xref: /freebsd/sys/fs/unionfs/union_subr.c (revision daf1cffce2e07931f27c6c6998652e90df6ba87e)
1 /*
2  * Copyright (c) 1994 Jan-Simon Pendry
3  * Copyright (c) 1994
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Jan-Simon Pendry.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)union_subr.c	8.20 (Berkeley) 5/20/95
38  * $FreeBSD$
39  */
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/vnode.h>
45 #include <sys/namei.h>
46 #include <sys/malloc.h>
47 #include <sys/fcntl.h>
48 #include <sys/file.h>
49 #include <sys/filedesc.h>
50 #include <sys/module.h>
51 #include <sys/mount.h>
52 #include <sys/stat.h>
53 #include <vm/vm.h>
54 #include <vm/vm_extern.h>	/* for vnode_pager_setsize */
55 #include <vm/vm_zone.h>
56 #include <vm/vm_object.h>	/* for vm cache coherency */
57 #include <miscfs/union/union.h>
58 
59 #include <sys/proc.h>
60 
61 extern int	union_init __P((void));
62 
63 /* must be power of two, otherwise change UNION_HASH() */
64 #define NHASH 32
65 
66 /* unsigned int ... */
67 #define UNION_HASH(u, l) \
68 	(((((uintptr_t) (u)) + ((uintptr_t) l)) >> 8) & (NHASH-1))
69 
70 static LIST_HEAD(unhead, union_node) unhead[NHASH];
71 static int unvplock[NHASH];
72 
73 static void	union_dircache_r __P((struct vnode *vp, struct vnode ***vppp,
74 				      int *cntp));
75 static int	union_list_lock __P((int ix));
76 static void	union_list_unlock __P((int ix));
77 static int	union_relookup __P((struct union_mount *um, struct vnode *dvp,
78 				    struct vnode **vpp,
79 				    struct componentname *cnp,
80 				    struct componentname *cn, char *path,
81 				    int pathlen));
82 static void	union_updatevp __P((struct union_node *un,
83 				    struct vnode *uppervp,
84 				    struct vnode *lowervp));
85 static void union_newlower __P((struct union_node *, struct vnode *));
86 static void union_newupper __P((struct union_node *, struct vnode *));
87 static int union_copyfile __P((struct vnode *, struct vnode *,
88 					struct ucred *, struct proc *));
89 static int union_vn_create __P((struct vnode **, struct union_node *,
90 				struct proc *));
91 static int union_vn_close __P((struct vnode *, int, struct ucred *,
92 				struct proc *));
93 
94 int
95 union_init()
96 {
97 	int i;
98 
99 	for (i = 0; i < NHASH; i++)
100 		LIST_INIT(&unhead[i]);
101 	bzero((caddr_t)unvplock, sizeof(unvplock));
102 	return (0);
103 }
104 
105 static int
106 union_list_lock(ix)
107 	int ix;
108 {
109 	if (unvplock[ix] & UNVP_LOCKED) {
110 		unvplock[ix] |= UNVP_WANT;
111 		(void) tsleep((caddr_t) &unvplock[ix], PINOD, "unllck", 0);
112 		return (1);
113 	}
114 	unvplock[ix] |= UNVP_LOCKED;
115 	return (0);
116 }
117 
118 static void
119 union_list_unlock(ix)
120 	int ix;
121 {
122 	unvplock[ix] &= ~UNVP_LOCKED;
123 
124 	if (unvplock[ix] & UNVP_WANT) {
125 		unvplock[ix] &= ~UNVP_WANT;
126 		wakeup((caddr_t) &unvplock[ix]);
127 	}
128 }
129 
130 /*
131  *	union_updatevp:
132  *
133  *	The uppervp, if not NULL, must be referenced and not locked by us
134  *	The lowervp, if not NULL, must be referenced.
135  *
136  *	if uppervp and lowervp match pointers already installed, nothing
137  *	happens. The passed vp's (when matching) are not adjusted.  This
138  *	routine may only be called by union_newupper() and union_newlower().
139  */
140 
141 static void
142 union_updatevp(un, uppervp, lowervp)
143 	struct union_node *un;
144 	struct vnode *uppervp;
145 	struct vnode *lowervp;
146 {
147 	int ohash = UNION_HASH(un->un_uppervp, un->un_lowervp);
148 	int nhash = UNION_HASH(uppervp, lowervp);
149 	int docache = (lowervp != NULLVP || uppervp != NULLVP);
150 	int lhash, uhash;
151 
152 	/*
153 	 * Ensure locking is ordered from lower to higher
154 	 * to avoid deadlocks.
155 	 */
156 	if (nhash < ohash) {
157 		lhash = nhash;
158 		uhash = ohash;
159 	} else {
160 		lhash = ohash;
161 		uhash = nhash;
162 	}
163 
164 	if (lhash != uhash) {
165 		while (union_list_lock(lhash))
166 			continue;
167 	}
168 
169 	while (union_list_lock(uhash))
170 		continue;
171 
172 	if (ohash != nhash || !docache) {
173 		if (un->un_flags & UN_CACHED) {
174 			un->un_flags &= ~UN_CACHED;
175 			LIST_REMOVE(un, un_cache);
176 		}
177 	}
178 
179 	if (ohash != nhash)
180 		union_list_unlock(ohash);
181 
182 	if (un->un_lowervp != lowervp) {
183 		if (un->un_lowervp) {
184 			vrele(un->un_lowervp);
185 			if (un->un_path) {
186 				free(un->un_path, M_TEMP);
187 				un->un_path = 0;
188 			}
189 		}
190 		un->un_lowervp = lowervp;
191 		un->un_lowersz = VNOVAL;
192 	}
193 
194 	if (un->un_uppervp != uppervp) {
195 		if (un->un_uppervp)
196 			vrele(un->un_uppervp);
197 		un->un_uppervp = uppervp;
198 		un->un_uppersz = VNOVAL;
199 	}
200 
201 	if (docache && (ohash != nhash)) {
202 		LIST_INSERT_HEAD(&unhead[nhash], un, un_cache);
203 		un->un_flags |= UN_CACHED;
204 	}
205 
206 	union_list_unlock(nhash);
207 }
208 
209 /*
210  * Set a new lowervp.  The passed lowervp must be referenced and will be
211  * stored in the vp in a referenced state.
212  */
213 
214 static void
215 union_newlower(un, lowervp)
216 	struct union_node *un;
217 	struct vnode *lowervp;
218 {
219 	union_updatevp(un, un->un_uppervp, lowervp);
220 }
221 
222 /*
223  * Set a new uppervp.  The passed uppervp must be locked and will be
224  * stored in the vp in a locked state.  The caller should not unlock
225  * uppervp.
226  */
227 
228 static void
229 union_newupper(un, uppervp)
230 	struct union_node *un;
231 	struct vnode *uppervp;
232 {
233 	union_updatevp(un, uppervp, un->un_lowervp);
234 }
235 
236 /*
237  * Keep track of size changes in the underlying vnodes.
238  * If the size changes, then callback to the vm layer
239  * giving priority to the upper layer size.
240  */
241 void
242 union_newsize(vp, uppersz, lowersz)
243 	struct vnode *vp;
244 	off_t uppersz, lowersz;
245 {
246 	struct union_node *un;
247 	off_t sz;
248 
249 	/* only interested in regular files */
250 	if (vp->v_type != VREG)
251 		return;
252 
253 	un = VTOUNION(vp);
254 	sz = VNOVAL;
255 
256 	if ((uppersz != VNOVAL) && (un->un_uppersz != uppersz)) {
257 		un->un_uppersz = uppersz;
258 		if (sz == VNOVAL)
259 			sz = un->un_uppersz;
260 	}
261 
262 	if ((lowersz != VNOVAL) && (un->un_lowersz != lowersz)) {
263 		un->un_lowersz = lowersz;
264 		if (sz == VNOVAL)
265 			sz = un->un_lowersz;
266 	}
267 
268 	if (sz != VNOVAL) {
269 		UDEBUG(("union: %s size now %ld\n",
270 			(uppersz != VNOVAL ? "upper" : "lower"), (long)sz));
271 		vnode_pager_setsize(vp, sz);
272 	}
273 }
274 
275 /*
276  *	union_allocvp:	allocate a union_node and associate it with a
277  *			parent union_node and one or two vnodes.
278  *
279  *	vpp	Holds the returned vnode locked and referenced if no
280  *		error occurs.
281  *
282  *	mp	Holds the mount point.  mp may or may not be busied.
283  *		allocvp makes no changes to mp.
284  *
285  *	dvp	Holds the parent union_node to the one we wish to create.
286  *		XXX may only be used to traverse an uncopied lowervp-based
287  *		tree?  XXX
288  *
289  *		dvp may or may not be locked.  allocvp makes no changes
290  *		to dvp.
291  *
292  *	upperdvp Holds the parent vnode to uppervp, generally used along
293  *		with path component information to create a shadow of
294  *		lowervp when uppervp does not exist.
295  *
296  *		upperdvp is referenced but unlocked on entry, and will be
297  *		dereferenced on return.
298  *
299  *	uppervp	Holds the new uppervp vnode to be stored in the
300  *		union_node we are allocating.  uppervp is referenced but
301  *		not locked, and will be dereferenced on return.
302  *
303  *	lowervp	Holds the new lowervp vnode to be stored in the
304  *		union_node we are allocating.  uppervp is referenced but
305  *		not locked, and will be dereferenced on return.
306  *
307  *	cnp	Holds path component information to be coupled with
308  *		lowervp and upperdvp to allow unionfs to create an uppervp
309  *		later on.  Only used if lowervp is valid.  The conents
310  *		of cnp is only valid for the duration of the call.
311  *
312  *	docache	Determine whether this node should be entered in the
313  *		cache or whether it should be destroyed as soon as possible.
314  *
315  * all union_nodes are maintained on a singly-linked
316  * list.  new nodes are only allocated when they cannot
317  * be found on this list.  entries on the list are
318  * removed when the vfs reclaim entry is called.
319  *
320  * a single lock is kept for the entire list.  this is
321  * needed because the getnewvnode() function can block
322  * waiting for a vnode to become free, in which case there
323  * may be more than one process trying to get the same
324  * vnode.  this lock is only taken if we are going to
325  * call getnewvnode, since the kernel itself is single-threaded.
326  *
327  * if an entry is found on the list, then call vget() to
328  * take a reference.  this is done because there may be
329  * zero references to it and so it needs to removed from
330  * the vnode free list.
331  */
332 
333 int
334 union_allocvp(vpp, mp, dvp, upperdvp, cnp, uppervp, lowervp, docache)
335 	struct vnode **vpp;
336 	struct mount *mp;
337 	struct vnode *dvp;		/* parent union vnode */
338 	struct vnode *upperdvp;		/* parent vnode of uppervp */
339 	struct componentname *cnp;	/* may be null */
340 	struct vnode *uppervp;		/* may be null */
341 	struct vnode *lowervp;		/* may be null */
342 	int docache;
343 {
344 	int error;
345 	struct union_node *un = 0;
346 	struct vnode *xlowervp = NULLVP;
347 	struct union_mount *um = MOUNTTOUNIONMOUNT(mp);
348 	struct proc *p = (cnp) ? cnp->cn_proc : curproc;
349 	int hash = 0;
350 	int vflag;
351 	int try;
352 
353 	if (uppervp == NULLVP && lowervp == NULLVP)
354 		panic("union: unidentifiable allocation");
355 
356 	if (uppervp && lowervp && (uppervp->v_type != lowervp->v_type)) {
357 		xlowervp = lowervp;
358 		lowervp = NULLVP;
359 	}
360 
361 	/* detect the root vnode (and aliases) */
362 	vflag = 0;
363 	if ((uppervp == um->um_uppervp) &&
364 	    ((lowervp == NULLVP) || lowervp == um->um_lowervp)) {
365 		if (lowervp == NULLVP) {
366 			lowervp = um->um_lowervp;
367 			if (lowervp != NULLVP)
368 				VREF(lowervp);
369 		}
370 		vflag = VROOT;
371 	}
372 
373 loop:
374 	if (!docache) {
375 		un = 0;
376 	} else for (try = 0; try < 3; try++) {
377 		switch (try) {
378 		case 0:
379 			if (lowervp == NULLVP)
380 				continue;
381 			hash = UNION_HASH(uppervp, lowervp);
382 			break;
383 
384 		case 1:
385 			if (uppervp == NULLVP)
386 				continue;
387 			hash = UNION_HASH(uppervp, NULLVP);
388 			break;
389 
390 		case 2:
391 			if (lowervp == NULLVP)
392 				continue;
393 			hash = UNION_HASH(NULLVP, lowervp);
394 			break;
395 		}
396 
397 		while (union_list_lock(hash))
398 			continue;
399 
400 		for (un = unhead[hash].lh_first; un != 0;
401 					un = un->un_cache.le_next) {
402 			if ((un->un_lowervp == lowervp ||
403 			     un->un_lowervp == NULLVP) &&
404 			    (un->un_uppervp == uppervp ||
405 			     un->un_uppervp == NULLVP) &&
406 			    (UNIONTOV(un)->v_mount == mp)) {
407 				if (vget(UNIONTOV(un), 0,
408 				    cnp ? cnp->cn_proc : NULL)) {
409 					union_list_unlock(hash);
410 					goto loop;
411 				}
412 				break;
413 			}
414 		}
415 
416 		union_list_unlock(hash);
417 
418 		if (un)
419 			break;
420 	}
421 
422 	if (un) {
423 		/*
424 		 * Obtain a lock on the union_node.  Everything is unlocked
425 		 * except for dvp, so check that case.  If they match, our
426 		 * new un is already locked.  Otherwise we have to lock our
427 		 * new un.
428 		 *
429 		 * A potential deadlock situation occurs when we are holding
430 		 * one lock while trying to get another.  We must follow
431 		 * strict ordering rules to avoid it.  We try to locate dvp
432 		 * by scanning up from un_vnode, since the most likely
433 		 * scenario is un being under dvp.
434 		 */
435 
436 		if (dvp && un->un_vnode != dvp) {
437 			struct vnode *scan = un->un_vnode;
438 
439 			do {
440 				scan = VTOUNION(scan)->un_pvp;
441 			} while (scan && scan->v_tag == VT_UNION && scan != dvp);
442 			if (scan != dvp) {
443 				/*
444 				 * our new un is above dvp (we never saw dvp
445 				 * while moving up the tree).
446 				 */
447 				VREF(dvp);
448 				VOP_UNLOCK(dvp, 0, p);
449 				error = vn_lock(un->un_vnode, LK_EXCLUSIVE, p);
450 				vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY, p);
451 				vrele(dvp);
452 			} else {
453 				/*
454 				 * our new un is under dvp
455 				 */
456 				error = vn_lock(un->un_vnode, LK_EXCLUSIVE, p);
457 			}
458 		} else if (dvp == NULLVP) {
459 			/*
460 			 * dvp is NULL, we need to lock un.
461 			 */
462 			error = vn_lock(un->un_vnode, LK_EXCLUSIVE, p);
463 		} else {
464 			/*
465 			 * dvp == un->un_vnode, we are already locked.
466 			 */
467 			error = 0;
468 		}
469 
470 		if (error)
471 			goto loop;
472 
473 		/*
474 		 * At this point, the union_node is locked and referenced.
475 		 *
476 		 * uppervp is locked and referenced or NULL, lowervp is
477 		 * referenced or NULL.
478 		 */
479 		UDEBUG(("Modify existing un %p vn %p upper %p(refs %d) -> %p(refs %d)\n",
480 			un, un->un_vnode, un->un_uppervp,
481 			(un->un_uppervp ? un->un_uppervp->v_usecount : -99),
482 			uppervp,
483 			(uppervp ? uppervp->v_usecount : -99)
484 		));
485 
486 		if (uppervp != un->un_uppervp) {
487 			KASSERT(uppervp == NULL || uppervp->v_usecount > 0, ("union_allocvp: too few refs %d (at least 1 required) on uppervp", uppervp->v_usecount));
488 			union_newupper(un, uppervp);
489 		} else if (uppervp) {
490 			KASSERT(uppervp->v_usecount > 1, ("union_allocvp: too few refs %d (at least 2 required) on uppervp", uppervp->v_usecount));
491 			vrele(uppervp);
492 		}
493 
494 		/*
495 		 * Save information about the lower layer.
496 		 * This needs to keep track of pathname
497 		 * and directory information which union_vn_create
498 		 * might need.
499 		 */
500 		if (lowervp != un->un_lowervp) {
501 			union_newlower(un, lowervp);
502 			if (cnp && (lowervp != NULLVP)) {
503 				un->un_path = malloc(cnp->cn_namelen+1,
504 						M_TEMP, M_WAITOK);
505 				bcopy(cnp->cn_nameptr, un->un_path,
506 						cnp->cn_namelen);
507 				un->un_path[cnp->cn_namelen] = '\0';
508 			}
509 		} else if (lowervp) {
510 			vrele(lowervp);
511 		}
512 
513 		/*
514 		 * and upperdvp
515 		 */
516 		if (upperdvp != un->un_dirvp) {
517 			if (un->un_dirvp)
518 				vrele(un->un_dirvp);
519 			un->un_dirvp = upperdvp;
520 		} else if (upperdvp) {
521 			vrele(upperdvp);
522 		}
523 
524 		*vpp = UNIONTOV(un);
525 		return (0);
526 	}
527 
528 	if (docache) {
529 		/*
530 		 * otherwise lock the vp list while we call getnewvnode
531 		 * since that can block.
532 		 */
533 		hash = UNION_HASH(uppervp, lowervp);
534 
535 		if (union_list_lock(hash))
536 			goto loop;
537 	}
538 
539 	/*
540 	 * Create new node rather then replace old node
541 	 */
542 
543 	error = getnewvnode(VT_UNION, mp, union_vnodeop_p, vpp);
544 	if (error) {
545 		/*
546 		 * If an error occurs clear out vnodes.
547 		 */
548 		if (lowervp)
549 			vrele(lowervp);
550 		if (uppervp)
551 			vrele(uppervp);
552 		if (upperdvp)
553 			vrele(upperdvp);
554 		*vpp = NULL;
555 		goto out;
556 	}
557 
558 	MALLOC((*vpp)->v_data, void *, sizeof(struct union_node),
559 		M_TEMP, M_WAITOK);
560 
561 	(*vpp)->v_flag |= vflag;
562 	if (uppervp)
563 		(*vpp)->v_type = uppervp->v_type;
564 	else
565 		(*vpp)->v_type = lowervp->v_type;
566 
567 	un = VTOUNION(*vpp);
568 	bzero(un, sizeof(*un));
569 
570 	lockinit(&un->un_lock, PVFS, "unlock", 0, 0);
571 	vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY, p);
572 
573 	un->un_vnode = *vpp;
574 	un->un_uppervp = uppervp;
575 	un->un_uppersz = VNOVAL;
576 	un->un_lowervp = lowervp;
577 	un->un_lowersz = VNOVAL;
578 	un->un_dirvp = upperdvp;
579 	un->un_pvp = dvp;		/* only parent dir in new allocation */
580 	if (dvp != NULLVP)
581 		VREF(dvp);
582 	un->un_dircache = 0;
583 	un->un_openl = 0;
584 
585 	if (cnp && (lowervp != NULLVP)) {
586 		un->un_path = malloc(cnp->cn_namelen+1, M_TEMP, M_WAITOK);
587 		bcopy(cnp->cn_nameptr, un->un_path, cnp->cn_namelen);
588 		un->un_path[cnp->cn_namelen] = '\0';
589 	} else {
590 		un->un_path = 0;
591 		un->un_dirvp = NULL;
592 	}
593 
594 	if (docache) {
595 		LIST_INSERT_HEAD(&unhead[hash], un, un_cache);
596 		un->un_flags |= UN_CACHED;
597 	}
598 
599 out:
600 	if (xlowervp)
601 		vrele(xlowervp);
602 
603 	if (docache)
604 		union_list_unlock(hash);
605 
606 	return (error);
607 }
608 
609 int
610 union_freevp(vp)
611 	struct vnode *vp;
612 {
613 	struct union_node *un = VTOUNION(vp);
614 
615 	if (un->un_flags & UN_CACHED) {
616 		un->un_flags &= ~UN_CACHED;
617 		LIST_REMOVE(un, un_cache);
618 	}
619 
620 	if (un->un_pvp != NULLVP) {
621 		vrele(un->un_pvp);
622 		un->un_pvp = NULL;
623 	}
624 	if (un->un_uppervp != NULLVP) {
625 		vrele(un->un_uppervp);
626 		un->un_uppervp = NULL;
627 	}
628 	if (un->un_lowervp != NULLVP) {
629 		vrele(un->un_lowervp);
630 		un->un_lowervp = NULL;
631 	}
632 	if (un->un_dirvp != NULLVP) {
633 		vrele(un->un_dirvp);
634 		un->un_dirvp = NULL;
635 	}
636 	if (un->un_path) {
637 		free(un->un_path, M_TEMP);
638 		un->un_path = NULL;
639 	}
640 
641 	FREE(vp->v_data, M_TEMP);
642 	vp->v_data = 0;
643 
644 	return (0);
645 }
646 
647 /*
648  * copyfile.  copy the vnode (fvp) to the vnode (tvp)
649  * using a sequence of reads and writes.  both (fvp)
650  * and (tvp) are locked on entry and exit.
651  *
652  * fvp and tvp are both exclusive locked on call, but their refcount's
653  * haven't been bumped at all.
654  */
655 static int
656 union_copyfile(fvp, tvp, cred, p)
657 	struct vnode *fvp;
658 	struct vnode *tvp;
659 	struct ucred *cred;
660 	struct proc *p;
661 {
662 	char *buf;
663 	struct uio uio;
664 	struct iovec iov;
665 	int error = 0;
666 
667 	/*
668 	 * strategy:
669 	 * allocate a buffer of size MAXBSIZE.
670 	 * loop doing reads and writes, keeping track
671 	 * of the current uio offset.
672 	 * give up at the first sign of trouble.
673 	 */
674 
675 	bzero(&uio, sizeof(uio));
676 
677 	uio.uio_procp = p;
678 	uio.uio_segflg = UIO_SYSSPACE;
679 	uio.uio_offset = 0;
680 
681 	VOP_LEASE(fvp, p, cred, LEASE_READ);
682 	VOP_LEASE(tvp, p, cred, LEASE_WRITE);
683 
684 	buf = malloc(MAXBSIZE, M_TEMP, M_WAITOK);
685 
686 	/* ugly loop follows... */
687 	do {
688 		off_t offset = uio.uio_offset;
689 		int count;
690 		int bufoffset;
691 
692 		/*
693 		 * Setup for big read
694 		 */
695 		uio.uio_iov = &iov;
696 		uio.uio_iovcnt = 1;
697 		iov.iov_base = buf;
698 		iov.iov_len = MAXBSIZE;
699 		uio.uio_resid = iov.iov_len;
700 		uio.uio_rw = UIO_READ;
701 
702 		if ((error = VOP_READ(fvp, &uio, 0, cred)) != 0)
703 			break;
704 
705 		/*
706 		 * Get bytes read, handle read eof case and setup for
707 		 * write loop
708 		 */
709 		if ((count = MAXBSIZE - uio.uio_resid) == 0)
710 			break;
711 		bufoffset = 0;
712 
713 		/*
714 		 * Write until an error occurs or our buffer has been
715 		 * exhausted, then update the offset for the next read.
716 		 */
717 		while (bufoffset < count) {
718 			uio.uio_iov = &iov;
719 			uio.uio_iovcnt = 1;
720 			iov.iov_base = buf + bufoffset;
721 			iov.iov_len = count - bufoffset;
722 			uio.uio_offset = offset + bufoffset;
723 			uio.uio_rw = UIO_WRITE;
724 			uio.uio_resid = iov.iov_len;
725 
726 			if ((error = VOP_WRITE(tvp, &uio, 0, cred)) != 0)
727 				break;
728 			bufoffset += (count - bufoffset) - uio.uio_resid;
729 		}
730 		uio.uio_offset = offset + bufoffset;
731 	} while (error == 0);
732 
733 	free(buf, M_TEMP);
734 	return (error);
735 }
736 
737 /*
738  *
739  * un's vnode is assumed to be locked on entry and remains locked on exit.
740  */
741 
742 int
743 union_copyup(un, docopy, cred, p)
744 	struct union_node *un;
745 	int docopy;
746 	struct ucred *cred;
747 	struct proc *p;
748 {
749 	int error;
750 	struct vnode *lvp, *uvp;
751 
752 	/*
753 	 * If the user does not have read permission, the vnode should not
754 	 * be copied to upper layer.
755 	 */
756 	vn_lock(un->un_lowervp, LK_EXCLUSIVE | LK_RETRY, p);
757 	error = VOP_ACCESS(un->un_lowervp, VREAD, cred, p);
758 	VOP_UNLOCK(un->un_lowervp, 0, p);
759 	if (error)
760 		return (error);
761 
762 	error = union_vn_create(&uvp, un, p);
763 	if (error)
764 		return (error);
765 
766 	lvp = un->un_lowervp;
767 
768 	KASSERT(uvp->v_usecount > 0, ("copy: uvp refcount 0: %d", uvp->v_usecount));
769 	if (docopy) {
770 		/*
771 		 * XX - should not ignore errors
772 		 * from VOP_CLOSE
773 		 */
774 		vn_lock(lvp, LK_EXCLUSIVE | LK_RETRY, p);
775 		error = VOP_OPEN(lvp, FREAD, cred, p);
776 		if (error == 0 && vn_canvmio(lvp) == TRUE)
777 			error = vfs_object_create(lvp, p, cred);
778 		if (error == 0) {
779 			error = union_copyfile(lvp, uvp, cred, p);
780 			VOP_UNLOCK(lvp, 0, p);
781 			(void) VOP_CLOSE(lvp, FREAD, cred, p);
782 		}
783 		if (error == 0)
784 			UDEBUG(("union: copied up %s\n", un->un_path));
785 
786 	}
787 	VOP_UNLOCK(uvp, 0, p);
788 	union_newupper(un, uvp);
789 	KASSERT(uvp->v_usecount > 0, ("copy: uvp refcount 0: %d", uvp->v_usecount));
790 	union_vn_close(uvp, FWRITE, cred, p);
791 	KASSERT(uvp->v_usecount > 0, ("copy: uvp refcount 0: %d", uvp->v_usecount));
792 	/*
793 	 * Subsequent IOs will go to the top layer, so
794 	 * call close on the lower vnode and open on the
795 	 * upper vnode to ensure that the filesystem keeps
796 	 * its references counts right.  This doesn't do
797 	 * the right thing with (cred) and (FREAD) though.
798 	 * Ignoring error returns is not right, either.
799 	 */
800 	if (error == 0) {
801 		int i;
802 
803 		for (i = 0; i < un->un_openl; i++) {
804 			(void) VOP_CLOSE(lvp, FREAD, cred, p);
805 			(void) VOP_OPEN(uvp, FREAD, cred, p);
806 		}
807 		if (un->un_openl) {
808 			if (vn_canvmio(uvp) == TRUE)
809 				error = vfs_object_create(uvp, p, cred);
810 		}
811 		un->un_openl = 0;
812 	}
813 
814 	return (error);
815 
816 }
817 
818 /*
819  *	union_relookup:
820  *
821  *	dvp should be locked on entry and will be locked on return.  No
822  *	net change in the ref count will occur.
823  *
824  *	If an error is returned, *vpp will be invalid, otherwise it
825  *	will hold a locked, referenced vnode.  If *vpp == dvp then
826  *	remember that only one exclusive lock is held.
827  */
828 
829 static int
830 union_relookup(um, dvp, vpp, cnp, cn, path, pathlen)
831 	struct union_mount *um;
832 	struct vnode *dvp;
833 	struct vnode **vpp;
834 	struct componentname *cnp;
835 	struct componentname *cn;
836 	char *path;
837 	int pathlen;
838 {
839 	int error;
840 
841 	/*
842 	 * A new componentname structure must be faked up because
843 	 * there is no way to know where the upper level cnp came
844 	 * from or what it is being used for.  This must duplicate
845 	 * some of the work done by NDINIT, some of the work done
846 	 * by namei, some of the work done by lookup and some of
847 	 * the work done by VOP_LOOKUP when given a CREATE flag.
848 	 * Conclusion: Horrible.
849 	 */
850 	cn->cn_namelen = pathlen;
851 	cn->cn_pnbuf = zalloc(namei_zone);
852 	bcopy(path, cn->cn_pnbuf, cn->cn_namelen);
853 	cn->cn_pnbuf[cn->cn_namelen] = '\0';
854 
855 	cn->cn_nameiop = CREATE;
856 	cn->cn_flags = (LOCKPARENT|LOCKLEAF|HASBUF|SAVENAME|ISLASTCN);
857 	cn->cn_proc = cnp->cn_proc;
858 	if (um->um_op == UNMNT_ABOVE)
859 		cn->cn_cred = cnp->cn_cred;
860 	else
861 		cn->cn_cred = um->um_cred;
862 	cn->cn_nameptr = cn->cn_pnbuf;
863 	cn->cn_consume = cnp->cn_consume;
864 
865 	VREF(dvp);
866 	VOP_UNLOCK(dvp, 0, cnp->cn_proc);
867 
868 	/*
869 	 * Pass dvp unlocked and referenced on call to relookup().
870 	 *
871 	 * If an error occurs, dvp will be returned unlocked and dereferenced.
872 	 */
873 
874 	if ((error = relookup(dvp, vpp, cn)) != 0) {
875 		vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY, cnp->cn_proc);
876 		return(error);
877 	}
878 
879 	/*
880 	 * If no error occurs, dvp will be returned locked with the reference
881 	 * left as before, and vpp will be returned referenced and locked.
882 	 *
883 	 * We want to return with dvp as it was passed to us, so we get
884 	 * rid of our reference.
885 	 */
886 	vrele(dvp);
887 	return (0);
888 }
889 
890 /*
891  * Create a shadow directory in the upper layer.
892  * The new vnode is returned locked.
893  *
894  * (um) points to the union mount structure for access to the
895  * the mounting process's credentials.
896  * (dvp) is the directory in which to create the shadow directory,
897  * it is locked (but not ref'd) on entry and return.
898  * (cnp) is the componentname to be created.
899  * (vpp) is the returned newly created shadow directory, which
900  * is returned locked and ref'd
901  */
902 int
903 union_mkshadow(um, dvp, cnp, vpp)
904 	struct union_mount *um;
905 	struct vnode *dvp;
906 	struct componentname *cnp;
907 	struct vnode **vpp;
908 {
909 	int error;
910 	struct vattr va;
911 	struct proc *p = cnp->cn_proc;
912 	struct componentname cn;
913 
914 	error = union_relookup(um, dvp, vpp, cnp, &cn,
915 			cnp->cn_nameptr, cnp->cn_namelen);
916 	if (error)
917 		return (error);
918 
919 	if (*vpp) {
920 		if (cn.cn_flags & HASBUF) {
921 			zfree(namei_zone, cn.cn_pnbuf);
922 			cn.cn_flags &= ~HASBUF;
923 		}
924 		if (dvp == *vpp)
925 			vrele(*vpp);
926 		else
927 			vput(*vpp);
928 		*vpp = NULLVP;
929 		return (EEXIST);
930 	}
931 
932 	/*
933 	 * policy: when creating the shadow directory in the
934 	 * upper layer, create it owned by the user who did
935 	 * the mount, group from parent directory, and mode
936 	 * 777 modified by umask (ie mostly identical to the
937 	 * mkdir syscall).  (jsp, kb)
938 	 */
939 
940 	VATTR_NULL(&va);
941 	va.va_type = VDIR;
942 	va.va_mode = um->um_cmode;
943 
944 	/* VOP_LEASE: dvp is locked */
945 	VOP_LEASE(dvp, p, cn.cn_cred, LEASE_WRITE);
946 
947 	error = VOP_MKDIR(dvp, vpp, &cn, &va);
948 	if (cn.cn_flags & HASBUF) {
949 		zfree(namei_zone, cn.cn_pnbuf);
950 		cn.cn_flags &= ~HASBUF;
951 	}
952 	/*vput(dvp);*/
953 	return (error);
954 }
955 
956 /*
957  * Create a whiteout entry in the upper layer.
958  *
959  * (um) points to the union mount structure for access to the
960  * the mounting process's credentials.
961  * (dvp) is the directory in which to create the whiteout.
962  * it is locked on entry and return.
963  * (cnp) is the componentname to be created.
964  */
965 int
966 union_mkwhiteout(um, dvp, cnp, path)
967 	struct union_mount *um;
968 	struct vnode *dvp;
969 	struct componentname *cnp;
970 	char *path;
971 {
972 	int error;
973 	struct proc *p = cnp->cn_proc;
974 	struct vnode *wvp;
975 	struct componentname cn;
976 
977 	error = union_relookup(um, dvp, &wvp, cnp, &cn, path, strlen(path));
978 	if (error)
979 		return (error);
980 
981 	if (wvp) {
982 		if (cn.cn_flags & HASBUF) {
983 			zfree(namei_zone, cn.cn_pnbuf);
984 			cn.cn_flags &= ~HASBUF;
985 		}
986 		if (wvp == dvp)
987 			vrele(wvp);
988 		else
989 			vput(wvp);
990 		return (EEXIST);
991 	}
992 
993 	/* VOP_LEASE: dvp is locked */
994 	VOP_LEASE(dvp, p, p->p_ucred, LEASE_WRITE);
995 
996 	error = VOP_WHITEOUT(dvp, &cn, CREATE);
997 	if (cn.cn_flags & HASBUF) {
998 		zfree(namei_zone, cn.cn_pnbuf);
999 		cn.cn_flags &= ~HASBUF;
1000 	}
1001 	return (error);
1002 }
1003 
1004 /*
1005  * union_vn_create: creates and opens a new shadow file
1006  * on the upper union layer.  this function is similar
1007  * in spirit to calling vn_open but it avoids calling namei().
1008  * the problem with calling namei is that a) it locks too many
1009  * things, and b) it doesn't start at the "right" directory,
1010  * whereas relookup is told where to start.
1011  *
1012  * On entry, the vnode associated with un is locked.  It remains locked
1013  * on return.
1014  *
1015  * If no error occurs, *vpp contains a locked referenced vnode for your
1016  * use.  If an error occurs *vpp iis undefined.
1017  */
1018 static int
1019 union_vn_create(vpp, un, p)
1020 	struct vnode **vpp;
1021 	struct union_node *un;
1022 	struct proc *p;
1023 {
1024 	struct vnode *vp;
1025 	struct ucred *cred = p->p_ucred;
1026 	struct vattr vat;
1027 	struct vattr *vap = &vat;
1028 	int fmode = FFLAGS(O_WRONLY|O_CREAT|O_TRUNC|O_EXCL);
1029 	int error;
1030 	int cmode = UN_FILEMODE & ~p->p_fd->fd_cmask;
1031 	struct componentname cn;
1032 
1033 	*vpp = NULLVP;
1034 
1035 	/*
1036 	 * Build a new componentname structure (for the same
1037 	 * reasons outlines in union_mkshadow).
1038 	 * The difference here is that the file is owned by
1039 	 * the current user, rather than by the person who
1040 	 * did the mount, since the current user needs to be
1041 	 * able to write the file (that's why it is being
1042 	 * copied in the first place).
1043 	 */
1044 	cn.cn_namelen = strlen(un->un_path);
1045 	cn.cn_pnbuf = zalloc(namei_zone);
1046 	bcopy(un->un_path, cn.cn_pnbuf, cn.cn_namelen+1);
1047 	cn.cn_nameiop = CREATE;
1048 	cn.cn_flags = (LOCKPARENT|LOCKLEAF|HASBUF|SAVENAME|ISLASTCN);
1049 	cn.cn_proc = p;
1050 	cn.cn_cred = p->p_ucred;
1051 	cn.cn_nameptr = cn.cn_pnbuf;
1052 	cn.cn_consume = 0;
1053 
1054 	/*
1055 	 * Pass dvp unlocked and referenced on call to relookup().
1056 	 *
1057 	 * If an error occurs, dvp will be returned unlocked and dereferenced.
1058 	 */
1059 	VREF(un->un_dirvp);
1060 	error = relookup(un->un_dirvp, &vp, &cn);
1061 	if (error)
1062 		return (error);
1063 
1064 	/*
1065 	 * If no error occurs, dvp will be returned locked with the reference
1066 	 * left as before, and vpp will be returned referenced and locked.
1067 	 */
1068 	if (vp) {
1069 		vput(un->un_dirvp);
1070 		if (cn.cn_flags & HASBUF) {
1071 			zfree(namei_zone, cn.cn_pnbuf);
1072 			cn.cn_flags &= ~HASBUF;
1073 		}
1074 		if (vp == un->un_dirvp)
1075 			vrele(vp);
1076 		else
1077 			vput(vp);
1078 		return (EEXIST);
1079 	}
1080 
1081 	/*
1082 	 * Good - there was no race to create the file
1083 	 * so go ahead and create it.  The permissions
1084 	 * on the file will be 0666 modified by the
1085 	 * current user's umask.  Access to the file, while
1086 	 * it is unioned, will require access to the top *and*
1087 	 * bottom files.  Access when not unioned will simply
1088 	 * require access to the top-level file.
1089 	 * TODO: confirm choice of access permissions.
1090 	 */
1091 	VATTR_NULL(vap);
1092 	vap->va_type = VREG;
1093 	vap->va_mode = cmode;
1094 	VOP_LEASE(un->un_dirvp, p, cred, LEASE_WRITE);
1095 	error = VOP_CREATE(un->un_dirvp, &vp, &cn, vap);
1096 	if (cn.cn_flags & HASBUF) {
1097 		zfree(namei_zone, cn.cn_pnbuf);
1098 		cn.cn_flags &= ~HASBUF;
1099 	}
1100 	vput(un->un_dirvp);
1101 	if (error)
1102 		return (error);
1103 
1104 	error = VOP_OPEN(vp, fmode, cred, p);
1105 	if (error == 0 && vn_canvmio(vp) == TRUE)
1106 		error = vfs_object_create(vp, p, cred);
1107 	if (error) {
1108 		vput(vp);
1109 		return (error);
1110 	}
1111 	vp->v_writecount++;
1112 	*vpp = vp;
1113 	return (0);
1114 }
1115 
1116 static int
1117 union_vn_close(vp, fmode, cred, p)
1118 	struct vnode *vp;
1119 	int fmode;
1120 	struct ucred *cred;
1121 	struct proc *p;
1122 {
1123 
1124 	if (fmode & FWRITE)
1125 		--vp->v_writecount;
1126 	return (VOP_CLOSE(vp, fmode, cred, p));
1127 }
1128 
1129 #if 0
1130 
1131 /*
1132  *	union_removed_upper:
1133  *
1134  *	called with union_node unlocked. XXX
1135  */
1136 
1137 void
1138 union_removed_upper(un)
1139 	struct union_node *un;
1140 {
1141 	struct proc *p = curproc;	/* XXX */
1142 	struct vnode **vpp;
1143 
1144 	/*
1145 	 * Do not set the uppervp to NULLVP.  If lowervp is NULLVP,
1146 	 * union node will have neither uppervp nor lowervp.  We remove
1147 	 * the union node from cache, so that it will not be referrenced.
1148 	 */
1149 	union_newupper(un, NULLVP);
1150 	if (un->un_dircache != 0) {
1151 		for (vpp = un->un_dircache; *vpp != NULLVP; vpp++)
1152 			vrele(*vpp);
1153 		free(un->un_dircache, M_TEMP);
1154 		un->un_dircache = 0;
1155 	}
1156 
1157 	if (un->un_flags & UN_CACHED) {
1158 		un->un_flags &= ~UN_CACHED;
1159 		LIST_REMOVE(un, un_cache);
1160 	}
1161 }
1162 
1163 #endif
1164 
1165 /*
1166  * determine whether a whiteout is needed
1167  * during a remove/rmdir operation.
1168  */
1169 int
1170 union_dowhiteout(un, cred, p)
1171 	struct union_node *un;
1172 	struct ucred *cred;
1173 	struct proc *p;
1174 {
1175 	struct vattr va;
1176 
1177 	if (un->un_lowervp != NULLVP)
1178 		return (1);
1179 
1180 	if (VOP_GETATTR(un->un_uppervp, &va, cred, p) == 0 &&
1181 	    (va.va_flags & OPAQUE))
1182 		return (1);
1183 
1184 	return (0);
1185 }
1186 
1187 static void
1188 union_dircache_r(vp, vppp, cntp)
1189 	struct vnode *vp;
1190 	struct vnode ***vppp;
1191 	int *cntp;
1192 {
1193 	struct union_node *un;
1194 
1195 	if (vp->v_op != union_vnodeop_p) {
1196 		if (vppp) {
1197 			VREF(vp);
1198 			*(*vppp)++ = vp;
1199 			if (--(*cntp) == 0)
1200 				panic("union: dircache table too small");
1201 		} else {
1202 			(*cntp)++;
1203 		}
1204 
1205 		return;
1206 	}
1207 
1208 	un = VTOUNION(vp);
1209 	if (un->un_uppervp != NULLVP)
1210 		union_dircache_r(un->un_uppervp, vppp, cntp);
1211 	if (un->un_lowervp != NULLVP)
1212 		union_dircache_r(un->un_lowervp, vppp, cntp);
1213 }
1214 
1215 struct vnode *
1216 union_dircache(vp, p)
1217 	struct vnode *vp;
1218 	struct proc *p;
1219 {
1220 	int cnt;
1221 	struct vnode *nvp;
1222 	struct vnode **vpp;
1223 	struct vnode **dircache;
1224 	struct union_node *un;
1225 	int error;
1226 
1227 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
1228 	dircache = VTOUNION(vp)->un_dircache;
1229 
1230 	nvp = NULLVP;
1231 
1232 	if (dircache == NULL) {
1233 		cnt = 0;
1234 		union_dircache_r(vp, 0, &cnt);
1235 		cnt++;
1236 		dircache = malloc(cnt * sizeof(struct vnode *),
1237 				M_TEMP, M_WAITOK);
1238 		vpp = dircache;
1239 		union_dircache_r(vp, &vpp, &cnt);
1240 		*vpp = NULLVP;
1241 		vpp = dircache + 1;
1242 	} else {
1243 		vpp = dircache;
1244 		do {
1245 			if (*vpp++ == VTOUNION(vp)->un_uppervp)
1246 				break;
1247 		} while (*vpp != NULLVP);
1248 	}
1249 
1250 	if (*vpp == NULLVP)
1251 		goto out;
1252 
1253 	/*vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY, p);*/
1254 	UDEBUG(("ALLOCVP-3 %p ref %d\n", *vpp, (*vpp ? (*vpp)->v_usecount : -99)));
1255 	VREF(*vpp);
1256 	error = union_allocvp(&nvp, vp->v_mount, NULLVP, NULLVP, NULL, *vpp, NULLVP, 0);
1257 	UDEBUG(("ALLOCVP-3B %p ref %d\n", nvp, (*vpp ? (*vpp)->v_usecount : -99)));
1258 	if (error)
1259 		goto out;
1260 
1261 	VTOUNION(vp)->un_dircache = 0;
1262 	un = VTOUNION(nvp);
1263 	un->un_dircache = dircache;
1264 
1265 out:
1266 	VOP_UNLOCK(vp, 0, p);
1267 	return (nvp);
1268 }
1269 
1270 /*
1271  * Guarentee coherency with the VM cache by invalidating any clean VM pages
1272  * associated with this write and updating any dirty VM pages.  Since our
1273  * vnode is locked, other processes will not be able to read the pages in
1274  * again until after our write completes.
1275  *
1276  * We also have to be coherent with reads, by flushing any pending dirty
1277  * pages prior to issuing the read.
1278  *
1279  * XXX this is somewhat of a hack at the moment.  To support this properly
1280  * we would have to be able to run VOP_READ and VOP_WRITE through the VM
1281  * cache.  Then we wouldn't need to worry about coherency.
1282  */
1283 
1284 void
1285 union_vm_coherency(struct vnode *vp, struct uio *uio, int cleanfls)
1286 {
1287 	vm_object_t object;
1288 	vm_pindex_t pstart;
1289 	vm_pindex_t pend;
1290 	int pgoff;
1291 
1292 	if ((object = vp->v_object) == NULL)
1293 	    return;
1294 
1295 	pgoff = uio->uio_offset & PAGE_MASK;
1296 	pstart = uio->uio_offset / PAGE_SIZE;
1297 	pend = pstart + (uio->uio_resid + pgoff + PAGE_MASK) / PAGE_SIZE;
1298 
1299 	vm_object_page_clean(object, pstart, pend, OBJPC_SYNC);
1300 	if (cleanfls)
1301 		vm_object_page_remove(object, pstart, pend, TRUE);
1302 }
1303 
1304 /*
1305  * Module glue to remove #ifdef UNION from vfs_syscalls.c
1306  */
1307 static int
1308 union_dircheck(struct proc *p, struct vnode **vp, struct file *fp)
1309 {
1310 	int error = 0;
1311 
1312 	if ((*vp)->v_op == union_vnodeop_p) {
1313 		struct vnode *lvp;
1314 
1315 		lvp = union_dircache(*vp, p);
1316 		if (lvp != NULLVP) {
1317 			struct vattr va;
1318 
1319 			/*
1320 			 * If the directory is opaque,
1321 			 * then don't show lower entries
1322 			 */
1323 			error = VOP_GETATTR(*vp, &va, fp->f_cred, p);
1324 			if (va.va_flags & OPAQUE) {
1325 				vput(lvp);
1326 				lvp = NULL;
1327 			}
1328 		}
1329 
1330 		if (lvp != NULLVP) {
1331 			error = VOP_OPEN(lvp, FREAD, fp->f_cred, p);
1332 			if (error == 0 && vn_canvmio(lvp) == TRUE)
1333 				error = vfs_object_create(lvp, p, fp->f_cred);
1334 			if (error) {
1335 				vput(lvp);
1336 				return (error);
1337 			}
1338 			VOP_UNLOCK(lvp, 0, p);
1339 			fp->f_data = (caddr_t) lvp;
1340 			fp->f_offset = 0;
1341 			error = vn_close(*vp, FREAD, fp->f_cred, p);
1342 			if (error)
1343 				return (error);
1344 			*vp = lvp;
1345 			return -1;	/* goto unionread */
1346 		}
1347 	}
1348 	return error;
1349 }
1350 
1351 static int
1352 union_modevent(module_t mod, int type, void *data)
1353 {
1354 	switch (type) {
1355 	case MOD_LOAD:
1356 		union_dircheckp = union_dircheck;
1357 		break;
1358 	case MOD_UNLOAD:
1359 		union_dircheckp = NULL;
1360 		break;
1361 	default:
1362 		break;
1363 	}
1364 	return 0;
1365 }
1366 
1367 static moduledata_t union_mod = {
1368 	"union_dircheck",
1369 	union_modevent,
1370 	NULL
1371 };
1372 
1373 DECLARE_MODULE(union_dircheck, union_mod, SI_SUB_VFS, SI_ORDER_ANY);
1374