 0)
441 			vn_lock(*vpp, lkflags | LK_RETRY);
442 		return (0);
443 	} else
444 		*vpp = vp;
445 
446 	if ((lkflags & LK_SHARED) != 0)
447 		vn_lock(vp, LK_DOWNGRADE);
448 	else if ((lkflags & LK_EXCLUSIVE) == 0)
449 		VOP_UNLOCK(vp);
450 
451 	return (0);
452 }
453 
454 /*
455  * Clean up the unionfs node.
456  */
457 void
458 unionfs_noderem(struct vnode *vp)
459 {
460 	struct unionfs_node *unp, *unp_t1, *unp_t2;
461 	struct unionfs_node_hashhead *hd;
462 	struct unionfs_node_status *unsp, *unsp_tmp;
463 	struct vnode   *lvp;
464 	struct vnode   *uvp;
465 	struct vnode   *dvp;
466 	int		count;
467 	int		writerefs;
468 	bool		unlock_lvp;
469 
470 	/*
471 	 * The root vnode lock may be recursed during unmount, because
472 	 * it may share the same lock as the unionfs mount's covered vnode,
473 	 * which is locked across VFS_UNMOUNT().  This lock will then be
474 	 * recursively taken during the vflush() issued by unionfs_unmount().
475 	 * But we still only need to lock the unionfs lock once, because only
476 	 * one of those lock operations was taken against a unionfs vnode and
477 	 * will be undone against a unionfs vnode.
478 	 */
479 	KASSERT(vp->v_vnlock->lk_recurse == 0 || (vp->v_vflag & VV_ROOT) != 0,
480 	    ("%s: vnode %p locked recursively", __func__, vp));
481 
482 	unp = VTOUNIONFS(vp);
483 	VNASSERT(unp != NULL, vp, ("%s: already reclaimed", __func__));
484 	lvp = unp->un_lowervp;
485 	uvp = unp->un_uppervp;
486 	dvp = unp->un_dvp;
487 	unlock_lvp = (uvp == NULLVP);
488 
489 	/*
490 	 * Lock the lower vnode in addition to the upper vnode lock in order
491 	 * to synchronize against any unionfs_lock() operation which may still
492 	 * hold the lower vnode lock.  We do not need to do this for the root
493 	 * vnode, as the root vnode should always have both upper and lower
494 	 * base vnodes for its entire lifecycled, so unionfs_lock() should
495 	 * never attempt to lock its lower vnode in the first place.
496 	 * Moreover, during unmount of a non-"below" unionfs mount, the lower
497 	 * root vnode will already be locked as it is the covered vnode.
498 	 */
499 	if (uvp != NULLVP && lvp != NULLVP && (vp->v_vflag & VV_ROOT) == 0) {
500 		vn_lock_pair(uvp, true, LK_EXCLUSIVE, lvp, false, LK_EXCLUSIVE);
501 		unlock_lvp = true;
502 	}
503 
504 	if (lockmgr(&vp->v_lock, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
505 		panic("%s: failed to acquire lock for vnode lock", __func__);
506 	/*
507 	 * Use the interlock to protect the clearing of v_data to
508 	 * prevent faults in unionfs_lock().
509 	 */
510 	VI_LOCK(vp);
511 	unp->un_lowervp = unp->un_uppervp = NULLVP;
512 	vp->v_vnlock = &(vp->v_lock);
513 	vp->v_data = NULL;
514 	vp->v_object = NULL;
515 	if (unp->un_hashtbl != NULL) {
516 		/*
517 		 * Clear out any cached child vnodes.  This should only
518 		 * be necessary during forced unmount, when the vnode may
519 		 * be reclaimed with a non-zero use count.  Otherwise the
520 		 * reference held by each child should prevent reclamation.
521 		 */
522 		for (count = 0; count <= UNIONFSHASHMASK; count++) {
523 			hd = unp->un_hashtbl + count;
524 			LIST_FOREACH_SAFE(unp_t1, hd, un_hash, unp_t2) {
525 				LIST_REMOVE(unp_t1, un_hash);
526 				unp_t1->un_hash.le_next = NULL;
527 				unp_t1->un_hash.le_prev = NULL;
528 			}
529 		}
530 	}
531 	VI_UNLOCK(vp);
532 
533 	writerefs = atomic_load_int(&vp->v_writecount);
534 	VNASSERT(writerefs >= 0, vp,
535 	    ("%s: write count %d, unexpected text ref", __func__, writerefs));
536 	/*
537 	 * If we were opened for write, we leased the write reference
538 	 * to the lower vnode.  If this is a reclamation due to the
539 	 * forced unmount, undo the reference now.
540 	 */
541 	if (writerefs > 0) {
542 		VNASSERT(uvp != NULL, vp,
543 		    ("%s: write reference without upper vnode", __func__));
544 		VOP_ADD_WRITECOUNT(uvp, -writerefs);
545 	}
546 	if (uvp != NULLVP)
547 		vput(uvp);
548 	if (unlock_lvp)
549 		vput(lvp);
550 	else if (lvp != NULLVP)
551 		vrele(lvp);
552 
553 	if (dvp != NULLVP)
554 		unionfs_rem_cached_vnode(unp, dvp);
555 
556 	if (unp->un_path != NULL) {
557 		free(unp->un_path, M_UNIONFSPATH);
558 		unp->un_path = NULL;
559 		unp->un_pathlen = 0;
560 	}
561 
562 	if (unp->un_hashtbl != NULL) {
563 		hashdestroy(unp->un_hashtbl, M_UNIONFSHASH, UNIONFSHASHMASK);
564 	}
565 
566 	LIST_FOREACH_SAFE(unsp, &(unp->un_unshead), uns_list, unsp_tmp) {
567 		LIST_REMOVE(unsp, uns_list);
568 		free(unsp, M_TEMP);
569 	}
570 	if (dvp != NULLVP) {
571 		mtx_lock(&unionfs_deferred_rele_lock);
572 		STAILQ_INSERT_TAIL(&unionfs_deferred_rele_list, unp, un_rele);
573 		mtx_unlock(&unionfs_deferred_rele_lock);
574 		taskqueue_enqueue(taskqueue_unionfs_rele,
575 		    &unionfs_deferred_rele_task);
576 	} else
577 		free(unp, M_UNIONFSNODE);
578 }
579 
580 /*
581  * Find the unionfs node status object for the vnode corresponding to unp,
582  * for the process that owns td.  Return NULL if no such object exists.
583  */
584 struct unionfs_node_status *
585 unionfs_find_node_status(struct unionfs_node *unp, struct thread *td)
586 {
587 	struct unionfs_node_status *unsp;
588 	pid_t pid;
589 
590 	pid = td->td_proc->p_pid;
591 
592 	ASSERT_VOP_ELOCKED(UNIONFSTOV(unp), __func__);
593 
594 	LIST_FOREACH(unsp, &(unp->un_unshead), uns_list) {
595 		if (unsp->uns_pid == pid) {
596 			return (unsp);
597 		}
598 	}
599 
600 	return (NULL);
601 }
602 
603 /*
604  * Get the unionfs node status object for the vnode corresponding to unp,
605  * for the process that owns td.  Allocate a new status object if one
606  * does not already exist.
607  */
608 void
609 unionfs_get_node_status(struct unionfs_node *unp, struct thread *td,
610     struct unionfs_node_status **unspp)
611 {
612 	struct unionfs_node_status *unsp;
613 	pid_t pid;
614 
615 	pid = td->td_proc->p_pid;
616 
617 	KASSERT(NULL != unspp, ("%s: NULL status", __func__));
618 	unsp = unionfs_find_node_status(unp, td);
619 	if (unsp == NULL) {
620 		/* create a new unionfs node status */
621 		unsp = malloc(sizeof(struct unionfs_node_status),
622 		    M_TEMP, M_WAITOK | M_ZERO);
623 
624 		unsp->uns_pid = pid;
625 		LIST_INSERT_HEAD(&(unp->un_unshead), unsp, uns_list);
626 	}
627 
628 	*unspp = unsp;
629 }
630 
631 /*
632  * Remove the unionfs node status, if you can.
633  * You need exclusive lock this vnode.
634  */
635 void
636 unionfs_tryrem_node_status(struct unionfs_node *unp,
637     struct unionfs_node_status *unsp)
638 {
639 	KASSERT(NULL != unsp, ("%s: NULL status", __func__));
640 	ASSERT_VOP_ELOCKED(UNIONFSTOV(unp), __func__);
641 
642 	if (0 < unsp->uns_lower_opencnt || 0 < unsp->uns_upper_opencnt)
643 		return;
644 
645 	LIST_REMOVE(unsp, uns_list);
646 	free(unsp, M_TEMP);
647 }
648 
649 /*
650  * Create upper node attr.
651  */
652 void
653 unionfs_create_uppervattr_core(struct unionfs_mount *ump, struct vattr *lva,
654     struct vattr *uva, struct thread *td)
655 {
656 	VATTR_NULL(uva);
657 	uva->va_type = lva->va_type;
658 	uva->va_atime = lva->va_atime;
659 	uva->va_mtime = lva->va_mtime;
660 	uva->va_ctime = lva->va_ctime;
661 
662 	switch (ump->um_copymode) {
663 	case UNIONFS_TRANSPARENT:
664 		uva->va_mode = lva->va_mode;
665 		uva->va_uid = lva->va_uid;
666 		uva->va_gid = lva->va_gid;
667 		break;
668 	case UNIONFS_MASQUERADE:
669 		if (ump->um_uid == lva->va_uid) {
670 			uva->va_mode = lva->va_mode & 077077;
671 			uva->va_mode |= (lva->va_type == VDIR ?
672 			    ump->um_udir : ump->um_ufile) & 0700;
673 			uva->va_uid = lva->va_uid;
674 			uva->va_gid = lva->va_gid;
675 		} else {
676 			uva->va_mode = (lva->va_type == VDIR ?
677 			    ump->um_udir : ump->um_ufile);
678 			uva->va_uid = ump->um_uid;
679 			uva->va_gid = ump->um_gid;
680 		}
681 		break;
682 	default:		/* UNIONFS_TRADITIONAL */
683 		uva->va_mode = 0777 & ~td->td_proc->p_pd->pd_cmask;
684 		uva->va_uid = ump->um_uid;
685 		uva->va_gid = ump->um_gid;
686 		break;
687 	}
688 }
689 
690 /*
691  * Create upper node attr.
692  */
693 int
694 unionfs_create_uppervattr(struct unionfs_mount *ump, struct vnode *lvp,
695     struct vattr *uva, struct ucred *cred, struct thread *td)
696 {
697 	struct vattr	lva;
698 	int		error;
699 
700 	if ((error = VOP_GETATTR(lvp, &lva, cred)))
701 		return (error);
702 
703 	unionfs_create_uppervattr_core(ump, &lva, uva, td);
704 
705 	return (error);
706 }
707 
708 /*
709  * relookup
710  *
711  * dvp should be locked on entry and will be locked on return.
712  *
713  * If an error is returned, *vpp will be invalid, otherwise it will hold a
714  * locked, referenced vnode. If *vpp == dvp then remember that only one
715  * LK_EXCLUSIVE lock is held.
716  */
717 int
718 unionfs_relookup(struct vnode *dvp, struct vnode **vpp,
719     struct componentname *cnp, struct componentname *cn, struct thread *td,
720     char *path, int pathlen, u_long nameiop)
721 {
722 	int error;
723 	bool refstart;
724 
725 	cn->cn_namelen = pathlen;
726 	cn->cn_pnbuf = path;
727 	cn->cn_nameiop = nameiop;
728 	cn->cn_flags = (LOCKPARENT | LOCKLEAF | ISLASTCN);
729 	cn->cn_lkflags = LK_EXCLUSIVE;
730 	cn->cn_cred = cnp->cn_cred;
731 	cn->cn_nameptr = cn->cn_pnbuf;
732 
733 	refstart = false;
734 	if (nameiop == DELETE) {
735 		cn->cn_flags |= (cnp->cn_flags & DOWHITEOUT);
736 	} else if (nameiop == RENAME) {
737 		refstart = true;
738 	} else if (nameiop == CREATE) {
739 		cn->cn_flags |= NOCACHE;
740 	}
741 
742 	vref(dvp);
743 	VOP_UNLOCK(dvp);
744 
745 	if ((error = vfs_relookup(dvp, vpp, cn, refstart))) {
746 		vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
747 	} else
748 		vrele(dvp);
749 
750 	KASSERT(cn->cn_pnbuf == path, ("%s: cn_pnbuf changed", __func__));
751 
752 	return (error);
753 }
754 
755 /*
756  * Update the unionfs_node.
757  *
758  * uvp is new locked upper vnode. unionfs vnode's lock will be exchanged to the
759  * uvp's lock and lower's lock will be unlocked.
760  */
761 static void
762 unionfs_node_update(struct unionfs_node *unp, struct vnode *uvp,
763     struct thread *td)
764 {
765 	struct unionfs_node_hashhead *hd;
766 	struct vnode   *vp;
767 	struct vnode   *lvp;
768 	struct vnode   *dvp;
769 	unsigned	count, lockrec;
770 
771 	vp = UNIONFSTOV(unp);
772 	lvp = unp->un_lowervp;
773 	ASSERT_VOP_ELOCKED(lvp, __func__);
774 	ASSERT_VOP_ELOCKED(uvp, __func__);
775 	dvp = unp->un_dvp;
776 
777 	VNASSERT(vp->v_writecount == 0, vp,
778 	    ("%s: non-zero writecount", __func__));
779 	/*
780 	 * Update the upper vnode's lock state to match the lower vnode,
781 	 * and then switch the unionfs vnode's lock to the upper vnode.
782 	 */
783 	lockrec = lvp->v_vnlock->lk_recurse;
784 	for (count = 0; count < lockrec; count++)
785 		vn_lock(uvp, LK_EXCLUSIVE | LK_CANRECURSE | LK_RETRY);
786 	VI_LOCK(vp);
787 	unp->un_uppervp = uvp;
788 	vp->v_vnlock = uvp->v_vnlock;
789 	VI_UNLOCK(vp);
790 
791 	for (count = 0; count < lockrec + 1; count++)
792 		VOP_UNLOCK(lvp);
793 	/*
794 	 * Re-cache the unionfs vnode against the upper vnode
795 	 */
796 	if (dvp != NULLVP && vp->v_type == VDIR) {
797 		VI_LOCK(dvp);
798 		if (unp->un_hash.le_prev != NULL) {
799 			LIST_REMOVE(unp, un_hash);
800 			hd = unionfs_get_hashhead(dvp, uvp);
801 			LIST_INSERT_HEAD(hd, unp, un_hash);
802 		}
803 		VI_UNLOCK(unp->un_dvp);
804 	}
805 }
806 
807 /*
808  * Mark a unionfs operation as being in progress, sleeping if the
809  * same operation is already in progress.
810  * This is useful, for example, during copy-up operations in which
811  * we may drop the target vnode lock, but we want to avoid the
812  * possibility of a concurrent copy-up on the same vnode triggering
813  * a spurious failure.
814  */
815 int
816 unionfs_set_in_progress_flag(struct vnode *vp, unsigned int flag)
817 {
818 	struct unionfs_node *unp;
819 	int error;
820 
821 	error = 0;
822 	ASSERT_VOP_ELOCKED(vp, __func__);
823 	VI_LOCK(vp);
824 	unp = VTOUNIONFS(vp);
825 	while (error == 0 && (unp->un_flag & flag) != 0) {
826 		VOP_UNLOCK(vp);
827 		error = msleep(vp, VI_MTX(vp), PCATCH | PDROP, "unioncp", 0);
828 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
829 		VI_LOCK(vp);
830 		if (error == 0) {
831 			/*
832 			 * If we waited on a concurrent copy-up and that
833 			 * copy-up was successful, return a non-fatal
834 			 * indication that the desired operation is already
835 			 * complete.  If we waited on a concurrent lookup,
836 			 * return ERELOOKUP to indicate the VFS cache should
837 			 * be re-queried to avoid creating a duplicate unionfs
838 			 * vnode.
839 			 */
840 			unp = VTOUNIONFS(vp);
841 			if (unp == NULL)
842 				error = ENOENT;
843 			else if (flag == UNIONFS_COPY_IN_PROGRESS &&
844 			    unp->un_uppervp != NULLVP)
845 				error = EJUSTRETURN;
846 			else if (flag == UNIONFS_LOOKUP_IN_PROGRESS)
847 				error = ERELOOKUP;
848 		}
849 	}
850 	if (error == 0)
851 		unp->un_flag |= flag;
852 	VI_UNLOCK(vp);
853 
854 	return (error);
855 }
856 
857 void
858 unionfs_clear_in_progress_flag(struct vnode *vp, unsigned int flag)
859 {
860 	struct unionfs_node *unp;
861 
862 	ASSERT_VOP_ELOCKED(vp, __func__);
863 	unp = VTOUNIONFS(vp);
864 	VI_LOCK(vp);
865 	if (unp != NULL) {
866 		VNASSERT((unp->un_flag & flag) != 0, vp,
867 		    ("%s: copy not in progress", __func__));
868 		unp->un_flag &= ~flag;
869 	}
870 	wakeup(vp);
871 	VI_UNLOCK(vp);
872 }
873 
874 /*
875  * Create a new shadow dir.
876  *
877  * dvp and vp are unionfs vnodes representing a parent directory and
878  * child file, should be locked on entry, and will be locked on return.
879  *
880  * If no error returned, unp will be updated.
881  */
882 int
883 unionfs_mkshadowdir(struct vnode *dvp, struct vnode *vp,
884     struct componentname *cnp, struct thread *td)
885 {
886 	struct vnode   *lvp;
887 	struct vnode   *uvp;
888 	struct vnode   *udvp;
889 	struct vattr	va;
890 	struct vattr	lva;
891 	struct nameidata nd;
892 	struct mount   *mp;
893 	struct ucred   *cred;
894 	struct ucred   *credbk;
895 	struct uidinfo *rootinfo;
896 	struct unionfs_mount *ump;
897 	struct unionfs_node *dunp;
898 	struct unionfs_node *unp;
899 	int		error;
900 
901 	ASSERT_VOP_ELOCKED(dvp, __func__);
902 	ASSERT_VOP_ELOCKED(vp, __func__);
903 	ump = MOUNTTOUNIONFSMOUNT(vp->v_mount);
904 	unp = VTOUNIONFS(vp);
905 	if (unp->un_uppervp != NULLVP)
906 		return (EEXIST);
907 	dunp = VTOUNIONFS(dvp);
908 	udvp = dunp->un_uppervp;
909 
910 	error = unionfs_set_in_progress_flag(vp, UNIONFS_COPY_IN_PROGRESS);
911 	if (error == EJUSTRETURN)
912 		return (0);
913 	else if (error != 0)
914 		return (error);
915 
916 	lvp = unp->un_lowervp;
917 	uvp = NULLVP;
918 	credbk = cnp->cn_cred;
919 
920 	/* Authority change to root */
921 	rootinfo = uifind((uid_t)0);
922 	cred = crdup(cnp->cn_cred);
923 	/*
924 	 * The calls to chgproccnt() are needed to compensate for change_ruid()
925 	 * calling chgproccnt().
926 	 */
927 	chgproccnt(cred->cr_ruidinfo, 1, 0);
928 	change_euid(cred, rootinfo);
929 	change_ruid(cred, rootinfo);
930 	change_svuid(cred, (uid_t)0);
931 	uifree(rootinfo);
932 	cnp->cn_cred = cred;
933 
934 	memset(&nd.ni_cnd, 0, sizeof(struct componentname));
935 	NDPREINIT(&nd);
936 
937 	if ((error = VOP_GETATTR(lvp, &lva, cnp->cn_cred)))
938 		goto unionfs_mkshadowdir_finish;
939 
940 	vref(udvp);
941 	VOP_UNLOCK(vp);
942 	if ((error = unionfs_relookup(udvp, &uvp, cnp, &nd.ni_cnd, td,
943 	    cnp->cn_nameptr, cnp->cn_namelen, CREATE))) {
944 		/*
945 		 * When handling error cases here, we drop udvp's lock and
946 		 * then jump to exit code that relocks dvp, which in most
947 		 * cases will effectively relock udvp.  However, this is
948 		 * not guaranteed to be the case, as various calls made
949 		 * here (such as unionfs_relookup() above and VOP_MKDIR()
950 		 * below) may unlock and then relock udvp, allowing dvp to
951 		 * be reclaimed in the meantime.  In such a situation dvp
952 		 * will no longer share its lock with udvp.  Since
953 		 * performance isn't a concern for these error cases, it
954 		 * makes more sense to reuse the common code that locks
955 		 * dvp on exit than to explicitly check for reclamation
956 		 * of dvp.
957 		 */
958 		vput(udvp);
959 		goto unionfs_mkshadowdir_relock;
960 	}
961 	if (uvp != NULLVP) {
962 		if (udvp == uvp)
963 			vrele(uvp);
964 		else
965 			vput(uvp);
966 
967 		error = EEXIST;
968 		vput(udvp);
969 		goto unionfs_mkshadowdir_relock;
970 	}
971 
972 	if ((error = vn_start_write(udvp, &mp, V_WAIT | V_PCATCH))) {
973 		vput(udvp);
974 		goto unionfs_mkshadowdir_relock;
975 	}
976 	unionfs_create_uppervattr_core(ump, &lva, &va, td);
977 
978 	/*
979 	 * Temporarily NUL-terminate the current pathname component.
980 	 * This function may be called during lookup operations in which
981 	 * the current pathname component is not the leaf, meaning that
982 	 * the NUL terminator is some distance beyond the end of the current
983 	 * component.  This *should* be fine, as cn_namelen will still
984 	 * correctly indicate the length of only the current component,
985 	 * but ZFS in particular does not respect cn_namelen in its VOP_MKDIR
986 	 * implementation.
987 	 * Note that this assumes nd.ni_cnd.cn_pnbuf was allocated by
988 	 * something like a local namei() operation and the temporary
989 	 * NUL-termination will not have an effect on other threads.
990 	 */
991 	char *pathend = &nd.ni_cnd.cn_nameptr[nd.ni_cnd.cn_namelen];
992 	char pathterm = *pathend;
993 	*pathend = '\0';
994 	error = VOP_MKDIR(udvp, &uvp, &nd.ni_cnd, &va);
995 	*pathend = pathterm;
996 	if (error != 0) {
997 		/*
998 		 * See the comment after unionfs_relookup() above for an
999 		 * explanation of why we unlock udvp here only to relock
1000 		 * dvp on exit.
1001 		 */
1002 		vput(udvp);
1003 		vn_finished_write(mp);
1004 		goto unionfs_mkshadowdir_relock;
1005 	}
1006 
1007 	/*
1008 	 * XXX The bug which cannot set uid/gid was corrected.
1009 	 * Ignore errors.
1010 	 */
1011 	va.va_type = VNON;
1012 	/*
1013 	 * VOP_SETATTR() may transiently drop uvp's lock, so it's
1014 	 * important to call it before unionfs_node_update() transfers
1015 	 * the unionfs vnode's lock from lvp to uvp; otherwise the
1016 	 * unionfs vnode itself would be transiently unlocked and
1017 	 * potentially doomed.
1018 	 */
1019 	VOP_SETATTR(uvp, &va, nd.ni_cnd.cn_cred);
1020 
1021 	/*
1022 	 * uvp may become doomed during VOP_VPUT_PAIR() if the implementation
1023 	 * must temporarily drop uvp's lock.  However, since we hold a
1024 	 * reference to uvp from the VOP_MKDIR() call above, this would require
1025 	 * a forcible unmount of uvp's filesystem, which in turn can only
1026 	 * happen if our unionfs instance is first forcibly unmounted.  We'll
1027 	 * therefore catch this case in the NULL check of unp below.
1028 	 */
1029 	VOP_VPUT_PAIR(udvp, &uvp, false);
1030 	vn_finished_write(mp);
1031 	vn_lock_pair(vp, false, LK_EXCLUSIVE, uvp, true, LK_EXCLUSIVE);
1032 	unp = VTOUNIONFS(vp);
1033 	if (unp == NULL) {
1034 		vput(uvp);
1035 		error = ENOENT;
1036 	} else
1037 		unionfs_node_update(unp, uvp, td);
1038 	VOP_UNLOCK(vp);
1039 
1040 unionfs_mkshadowdir_relock:
1041 	vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
1042 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1043 	if (error == 0 && (VN_IS_DOOMED(dvp) || VN_IS_DOOMED(vp)))
1044 		error = ENOENT;
1045 
1046 unionfs_mkshadowdir_finish:
1047 	unionfs_clear_in_progress_flag(vp, UNIONFS_COPY_IN_PROGRESS);
1048 	cnp->cn_cred = credbk;
1049 	chgproccnt(cred->cr_ruidinfo, -1, 0);
1050 	crfree(cred);
1051 
1052 	return (error);
1053 }
1054 
1055 static inline void
1056 unionfs_forward_vop_ref(struct vnode *basevp, int *lkflags)
1057 {
1058 	ASSERT_VOP_LOCKED(basevp, __func__);
1059 	*lkflags = VOP_ISLOCKED(basevp);
1060 	vref(basevp);
1061 }
1062 
1063 /*
1064  * Prepare unionfs to issue a forwarded VOP to either the upper or lower
1065  * FS.  This should be used for any VOP which may drop the vnode lock;
1066  * it is not required otherwise.
1067  * The unionfs vnode shares its lock with the base-layer vnode(s); if the
1068  * base FS must transiently drop its vnode lock, the unionfs vnode may
1069  * effectively become unlocked.  During that window, a concurrent forced
1070  * unmount may doom the unionfs vnode, which leads to two significant
1071  * issues:
1072  * 1) Completion of, and return from, the unionfs VOP with the unionfs
1073  *    vnode completely unlocked.  When the unionfs vnode becomes doomed
1074  *    it stops sharing its lock with the base vnode, so even if the
1075  *    forwarded VOP reacquires the base vnode lock the unionfs vnode
1076  *    lock will no longer be held.  This can lead to violation of the
1077  *    caller's sychronization requirements as well as various failed
1078  *    locking assertions when DEBUG_VFS_LOCKS is enabled.
1079  * 2) Loss of reference on the base vnode.  The caller is expected to
1080  *    hold a v_usecount reference on the unionfs vnode, while the
1081  *    unionfs vnode holds a reference on the base-layer vnode(s).  But
1082  *    these references are released when the unionfs vnode becomes
1083  *    doomed, violating the base layer's expectation that its caller
1084  *    must hold a reference to prevent vnode recycling.
1085  *
1086  * basevp1 and basevp2 represent two base-layer vnodes which are
1087  * expected to be locked when this function is called.  basevp2
1088  * may be NULL, but if not NULL basevp1 and basevp2 should represent
1089  * a parent directory and a filed linked to it, respectively.
1090  * lkflags1 and lkflags2 are output parameters that will store the
1091  * current lock status of basevp1 and basevp2, respectively.  They
1092  * are intended to be passed as the lkflags1 and lkflags2 parameters
1093  * in the subsequent call to unionfs_forward_vop_finish_pair().
1094  * lkflags2 may be NULL iff basevp2 is NULL.
1095  */
1096 void
1097 unionfs_forward_vop_start_pair(struct vnode *basevp1, int *lkflags1,
1098     struct vnode *basevp2, int *lkflags2)
1099 {
1100 	/*
1101 	 * Take an additional reference on the base-layer vnodes to
1102 	 * avoid loss of reference if the unionfs vnodes are doomed.
1103 	 */
1104 	unionfs_forward_vop_ref(basevp1, lkflags1);
1105 	if (basevp2 != NULL)
1106 		unionfs_forward_vop_ref(basevp2, lkflags2);
1107 }
1108 
1109 static inline bool
1110 unionfs_forward_vop_rele(struct vnode *unionvp, struct vnode *basevp,
1111     int lkflags)
1112 {
1113 	bool unionvp_doomed;
1114 
1115 	if (__predict_false(VTOUNIONFS(unionvp) == NULL)) {
1116 		if ((lkflags & LK_EXCLUSIVE) != 0)
1117 			ASSERT_VOP_ELOCKED(basevp, __func__);
1118 		else
1119 			ASSERT_VOP_LOCKED(basevp, __func__);
1120 		unionvp_doomed = true;
1121 	} else {
1122 		vrele(basevp);
1123 		unionvp_doomed = false;
1124 	}
1125 
1126 	return (unionvp_doomed);
1127 }
1128 
1129 
1130 /*
1131  * Indicate completion of a forwarded VOP previously prepared by
1132  * unionfs_forward_vop_start_pair().
1133  * basevp1 and basevp2 must be the same values passed to the prior
1134  * call to unionfs_forward_vop_start_pair().  unionvp1 and unionvp2
1135  * must be the unionfs vnodes that were initially above basevp1 and
1136  * basevp2, respectively.
1137  * basevp1 and basevp2 (if not NULL) must be locked when this function
1138  * is called, while unionvp1 and/or unionvp2 may be unlocked if either
1139  * unionfs vnode has become doomed.
1140  * lkflags1 and lkflag2 represent the locking flags that should be
1141  * used to re-lock unionvp1 and unionvp2, respectively, if either
1142  * vnode has become doomed.
1143  *
1144  * Returns true if any unionfs vnode was found to be doomed, false
1145  * otherwise.
1146  */
1147 bool
1148 unionfs_forward_vop_finish_pair(
1149     struct vnode *unionvp1, struct vnode *basevp1, int lkflags1,
1150     struct vnode *unionvp2, struct vnode *basevp2, int lkflags2)
1151 {
1152 	bool vp1_doomed, vp2_doomed;
1153 
1154 	/*
1155 	 * If either vnode is found to have been doomed, set
1156 	 * a flag indicating that it needs to be re-locked.
1157 	 * Otherwise, simply drop the base-vnode reference that
1158 	 * was taken in unionfs_forward_vop_start().
1159 	 */
1160 	vp1_doomed = unionfs_forward_vop_rele(unionvp1, basevp1, lkflags1);
1161 
1162 	if (unionvp2 != NULL)
1163 		vp2_doomed = unionfs_forward_vop_rele(unionvp2, basevp2, lkflags2);
1164 	else
1165 		vp2_doomed = false;
1166 
1167 	/*
1168 	 * If any of the unionfs vnodes need to be re-locked, that
1169 	 * means the unionfs vnode's lock is now de-coupled from the
1170 	 * corresponding base vnode.  We therefore need to drop the
1171 	 * base vnode lock (since nothing else will after this point),
1172 	 * and also release the reference taken in
1173 	 * unionfs_forward_vop_start_pair().
1174 	 */
1175 	if (__predict_false(vp1_doomed && vp2_doomed))
1176 		VOP_VPUT_PAIR(basevp1, &basevp2, true);
1177 	else if (__predict_false(vp1_doomed)) {
1178 		/*
1179 		 * If basevp1 needs to be unlocked, then we may not
1180 		 * be able to safely unlock it with basevp2 still locked,
1181 		 * for the same reason that an ordinary VFS call would
1182 		 * need to use VOP_VPUT_PAIR() here.  We might be able
1183 		 * to use VOP_VPUT_PAIR(..., false) here, but then we
1184 		 * would need to deal with the possibility of basevp2
1185 		 * changing out from under us, which could result in
1186 		 * either the unionfs vnode becoming doomed or its
1187 		 * upper/lower vp no longer matching basevp2.  Either
1188 		 * scenario would require at least re-locking the unionfs
1189 		 * vnode anyway.
1190 		 */
1191 		if (unionvp2 != NULL) {
1192 			VOP_UNLOCK(unionvp2);
1193 			vp2_doomed = true;
1194 		}
1195 		vput(basevp1);
1196 	} else if (__predict_false(vp2_doomed))
1197 		vput(basevp2);
1198 
1199 	if (__predict_false(vp1_doomed || vp2_doomed))
1200 		vn_lock_pair(unionvp1, !vp1_doomed, lkflags1,
1201 		    unionvp2, !vp2_doomed, lkflags2);
1202 
1203 	return (vp1_doomed || vp2_doomed);
1204 }
1205 
1206 /*
1207  * Create a new whiteout.
1208  *
1209  * dvp and vp are unionfs vnodes representing a parent directory and
1210  * child file, should be locked on entry, and will be locked on return.
1211  */
1212 int
1213 unionfs_mkwhiteout(struct vnode *dvp, struct vnode *vp,
1214     struct componentname *cnp, struct thread *td, char *path, int pathlen)
1215 {
1216 	struct vnode   *udvp;
1217 	struct vnode   *wvp;
1218 	struct nameidata nd;
1219 	struct mount   *mp;
1220 	int		error;
1221 	bool		dvp_locked;
1222 
1223 	ASSERT_VOP_ELOCKED(dvp, __func__);
1224 	ASSERT_VOP_ELOCKED(vp, __func__);
1225 
1226 	udvp = VTOUNIONFS(dvp)->un_uppervp;
1227 	wvp = NULLVP;
1228 	NDPREINIT(&nd);
1229 	vref(udvp);
1230 	VOP_UNLOCK(vp);
1231 	if ((error = unionfs_relookup(udvp, &wvp, cnp, &nd.ni_cnd, td, path,
1232 	    pathlen, CREATE))) {
1233 		goto unionfs_mkwhiteout_cleanup;
1234 	}
1235 	if (wvp != NULLVP) {
1236 		if (udvp == wvp)
1237 			vrele(wvp);
1238 		else
1239 			vput(wvp);
1240 
1241 		if (nd.ni_cnd.cn_flags & ISWHITEOUT)
1242 			error = 0;
1243 		else
1244 			error = EEXIST;
1245 		goto unionfs_mkwhiteout_cleanup;
1246 	}
1247 
1248 	if ((error = vn_start_write(udvp, &mp, V_WAIT | V_PCATCH)))
1249 		goto unionfs_mkwhiteout_cleanup;
1250 	error = VOP_WHITEOUT(udvp, &nd.ni_cnd, CREATE);
1251 	vn_finished_write(mp);
1252 
1253 unionfs_mkwhiteout_cleanup:
1254 	if (VTOUNIONFS(dvp) == NULL) {
1255 		vput(udvp);
1256 		dvp_locked = false;
1257 	} else {
1258 		vrele(udvp);
1259 		dvp_locked = true;
1260 	}
1261 	vn_lock_pair(dvp, dvp_locked, LK_EXCLUSIVE, vp, false, LK_EXCLUSIVE);
1262 	return (error);
1263 }
1264 
1265 /*
1266  * Create a new vnode for create a new shadow file.
1267  *
1268  * If an error is returned, *vpp will be invalid, otherwise it will hold a
1269  * locked, referenced and opened vnode.
1270  *
1271  * unp is never updated.
1272  */
1273 static int
1274 unionfs_vn_create_on_upper(struct vnode **vpp, struct vnode *udvp,
1275     struct vnode *vp, struct vattr *uvap, struct thread *td)
1276 {
1277 	struct unionfs_mount *ump;
1278 	struct unionfs_node *unp;
1279 	struct vnode   *uvp;
1280 	struct vnode   *lvp;
1281 	struct ucred   *cred;
1282 	struct vattr	lva;
1283 	struct nameidata nd;
1284 	int		fmode;
1285 	int		error;
1286 
1287 	ASSERT_VOP_ELOCKED(vp, __func__);
1288 	unp = VTOUNIONFS(vp);
1289 	ump = MOUNTTOUNIONFSMOUNT(UNIONFSTOV(unp)->v_mount);
1290 	uvp = NULLVP;
1291 	lvp = unp->un_lowervp;
1292 	cred = td->td_ucred;
1293 	fmode = FFLAGS(O_WRONLY | O_CREAT | O_TRUNC | O_EXCL);
1294 	error = 0;
1295 
1296 	if ((error = VOP_GETATTR(lvp, &lva, cred)) != 0)
1297 		return (error);
1298 	unionfs_create_uppervattr_core(ump, &lva, uvap, td);
1299 
1300 	if (unp->un_path == NULL)
1301 		panic("%s: NULL un_path", __func__);
1302 
1303 	nd.ni_cnd.cn_namelen = unp->un_pathlen;
1304 	nd.ni_cnd.cn_pnbuf = unp->un_path;
1305 	nd.ni_cnd.cn_nameiop = CREATE;
1306 	nd.ni_cnd.cn_flags = LOCKPARENT | LOCKLEAF | ISLASTCN;
1307 	nd.ni_cnd.cn_lkflags = LK_EXCLUSIVE;
1308 	nd.ni_cnd.cn_cred = cred;
1309 	nd.ni_cnd.cn_nameptr = nd.ni_cnd.cn_pnbuf;
1310 	NDPREINIT(&nd);
1311 
1312 	vref(udvp);
1313 	VOP_UNLOCK(vp);
1314 	if ((error = vfs_relookup(udvp, &uvp, &nd.ni_cnd, false)) != 0) {
1315 		vrele(udvp);
1316 		return (error);
1317 	}
1318 
1319 	if (uvp != NULLVP) {
1320 		if (uvp == udvp)
1321 			vrele(uvp);
1322 		else
1323 			vput(uvp);
1324 		error = EEXIST;
1325 		goto unionfs_vn_create_on_upper_cleanup;
1326 	}
1327 
1328 	if ((error = VOP_CREATE(udvp, &uvp, &nd.ni_cnd, uvap)) != 0)
1329 		goto unionfs_vn_create_on_upper_cleanup;
1330 
1331 	if ((error = VOP_OPEN(uvp, fmode, cred, td, NULL)) != 0) {
1332 		vput(uvp);
1333 		goto unionfs_vn_create_on_upper_cleanup;
1334 	}
1335 	error = VOP_ADD_WRITECOUNT(uvp, 1);
1336 	CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1337 	    __func__, uvp, uvp->v_writecount);
1338 	if (error == 0) {
1339 		*vpp = uvp;
1340 	} else {
1341 		VOP_CLOSE(uvp, fmode, cred, td);
1342 	}
1343 
1344 unionfs_vn_create_on_upper_cleanup:
1345 	vput(udvp);
1346 	return (error);
1347 }
1348 
1349 /*
1350  * Copy from lvp to uvp.
1351  *
1352  * lvp and uvp should be locked and opened on entry and will be locked and
1353  * opened on return.
1354  */
1355 static int
1356 unionfs_copyfile_core(struct vnode *lvp, struct vnode *uvp,
1357     struct ucred *cred, struct thread *td)
1358 {
1359 	char           *buf;
1360 	struct uio	uio;
1361 	struct iovec	iov;
1362 	off_t		offset;
1363 	int		count;
1364 	int		error;
1365 	int		bufoffset;
1366 
1367 	error = 0;
1368 	memset(&uio, 0, sizeof(uio));
1369 
1370 	uio.uio_td = td;
1371 	uio.uio_segflg = UIO_SYSSPACE;
1372 	uio.uio_offset = 0;
1373 
1374 	buf = malloc(MAXBSIZE, M_TEMP, M_WAITOK);
1375 
1376 	while (error == 0) {
1377 		offset = uio.uio_offset;
1378 
1379 		uio.uio_iov = &iov;
1380 		uio.uio_iovcnt = 1;
1381 		iov.iov_base = buf;
1382 		iov.iov_len = MAXBSIZE;
1383 		uio.uio_resid = iov.iov_len;
1384 		uio.uio_rw = UIO_READ;
1385 
1386 		if ((error = VOP_READ(lvp, &uio, 0, cred)) != 0)
1387 			break;
1388 		if ((count = MAXBSIZE - uio.uio_resid) == 0)
1389 			break;
1390 
1391 		bufoffset = 0;
1392 		while (bufoffset < count) {
1393 			uio.uio_iov = &iov;
1394 			uio.uio_iovcnt = 1;
1395 			iov.iov_base = buf + bufoffset;
1396 			iov.iov_len = count - bufoffset;
1397 			uio.uio_offset = offset + bufoffset;
1398 			uio.uio_resid = iov.iov_len;
1399 			uio.uio_rw = UIO_WRITE;
1400 
1401 			if ((error = VOP_WRITE(uvp, &uio, 0, cred)) != 0)
1402 				break;
1403 
1404 			bufoffset += (count - bufoffset) - uio.uio_resid;
1405 		}
1406 
1407 		uio.uio_offset = offset + bufoffset;
1408 	}
1409 
1410 	free(buf, M_TEMP);
1411 
1412 	return (error);
1413 }
1414 
1415 /*
1416  * Copy file from lower to upper.
1417  *
1418  * If you need copy of the contents, set 1 to docopy. Otherwise, set 0 to
1419  * docopy.
1420  *
1421  * vp is a unionfs vnode that should be locked on entry and will be
1422  * locked on return.
1423  *
1424  * If no error returned, unp will be updated.
1425  */
1426 int
1427 unionfs_copyfile(struct vnode *vp, int docopy, struct ucred *cred,
1428     struct thread *td)
1429 {
1430 	struct unionfs_node *unp;
1431 	struct unionfs_node *dunp;
1432 	struct mount   *mp;
1433 	struct vnode   *udvp;
1434 	struct vnode   *lvp;
1435 	struct vnode   *uvp;
1436 	struct vattr	uva;
1437 	int		error;
1438 
1439 	ASSERT_VOP_ELOCKED(vp, __func__);
1440 	unp = VTOUNIONFS(vp);
1441 	lvp = unp->un_lowervp;
1442 	uvp = NULLVP;
1443 
1444 	if ((UNIONFSTOV(unp)->v_mount->mnt_flag & MNT_RDONLY))
1445 		return (EROFS);
1446 	if (unp->un_dvp == NULLVP)
1447 		return (EINVAL);
1448 	if (unp->un_uppervp != NULLVP)
1449 		return (EEXIST);
1450 
1451 	udvp = NULLVP;
1452 	VI_LOCK(unp->un_dvp);
1453 	dunp = VTOUNIONFS(unp->un_dvp);
1454 	if (dunp != NULL)
1455 		udvp = dunp->un_uppervp;
1456 	VI_UNLOCK(unp->un_dvp);
1457 
1458 	if (udvp == NULLVP)
1459 		return (EROFS);
1460 	if ((udvp->v_mount->mnt_flag & MNT_RDONLY))
1461 		return (EROFS);
1462 	ASSERT_VOP_UNLOCKED(udvp, __func__);
1463 
1464 	error = unionfs_set_in_progress_flag(vp, UNIONFS_COPY_IN_PROGRESS);
1465 	if (error == EJUSTRETURN)
1466 		return (0);
1467 	else if (error != 0)
1468 		return (error);
1469 
1470 	error = VOP_ACCESS(lvp, VREAD, cred, td);
1471 	if (error != 0)
1472 		goto unionfs_copyfile_cleanup;
1473 
1474 	if ((error = vn_start_write(udvp, &mp, V_WAIT | V_PCATCH)) != 0)
1475 		goto unionfs_copyfile_cleanup;
1476 	error = unionfs_vn_create_on_upper(&uvp, udvp, vp, &uva, td);
1477 	if (error != 0) {
1478 		vn_finished_write(mp);
1479 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1480 		goto unionfs_copyfile_cleanup;
1481 	}
1482 
1483 	/*
1484 	 * Note that it's still possible for e.g. VOP_WRITE to relock
1485 	 * uvp below while holding vp[=lvp] locked.  Replacing
1486 	 * unionfs_copyfile_core with vn_generic_copy_file_range() will
1487 	 * allow us to avoid the problem by moving this vn_lock_pair()
1488 	 * call much later.
1489 	 */
1490 	vn_lock_pair(vp, false, LK_EXCLUSIVE, uvp, true, LK_EXCLUSIVE);
1491 	unp = VTOUNIONFS(vp);
1492 	if (unp == NULL) {
1493 		error = ENOENT;
1494 		goto unionfs_copyfile_cleanup;
1495 	}
1496 
1497 	if (docopy != 0) {
1498 		error = VOP_OPEN(lvp, FREAD, cred, td, NULL);
1499 		if (error == 0) {
1500 			error = unionfs_copyfile_core(lvp, uvp, cred, td);
1501 			VOP_CLOSE(lvp, FREAD, cred, td);
1502 		}
1503 	}
1504 	VOP_CLOSE(uvp, FWRITE, cred, td);
1505 	VOP_ADD_WRITECOUNT_CHECKED(uvp, -1);
1506 	CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1507 	    __func__, uvp, uvp->v_writecount);
1508 
1509 	vn_finished_write(mp);
1510 
1511 	if (error == 0) {
1512 		/* Reset the attributes. Ignore errors. */
1513 		uva.va_type = VNON;
1514 		VOP_SETATTR(uvp, &uva, cred);
1515 		unionfs_node_update(unp, uvp, td);
1516 	}
1517 
1518 unionfs_copyfile_cleanup:
1519 	unionfs_clear_in_progress_flag(vp, UNIONFS_COPY_IN_PROGRESS);
1520 	return (error);
1521 }
1522 
1523 /*
1524  * Determine if the unionfs view of a directory is empty such that
1525  * an rmdir operation can be permitted.
1526  *
1527  * We assume the VOP_RMDIR() against the upper layer vnode will take
1528  * care of this check for us where the upper FS is concerned, so here
1529  * we concentrate on the lower FS.  We need to check for the presence
1530  * of files other than "." and ".." in the lower FS directory and
1531  * then cross-check any files we find against the upper FS to see if
1532  * a whiteout is present (in which case we treat the lower file as
1533  * non-present).
1534  *
1535  * The logic here is based heavily on vn_dir_check_empty().
1536  *
1537  * vp should be a locked unionfs node, and vp's lowervp should also be
1538  * locked.
1539  */
1540 int
1541 unionfs_check_rmdir(struct vnode *vp, struct ucred *cred, struct thread *td)
1542 {
1543 	struct vnode   *uvp;
1544 	struct vnode   *lvp;
1545 	struct vnode   *tvp;
1546 	char *dirbuf;
1547 	size_t dirbuflen, len;
1548 	off_t off;
1549 	struct dirent  *dp;
1550 	struct componentname cn;
1551 	struct vattr	va;
1552 	int		error;
1553 	int		eofflag;
1554 
1555 	eofflag = 0;
1556 	lvp = UNIONFSVPTOLOWERVP(vp);
1557 	uvp = UNIONFSVPTOUPPERVP(vp);
1558 
1559 	/*
1560 	 * Note that the locking here still isn't ideal: We expect the caller
1561 	 * to hold both the upper and lower layer locks as well as the upper
1562 	 * parent directory lock, which it can do in a manner that avoids
1563 	 * deadlock.  However, if the cross-check logic below needs to call
1564 	 * VOP_LOOKUP(), that may relock the upper vnode and lock any found
1565 	 * child vnode in a way that doesn't protect against deadlock given
1566 	 * the other held locks.  Beyond that, the various other VOPs we issue
1567 	 * below, such as VOP_OPEN() and VOP_READDIR(), may also re-lock the
1568 	 * lower vnode.
1569 	 * We might instead just handoff between the upper vnode lock
1570 	 * (and its parent directory lock) and the lower vnode lock as needed,
1571 	 * so that the lower lock is never held at the same time as the upper
1572 	 * locks, but that opens up a wider window in which the upper
1573 	 * directory (and also the lower directory if it isn't truly
1574 	 * read-only) may change while the relevant lock is dropped.  But
1575 	 * since re-locking may happen here and open up such a window anyway,
1576 	 * perhaps that is a worthwile tradeoff?  Or perhaps we can ultimately
1577 	 * do sufficient tracking of empty state within the unionfs vnode
1578 	 * (in conjunction with upcalls from the lower FSes to notify us
1579 	 * of out-of-band state changes) that we can avoid these costly checks
1580 	 * altogether.
1581 	 */
1582 	ASSERT_VOP_LOCKED(lvp, __func__);
1583 	ASSERT_VOP_ELOCKED(uvp, __func__);
1584 
1585 	if ((error = VOP_GETATTR(uvp, &va, cred)) != 0)
1586 		return (error);
1587 	if (va.va_flags & OPAQUE)
1588 		return (0);
1589 
1590 #ifdef MAC
1591 	if ((error = mac_vnode_check_open(cred, lvp, VEXEC | VREAD)) != 0)
1592 		return (error);
1593 #endif
1594 	if ((error = VOP_ACCESS(lvp, VEXEC | VREAD, cred, td)) != 0)
1595 		return (error);
1596 	if ((error = VOP_OPEN(lvp, FREAD, cred, td, NULL)) != 0)
1597 		return (error);
1598 	if ((error = VOP_GETATTR(lvp, &va, cred)) != 0)
1599 		return (error);
1600 
1601 	dirbuflen = max(DEV_BSIZE, GENERIC_MAXDIRSIZ);
1602 	if (dirbuflen < va.va_blocksize)
1603 		dirbuflen = va.va_blocksize;
1604 	dirbuf = malloc(dirbuflen, M_TEMP, M_WAITOK);
1605 
1606 	len = 0;
1607 	off = 0;
1608 	eofflag = 0;
1609 
1610 	for (;;) {
1611 		error = vn_dir_next_dirent(lvp, td, dirbuf, dirbuflen,
1612 		    &dp, &len, &off, &eofflag);
1613 		if (error != 0)
1614 			break;
1615 
1616 		if (len == 0) {
1617 			/* EOF */
1618 			error = 0;
1619 			break;
1620 		}
1621 
1622 		if (dp->d_type == DT_WHT)
1623 			continue;
1624 
1625 		/*
1626 		 * Any file in the directory which is not '.' or '..' indicates
1627 		 * the directory is not empty.
1628 		 */
1629 		switch (dp->d_namlen) {
1630 		case 2:
1631 			if (dp->d_name[1] != '.') {
1632 				/* Can't be '..' (nor '.') */
1633 				break;
1634 			}
1635 			/* FALLTHROUGH */
1636 		case 1:
1637 			if (dp->d_name[0] != '.') {
1638 				/* Can't be '..' nor '.' */
1639 				break;
1640 			}
1641 			continue;
1642 		default:
1643 			break;
1644 		}
1645 
1646 		cn.cn_namelen = dp->d_namlen;
1647 		cn.cn_pnbuf = NULL;
1648 		cn.cn_nameptr = dp->d_name;
1649 		cn.cn_nameiop = LOOKUP;
1650 		cn.cn_flags = LOCKPARENT | LOCKLEAF | RDONLY | ISLASTCN;
1651 		cn.cn_lkflags = LK_EXCLUSIVE;
1652 		cn.cn_cred = cred;
1653 
1654 		error = VOP_LOOKUP(uvp, &tvp, &cn);
1655 		if (tvp != NULLVP)
1656 			vput(tvp);
1657 		if (error != 0 && error != ENOENT && error != EJUSTRETURN)
1658 			break;
1659 		else if ((cn.cn_flags & ISWHITEOUT) == 0) {
1660 			error = ENOTEMPTY;
1661 			break;
1662 		} else
1663 			error = 0;
1664 	}
1665 
1666 	VOP_CLOSE(lvp, FREAD, cred, td);
1667 	free(dirbuf, M_TEMP);
1668 	return (error);
1669 }
1670