xref: /freebsd/sys/fs/unionfs/union_subr.c (revision 5ca8e32633c4ffbbcd6762e5888b6a4ba0708c6c)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1994 Jan-Simon Pendry
5  * Copyright (c) 1994
6  *	The Regents of the University of California.  All rights reserved.
7  * Copyright (c) 2005, 2006, 2012 Masanori Ozawa <ozawa@ongs.co.jp>, ONGS Inc.
8  * Copyright (c) 2006, 2012 Daichi Goto <daichi@freebsd.org>
9  *
10  * This code is derived from software contributed to Berkeley by
11  * Jan-Simon Pendry.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/ktr.h>
42 #include <sys/lock.h>
43 #include <sys/mutex.h>
44 #include <sys/malloc.h>
45 #include <sys/mount.h>
46 #include <sys/namei.h>
47 #include <sys/proc.h>
48 #include <sys/vnode.h>
49 #include <sys/dirent.h>
50 #include <sys/fcntl.h>
51 #include <sys/filedesc.h>
52 #include <sys/stat.h>
53 #include <sys/sysctl.h>
54 #include <sys/taskqueue.h>
55 #include <sys/resourcevar.h>
56 
57 #include <machine/atomic.h>
58 
59 #include <security/mac/mac_framework.h>
60 
61 #include <vm/uma.h>
62 
63 #include <fs/unionfs/union.h>
64 
65 #define NUNIONFSNODECACHE 16
66 #define UNIONFSHASHMASK (NUNIONFSNODECACHE - 1)
67 
68 static MALLOC_DEFINE(M_UNIONFSHASH, "UNIONFS hash", "UNIONFS hash table");
69 MALLOC_DEFINE(M_UNIONFSNODE, "UNIONFS node", "UNIONFS vnode private part");
70 MALLOC_DEFINE(M_UNIONFSPATH, "UNIONFS path", "UNIONFS path private part");
71 
72 static struct task unionfs_deferred_rele_task;
73 static struct mtx unionfs_deferred_rele_lock;
74 static STAILQ_HEAD(, unionfs_node) unionfs_deferred_rele_list =
75     STAILQ_HEAD_INITIALIZER(unionfs_deferred_rele_list);
76 static TASKQUEUE_DEFINE_THREAD(unionfs_rele);
77 
78 unsigned int unionfs_ndeferred = 0;
79 SYSCTL_UINT(_vfs, OID_AUTO, unionfs_ndeferred, CTLFLAG_RD,
80     &unionfs_ndeferred, 0, "unionfs deferred vnode release");
81 
82 static void unionfs_deferred_rele(void *, int);
83 
84 /*
85  * Initialize
86  */
87 int
88 unionfs_init(struct vfsconf *vfsp)
89 {
90 	UNIONFSDEBUG("unionfs_init\n");	/* printed during system boot */
91 	TASK_INIT(&unionfs_deferred_rele_task, 0, unionfs_deferred_rele, NULL);
92 	mtx_init(&unionfs_deferred_rele_lock, "uniondefr", NULL, MTX_DEF);
93 	return (0);
94 }
95 
96 /*
97  * Uninitialize
98  */
99 int
100 unionfs_uninit(struct vfsconf *vfsp)
101 {
102 	taskqueue_quiesce(taskqueue_unionfs_rele);
103 	taskqueue_free(taskqueue_unionfs_rele);
104 	mtx_destroy(&unionfs_deferred_rele_lock);
105 	return (0);
106 }
107 
108 static void
109 unionfs_deferred_rele(void *arg __unused, int pending __unused)
110 {
111 	STAILQ_HEAD(, unionfs_node) local_rele_list;
112 	struct unionfs_node *unp, *tunp;
113 	unsigned int ndeferred;
114 
115 	ndeferred = 0;
116 	STAILQ_INIT(&local_rele_list);
117 	mtx_lock(&unionfs_deferred_rele_lock);
118 	STAILQ_CONCAT(&local_rele_list, &unionfs_deferred_rele_list);
119 	mtx_unlock(&unionfs_deferred_rele_lock);
120 	STAILQ_FOREACH_SAFE(unp, &local_rele_list, un_rele, tunp) {
121 		++ndeferred;
122 		MPASS(unp->un_dvp != NULL);
123 		vrele(unp->un_dvp);
124 		free(unp, M_UNIONFSNODE);
125 	}
126 
127 	/* We expect this function to be single-threaded, thus no atomic */
128 	unionfs_ndeferred += ndeferred;
129 }
130 
131 static struct unionfs_node_hashhead *
132 unionfs_get_hashhead(struct vnode *dvp, struct vnode *lookup)
133 {
134 	struct unionfs_node *unp;
135 
136 	unp = VTOUNIONFS(dvp);
137 
138 	return (&(unp->un_hashtbl[vfs_hash_index(lookup) & UNIONFSHASHMASK]));
139 }
140 
141 /*
142  * Attempt to lookup a cached unionfs vnode by upper/lower vp
143  * from dvp, with dvp's interlock held.
144  */
145 static struct vnode *
146 unionfs_get_cached_vnode_locked(struct vnode *lookup, struct vnode *dvp)
147 {
148 	struct unionfs_node *unp;
149 	struct unionfs_node_hashhead *hd;
150 	struct vnode *vp;
151 
152 	hd = unionfs_get_hashhead(dvp, lookup);
153 
154 	LIST_FOREACH(unp, hd, un_hash) {
155 		if (unp->un_uppervp == lookup ||
156 		    unp->un_lowervp == lookup) {
157 			vp = UNIONFSTOV(unp);
158 			VI_LOCK_FLAGS(vp, MTX_DUPOK);
159 			vp->v_iflag &= ~VI_OWEINACT;
160 			if (VN_IS_DOOMED(vp) ||
161 			    ((vp->v_iflag & VI_DOINGINACT) != 0)) {
162 				VI_UNLOCK(vp);
163 				vp = NULLVP;
164 			} else {
165 				vrefl(vp);
166 				VI_UNLOCK(vp);
167 			}
168 			return (vp);
169 		}
170 	}
171 
172 	return (NULLVP);
173 }
174 
175 
176 /*
177  * Get the cached vnode.
178  */
179 static struct vnode *
180 unionfs_get_cached_vnode(struct vnode *uvp, struct vnode *lvp,
181     struct vnode *dvp)
182 {
183 	struct vnode *vp;
184 
185 	vp = NULLVP;
186 	VI_LOCK(dvp);
187 	if (uvp != NULLVP)
188 		vp = unionfs_get_cached_vnode_locked(uvp, dvp);
189 	else if (lvp != NULLVP)
190 		vp = unionfs_get_cached_vnode_locked(lvp, dvp);
191 	VI_UNLOCK(dvp);
192 
193 	return (vp);
194 }
195 
196 /*
197  * Add the new vnode into cache.
198  */
199 static struct vnode *
200 unionfs_ins_cached_vnode(struct unionfs_node *uncp,
201     struct vnode *dvp)
202 {
203 	struct unionfs_node_hashhead *hd;
204 	struct vnode *vp;
205 
206 	ASSERT_VOP_ELOCKED(uncp->un_uppervp, __func__);
207 	ASSERT_VOP_ELOCKED(uncp->un_lowervp, __func__);
208 	KASSERT(uncp->un_uppervp == NULLVP || uncp->un_uppervp->v_type == VDIR,
209 	    ("%s: v_type != VDIR", __func__));
210 	KASSERT(uncp->un_lowervp == NULLVP || uncp->un_lowervp->v_type == VDIR,
211 	    ("%s: v_type != VDIR", __func__));
212 
213 	vp = NULLVP;
214 	VI_LOCK(dvp);
215 	if (uncp->un_uppervp != NULL)
216 		vp = unionfs_get_cached_vnode_locked(uncp->un_uppervp, dvp);
217 	else if (uncp->un_lowervp != NULL)
218 		vp = unionfs_get_cached_vnode_locked(uncp->un_lowervp, dvp);
219 	if (vp == NULLVP) {
220 		hd = unionfs_get_hashhead(dvp, (uncp->un_uppervp != NULLVP ?
221 		    uncp->un_uppervp : uncp->un_lowervp));
222 		LIST_INSERT_HEAD(hd, uncp, un_hash);
223 	}
224 	VI_UNLOCK(dvp);
225 
226 	return (vp);
227 }
228 
229 /*
230  * Remove the vnode.
231  */
232 static void
233 unionfs_rem_cached_vnode(struct unionfs_node *unp, struct vnode *dvp)
234 {
235 	KASSERT(unp != NULL, ("%s: null node", __func__));
236 	KASSERT(dvp != NULLVP,
237 	    ("%s: null parent vnode", __func__));
238 
239 	VI_LOCK(dvp);
240 	if (unp->un_hash.le_prev != NULL) {
241 		LIST_REMOVE(unp, un_hash);
242 		unp->un_hash.le_next = NULL;
243 		unp->un_hash.le_prev = NULL;
244 	}
245 	VI_UNLOCK(dvp);
246 }
247 
248 /*
249  * Common cleanup handling for unionfs_nodeget
250  * Upper, lower, and parent directory vnodes are expected to be referenced by
251  * the caller.  Upper and lower vnodes, if non-NULL, are also expected to be
252  * exclusively locked by the caller.
253  * This function will return with the caller's locks and references undone.
254  */
255 static void
256 unionfs_nodeget_cleanup(struct vnode *vp, struct unionfs_node *unp)
257 {
258 
259 	/*
260 	 * Lock and reset the default vnode lock; vgone() expects a locked
261 	 * vnode, and we're going to reset the vnode ops.
262 	 */
263 	lockmgr(&vp->v_lock, LK_EXCLUSIVE, NULL);
264 
265 	/*
266 	 * Clear out private data and reset the vnode ops to avoid use of
267 	 * unionfs vnode ops on a partially constructed vnode.
268 	 */
269 	VI_LOCK(vp);
270 	vp->v_data = NULL;
271 	vp->v_vnlock = &vp->v_lock;
272 	vp->v_op = &dead_vnodeops;
273 	VI_UNLOCK(vp);
274 	vgone(vp);
275 	vput(vp);
276 
277 	if (unp->un_dvp != NULLVP)
278 		vrele(unp->un_dvp);
279 	if (unp->un_uppervp != NULLVP)
280 		vput(unp->un_uppervp);
281 	if (unp->un_lowervp != NULLVP)
282 		vput(unp->un_lowervp);
283 	if (unp->un_hashtbl != NULL)
284 		hashdestroy(unp->un_hashtbl, M_UNIONFSHASH, UNIONFSHASHMASK);
285 	free(unp->un_path, M_UNIONFSPATH);
286 	free(unp, M_UNIONFSNODE);
287 }
288 
289 /*
290  * Make a new or get existing unionfs node.
291  *
292  * uppervp and lowervp should be unlocked. Because if new unionfs vnode is
293  * locked, uppervp or lowervp is locked too. In order to prevent dead lock,
294  * you should not lock plurality simultaneously.
295  */
296 int
297 unionfs_nodeget(struct mount *mp, struct vnode *uppervp,
298     struct vnode *lowervp, struct vnode *dvp, struct vnode **vpp,
299     struct componentname *cnp)
300 {
301 	char	       *path;
302 	struct unionfs_mount *ump;
303 	struct unionfs_node *unp;
304 	struct vnode   *vp;
305 	u_long		hashmask;
306 	int		error;
307 	int		lkflags;
308 	__enum_uint8(vtype)	vt;
309 
310 	error = 0;
311 	ump = MOUNTTOUNIONFSMOUNT(mp);
312 	lkflags = (cnp ? cnp->cn_lkflags : 0);
313 	path = (cnp ? cnp->cn_nameptr : NULL);
314 	*vpp = NULLVP;
315 
316 	if (uppervp == NULLVP && lowervp == NULLVP)
317 		panic("%s: upper and lower is null", __func__);
318 
319 	vt = (uppervp != NULLVP ? uppervp->v_type : lowervp->v_type);
320 
321 	/* If it has no ISLASTCN flag, path check is skipped. */
322 	if (cnp && !(cnp->cn_flags & ISLASTCN))
323 		path = NULL;
324 
325 	/* check the cache */
326 	if (dvp != NULLVP && vt == VDIR) {
327 		vp = unionfs_get_cached_vnode(uppervp, lowervp, dvp);
328 		if (vp != NULLVP) {
329 			*vpp = vp;
330 			goto unionfs_nodeget_out;
331 		}
332 	}
333 
334 	unp = malloc(sizeof(struct unionfs_node),
335 	    M_UNIONFSNODE, M_WAITOK | M_ZERO);
336 
337 	error = getnewvnode("unionfs", mp, &unionfs_vnodeops, &vp);
338 	if (error != 0) {
339 		free(unp, M_UNIONFSNODE);
340 		return (error);
341 	}
342 	if (dvp != NULLVP)
343 		vref(dvp);
344 	if (uppervp != NULLVP)
345 		vref(uppervp);
346 	if (lowervp != NULLVP)
347 		vref(lowervp);
348 
349 	if (vt == VDIR) {
350 		unp->un_hashtbl = hashinit(NUNIONFSNODECACHE, M_UNIONFSHASH,
351 		    &hashmask);
352 		KASSERT(hashmask == UNIONFSHASHMASK,
353 		    ("unexpected unionfs hash mask 0x%lx", hashmask));
354 	}
355 
356 	unp->un_vnode = vp;
357 	unp->un_uppervp = uppervp;
358 	unp->un_lowervp = lowervp;
359 	unp->un_dvp = dvp;
360 	if (uppervp != NULLVP)
361 		vp->v_vnlock = uppervp->v_vnlock;
362 	else
363 		vp->v_vnlock = lowervp->v_vnlock;
364 
365 	if (path != NULL) {
366 		unp->un_path = malloc(cnp->cn_namelen + 1,
367 		    M_UNIONFSPATH, M_WAITOK | M_ZERO);
368 		bcopy(cnp->cn_nameptr, unp->un_path, cnp->cn_namelen);
369 		unp->un_path[cnp->cn_namelen] = '\0';
370 		unp->un_pathlen = cnp->cn_namelen;
371 	}
372 	vp->v_type = vt;
373 	vp->v_data = unp;
374 
375 	/*
376 	 * TODO: This is an imperfect check, as there's no guarantee that
377 	 * the underlying filesystems will always return vnode pointers
378 	 * for the root inodes that match our cached values.  To reduce
379 	 * the likelihood of failure, for example in the case where either
380 	 * vnode has been forcibly doomed, we check both pointers and set
381 	 * VV_ROOT if either matches.
382 	 */
383 	if (ump->um_uppervp == uppervp || ump->um_lowervp == lowervp)
384 		vp->v_vflag |= VV_ROOT;
385 	KASSERT(dvp != NULL || (vp->v_vflag & VV_ROOT) != 0,
386 	    ("%s: NULL dvp for non-root vp %p", __func__, vp));
387 
388 	vn_lock_pair(lowervp, false, LK_EXCLUSIVE, uppervp, false,
389 	    LK_EXCLUSIVE);
390 	error = insmntque1(vp, mp);
391 	if (error != 0) {
392 		unionfs_nodeget_cleanup(vp, unp);
393 		return (error);
394 	}
395 	if (lowervp != NULL && VN_IS_DOOMED(lowervp)) {
396 		vput(lowervp);
397 		unp->un_lowervp = lowervp = NULL;
398 	}
399 	if (uppervp != NULL && VN_IS_DOOMED(uppervp)) {
400 		vput(uppervp);
401 		unp->un_uppervp = uppervp = NULL;
402 		if (lowervp != NULLVP)
403 			vp->v_vnlock = lowervp->v_vnlock;
404 	}
405 	if (lowervp == NULL && uppervp == NULL) {
406 		unionfs_nodeget_cleanup(vp, unp);
407 		return (ENOENT);
408 	}
409 
410 	vn_set_state(vp, VSTATE_CONSTRUCTED);
411 
412 	if (dvp != NULLVP && vt == VDIR)
413 		*vpp = unionfs_ins_cached_vnode(unp, dvp);
414 	if (*vpp != NULLVP) {
415 		unionfs_nodeget_cleanup(vp, unp);
416 		vp = *vpp;
417 	} else {
418 		if (uppervp != NULL)
419 			VOP_UNLOCK(uppervp);
420 		if (lowervp != NULL)
421 			VOP_UNLOCK(lowervp);
422 		*vpp = vp;
423 	}
424 
425 unionfs_nodeget_out:
426 	if (lkflags & LK_TYPE_MASK)
427 		vn_lock(vp, lkflags | LK_RETRY);
428 
429 	return (0);
430 }
431 
432 /*
433  * Clean up the unionfs node.
434  */
435 void
436 unionfs_noderem(struct vnode *vp)
437 {
438 	struct unionfs_node *unp, *unp_t1, *unp_t2;
439 	struct unionfs_node_hashhead *hd;
440 	struct unionfs_node_status *unsp, *unsp_tmp;
441 	struct vnode   *lvp;
442 	struct vnode   *uvp;
443 	struct vnode   *dvp;
444 	int		count;
445 	int		writerefs;
446 
447 	/*
448 	 * The root vnode lock may be recursed during unmount, because
449 	 * it may share the same lock as the unionfs mount's covered vnode,
450 	 * which is locked across VFS_UNMOUNT().  This lock will then be
451 	 * recursively taken during the vflush() issued by unionfs_unmount().
452 	 * But we still only need to lock the unionfs lock once, because only
453 	 * one of those lock operations was taken against a unionfs vnode and
454 	 * will be undone against a unionfs vnode.
455 	 */
456 	KASSERT(vp->v_vnlock->lk_recurse == 0 || (vp->v_vflag & VV_ROOT) != 0,
457 	    ("%s: vnode %p locked recursively", __func__, vp));
458 	if (lockmgr(&vp->v_lock, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
459 		panic("%s: failed to acquire lock for vnode lock", __func__);
460 
461 	/*
462 	 * Use the interlock to protect the clearing of v_data to
463 	 * prevent faults in unionfs_lock().
464 	 */
465 	VI_LOCK(vp);
466 	unp = VTOUNIONFS(vp);
467 	lvp = unp->un_lowervp;
468 	uvp = unp->un_uppervp;
469 	dvp = unp->un_dvp;
470 	unp->un_lowervp = unp->un_uppervp = NULLVP;
471 	vp->v_vnlock = &(vp->v_lock);
472 	vp->v_data = NULL;
473 	vp->v_object = NULL;
474 	if (unp->un_hashtbl != NULL) {
475 		/*
476 		 * Clear out any cached child vnodes.  This should only
477 		 * be necessary during forced unmount, when the vnode may
478 		 * be reclaimed with a non-zero use count.  Otherwise the
479 		 * reference held by each child should prevent reclamation.
480 		 */
481 		for (count = 0; count <= UNIONFSHASHMASK; count++) {
482 			hd = unp->un_hashtbl + count;
483 			LIST_FOREACH_SAFE(unp_t1, hd, un_hash, unp_t2) {
484 				LIST_REMOVE(unp_t1, un_hash);
485 				unp_t1->un_hash.le_next = NULL;
486 				unp_t1->un_hash.le_prev = NULL;
487 			}
488 		}
489 	}
490 	VI_UNLOCK(vp);
491 
492 	writerefs = atomic_load_int(&vp->v_writecount);
493 	VNASSERT(writerefs >= 0, vp,
494 	    ("%s: write count %d, unexpected text ref", __func__, writerefs));
495 	/*
496 	 * If we were opened for write, we leased the write reference
497 	 * to the lower vnode.  If this is a reclamation due to the
498 	 * forced unmount, undo the reference now.
499 	 */
500 	if (writerefs > 0) {
501 		VNASSERT(uvp != NULL, vp,
502 		    ("%s: write reference without upper vnode", __func__));
503 		VOP_ADD_WRITECOUNT(uvp, -writerefs);
504 	}
505 	if (lvp != NULLVP)
506 		VOP_UNLOCK(lvp);
507 	if (uvp != NULLVP)
508 		VOP_UNLOCK(uvp);
509 
510 	if (dvp != NULLVP)
511 		unionfs_rem_cached_vnode(unp, dvp);
512 
513 	if (lvp != NULLVP)
514 		vrele(lvp);
515 	if (uvp != NULLVP)
516 		vrele(uvp);
517 	if (unp->un_path != NULL) {
518 		free(unp->un_path, M_UNIONFSPATH);
519 		unp->un_path = NULL;
520 		unp->un_pathlen = 0;
521 	}
522 
523 	if (unp->un_hashtbl != NULL) {
524 		hashdestroy(unp->un_hashtbl, M_UNIONFSHASH, UNIONFSHASHMASK);
525 	}
526 
527 	LIST_FOREACH_SAFE(unsp, &(unp->un_unshead), uns_list, unsp_tmp) {
528 		LIST_REMOVE(unsp, uns_list);
529 		free(unsp, M_TEMP);
530 	}
531 	if (dvp != NULLVP) {
532 		mtx_lock(&unionfs_deferred_rele_lock);
533 		STAILQ_INSERT_TAIL(&unionfs_deferred_rele_list, unp, un_rele);
534 		mtx_unlock(&unionfs_deferred_rele_lock);
535 		taskqueue_enqueue(taskqueue_unionfs_rele,
536 		    &unionfs_deferred_rele_task);
537 	} else
538 		free(unp, M_UNIONFSNODE);
539 }
540 
541 /*
542  * Get the unionfs node status object for the vnode corresponding to unp,
543  * for the process that owns td.  Allocate a new status object if one
544  * does not already exist.
545  */
546 void
547 unionfs_get_node_status(struct unionfs_node *unp, struct thread *td,
548     struct unionfs_node_status **unspp)
549 {
550 	struct unionfs_node_status *unsp;
551 	pid_t pid;
552 
553 	pid = td->td_proc->p_pid;
554 
555 	KASSERT(NULL != unspp, ("%s: NULL status", __func__));
556 	ASSERT_VOP_ELOCKED(UNIONFSTOV(unp), __func__);
557 
558 	LIST_FOREACH(unsp, &(unp->un_unshead), uns_list) {
559 		if (unsp->uns_pid == pid) {
560 			*unspp = unsp;
561 			return;
562 		}
563 	}
564 
565 	/* create a new unionfs node status */
566 	unsp = malloc(sizeof(struct unionfs_node_status),
567 	    M_TEMP, M_WAITOK | M_ZERO);
568 
569 	unsp->uns_pid = pid;
570 	LIST_INSERT_HEAD(&(unp->un_unshead), unsp, uns_list);
571 
572 	*unspp = unsp;
573 }
574 
575 /*
576  * Remove the unionfs node status, if you can.
577  * You need exclusive lock this vnode.
578  */
579 void
580 unionfs_tryrem_node_status(struct unionfs_node *unp,
581     struct unionfs_node_status *unsp)
582 {
583 	KASSERT(NULL != unsp, ("%s: NULL status", __func__));
584 	ASSERT_VOP_ELOCKED(UNIONFSTOV(unp), __func__);
585 
586 	if (0 < unsp->uns_lower_opencnt || 0 < unsp->uns_upper_opencnt)
587 		return;
588 
589 	LIST_REMOVE(unsp, uns_list);
590 	free(unsp, M_TEMP);
591 }
592 
593 /*
594  * Create upper node attr.
595  */
596 void
597 unionfs_create_uppervattr_core(struct unionfs_mount *ump, struct vattr *lva,
598     struct vattr *uva, struct thread *td)
599 {
600 	VATTR_NULL(uva);
601 	uva->va_type = lva->va_type;
602 	uva->va_atime = lva->va_atime;
603 	uva->va_mtime = lva->va_mtime;
604 	uva->va_ctime = lva->va_ctime;
605 
606 	switch (ump->um_copymode) {
607 	case UNIONFS_TRANSPARENT:
608 		uva->va_mode = lva->va_mode;
609 		uva->va_uid = lva->va_uid;
610 		uva->va_gid = lva->va_gid;
611 		break;
612 	case UNIONFS_MASQUERADE:
613 		if (ump->um_uid == lva->va_uid) {
614 			uva->va_mode = lva->va_mode & 077077;
615 			uva->va_mode |= (lva->va_type == VDIR ?
616 			    ump->um_udir : ump->um_ufile) & 0700;
617 			uva->va_uid = lva->va_uid;
618 			uva->va_gid = lva->va_gid;
619 		} else {
620 			uva->va_mode = (lva->va_type == VDIR ?
621 			    ump->um_udir : ump->um_ufile);
622 			uva->va_uid = ump->um_uid;
623 			uva->va_gid = ump->um_gid;
624 		}
625 		break;
626 	default:		/* UNIONFS_TRADITIONAL */
627 		uva->va_mode = 0777 & ~td->td_proc->p_pd->pd_cmask;
628 		uva->va_uid = ump->um_uid;
629 		uva->va_gid = ump->um_gid;
630 		break;
631 	}
632 }
633 
634 /*
635  * Create upper node attr.
636  */
637 int
638 unionfs_create_uppervattr(struct unionfs_mount *ump, struct vnode *lvp,
639     struct vattr *uva, struct ucred *cred, struct thread *td)
640 {
641 	struct vattr	lva;
642 	int		error;
643 
644 	if ((error = VOP_GETATTR(lvp, &lva, cred)))
645 		return (error);
646 
647 	unionfs_create_uppervattr_core(ump, &lva, uva, td);
648 
649 	return (error);
650 }
651 
652 /*
653  * relookup
654  *
655  * dvp should be locked on entry and will be locked on return.
656  *
657  * If an error is returned, *vpp will be invalid, otherwise it will hold a
658  * locked, referenced vnode. If *vpp == dvp then remember that only one
659  * LK_EXCLUSIVE lock is held.
660  */
661 int
662 unionfs_relookup(struct vnode *dvp, struct vnode **vpp,
663     struct componentname *cnp, struct componentname *cn, struct thread *td,
664     char *path, int pathlen, u_long nameiop)
665 {
666 	int error;
667 	bool refstart;
668 
669 	cn->cn_namelen = pathlen;
670 	cn->cn_pnbuf = path;
671 	cn->cn_nameiop = nameiop;
672 	cn->cn_flags = (LOCKPARENT | LOCKLEAF | ISLASTCN);
673 	cn->cn_lkflags = LK_EXCLUSIVE;
674 	cn->cn_cred = cnp->cn_cred;
675 	cn->cn_nameptr = cn->cn_pnbuf;
676 
677 	refstart = false;
678 	if (nameiop == DELETE) {
679 		cn->cn_flags |= (cnp->cn_flags & DOWHITEOUT);
680 	} else if (nameiop == RENAME) {
681 		refstart = true;
682 	} else if (nameiop == CREATE) {
683 		cn->cn_flags |= NOCACHE;
684 	}
685 
686 	vref(dvp);
687 	VOP_UNLOCK(dvp);
688 
689 	if ((error = vfs_relookup(dvp, vpp, cn, refstart))) {
690 		vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
691 	} else
692 		vrele(dvp);
693 
694 	KASSERT(cn->cn_pnbuf == path, ("%s: cn_pnbuf changed", __func__));
695 
696 	return (error);
697 }
698 
699 /*
700  * relookup for CREATE namei operation.
701  *
702  * dvp is unionfs vnode. dvp should be locked.
703  *
704  * If it called 'unionfs_copyfile' function by unionfs_link etc,
705  * VOP_LOOKUP information is broken.
706  * So it need relookup in order to create link etc.
707  */
708 int
709 unionfs_relookup_for_create(struct vnode *dvp, struct componentname *cnp,
710     struct thread *td)
711 {
712 	struct vnode *udvp;
713 	struct vnode *vp;
714 	struct componentname cn;
715 	int error;
716 
717 	udvp = UNIONFSVPTOUPPERVP(dvp);
718 	vp = NULLVP;
719 
720 	error = unionfs_relookup(udvp, &vp, cnp, &cn, td, cnp->cn_nameptr,
721 	    cnp->cn_namelen, CREATE);
722 	if (error)
723 		return (error);
724 
725 	if (vp != NULLVP) {
726 		if (udvp == vp)
727 			vrele(vp);
728 		else
729 			vput(vp);
730 
731 		error = EEXIST;
732 	}
733 
734 	return (error);
735 }
736 
737 /*
738  * relookup for DELETE namei operation.
739  *
740  * dvp is unionfs vnode. dvp should be locked.
741  */
742 int
743 unionfs_relookup_for_delete(struct vnode *dvp, struct componentname *cnp,
744     struct thread *td)
745 {
746 	struct vnode *udvp;
747 	struct vnode *vp;
748 	struct componentname cn;
749 	int error;
750 
751 	udvp = UNIONFSVPTOUPPERVP(dvp);
752 	vp = NULLVP;
753 
754 	error = unionfs_relookup(udvp, &vp, cnp, &cn, td, cnp->cn_nameptr,
755 	    cnp->cn_namelen, DELETE);
756 	if (error)
757 		return (error);
758 
759 	if (vp == NULLVP)
760 		error = ENOENT;
761 	else {
762 		if (udvp == vp)
763 			vrele(vp);
764 		else
765 			vput(vp);
766 	}
767 
768 	return (error);
769 }
770 
771 /*
772  * relookup for RENAME namei operation.
773  *
774  * dvp is unionfs vnode. dvp should be locked.
775  */
776 int
777 unionfs_relookup_for_rename(struct vnode *dvp, struct componentname *cnp,
778     struct thread *td)
779 {
780 	struct vnode *udvp;
781 	struct vnode *vp;
782 	struct componentname cn;
783 	int error;
784 
785 	udvp = UNIONFSVPTOUPPERVP(dvp);
786 	vp = NULLVP;
787 
788 	error = unionfs_relookup(udvp, &vp, cnp, &cn, td, cnp->cn_nameptr,
789 	    cnp->cn_namelen, RENAME);
790 	if (error)
791 		return (error);
792 
793 	if (vp != NULLVP) {
794 		if (udvp == vp)
795 			vrele(vp);
796 		else
797 			vput(vp);
798 	}
799 
800 	return (error);
801 }
802 
803 /*
804  * Update the unionfs_node.
805  *
806  * uvp is new locked upper vnode. unionfs vnode's lock will be exchanged to the
807  * uvp's lock and lower's lock will be unlocked.
808  */
809 static void
810 unionfs_node_update(struct unionfs_node *unp, struct vnode *uvp,
811     struct thread *td)
812 {
813 	struct unionfs_node_hashhead *hd;
814 	struct vnode   *vp;
815 	struct vnode   *lvp;
816 	struct vnode   *dvp;
817 	unsigned	count, lockrec;
818 
819 	vp = UNIONFSTOV(unp);
820 	lvp = unp->un_lowervp;
821 	ASSERT_VOP_ELOCKED(lvp, __func__);
822 	ASSERT_VOP_ELOCKED(uvp, __func__);
823 	dvp = unp->un_dvp;
824 
825 	VNASSERT(vp->v_writecount == 0, vp,
826 	    ("%s: non-zero writecount", __func__));
827 	/*
828 	 * Update the upper vnode's lock state to match the lower vnode,
829 	 * and then switch the unionfs vnode's lock to the upper vnode.
830 	 */
831 	lockrec = lvp->v_vnlock->lk_recurse;
832 	for (count = 0; count < lockrec; count++)
833 		vn_lock(uvp, LK_EXCLUSIVE | LK_CANRECURSE | LK_RETRY);
834 	VI_LOCK(vp);
835 	unp->un_uppervp = uvp;
836 	vp->v_vnlock = uvp->v_vnlock;
837 	VI_UNLOCK(vp);
838 
839 	/*
840 	 * Re-cache the unionfs vnode against the upper vnode
841 	 */
842 	if (dvp != NULLVP && vp->v_type == VDIR) {
843 		VI_LOCK(dvp);
844 		if (unp->un_hash.le_prev != NULL) {
845 			LIST_REMOVE(unp, un_hash);
846 			hd = unionfs_get_hashhead(dvp, uvp);
847 			LIST_INSERT_HEAD(hd, unp, un_hash);
848 		}
849 		VI_UNLOCK(unp->un_dvp);
850 	}
851 }
852 
853 /*
854  * Create a new shadow dir.
855  *
856  * udvp should be locked on entry and will be locked on return.
857  *
858  * If no error returned, unp will be updated.
859  */
860 int
861 unionfs_mkshadowdir(struct unionfs_mount *ump, struct vnode *udvp,
862     struct unionfs_node *unp, struct componentname *cnp, struct thread *td)
863 {
864 	struct vnode   *lvp;
865 	struct vnode   *uvp;
866 	struct vattr	va;
867 	struct vattr	lva;
868 	struct nameidata nd;
869 	struct mount   *mp;
870 	struct ucred   *cred;
871 	struct ucred   *credbk;
872 	struct uidinfo *rootinfo;
873 	int		error;
874 
875 	if (unp->un_uppervp != NULLVP)
876 		return (EEXIST);
877 
878 	lvp = unp->un_lowervp;
879 	uvp = NULLVP;
880 	credbk = cnp->cn_cred;
881 
882 	/* Authority change to root */
883 	rootinfo = uifind((uid_t)0);
884 	cred = crdup(cnp->cn_cred);
885 	/*
886 	 * The calls to chgproccnt() are needed to compensate for change_ruid()
887 	 * calling chgproccnt().
888 	 */
889 	chgproccnt(cred->cr_ruidinfo, 1, 0);
890 	change_euid(cred, rootinfo);
891 	change_ruid(cred, rootinfo);
892 	change_svuid(cred, (uid_t)0);
893 	uifree(rootinfo);
894 	cnp->cn_cred = cred;
895 
896 	memset(&nd.ni_cnd, 0, sizeof(struct componentname));
897 	NDPREINIT(&nd);
898 
899 	if ((error = VOP_GETATTR(lvp, &lva, cnp->cn_cred)))
900 		goto unionfs_mkshadowdir_abort;
901 
902 	if ((error = unionfs_relookup(udvp, &uvp, cnp, &nd.ni_cnd, td,
903 	    cnp->cn_nameptr, cnp->cn_namelen, CREATE)))
904 		goto unionfs_mkshadowdir_abort;
905 	if (uvp != NULLVP) {
906 		if (udvp == uvp)
907 			vrele(uvp);
908 		else
909 			vput(uvp);
910 
911 		error = EEXIST;
912 		goto unionfs_mkshadowdir_abort;
913 	}
914 
915 	if ((error = vn_start_write(udvp, &mp, V_WAIT | V_PCATCH)))
916 		goto unionfs_mkshadowdir_abort;
917 	unionfs_create_uppervattr_core(ump, &lva, &va, td);
918 
919 	/*
920 	 * Temporarily NUL-terminate the current pathname component.
921 	 * This function may be called during lookup operations in which
922 	 * the current pathname component is not the leaf, meaning that
923 	 * the NUL terminator is some distance beyond the end of the current
924 	 * component.  This *should* be fine, as cn_namelen will still
925 	 * correctly indicate the length of only the current component,
926 	 * but ZFS in particular does not respect cn_namelen in its VOP_MKDIR
927 	 * implementation
928 	 * Note that this assumes nd.ni_cnd.cn_pnbuf was allocated by
929 	 * something like a local namei() operation and the temporary
930 	 * NUL-termination will not have an effect on other threads.
931 	 */
932 	char *pathend = &nd.ni_cnd.cn_nameptr[nd.ni_cnd.cn_namelen];
933 	char pathterm = *pathend;
934 	*pathend = '\0';
935 	error = VOP_MKDIR(udvp, &uvp, &nd.ni_cnd, &va);
936 	*pathend = pathterm;
937 
938 	if (!error) {
939 		/*
940 		 * XXX The bug which cannot set uid/gid was corrected.
941 		 * Ignore errors.
942 		 */
943 		va.va_type = VNON;
944 		VOP_SETATTR(uvp, &va, nd.ni_cnd.cn_cred);
945 
946 		/*
947 		 * VOP_SETATTR() may transiently drop uvp's lock, so it's
948 		 * important to call it before unionfs_node_update() transfers
949 		 * the unionfs vnode's lock from lvp to uvp; otherwise the
950 		 * unionfs vnode itself would be transiently unlocked and
951 		 * potentially doomed.
952 		 */
953 		unionfs_node_update(unp, uvp, td);
954 	}
955 	vn_finished_write(mp);
956 
957 unionfs_mkshadowdir_abort:
958 	cnp->cn_cred = credbk;
959 	chgproccnt(cred->cr_ruidinfo, -1, 0);
960 	crfree(cred);
961 
962 	return (error);
963 }
964 
965 static inline void
966 unionfs_forward_vop_ref(struct vnode *basevp, int *lkflags)
967 {
968 	ASSERT_VOP_LOCKED(basevp, __func__);
969 	*lkflags = VOP_ISLOCKED(basevp);
970 	vref(basevp);
971 }
972 
973 /*
974  * Prepare unionfs to issue a forwarded VOP to either the upper or lower
975  * FS.  This should be used for any VOP which may drop the vnode lock;
976  * it is not required otherwise.
977  * The unionfs vnode shares its lock with the base-layer vnode(s); if the
978  * base FS must transiently drop its vnode lock, the unionfs vnode may
979  * effectively become unlocked.  During that window, a concurrent forced
980  * unmount may doom the unionfs vnode, which leads to two significant
981  * issues:
982  * 1) Completion of, and return from, the unionfs VOP with the unionfs
983  *    vnode completely unlocked.  When the unionfs vnode becomes doomed
984  *    it stops sharing its lock with the base vnode, so even if the
985  *    forwarded VOP reacquires the base vnode lock the unionfs vnode
986  *    lock will no longer be held.  This can lead to violation of the
987  *    caller's sychronization requirements as well as various failed
988  *    locking assertions when DEBUG_VFS_LOCKS is enabled.
989  * 2) Loss of reference on the base vnode.  The caller is expected to
990  *    hold a v_usecount reference on the unionfs vnode, while the
991  *    unionfs vnode holds a reference on the base-layer vnode(s).  But
992  *    these references are released when the unionfs vnode becomes
993  *    doomed, violating the base layer's expectation that its caller
994  *    must hold a reference to prevent vnode recycling.
995  *
996  * basevp1 and basevp2 represent two base-layer vnodes which are
997  * expected to be locked when this function is called.  basevp2
998  * may be NULL, but if not NULL basevp1 and basevp2 should represent
999  * a parent directory and a filed linked to it, respectively.
1000  * lkflags1 and lkflags2 are output parameters that will store the
1001  * current lock status of basevp1 and basevp2, respectively.  They
1002  * are intended to be passed as the lkflags1 and lkflags2 parameters
1003  * in the subsequent call to unionfs_forward_vop_finish_pair().
1004  * lkflags2 may be NULL iff basevp2 is NULL.
1005  */
1006 void
1007 unionfs_forward_vop_start_pair(struct vnode *basevp1, int *lkflags1,
1008     struct vnode *basevp2, int *lkflags2)
1009 {
1010 	/*
1011 	 * Take an additional reference on the base-layer vnodes to
1012 	 * avoid loss of reference if the unionfs vnodes are doomed.
1013 	 */
1014 	unionfs_forward_vop_ref(basevp1, lkflags1);
1015 	if (basevp2 != NULL)
1016 		unionfs_forward_vop_ref(basevp2, lkflags2);
1017 }
1018 
1019 static inline bool
1020 unionfs_forward_vop_rele(struct vnode *unionvp, struct vnode *basevp,
1021     int lkflags)
1022 {
1023 	bool unionvp_doomed;
1024 
1025 	if (__predict_false(VTOUNIONFS(unionvp) == NULL)) {
1026 		if ((lkflags & LK_EXCLUSIVE) != 0)
1027 			ASSERT_VOP_ELOCKED(basevp, __func__);
1028 		else
1029 			ASSERT_VOP_LOCKED(basevp, __func__);
1030 		unionvp_doomed = true;
1031 	} else {
1032 		vrele(basevp);
1033 		unionvp_doomed = false;
1034 	}
1035 
1036 	return (unionvp_doomed);
1037 }
1038 
1039 
1040 /*
1041  * Indicate completion of a forwarded VOP previously prepared by
1042  * unionfs_forward_vop_start_pair().
1043  * basevp1 and basevp2 must be the same values passed to the prior
1044  * call to unionfs_forward_vop_start_pair().  unionvp1 and unionvp2
1045  * must be the unionfs vnodes that were initially above basevp1 and
1046  * basevp2, respectively.
1047  * basevp1 and basevp2 (if not NULL) must be locked when this function
1048  * is called, while unionvp1 and/or unionvp2 may be unlocked if either
1049  * unionfs vnode has become doomed.
1050  * lkflags1 and lkflag2 represent the locking flags that should be
1051  * used to re-lock unionvp1 and unionvp2, respectively, if either
1052  * vnode has become doomed.
1053  *
1054  * Returns true if any unionfs vnode was found to be doomed, false
1055  * otherwise.
1056  */
1057 bool
1058 unionfs_forward_vop_finish_pair(
1059     struct vnode *unionvp1, struct vnode *basevp1, int lkflags1,
1060     struct vnode *unionvp2, struct vnode *basevp2, int lkflags2)
1061 {
1062 	bool vp1_doomed, vp2_doomed;
1063 
1064 	/*
1065 	 * If either vnode is found to have been doomed, set
1066 	 * a flag indicating that it needs to be re-locked.
1067 	 * Otherwise, simply drop the base-vnode reference that
1068 	 * was taken in unionfs_forward_vop_start().
1069 	 */
1070 	vp1_doomed = unionfs_forward_vop_rele(unionvp1, basevp1, lkflags1);
1071 
1072 	if (unionvp2 != NULL)
1073 		vp2_doomed = unionfs_forward_vop_rele(unionvp2, basevp2, lkflags2);
1074 	else
1075 		vp2_doomed = false;
1076 
1077 	/*
1078 	 * If any of the unionfs vnodes need to be re-locked, that
1079 	 * means the unionfs vnode's lock is now de-coupled from the
1080 	 * corresponding base vnode.  We therefore need to drop the
1081 	 * base vnode lock (since nothing else will after this point),
1082 	 * and also release the reference taken in
1083 	 * unionfs_forward_vop_start_pair().
1084 	 */
1085 	if (__predict_false(vp1_doomed && vp2_doomed))
1086 		VOP_VPUT_PAIR(basevp1, &basevp2, true);
1087 	else if (__predict_false(vp1_doomed)) {
1088 		/*
1089 		 * If basevp1 needs to be unlocked, then we may not
1090 		 * be able to safely unlock it with basevp2 still locked,
1091 		 * for the same reason that an ordinary VFS call would
1092 		 * need to use VOP_VPUT_PAIR() here.  We might be able
1093 		 * to use VOP_VPUT_PAIR(..., false) here, but then we
1094 		 * would need to deal with the possibility of basevp2
1095 		 * changing out from under us, which could result in
1096 		 * either the unionfs vnode becoming doomed or its
1097 		 * upper/lower vp no longer matching basevp2.  Either
1098 		 * scenario would require at least re-locking the unionfs
1099 		 * vnode anyway.
1100 		 */
1101 		if (unionvp2 != NULL) {
1102 			VOP_UNLOCK(unionvp2);
1103 			vp2_doomed = true;
1104 		}
1105 		vput(basevp1);
1106 	} else if (__predict_false(vp2_doomed))
1107 		vput(basevp2);
1108 
1109 	if (__predict_false(vp1_doomed || vp2_doomed))
1110 		vn_lock_pair(unionvp1, !vp1_doomed, lkflags1,
1111 		    unionvp2, !vp2_doomed, lkflags2);
1112 
1113 	return (vp1_doomed || vp2_doomed);
1114 }
1115 
1116 /*
1117  * Create a new whiteout.
1118  *
1119  * udvp and dvp should be locked on entry and will be locked on return.
1120  */
1121 int
1122 unionfs_mkwhiteout(struct vnode *dvp, struct vnode *udvp,
1123     struct componentname *cnp, struct thread *td, char *path, int pathlen)
1124 {
1125 	struct vnode   *wvp;
1126 	struct nameidata nd;
1127 	struct mount   *mp;
1128 	int		error;
1129 	int		lkflags;
1130 
1131 	wvp = NULLVP;
1132 	NDPREINIT(&nd);
1133 	if ((error = unionfs_relookup(udvp, &wvp, cnp, &nd.ni_cnd, td, path,
1134 	    pathlen, CREATE))) {
1135 		return (error);
1136 	}
1137 	if (wvp != NULLVP) {
1138 		if (udvp == wvp)
1139 			vrele(wvp);
1140 		else
1141 			vput(wvp);
1142 
1143 		return (EEXIST);
1144 	}
1145 
1146 	if ((error = vn_start_write(udvp, &mp, V_WAIT | V_PCATCH)))
1147 		goto unionfs_mkwhiteout_free_out;
1148 	unionfs_forward_vop_start(udvp, &lkflags);
1149 	error = VOP_WHITEOUT(udvp, &nd.ni_cnd, CREATE);
1150 	unionfs_forward_vop_finish(dvp, udvp, lkflags);
1151 
1152 	vn_finished_write(mp);
1153 
1154 unionfs_mkwhiteout_free_out:
1155 	return (error);
1156 }
1157 
1158 /*
1159  * Create a new vnode for create a new shadow file.
1160  *
1161  * If an error is returned, *vpp will be invalid, otherwise it will hold a
1162  * locked, referenced and opened vnode.
1163  *
1164  * unp is never updated.
1165  */
1166 static int
1167 unionfs_vn_create_on_upper(struct vnode **vpp, struct vnode *udvp,
1168     struct unionfs_node *unp, struct vattr *uvap, struct thread *td)
1169 {
1170 	struct unionfs_mount *ump;
1171 	struct vnode   *vp;
1172 	struct vnode   *lvp;
1173 	struct ucred   *cred;
1174 	struct vattr	lva;
1175 	struct nameidata nd;
1176 	int		fmode;
1177 	int		error;
1178 
1179 	ump = MOUNTTOUNIONFSMOUNT(UNIONFSTOV(unp)->v_mount);
1180 	vp = NULLVP;
1181 	lvp = unp->un_lowervp;
1182 	cred = td->td_ucred;
1183 	fmode = FFLAGS(O_WRONLY | O_CREAT | O_TRUNC | O_EXCL);
1184 	error = 0;
1185 
1186 	if ((error = VOP_GETATTR(lvp, &lva, cred)) != 0)
1187 		return (error);
1188 	unionfs_create_uppervattr_core(ump, &lva, uvap, td);
1189 
1190 	if (unp->un_path == NULL)
1191 		panic("%s: NULL un_path", __func__);
1192 
1193 	nd.ni_cnd.cn_namelen = unp->un_pathlen;
1194 	nd.ni_cnd.cn_pnbuf = unp->un_path;
1195 	nd.ni_cnd.cn_nameiop = CREATE;
1196 	nd.ni_cnd.cn_flags = LOCKPARENT | LOCKLEAF | ISLASTCN;
1197 	nd.ni_cnd.cn_lkflags = LK_EXCLUSIVE;
1198 	nd.ni_cnd.cn_cred = cred;
1199 	nd.ni_cnd.cn_nameptr = nd.ni_cnd.cn_pnbuf;
1200 	NDPREINIT(&nd);
1201 
1202 	vref(udvp);
1203 	if ((error = vfs_relookup(udvp, &vp, &nd.ni_cnd, false)) != 0)
1204 		goto unionfs_vn_create_on_upper_free_out2;
1205 	vrele(udvp);
1206 
1207 	if (vp != NULLVP) {
1208 		if (vp == udvp)
1209 			vrele(vp);
1210 		else
1211 			vput(vp);
1212 		error = EEXIST;
1213 		goto unionfs_vn_create_on_upper_free_out1;
1214 	}
1215 
1216 	if ((error = VOP_CREATE(udvp, &vp, &nd.ni_cnd, uvap)) != 0)
1217 		goto unionfs_vn_create_on_upper_free_out1;
1218 
1219 	if ((error = VOP_OPEN(vp, fmode, cred, td, NULL)) != 0) {
1220 		vput(vp);
1221 		goto unionfs_vn_create_on_upper_free_out1;
1222 	}
1223 	error = VOP_ADD_WRITECOUNT(vp, 1);
1224 	CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1225 	    __func__, vp, vp->v_writecount);
1226 	if (error == 0) {
1227 		*vpp = vp;
1228 	} else {
1229 		VOP_CLOSE(vp, fmode, cred, td);
1230 	}
1231 
1232 unionfs_vn_create_on_upper_free_out1:
1233 	VOP_UNLOCK(udvp);
1234 
1235 unionfs_vn_create_on_upper_free_out2:
1236 	KASSERT(nd.ni_cnd.cn_pnbuf == unp->un_path,
1237 	    ("%s: cn_pnbuf changed", __func__));
1238 
1239 	return (error);
1240 }
1241 
1242 /*
1243  * Copy from lvp to uvp.
1244  *
1245  * lvp and uvp should be locked and opened on entry and will be locked and
1246  * opened on return.
1247  */
1248 static int
1249 unionfs_copyfile_core(struct vnode *lvp, struct vnode *uvp,
1250     struct ucred *cred, struct thread *td)
1251 {
1252 	char           *buf;
1253 	struct uio	uio;
1254 	struct iovec	iov;
1255 	off_t		offset;
1256 	int		count;
1257 	int		error;
1258 	int		bufoffset;
1259 
1260 	error = 0;
1261 	memset(&uio, 0, sizeof(uio));
1262 
1263 	uio.uio_td = td;
1264 	uio.uio_segflg = UIO_SYSSPACE;
1265 	uio.uio_offset = 0;
1266 
1267 	buf = malloc(MAXBSIZE, M_TEMP, M_WAITOK);
1268 
1269 	while (error == 0) {
1270 		offset = uio.uio_offset;
1271 
1272 		uio.uio_iov = &iov;
1273 		uio.uio_iovcnt = 1;
1274 		iov.iov_base = buf;
1275 		iov.iov_len = MAXBSIZE;
1276 		uio.uio_resid = iov.iov_len;
1277 		uio.uio_rw = UIO_READ;
1278 
1279 		if ((error = VOP_READ(lvp, &uio, 0, cred)) != 0)
1280 			break;
1281 		if ((count = MAXBSIZE - uio.uio_resid) == 0)
1282 			break;
1283 
1284 		bufoffset = 0;
1285 		while (bufoffset < count) {
1286 			uio.uio_iov = &iov;
1287 			uio.uio_iovcnt = 1;
1288 			iov.iov_base = buf + bufoffset;
1289 			iov.iov_len = count - bufoffset;
1290 			uio.uio_offset = offset + bufoffset;
1291 			uio.uio_resid = iov.iov_len;
1292 			uio.uio_rw = UIO_WRITE;
1293 
1294 			if ((error = VOP_WRITE(uvp, &uio, 0, cred)) != 0)
1295 				break;
1296 
1297 			bufoffset += (count - bufoffset) - uio.uio_resid;
1298 		}
1299 
1300 		uio.uio_offset = offset + bufoffset;
1301 	}
1302 
1303 	free(buf, M_TEMP);
1304 
1305 	return (error);
1306 }
1307 
1308 /*
1309  * Copy file from lower to upper.
1310  *
1311  * If you need copy of the contents, set 1 to docopy. Otherwise, set 0 to
1312  * docopy.
1313  *
1314  * If no error returned, unp will be updated.
1315  */
1316 int
1317 unionfs_copyfile(struct unionfs_node *unp, int docopy, struct ucred *cred,
1318     struct thread *td)
1319 {
1320 	struct mount   *mp;
1321 	struct vnode   *udvp;
1322 	struct vnode   *lvp;
1323 	struct vnode   *uvp;
1324 	struct vattr	uva;
1325 	int		error;
1326 
1327 	lvp = unp->un_lowervp;
1328 	uvp = NULLVP;
1329 
1330 	if ((UNIONFSTOV(unp)->v_mount->mnt_flag & MNT_RDONLY))
1331 		return (EROFS);
1332 	if (unp->un_dvp == NULLVP)
1333 		return (EINVAL);
1334 	if (unp->un_uppervp != NULLVP)
1335 		return (EEXIST);
1336 	udvp = VTOUNIONFS(unp->un_dvp)->un_uppervp;
1337 	if (udvp == NULLVP)
1338 		return (EROFS);
1339 	if ((udvp->v_mount->mnt_flag & MNT_RDONLY))
1340 		return (EROFS);
1341 
1342 	error = VOP_ACCESS(lvp, VREAD, cred, td);
1343 	if (error != 0)
1344 		return (error);
1345 
1346 	if ((error = vn_start_write(udvp, &mp, V_WAIT | V_PCATCH)) != 0)
1347 		return (error);
1348 	error = unionfs_vn_create_on_upper(&uvp, udvp, unp, &uva, td);
1349 	if (error != 0) {
1350 		vn_finished_write(mp);
1351 		return (error);
1352 	}
1353 
1354 	if (docopy != 0) {
1355 		error = VOP_OPEN(lvp, FREAD, cred, td, NULL);
1356 		if (error == 0) {
1357 			error = unionfs_copyfile_core(lvp, uvp, cred, td);
1358 			VOP_CLOSE(lvp, FREAD, cred, td);
1359 		}
1360 	}
1361 	VOP_CLOSE(uvp, FWRITE, cred, td);
1362 	VOP_ADD_WRITECOUNT_CHECKED(uvp, -1);
1363 	CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1364 	    __func__, uvp, uvp->v_writecount);
1365 
1366 	vn_finished_write(mp);
1367 
1368 	if (error == 0) {
1369 		/* Reset the attributes. Ignore errors. */
1370 		uva.va_type = VNON;
1371 		VOP_SETATTR(uvp, &uva, cred);
1372 	}
1373 
1374 	unionfs_node_update(unp, uvp, td);
1375 
1376 	return (error);
1377 }
1378 
1379 /*
1380  * It checks whether vp can rmdir. (check empty)
1381  *
1382  * vp is unionfs vnode.
1383  * vp should be locked.
1384  */
1385 int
1386 unionfs_check_rmdir(struct vnode *vp, struct ucred *cred, struct thread *td)
1387 {
1388 	struct vnode   *uvp;
1389 	struct vnode   *lvp;
1390 	struct vnode   *tvp;
1391 	struct dirent  *dp;
1392 	struct dirent  *edp;
1393 	struct componentname cn;
1394 	struct iovec	iov;
1395 	struct uio	uio;
1396 	struct vattr	va;
1397 	int		error;
1398 	int		eofflag;
1399 	int		lookuperr;
1400 
1401 	/*
1402 	 * The size of buf needs to be larger than DIRBLKSIZ.
1403 	 */
1404 	char		buf[256 * 6];
1405 
1406 	ASSERT_VOP_ELOCKED(vp, __func__);
1407 
1408 	eofflag = 0;
1409 	uvp = UNIONFSVPTOUPPERVP(vp);
1410 	lvp = UNIONFSVPTOLOWERVP(vp);
1411 
1412 	/* check opaque */
1413 	if ((error = VOP_GETATTR(uvp, &va, cred)) != 0)
1414 		return (error);
1415 	if (va.va_flags & OPAQUE)
1416 		return (0);
1417 
1418 	/* open vnode */
1419 #ifdef MAC
1420 	if ((error = mac_vnode_check_open(cred, vp, VEXEC|VREAD)) != 0)
1421 		return (error);
1422 #endif
1423 	if ((error = VOP_ACCESS(vp, VEXEC|VREAD, cred, td)) != 0)
1424 		return (error);
1425 	if ((error = VOP_OPEN(vp, FREAD, cred, td, NULL)) != 0)
1426 		return (error);
1427 
1428 	uio.uio_rw = UIO_READ;
1429 	uio.uio_segflg = UIO_SYSSPACE;
1430 	uio.uio_td = td;
1431 	uio.uio_offset = 0;
1432 
1433 #ifdef MAC
1434 	error = mac_vnode_check_readdir(td->td_ucred, lvp);
1435 #endif
1436 	while (!error && !eofflag) {
1437 		iov.iov_base = buf;
1438 		iov.iov_len = sizeof(buf);
1439 		uio.uio_iov = &iov;
1440 		uio.uio_iovcnt = 1;
1441 		uio.uio_resid = iov.iov_len;
1442 
1443 		error = VOP_READDIR(lvp, &uio, cred, &eofflag, NULL, NULL);
1444 		if (error != 0)
1445 			break;
1446 		KASSERT(eofflag != 0 || uio.uio_resid < sizeof(buf),
1447 		    ("%s: empty read from lower FS", __func__));
1448 
1449 		edp = (struct dirent*)&buf[sizeof(buf) - uio.uio_resid];
1450 		for (dp = (struct dirent*)buf; !error && dp < edp;
1451 		     dp = (struct dirent*)((caddr_t)dp + dp->d_reclen)) {
1452 			if (dp->d_type == DT_WHT || dp->d_fileno == 0 ||
1453 			    (dp->d_namlen == 1 && dp->d_name[0] == '.') ||
1454 			    (dp->d_namlen == 2 && !bcmp(dp->d_name, "..", 2)))
1455 				continue;
1456 
1457 			cn.cn_namelen = dp->d_namlen;
1458 			cn.cn_pnbuf = NULL;
1459 			cn.cn_nameptr = dp->d_name;
1460 			cn.cn_nameiop = LOOKUP;
1461 			cn.cn_flags = LOCKPARENT | LOCKLEAF | RDONLY | ISLASTCN;
1462 			cn.cn_lkflags = LK_EXCLUSIVE;
1463 			cn.cn_cred = cred;
1464 
1465 			/*
1466 			 * check entry in lower.
1467 			 * Sometimes, readdir function returns
1468 			 * wrong entry.
1469 			 */
1470 			lookuperr = VOP_LOOKUP(lvp, &tvp, &cn);
1471 
1472 			if (!lookuperr)
1473 				vput(tvp);
1474 			else
1475 				continue; /* skip entry */
1476 
1477 			/*
1478 			 * check entry
1479 			 * If it has no exist/whiteout entry in upper,
1480 			 * directory is not empty.
1481 			 */
1482 			cn.cn_flags = LOCKPARENT | LOCKLEAF | RDONLY | ISLASTCN;
1483 			lookuperr = VOP_LOOKUP(uvp, &tvp, &cn);
1484 
1485 			if (!lookuperr)
1486 				vput(tvp);
1487 
1488 			/* ignore exist or whiteout entry */
1489 			if (!lookuperr ||
1490 			    (lookuperr == ENOENT && (cn.cn_flags & ISWHITEOUT)))
1491 				continue;
1492 
1493 			error = ENOTEMPTY;
1494 		}
1495 	}
1496 
1497 	/* close vnode */
1498 	VOP_CLOSE(vp, FREAD, cred, td);
1499 
1500 	return (error);
1501 }
1502 
1503