1 /* $NetBSD: tmpfs_subr.c,v 1.35 2007/07/09 21:10:50 ad Exp $ */ 2 3 /*- 4 * SPDX-License-Identifier: BSD-2-Clause-NetBSD 5 * 6 * Copyright (c) 2005 The NetBSD Foundation, Inc. 7 * All rights reserved. 8 * 9 * This code is derived from software contributed to The NetBSD Foundation 10 * by Julio M. Merino Vidal, developed as part of Google's Summer of Code 11 * 2005 program. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 32 * POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 /* 36 * Efficient memory file system supporting functions. 37 */ 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/dirent.h> 44 #include <sys/fnv_hash.h> 45 #include <sys/lock.h> 46 #include <sys/limits.h> 47 #include <sys/mount.h> 48 #include <sys/namei.h> 49 #include <sys/priv.h> 50 #include <sys/proc.h> 51 #include <sys/random.h> 52 #include <sys/refcount.h> 53 #include <sys/rwlock.h> 54 #include <sys/smr.h> 55 #include <sys/stat.h> 56 #include <sys/sysctl.h> 57 #include <sys/user.h> 58 #include <sys/vnode.h> 59 #include <sys/vmmeter.h> 60 61 #include <vm/vm.h> 62 #include <vm/vm_param.h> 63 #include <vm/vm_object.h> 64 #include <vm/vm_page.h> 65 #include <vm/vm_pageout.h> 66 #include <vm/vm_pager.h> 67 #include <vm/vm_extern.h> 68 #include <vm/swap_pager.h> 69 70 #include <fs/tmpfs/tmpfs.h> 71 #include <fs/tmpfs/tmpfs_fifoops.h> 72 #include <fs/tmpfs/tmpfs_vnops.h> 73 74 SYSCTL_NODE(_vfs, OID_AUTO, tmpfs, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 75 "tmpfs file system"); 76 77 static long tmpfs_pages_reserved = TMPFS_PAGES_MINRESERVED; 78 79 MALLOC_DEFINE(M_TMPFSDIR, "tmpfs dir", "tmpfs dirent structure"); 80 static uma_zone_t tmpfs_node_pool; 81 VFS_SMR_DECLARE; 82 83 int tmpfs_pager_type = -1; 84 85 static vm_object_t 86 tmpfs_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 87 vm_ooffset_t offset, struct ucred *cred) 88 { 89 vm_object_t object; 90 91 MPASS(handle == NULL); 92 MPASS(offset == 0); 93 object = vm_object_allocate_dyn(tmpfs_pager_type, size, 94 OBJ_COLORED | OBJ_SWAP); 95 if (!swap_pager_init_object(object, NULL, NULL, size, 0)) { 96 vm_object_deallocate(object); 97 object = NULL; 98 } 99 return (object); 100 } 101 102 /* 103 * Make sure tmpfs vnodes with writable mappings can be found on the lazy list. 104 * 105 * This allows for periodic mtime updates while only scanning vnodes which are 106 * plausibly dirty, see tmpfs_update_mtime_lazy. 107 */ 108 static void 109 tmpfs_pager_writecount_recalc(vm_object_t object, vm_offset_t old, 110 vm_offset_t new) 111 { 112 struct vnode *vp; 113 114 VM_OBJECT_ASSERT_WLOCKED(object); 115 116 vp = VM_TO_TMPFS_VP(object); 117 118 /* 119 * Forced unmount? 120 */ 121 if (vp == NULL) { 122 KASSERT((object->flags & OBJ_TMPFS_VREF) == 0, 123 ("object %p with OBJ_TMPFS_VREF but without vnode", 124 object)); 125 VM_OBJECT_WUNLOCK(object); 126 return; 127 } 128 129 if (old == 0) { 130 VNASSERT((object->flags & OBJ_TMPFS_VREF) == 0, vp, 131 ("object without writable mappings has a reference")); 132 VNPASS(vp->v_usecount > 0, vp); 133 } else { 134 VNASSERT((object->flags & OBJ_TMPFS_VREF) != 0, vp, 135 ("object with writable mappings does not " 136 "have a reference")); 137 } 138 139 if (old == new) { 140 VM_OBJECT_WUNLOCK(object); 141 return; 142 } 143 144 if (new == 0) { 145 vm_object_clear_flag(object, OBJ_TMPFS_VREF); 146 VM_OBJECT_WUNLOCK(object); 147 vrele(vp); 148 } else { 149 if ((object->flags & OBJ_TMPFS_VREF) == 0) { 150 vref(vp); 151 vlazy(vp); 152 vm_object_set_flag(object, OBJ_TMPFS_VREF); 153 } 154 VM_OBJECT_WUNLOCK(object); 155 } 156 } 157 158 static void 159 tmpfs_pager_update_writecount(vm_object_t object, vm_offset_t start, 160 vm_offset_t end) 161 { 162 vm_offset_t new, old; 163 164 VM_OBJECT_WLOCK(object); 165 KASSERT((object->flags & OBJ_ANON) == 0, 166 ("%s: object %p with OBJ_ANON", __func__, object)); 167 old = object->un_pager.swp.writemappings; 168 object->un_pager.swp.writemappings += (vm_ooffset_t)end - start; 169 new = object->un_pager.swp.writemappings; 170 tmpfs_pager_writecount_recalc(object, old, new); 171 VM_OBJECT_ASSERT_UNLOCKED(object); 172 } 173 174 static void 175 tmpfs_pager_release_writecount(vm_object_t object, vm_offset_t start, 176 vm_offset_t end) 177 { 178 vm_offset_t new, old; 179 180 VM_OBJECT_WLOCK(object); 181 KASSERT((object->flags & OBJ_ANON) == 0, 182 ("%s: object %p with OBJ_ANON", __func__, object)); 183 old = object->un_pager.swp.writemappings; 184 object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start; 185 new = object->un_pager.swp.writemappings; 186 tmpfs_pager_writecount_recalc(object, old, new); 187 VM_OBJECT_ASSERT_UNLOCKED(object); 188 } 189 190 static void 191 tmpfs_pager_getvp(vm_object_t object, struct vnode **vpp, bool *vp_heldp) 192 { 193 struct vnode *vp; 194 195 /* 196 * Tmpfs VREG node, which was reclaimed, has tmpfs_pager_type 197 * type. In this case there is no v_writecount to adjust. 198 */ 199 if (vp_heldp != NULL) 200 VM_OBJECT_RLOCK(object); 201 else 202 VM_OBJECT_ASSERT_LOCKED(object); 203 if ((object->flags & OBJ_TMPFS) != 0) { 204 vp = VM_TO_TMPFS_VP(object); 205 if (vp != NULL) { 206 *vpp = vp; 207 if (vp_heldp != NULL) { 208 vhold(vp); 209 *vp_heldp = true; 210 } 211 } 212 } 213 if (vp_heldp != NULL) 214 VM_OBJECT_RUNLOCK(object); 215 } 216 217 static void 218 tmpfs_pager_freespace(vm_object_t obj, vm_pindex_t start, vm_size_t size) 219 { 220 struct tmpfs_node *node; 221 struct tmpfs_mount *tm; 222 vm_size_t c; 223 224 swap_pager_freespace(obj, start, size, &c); 225 if ((obj->flags & OBJ_TMPFS) == 0 || c == 0) 226 return; 227 228 node = obj->un_pager.swp.swp_priv; 229 MPASS(node->tn_type == VREG); 230 tm = node->tn_reg.tn_tmp; 231 232 KASSERT(tm->tm_pages_used >= c, 233 ("tmpfs tm %p pages %jd free %jd", tm, 234 (uintmax_t)tm->tm_pages_used, (uintmax_t)c)); 235 atomic_add_long(&tm->tm_pages_used, -c); 236 KASSERT(node->tn_reg.tn_pages >= c, 237 ("tmpfs node %p pages %jd free %jd", node, 238 (uintmax_t)node->tn_reg.tn_pages, (uintmax_t)c)); 239 node->tn_reg.tn_pages -= c; 240 } 241 242 static void 243 tmpfs_page_inserted(vm_object_t obj, vm_page_t m) 244 { 245 struct tmpfs_node *node; 246 struct tmpfs_mount *tm; 247 248 if ((obj->flags & OBJ_TMPFS) == 0) 249 return; 250 251 node = obj->un_pager.swp.swp_priv; 252 MPASS(node->tn_type == VREG); 253 tm = node->tn_reg.tn_tmp; 254 255 if (!vm_pager_has_page(obj, m->pindex, NULL, NULL)) { 256 atomic_add_long(&tm->tm_pages_used, 1); 257 node->tn_reg.tn_pages += 1; 258 } 259 } 260 261 static void 262 tmpfs_page_removed(vm_object_t obj, vm_page_t m) 263 { 264 struct tmpfs_node *node; 265 struct tmpfs_mount *tm; 266 267 if ((obj->flags & OBJ_TMPFS) == 0) 268 return; 269 270 node = obj->un_pager.swp.swp_priv; 271 MPASS(node->tn_type == VREG); 272 tm = node->tn_reg.tn_tmp; 273 274 if (!vm_pager_has_page(obj, m->pindex, NULL, NULL)) { 275 KASSERT(tm->tm_pages_used >= 1, 276 ("tmpfs tm %p pages %jd free 1", tm, 277 (uintmax_t)tm->tm_pages_used)); 278 atomic_add_long(&tm->tm_pages_used, -1); 279 KASSERT(node->tn_reg.tn_pages >= 1, 280 ("tmpfs node %p pages %jd free 1", node, 281 (uintmax_t)node->tn_reg.tn_pages)); 282 node->tn_reg.tn_pages -= 1; 283 } 284 } 285 286 static boolean_t 287 tmpfs_can_alloc_page(vm_object_t obj, vm_pindex_t pindex) 288 { 289 struct tmpfs_mount *tm; 290 291 tm = VM_TO_TMPFS_MP(obj); 292 if (tm == NULL || vm_pager_has_page(obj, pindex, NULL, NULL) || 293 tm->tm_pages_max == 0) 294 return (true); 295 return (tm->tm_pages_max > atomic_load_long(&tm->tm_pages_used)); 296 } 297 298 struct pagerops tmpfs_pager_ops = { 299 .pgo_kvme_type = KVME_TYPE_VNODE, 300 .pgo_alloc = tmpfs_pager_alloc, 301 .pgo_set_writeable_dirty = vm_object_set_writeable_dirty_, 302 .pgo_update_writecount = tmpfs_pager_update_writecount, 303 .pgo_release_writecount = tmpfs_pager_release_writecount, 304 .pgo_mightbedirty = vm_object_mightbedirty_, 305 .pgo_getvp = tmpfs_pager_getvp, 306 .pgo_freespace = tmpfs_pager_freespace, 307 .pgo_page_inserted = tmpfs_page_inserted, 308 .pgo_page_removed = tmpfs_page_removed, 309 .pgo_can_alloc_page = tmpfs_can_alloc_page, 310 }; 311 312 static int 313 tmpfs_node_ctor(void *mem, int size, void *arg, int flags) 314 { 315 struct tmpfs_node *node; 316 317 node = mem; 318 node->tn_gen++; 319 node->tn_size = 0; 320 node->tn_status = 0; 321 node->tn_accessed = false; 322 node->tn_flags = 0; 323 node->tn_links = 0; 324 node->tn_vnode = NULL; 325 node->tn_vpstate = 0; 326 return (0); 327 } 328 329 static void 330 tmpfs_node_dtor(void *mem, int size, void *arg) 331 { 332 struct tmpfs_node *node; 333 334 node = mem; 335 node->tn_type = VNON; 336 } 337 338 static int 339 tmpfs_node_init(void *mem, int size, int flags) 340 { 341 struct tmpfs_node *node; 342 343 node = mem; 344 node->tn_id = 0; 345 mtx_init(&node->tn_interlock, "tmpfsni", NULL, MTX_DEF); 346 node->tn_gen = arc4random(); 347 return (0); 348 } 349 350 static void 351 tmpfs_node_fini(void *mem, int size) 352 { 353 struct tmpfs_node *node; 354 355 node = mem; 356 mtx_destroy(&node->tn_interlock); 357 } 358 359 int 360 tmpfs_subr_init(void) 361 { 362 tmpfs_pager_type = vm_pager_alloc_dyn_type(&tmpfs_pager_ops, 363 OBJT_SWAP); 364 if (tmpfs_pager_type == -1) 365 return (EINVAL); 366 tmpfs_node_pool = uma_zcreate("TMPFS node", 367 sizeof(struct tmpfs_node), tmpfs_node_ctor, tmpfs_node_dtor, 368 tmpfs_node_init, tmpfs_node_fini, UMA_ALIGN_PTR, 0); 369 VFS_SMR_ZONE_SET(tmpfs_node_pool); 370 return (0); 371 } 372 373 void 374 tmpfs_subr_uninit(void) 375 { 376 if (tmpfs_pager_type != -1) 377 vm_pager_free_dyn_type(tmpfs_pager_type); 378 tmpfs_pager_type = -1; 379 uma_zdestroy(tmpfs_node_pool); 380 } 381 382 static int 383 sysctl_mem_reserved(SYSCTL_HANDLER_ARGS) 384 { 385 int error; 386 long pages, bytes; 387 388 pages = *(long *)arg1; 389 bytes = pages * PAGE_SIZE; 390 391 error = sysctl_handle_long(oidp, &bytes, 0, req); 392 if (error || !req->newptr) 393 return (error); 394 395 pages = bytes / PAGE_SIZE; 396 if (pages < TMPFS_PAGES_MINRESERVED) 397 return (EINVAL); 398 399 *(long *)arg1 = pages; 400 return (0); 401 } 402 403 SYSCTL_PROC(_vfs_tmpfs, OID_AUTO, memory_reserved, 404 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &tmpfs_pages_reserved, 0, 405 sysctl_mem_reserved, "L", 406 "Amount of available memory and swap below which tmpfs growth stops"); 407 408 static __inline int tmpfs_dirtree_cmp(struct tmpfs_dirent *a, 409 struct tmpfs_dirent *b); 410 RB_PROTOTYPE_STATIC(tmpfs_dir, tmpfs_dirent, uh.td_entries, tmpfs_dirtree_cmp); 411 412 size_t 413 tmpfs_mem_avail(void) 414 { 415 size_t avail; 416 long reserved; 417 418 avail = swap_pager_avail + vm_free_count(); 419 reserved = atomic_load_long(&tmpfs_pages_reserved); 420 if (__predict_false(avail < reserved)) 421 return (0); 422 return (avail - reserved); 423 } 424 425 size_t 426 tmpfs_pages_used(struct tmpfs_mount *tmp) 427 { 428 const size_t node_size = sizeof(struct tmpfs_node) + 429 sizeof(struct tmpfs_dirent); 430 size_t meta_pages; 431 432 meta_pages = howmany((uintmax_t)tmp->tm_nodes_inuse * node_size, 433 PAGE_SIZE); 434 return (meta_pages + tmp->tm_pages_used); 435 } 436 437 bool 438 tmpfs_pages_check_avail(struct tmpfs_mount *tmp, size_t req_pages) 439 { 440 if (tmpfs_mem_avail() < req_pages) 441 return (false); 442 443 if (tmp->tm_pages_max != ULONG_MAX && 444 tmp->tm_pages_max < req_pages + tmpfs_pages_used(tmp)) 445 return (false); 446 447 return (true); 448 } 449 450 static int 451 tmpfs_partial_page_invalidate(vm_object_t object, vm_pindex_t idx, int base, 452 int end, boolean_t ignerr) 453 { 454 vm_page_t m; 455 int rv, error; 456 457 VM_OBJECT_ASSERT_WLOCKED(object); 458 KASSERT(base >= 0, ("%s: base %d", __func__, base)); 459 KASSERT(end - base <= PAGE_SIZE, ("%s: base %d end %d", __func__, base, 460 end)); 461 error = 0; 462 463 retry: 464 m = vm_page_grab(object, idx, VM_ALLOC_NOCREAT); 465 if (m != NULL) { 466 MPASS(vm_page_all_valid(m)); 467 } else if (vm_pager_has_page(object, idx, NULL, NULL)) { 468 m = vm_page_alloc(object, idx, VM_ALLOC_NORMAL | 469 VM_ALLOC_WAITFAIL); 470 if (m == NULL) 471 goto retry; 472 vm_object_pip_add(object, 1); 473 VM_OBJECT_WUNLOCK(object); 474 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL); 475 VM_OBJECT_WLOCK(object); 476 vm_object_pip_wakeup(object); 477 if (rv == VM_PAGER_OK) { 478 /* 479 * Since the page was not resident, and therefore not 480 * recently accessed, immediately enqueue it for 481 * asynchronous laundering. The current operation is 482 * not regarded as an access. 483 */ 484 vm_page_launder(m); 485 } else { 486 vm_page_free(m); 487 m = NULL; 488 if (!ignerr) 489 error = EIO; 490 } 491 } 492 if (m != NULL) { 493 pmap_zero_page_area(m, base, end - base); 494 vm_page_set_dirty(m); 495 vm_page_xunbusy(m); 496 } 497 498 return (error); 499 } 500 501 void 502 tmpfs_ref_node(struct tmpfs_node *node) 503 { 504 #ifdef INVARIANTS 505 u_int old; 506 507 old = 508 #endif 509 refcount_acquire(&node->tn_refcount); 510 #ifdef INVARIANTS 511 KASSERT(old > 0, ("node %p zero refcount", node)); 512 #endif 513 } 514 515 /* 516 * Allocates a new node of type 'type' inside the 'tmp' mount point, with 517 * its owner set to 'uid', its group to 'gid' and its mode set to 'mode', 518 * using the credentials of the process 'p'. 519 * 520 * If the node type is set to 'VDIR', then the parent parameter must point 521 * to the parent directory of the node being created. It may only be NULL 522 * while allocating the root node. 523 * 524 * If the node type is set to 'VBLK' or 'VCHR', then the rdev parameter 525 * specifies the device the node represents. 526 * 527 * If the node type is set to 'VLNK', then the parameter target specifies 528 * the file name of the target file for the symbolic link that is being 529 * created. 530 * 531 * Note that new nodes are retrieved from the available list if it has 532 * items or, if it is empty, from the node pool as long as there is enough 533 * space to create them. 534 * 535 * Returns zero on success or an appropriate error code on failure. 536 */ 537 int 538 tmpfs_alloc_node(struct mount *mp, struct tmpfs_mount *tmp, enum vtype type, 539 uid_t uid, gid_t gid, mode_t mode, struct tmpfs_node *parent, 540 const char *target, dev_t rdev, struct tmpfs_node **node) 541 { 542 struct tmpfs_node *nnode; 543 char *symlink; 544 char symlink_smr; 545 546 /* If the root directory of the 'tmp' file system is not yet 547 * allocated, this must be the request to do it. */ 548 MPASS(IMPLIES(tmp->tm_root == NULL, parent == NULL && type == VDIR)); 549 550 MPASS((type == VLNK) ^ (target == NULL)); 551 MPASS((type == VBLK || type == VCHR) ^ (rdev == VNOVAL)); 552 553 if (tmp->tm_nodes_inuse >= tmp->tm_nodes_max) 554 return (ENOSPC); 555 if (!tmpfs_pages_check_avail(tmp, 1)) 556 return (ENOSPC); 557 558 if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) { 559 /* 560 * When a new tmpfs node is created for fully 561 * constructed mount point, there must be a parent 562 * node, which vnode is locked exclusively. As 563 * consequence, if the unmount is executing in 564 * parallel, vflush() cannot reclaim the parent vnode. 565 * Due to this, the check for MNTK_UNMOUNT flag is not 566 * racy: if we did not see MNTK_UNMOUNT flag, then tmp 567 * cannot be destroyed until node construction is 568 * finished and the parent vnode unlocked. 569 * 570 * Tmpfs does not need to instantiate new nodes during 571 * unmount. 572 */ 573 return (EBUSY); 574 } 575 if ((mp->mnt_kern_flag & MNT_RDONLY) != 0) 576 return (EROFS); 577 578 nnode = uma_zalloc_smr(tmpfs_node_pool, M_WAITOK); 579 580 /* Generic initialization. */ 581 nnode->tn_type = type; 582 vfs_timestamp(&nnode->tn_atime); 583 nnode->tn_birthtime = nnode->tn_ctime = nnode->tn_mtime = 584 nnode->tn_atime; 585 nnode->tn_uid = uid; 586 nnode->tn_gid = gid; 587 nnode->tn_mode = mode; 588 nnode->tn_id = alloc_unr64(&tmp->tm_ino_unr); 589 nnode->tn_refcount = 1; 590 LIST_INIT(&nnode->tn_extattrs); 591 592 /* Type-specific initialization. */ 593 switch (nnode->tn_type) { 594 case VBLK: 595 case VCHR: 596 nnode->tn_rdev = rdev; 597 break; 598 599 case VDIR: 600 RB_INIT(&nnode->tn_dir.tn_dirhead); 601 LIST_INIT(&nnode->tn_dir.tn_dupindex); 602 MPASS(parent != nnode); 603 MPASS(IMPLIES(parent == NULL, tmp->tm_root == NULL)); 604 nnode->tn_dir.tn_parent = (parent == NULL) ? nnode : parent; 605 nnode->tn_dir.tn_readdir_lastn = 0; 606 nnode->tn_dir.tn_readdir_lastp = NULL; 607 nnode->tn_links++; 608 TMPFS_NODE_LOCK(nnode->tn_dir.tn_parent); 609 nnode->tn_dir.tn_parent->tn_links++; 610 TMPFS_NODE_UNLOCK(nnode->tn_dir.tn_parent); 611 break; 612 613 case VFIFO: 614 /* FALLTHROUGH */ 615 case VSOCK: 616 break; 617 618 case VLNK: 619 MPASS(strlen(target) < MAXPATHLEN); 620 nnode->tn_size = strlen(target); 621 622 symlink = NULL; 623 if (!tmp->tm_nonc) { 624 symlink = cache_symlink_alloc(nnode->tn_size + 1, 625 M_WAITOK); 626 symlink_smr = true; 627 } 628 if (symlink == NULL) { 629 symlink = malloc(nnode->tn_size + 1, M_TMPFSNAME, 630 M_WAITOK); 631 symlink_smr = false; 632 } 633 memcpy(symlink, target, nnode->tn_size + 1); 634 635 /* 636 * Allow safe symlink resolving for lockless lookup. 637 * tmpfs_fplookup_symlink references this comment. 638 * 639 * 1. nnode is not yet visible to the world 640 * 2. both tn_link_target and tn_link_smr get populated 641 * 3. release fence publishes their content 642 * 4. tn_link_target content is immutable until node 643 * destruction, where the pointer gets set to NULL 644 * 5. tn_link_smr is never changed once set 645 * 646 * As a result it is sufficient to issue load consume 647 * on the node pointer to also get the above content 648 * in a stable manner. Worst case tn_link_smr flag 649 * may be set to true despite being stale, while the 650 * target buffer is already cleared out. 651 */ 652 atomic_store_ptr(&nnode->tn_link_target, symlink); 653 atomic_store_char((char *)&nnode->tn_link_smr, symlink_smr); 654 atomic_thread_fence_rel(); 655 break; 656 657 case VREG: 658 nnode->tn_reg.tn_aobj = 659 vm_pager_allocate(tmpfs_pager_type, NULL, 0, 660 VM_PROT_DEFAULT, 0, 661 NULL /* XXXKIB - tmpfs needs swap reservation */); 662 nnode->tn_reg.tn_aobj->un_pager.swp.swp_priv = nnode; 663 vm_object_set_flag(nnode->tn_reg.tn_aobj, OBJ_TMPFS); 664 nnode->tn_reg.tn_tmp = tmp; 665 nnode->tn_reg.tn_pages = 0; 666 break; 667 668 default: 669 panic("tmpfs_alloc_node: type %p %d", nnode, 670 (int)nnode->tn_type); 671 } 672 673 TMPFS_LOCK(tmp); 674 LIST_INSERT_HEAD(&tmp->tm_nodes_used, nnode, tn_entries); 675 nnode->tn_attached = true; 676 tmp->tm_nodes_inuse++; 677 tmp->tm_refcount++; 678 TMPFS_UNLOCK(tmp); 679 680 *node = nnode; 681 return (0); 682 } 683 684 /* 685 * Destroys the node pointed to by node from the file system 'tmp'. 686 * If the node references a directory, no entries are allowed. 687 */ 688 void 689 tmpfs_free_node(struct tmpfs_mount *tmp, struct tmpfs_node *node) 690 { 691 if (refcount_release_if_not_last(&node->tn_refcount)) 692 return; 693 694 TMPFS_LOCK(tmp); 695 TMPFS_NODE_LOCK(node); 696 if (!tmpfs_free_node_locked(tmp, node, false)) { 697 TMPFS_NODE_UNLOCK(node); 698 TMPFS_UNLOCK(tmp); 699 } 700 } 701 702 bool 703 tmpfs_free_node_locked(struct tmpfs_mount *tmp, struct tmpfs_node *node, 704 bool detach) 705 { 706 struct tmpfs_extattr *ea; 707 vm_object_t uobj; 708 char *symlink; 709 bool last; 710 711 TMPFS_MP_ASSERT_LOCKED(tmp); 712 TMPFS_NODE_ASSERT_LOCKED(node); 713 714 last = refcount_release(&node->tn_refcount); 715 if (node->tn_attached && (detach || last)) { 716 MPASS(tmp->tm_nodes_inuse > 0); 717 tmp->tm_nodes_inuse--; 718 LIST_REMOVE(node, tn_entries); 719 node->tn_attached = false; 720 } 721 if (!last) 722 return (false); 723 724 TMPFS_NODE_UNLOCK(node); 725 726 #ifdef INVARIANTS 727 MPASS(node->tn_vnode == NULL); 728 MPASS((node->tn_vpstate & TMPFS_VNODE_ALLOCATING) == 0); 729 730 /* 731 * Make sure this is a node type we can deal with. Everything 732 * is explicitly enumerated without the 'default' clause so 733 * the compiler can throw an error in case a new type is 734 * added. 735 */ 736 switch (node->tn_type) { 737 case VBLK: 738 case VCHR: 739 case VDIR: 740 case VFIFO: 741 case VSOCK: 742 case VLNK: 743 case VREG: 744 break; 745 case VNON: 746 case VBAD: 747 case VMARKER: 748 panic("%s: bad type %d for node %p", __func__, 749 (int)node->tn_type, node); 750 } 751 #endif 752 753 while ((ea = LIST_FIRST(&node->tn_extattrs)) != NULL) { 754 LIST_REMOVE(ea, ea_extattrs); 755 tmpfs_extattr_free(ea); 756 } 757 758 switch (node->tn_type) { 759 case VREG: 760 uobj = node->tn_reg.tn_aobj; 761 node->tn_reg.tn_aobj = NULL; 762 if (uobj != NULL) { 763 VM_OBJECT_WLOCK(uobj); 764 KASSERT((uobj->flags & OBJ_TMPFS) != 0, 765 ("tmpfs node %p uobj %p not tmpfs", node, uobj)); 766 vm_object_clear_flag(uobj, OBJ_TMPFS); 767 KASSERT(tmp->tm_pages_used >= node->tn_reg.tn_pages, 768 ("tmpfs tmp %p node %p pages %jd free %jd", tmp, 769 node, (uintmax_t)tmp->tm_pages_used, 770 (uintmax_t)node->tn_reg.tn_pages)); 771 atomic_add_long(&tmp->tm_pages_used, 772 -node->tn_reg.tn_pages); 773 VM_OBJECT_WUNLOCK(uobj); 774 } 775 tmpfs_free_tmp(tmp); 776 777 /* 778 * vm_object_deallocate() must not be called while 779 * owning tm_allnode_lock, because deallocate might 780 * sleep. Call it after tmpfs_free_tmp() does the 781 * unlock. 782 */ 783 if (uobj != NULL) 784 vm_object_deallocate(uobj); 785 786 break; 787 case VLNK: 788 tmpfs_free_tmp(tmp); 789 790 symlink = node->tn_link_target; 791 atomic_store_ptr(&node->tn_link_target, NULL); 792 if (atomic_load_char(&node->tn_link_smr)) { 793 cache_symlink_free(symlink, node->tn_size + 1); 794 } else { 795 free(symlink, M_TMPFSNAME); 796 } 797 break; 798 default: 799 tmpfs_free_tmp(tmp); 800 break; 801 } 802 803 uma_zfree_smr(tmpfs_node_pool, node); 804 return (true); 805 } 806 807 static __inline uint32_t 808 tmpfs_dirent_hash(const char *name, u_int len) 809 { 810 uint32_t hash; 811 812 hash = fnv_32_buf(name, len, FNV1_32_INIT + len) & TMPFS_DIRCOOKIE_MASK; 813 #ifdef TMPFS_DEBUG_DIRCOOKIE_DUP 814 hash &= 0xf; 815 #endif 816 if (hash < TMPFS_DIRCOOKIE_MIN) 817 hash += TMPFS_DIRCOOKIE_MIN; 818 819 return (hash); 820 } 821 822 static __inline off_t 823 tmpfs_dirent_cookie(struct tmpfs_dirent *de) 824 { 825 if (de == NULL) 826 return (TMPFS_DIRCOOKIE_EOF); 827 828 MPASS(de->td_cookie >= TMPFS_DIRCOOKIE_MIN); 829 830 return (de->td_cookie); 831 } 832 833 static __inline boolean_t 834 tmpfs_dirent_dup(struct tmpfs_dirent *de) 835 { 836 return ((de->td_cookie & TMPFS_DIRCOOKIE_DUP) != 0); 837 } 838 839 static __inline boolean_t 840 tmpfs_dirent_duphead(struct tmpfs_dirent *de) 841 { 842 return ((de->td_cookie & TMPFS_DIRCOOKIE_DUPHEAD) != 0); 843 } 844 845 void 846 tmpfs_dirent_init(struct tmpfs_dirent *de, const char *name, u_int namelen) 847 { 848 de->td_hash = de->td_cookie = tmpfs_dirent_hash(name, namelen); 849 memcpy(de->ud.td_name, name, namelen); 850 de->td_namelen = namelen; 851 } 852 853 /* 854 * Allocates a new directory entry for the node node with a name of name. 855 * The new directory entry is returned in *de. 856 * 857 * The link count of node is increased by one to reflect the new object 858 * referencing it. 859 * 860 * Returns zero on success or an appropriate error code on failure. 861 */ 862 int 863 tmpfs_alloc_dirent(struct tmpfs_mount *tmp, struct tmpfs_node *node, 864 const char *name, u_int len, struct tmpfs_dirent **de) 865 { 866 struct tmpfs_dirent *nde; 867 868 nde = malloc(sizeof(*nde), M_TMPFSDIR, M_WAITOK); 869 nde->td_node = node; 870 if (name != NULL) { 871 nde->ud.td_name = malloc(len, M_TMPFSNAME, M_WAITOK); 872 tmpfs_dirent_init(nde, name, len); 873 } else 874 nde->td_namelen = 0; 875 if (node != NULL) 876 node->tn_links++; 877 878 *de = nde; 879 880 return (0); 881 } 882 883 /* 884 * Frees a directory entry. It is the caller's responsibility to destroy 885 * the node referenced by it if needed. 886 * 887 * The link count of node is decreased by one to reflect the removal of an 888 * object that referenced it. This only happens if 'node_exists' is true; 889 * otherwise the function will not access the node referred to by the 890 * directory entry, as it may already have been released from the outside. 891 */ 892 void 893 tmpfs_free_dirent(struct tmpfs_mount *tmp, struct tmpfs_dirent *de) 894 { 895 struct tmpfs_node *node; 896 897 node = de->td_node; 898 if (node != NULL) { 899 MPASS(node->tn_links > 0); 900 node->tn_links--; 901 } 902 if (!tmpfs_dirent_duphead(de) && de->ud.td_name != NULL) 903 free(de->ud.td_name, M_TMPFSNAME); 904 free(de, M_TMPFSDIR); 905 } 906 907 void 908 tmpfs_destroy_vobject(struct vnode *vp, vm_object_t obj) 909 { 910 bool want_vrele; 911 912 ASSERT_VOP_ELOCKED(vp, "tmpfs_destroy_vobject"); 913 if (vp->v_type != VREG || obj == NULL) 914 return; 915 916 VM_OBJECT_WLOCK(obj); 917 VI_LOCK(vp); 918 /* 919 * May be going through forced unmount. 920 */ 921 want_vrele = false; 922 if ((obj->flags & OBJ_TMPFS_VREF) != 0) { 923 vm_object_clear_flag(obj, OBJ_TMPFS_VREF); 924 want_vrele = true; 925 } 926 927 if (vp->v_writecount < 0) 928 vp->v_writecount = 0; 929 VI_UNLOCK(vp); 930 VM_OBJECT_WUNLOCK(obj); 931 if (want_vrele) { 932 vrele(vp); 933 } 934 } 935 936 /* 937 * Allocates a new vnode for the node node or returns a new reference to 938 * an existing one if the node had already a vnode referencing it. The 939 * resulting locked vnode is returned in *vpp. 940 * 941 * Returns zero on success or an appropriate error code on failure. 942 */ 943 int 944 tmpfs_alloc_vp(struct mount *mp, struct tmpfs_node *node, int lkflag, 945 struct vnode **vpp) 946 { 947 struct vnode *vp; 948 enum vgetstate vs; 949 struct tmpfs_mount *tm; 950 vm_object_t object; 951 int error; 952 953 error = 0; 954 tm = VFS_TO_TMPFS(mp); 955 TMPFS_NODE_LOCK(node); 956 tmpfs_ref_node(node); 957 loop: 958 TMPFS_NODE_ASSERT_LOCKED(node); 959 if ((vp = node->tn_vnode) != NULL) { 960 MPASS((node->tn_vpstate & TMPFS_VNODE_DOOMED) == 0); 961 if ((node->tn_type == VDIR && node->tn_dir.tn_parent == NULL) || 962 (VN_IS_DOOMED(vp) && 963 (lkflag & LK_NOWAIT) != 0)) { 964 TMPFS_NODE_UNLOCK(node); 965 error = ENOENT; 966 vp = NULL; 967 goto out; 968 } 969 if (VN_IS_DOOMED(vp)) { 970 node->tn_vpstate |= TMPFS_VNODE_WRECLAIM; 971 while ((node->tn_vpstate & TMPFS_VNODE_WRECLAIM) != 0) { 972 msleep(&node->tn_vnode, TMPFS_NODE_MTX(node), 973 0, "tmpfsE", 0); 974 } 975 goto loop; 976 } 977 vs = vget_prep(vp); 978 TMPFS_NODE_UNLOCK(node); 979 error = vget_finish(vp, lkflag, vs); 980 if (error == ENOENT) { 981 TMPFS_NODE_LOCK(node); 982 goto loop; 983 } 984 if (error != 0) { 985 vp = NULL; 986 goto out; 987 } 988 989 /* 990 * Make sure the vnode is still there after 991 * getting the interlock to avoid racing a free. 992 */ 993 if (node->tn_vnode != vp) { 994 vput(vp); 995 TMPFS_NODE_LOCK(node); 996 goto loop; 997 } 998 999 goto out; 1000 } 1001 1002 if ((node->tn_vpstate & TMPFS_VNODE_DOOMED) || 1003 (node->tn_type == VDIR && node->tn_dir.tn_parent == NULL)) { 1004 TMPFS_NODE_UNLOCK(node); 1005 error = ENOENT; 1006 vp = NULL; 1007 goto out; 1008 } 1009 1010 /* 1011 * otherwise lock the vp list while we call getnewvnode 1012 * since that can block. 1013 */ 1014 if (node->tn_vpstate & TMPFS_VNODE_ALLOCATING) { 1015 node->tn_vpstate |= TMPFS_VNODE_WANT; 1016 error = msleep((caddr_t) &node->tn_vpstate, 1017 TMPFS_NODE_MTX(node), 0, "tmpfs_alloc_vp", 0); 1018 if (error != 0) 1019 goto out; 1020 goto loop; 1021 } else 1022 node->tn_vpstate |= TMPFS_VNODE_ALLOCATING; 1023 1024 TMPFS_NODE_UNLOCK(node); 1025 1026 /* Get a new vnode and associate it with our node. */ 1027 error = getnewvnode("tmpfs", mp, VFS_TO_TMPFS(mp)->tm_nonc ? 1028 &tmpfs_vnodeop_nonc_entries : &tmpfs_vnodeop_entries, &vp); 1029 if (error != 0) 1030 goto unlock; 1031 MPASS(vp != NULL); 1032 1033 /* lkflag is ignored, the lock is exclusive */ 1034 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1035 1036 vp->v_data = node; 1037 vp->v_type = node->tn_type; 1038 1039 /* Type-specific initialization. */ 1040 switch (node->tn_type) { 1041 case VBLK: 1042 /* FALLTHROUGH */ 1043 case VCHR: 1044 /* FALLTHROUGH */ 1045 case VLNK: 1046 /* FALLTHROUGH */ 1047 case VSOCK: 1048 break; 1049 case VFIFO: 1050 vp->v_op = &tmpfs_fifoop_entries; 1051 break; 1052 case VREG: 1053 object = node->tn_reg.tn_aobj; 1054 VM_OBJECT_WLOCK(object); 1055 KASSERT((object->flags & OBJ_TMPFS_VREF) == 0, 1056 ("%s: object %p with OBJ_TMPFS_VREF but without vnode", 1057 __func__, object)); 1058 KASSERT(object->un_pager.swp.writemappings == 0, 1059 ("%s: object %p has writemappings", 1060 __func__, object)); 1061 VI_LOCK(vp); 1062 KASSERT(vp->v_object == NULL, ("Not NULL v_object in tmpfs")); 1063 vp->v_object = object; 1064 vn_irflag_set_locked(vp, VIRF_PGREAD | VIRF_TEXT_REF); 1065 VI_UNLOCK(vp); 1066 VM_OBJECT_WUNLOCK(object); 1067 break; 1068 case VDIR: 1069 MPASS(node->tn_dir.tn_parent != NULL); 1070 if (node->tn_dir.tn_parent == node) 1071 vp->v_vflag |= VV_ROOT; 1072 break; 1073 1074 default: 1075 panic("tmpfs_alloc_vp: type %p %d", node, (int)node->tn_type); 1076 } 1077 if (vp->v_type != VFIFO) 1078 VN_LOCK_ASHARE(vp); 1079 1080 error = insmntque1(vp, mp); 1081 if (error != 0) { 1082 /* Need to clear v_object for insmntque failure. */ 1083 tmpfs_destroy_vobject(vp, vp->v_object); 1084 vp->v_object = NULL; 1085 vp->v_data = NULL; 1086 vp->v_op = &dead_vnodeops; 1087 vgone(vp); 1088 vput(vp); 1089 vp = NULL; 1090 } else { 1091 vn_set_state(vp, VSTATE_CONSTRUCTED); 1092 } 1093 1094 unlock: 1095 TMPFS_NODE_LOCK(node); 1096 1097 MPASS(node->tn_vpstate & TMPFS_VNODE_ALLOCATING); 1098 node->tn_vpstate &= ~TMPFS_VNODE_ALLOCATING; 1099 node->tn_vnode = vp; 1100 1101 if (node->tn_vpstate & TMPFS_VNODE_WANT) { 1102 node->tn_vpstate &= ~TMPFS_VNODE_WANT; 1103 TMPFS_NODE_UNLOCK(node); 1104 wakeup((caddr_t) &node->tn_vpstate); 1105 } else 1106 TMPFS_NODE_UNLOCK(node); 1107 1108 out: 1109 if (error == 0) { 1110 *vpp = vp; 1111 1112 #ifdef INVARIANTS 1113 MPASS(*vpp != NULL); 1114 ASSERT_VOP_LOCKED(*vpp, __func__); 1115 TMPFS_NODE_LOCK(node); 1116 MPASS(*vpp == node->tn_vnode); 1117 TMPFS_NODE_UNLOCK(node); 1118 #endif 1119 } 1120 tmpfs_free_node(tm, node); 1121 1122 return (error); 1123 } 1124 1125 /* 1126 * Destroys the association between the vnode vp and the node it 1127 * references. 1128 */ 1129 void 1130 tmpfs_free_vp(struct vnode *vp) 1131 { 1132 struct tmpfs_node *node; 1133 1134 node = VP_TO_TMPFS_NODE(vp); 1135 1136 TMPFS_NODE_ASSERT_LOCKED(node); 1137 node->tn_vnode = NULL; 1138 if ((node->tn_vpstate & TMPFS_VNODE_WRECLAIM) != 0) 1139 wakeup(&node->tn_vnode); 1140 node->tn_vpstate &= ~TMPFS_VNODE_WRECLAIM; 1141 vp->v_data = NULL; 1142 } 1143 1144 /* 1145 * Allocates a new file of type 'type' and adds it to the parent directory 1146 * 'dvp'; this addition is done using the component name given in 'cnp'. 1147 * The ownership of the new file is automatically assigned based on the 1148 * credentials of the caller (through 'cnp'), the group is set based on 1149 * the parent directory and the mode is determined from the 'vap' argument. 1150 * If successful, *vpp holds a vnode to the newly created file and zero 1151 * is returned. Otherwise *vpp is NULL and the function returns an 1152 * appropriate error code. 1153 */ 1154 int 1155 tmpfs_alloc_file(struct vnode *dvp, struct vnode **vpp, struct vattr *vap, 1156 struct componentname *cnp, const char *target) 1157 { 1158 int error; 1159 struct tmpfs_dirent *de; 1160 struct tmpfs_mount *tmp; 1161 struct tmpfs_node *dnode; 1162 struct tmpfs_node *node; 1163 struct tmpfs_node *parent; 1164 1165 ASSERT_VOP_ELOCKED(dvp, "tmpfs_alloc_file"); 1166 1167 tmp = VFS_TO_TMPFS(dvp->v_mount); 1168 dnode = VP_TO_TMPFS_DIR(dvp); 1169 *vpp = NULL; 1170 1171 /* If the entry we are creating is a directory, we cannot overflow 1172 * the number of links of its parent, because it will get a new 1173 * link. */ 1174 if (vap->va_type == VDIR) { 1175 /* Ensure that we do not overflow the maximum number of links 1176 * imposed by the system. */ 1177 MPASS(dnode->tn_links <= TMPFS_LINK_MAX); 1178 if (dnode->tn_links == TMPFS_LINK_MAX) { 1179 return (EMLINK); 1180 } 1181 1182 parent = dnode; 1183 MPASS(parent != NULL); 1184 } else 1185 parent = NULL; 1186 1187 /* Allocate a node that represents the new file. */ 1188 error = tmpfs_alloc_node(dvp->v_mount, tmp, vap->va_type, 1189 cnp->cn_cred->cr_uid, dnode->tn_gid, vap->va_mode, parent, 1190 target, vap->va_rdev, &node); 1191 if (error != 0) 1192 return (error); 1193 1194 /* Allocate a directory entry that points to the new file. */ 1195 error = tmpfs_alloc_dirent(tmp, node, cnp->cn_nameptr, cnp->cn_namelen, 1196 &de); 1197 if (error != 0) { 1198 tmpfs_free_node(tmp, node); 1199 return (error); 1200 } 1201 1202 /* Allocate a vnode for the new file. */ 1203 error = tmpfs_alloc_vp(dvp->v_mount, node, LK_EXCLUSIVE, vpp); 1204 if (error != 0) { 1205 tmpfs_free_dirent(tmp, de); 1206 tmpfs_free_node(tmp, node); 1207 return (error); 1208 } 1209 1210 /* Now that all required items are allocated, we can proceed to 1211 * insert the new node into the directory, an operation that 1212 * cannot fail. */ 1213 if (cnp->cn_flags & ISWHITEOUT) 1214 tmpfs_dir_whiteout_remove(dvp, cnp); 1215 tmpfs_dir_attach(dvp, de); 1216 return (0); 1217 } 1218 1219 struct tmpfs_dirent * 1220 tmpfs_dir_first(struct tmpfs_node *dnode, struct tmpfs_dir_cursor *dc) 1221 { 1222 struct tmpfs_dirent *de; 1223 1224 de = RB_MIN(tmpfs_dir, &dnode->tn_dir.tn_dirhead); 1225 dc->tdc_tree = de; 1226 if (de != NULL && tmpfs_dirent_duphead(de)) 1227 de = LIST_FIRST(&de->ud.td_duphead); 1228 dc->tdc_current = de; 1229 1230 return (dc->tdc_current); 1231 } 1232 1233 struct tmpfs_dirent * 1234 tmpfs_dir_next(struct tmpfs_node *dnode, struct tmpfs_dir_cursor *dc) 1235 { 1236 struct tmpfs_dirent *de; 1237 1238 MPASS(dc->tdc_tree != NULL); 1239 if (tmpfs_dirent_dup(dc->tdc_current)) { 1240 dc->tdc_current = LIST_NEXT(dc->tdc_current, uh.td_dup.entries); 1241 if (dc->tdc_current != NULL) 1242 return (dc->tdc_current); 1243 } 1244 dc->tdc_tree = dc->tdc_current = RB_NEXT(tmpfs_dir, 1245 &dnode->tn_dir.tn_dirhead, dc->tdc_tree); 1246 if ((de = dc->tdc_current) != NULL && tmpfs_dirent_duphead(de)) { 1247 dc->tdc_current = LIST_FIRST(&de->ud.td_duphead); 1248 MPASS(dc->tdc_current != NULL); 1249 } 1250 1251 return (dc->tdc_current); 1252 } 1253 1254 /* Lookup directory entry in RB-Tree. Function may return duphead entry. */ 1255 static struct tmpfs_dirent * 1256 tmpfs_dir_xlookup_hash(struct tmpfs_node *dnode, uint32_t hash) 1257 { 1258 struct tmpfs_dirent *de, dekey; 1259 1260 dekey.td_hash = hash; 1261 de = RB_FIND(tmpfs_dir, &dnode->tn_dir.tn_dirhead, &dekey); 1262 return (de); 1263 } 1264 1265 /* Lookup directory entry by cookie, initialize directory cursor accordingly. */ 1266 static struct tmpfs_dirent * 1267 tmpfs_dir_lookup_cookie(struct tmpfs_node *node, off_t cookie, 1268 struct tmpfs_dir_cursor *dc) 1269 { 1270 struct tmpfs_dir *dirhead = &node->tn_dir.tn_dirhead; 1271 struct tmpfs_dirent *de, dekey; 1272 1273 MPASS(cookie >= TMPFS_DIRCOOKIE_MIN); 1274 1275 if (cookie == node->tn_dir.tn_readdir_lastn && 1276 (de = node->tn_dir.tn_readdir_lastp) != NULL) { 1277 /* Protect against possible race, tn_readdir_last[pn] 1278 * may be updated with only shared vnode lock held. */ 1279 if (cookie == tmpfs_dirent_cookie(de)) 1280 goto out; 1281 } 1282 1283 if ((cookie & TMPFS_DIRCOOKIE_DUP) != 0) { 1284 LIST_FOREACH(de, &node->tn_dir.tn_dupindex, 1285 uh.td_dup.index_entries) { 1286 MPASS(tmpfs_dirent_dup(de)); 1287 if (de->td_cookie == cookie) 1288 goto out; 1289 /* dupindex list is sorted. */ 1290 if (de->td_cookie < cookie) { 1291 de = NULL; 1292 goto out; 1293 } 1294 } 1295 MPASS(de == NULL); 1296 goto out; 1297 } 1298 1299 if ((cookie & TMPFS_DIRCOOKIE_MASK) != cookie) { 1300 de = NULL; 1301 } else { 1302 dekey.td_hash = cookie; 1303 /* Recover if direntry for cookie was removed */ 1304 de = RB_NFIND(tmpfs_dir, dirhead, &dekey); 1305 } 1306 dc->tdc_tree = de; 1307 dc->tdc_current = de; 1308 if (de != NULL && tmpfs_dirent_duphead(de)) { 1309 dc->tdc_current = LIST_FIRST(&de->ud.td_duphead); 1310 MPASS(dc->tdc_current != NULL); 1311 } 1312 return (dc->tdc_current); 1313 1314 out: 1315 dc->tdc_tree = de; 1316 dc->tdc_current = de; 1317 if (de != NULL && tmpfs_dirent_dup(de)) 1318 dc->tdc_tree = tmpfs_dir_xlookup_hash(node, 1319 de->td_hash); 1320 return (dc->tdc_current); 1321 } 1322 1323 /* 1324 * Looks for a directory entry in the directory represented by node. 1325 * 'cnp' describes the name of the entry to look for. Note that the . 1326 * and .. components are not allowed as they do not physically exist 1327 * within directories. 1328 * 1329 * Returns a pointer to the entry when found, otherwise NULL. 1330 */ 1331 struct tmpfs_dirent * 1332 tmpfs_dir_lookup(struct tmpfs_node *node, struct tmpfs_node *f, 1333 struct componentname *cnp) 1334 { 1335 struct tmpfs_dir_duphead *duphead; 1336 struct tmpfs_dirent *de; 1337 uint32_t hash; 1338 1339 MPASS(IMPLIES(cnp->cn_namelen == 1, cnp->cn_nameptr[0] != '.')); 1340 MPASS(IMPLIES(cnp->cn_namelen == 2, !(cnp->cn_nameptr[0] == '.' && 1341 cnp->cn_nameptr[1] == '.'))); 1342 TMPFS_VALIDATE_DIR(node); 1343 1344 hash = tmpfs_dirent_hash(cnp->cn_nameptr, cnp->cn_namelen); 1345 de = tmpfs_dir_xlookup_hash(node, hash); 1346 if (de != NULL && tmpfs_dirent_duphead(de)) { 1347 duphead = &de->ud.td_duphead; 1348 LIST_FOREACH(de, duphead, uh.td_dup.entries) { 1349 if (TMPFS_DIRENT_MATCHES(de, cnp->cn_nameptr, 1350 cnp->cn_namelen)) 1351 break; 1352 } 1353 } else if (de != NULL) { 1354 if (!TMPFS_DIRENT_MATCHES(de, cnp->cn_nameptr, 1355 cnp->cn_namelen)) 1356 de = NULL; 1357 } 1358 if (de != NULL && f != NULL && de->td_node != f) 1359 de = NULL; 1360 1361 return (de); 1362 } 1363 1364 /* 1365 * Attach duplicate-cookie directory entry nde to dnode and insert to dupindex 1366 * list, allocate new cookie value. 1367 */ 1368 static void 1369 tmpfs_dir_attach_dup(struct tmpfs_node *dnode, 1370 struct tmpfs_dir_duphead *duphead, struct tmpfs_dirent *nde) 1371 { 1372 struct tmpfs_dir_duphead *dupindex; 1373 struct tmpfs_dirent *de, *pde; 1374 1375 dupindex = &dnode->tn_dir.tn_dupindex; 1376 de = LIST_FIRST(dupindex); 1377 if (de == NULL || de->td_cookie < TMPFS_DIRCOOKIE_DUP_MAX) { 1378 if (de == NULL) 1379 nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MIN; 1380 else 1381 nde->td_cookie = de->td_cookie + 1; 1382 MPASS(tmpfs_dirent_dup(nde)); 1383 LIST_INSERT_HEAD(dupindex, nde, uh.td_dup.index_entries); 1384 LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries); 1385 return; 1386 } 1387 1388 /* 1389 * Cookie numbers are near exhaustion. Scan dupindex list for unused 1390 * numbers. dupindex list is sorted in descending order. Keep it so 1391 * after inserting nde. 1392 */ 1393 while (1) { 1394 pde = de; 1395 de = LIST_NEXT(de, uh.td_dup.index_entries); 1396 if (de == NULL && pde->td_cookie != TMPFS_DIRCOOKIE_DUP_MIN) { 1397 /* 1398 * Last element of the index doesn't have minimal cookie 1399 * value, use it. 1400 */ 1401 nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MIN; 1402 LIST_INSERT_AFTER(pde, nde, uh.td_dup.index_entries); 1403 LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries); 1404 return; 1405 } else if (de == NULL) { 1406 /* 1407 * We are so lucky have 2^30 hash duplicates in single 1408 * directory :) Return largest possible cookie value. 1409 * It should be fine except possible issues with 1410 * VOP_READDIR restart. 1411 */ 1412 nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MAX; 1413 LIST_INSERT_HEAD(dupindex, nde, 1414 uh.td_dup.index_entries); 1415 LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries); 1416 return; 1417 } 1418 if (de->td_cookie + 1 == pde->td_cookie || 1419 de->td_cookie >= TMPFS_DIRCOOKIE_DUP_MAX) 1420 continue; /* No hole or invalid cookie. */ 1421 nde->td_cookie = de->td_cookie + 1; 1422 MPASS(tmpfs_dirent_dup(nde)); 1423 MPASS(pde->td_cookie > nde->td_cookie); 1424 MPASS(nde->td_cookie > de->td_cookie); 1425 LIST_INSERT_BEFORE(de, nde, uh.td_dup.index_entries); 1426 LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries); 1427 return; 1428 } 1429 } 1430 1431 /* 1432 * Attaches the directory entry de to the directory represented by vp. 1433 * Note that this does not change the link count of the node pointed by 1434 * the directory entry, as this is done by tmpfs_alloc_dirent. 1435 */ 1436 void 1437 tmpfs_dir_attach(struct vnode *vp, struct tmpfs_dirent *de) 1438 { 1439 struct tmpfs_node *dnode; 1440 struct tmpfs_dirent *xde, *nde; 1441 1442 ASSERT_VOP_ELOCKED(vp, __func__); 1443 MPASS(de->td_namelen > 0); 1444 MPASS(de->td_hash >= TMPFS_DIRCOOKIE_MIN); 1445 MPASS(de->td_cookie == de->td_hash); 1446 1447 dnode = VP_TO_TMPFS_DIR(vp); 1448 dnode->tn_dir.tn_readdir_lastn = 0; 1449 dnode->tn_dir.tn_readdir_lastp = NULL; 1450 1451 MPASS(!tmpfs_dirent_dup(de)); 1452 xde = RB_INSERT(tmpfs_dir, &dnode->tn_dir.tn_dirhead, de); 1453 if (xde != NULL && tmpfs_dirent_duphead(xde)) 1454 tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, de); 1455 else if (xde != NULL) { 1456 /* 1457 * Allocate new duphead. Swap xde with duphead to avoid 1458 * adding/removing elements with the same hash. 1459 */ 1460 MPASS(!tmpfs_dirent_dup(xde)); 1461 tmpfs_alloc_dirent(VFS_TO_TMPFS(vp->v_mount), NULL, NULL, 0, 1462 &nde); 1463 /* *nde = *xde; XXX gcc 4.2.1 may generate invalid code. */ 1464 memcpy(nde, xde, sizeof(*xde)); 1465 xde->td_cookie |= TMPFS_DIRCOOKIE_DUPHEAD; 1466 LIST_INIT(&xde->ud.td_duphead); 1467 xde->td_namelen = 0; 1468 xde->td_node = NULL; 1469 tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, nde); 1470 tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, de); 1471 } 1472 dnode->tn_size += sizeof(struct tmpfs_dirent); 1473 dnode->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED; 1474 dnode->tn_accessed = true; 1475 tmpfs_update(vp); 1476 } 1477 1478 /* 1479 * Detaches the directory entry de from the directory represented by vp. 1480 * Note that this does not change the link count of the node pointed by 1481 * the directory entry, as this is done by tmpfs_free_dirent. 1482 */ 1483 void 1484 tmpfs_dir_detach(struct vnode *vp, struct tmpfs_dirent *de) 1485 { 1486 struct tmpfs_mount *tmp; 1487 struct tmpfs_dir *head; 1488 struct tmpfs_node *dnode; 1489 struct tmpfs_dirent *xde; 1490 1491 ASSERT_VOP_ELOCKED(vp, __func__); 1492 1493 dnode = VP_TO_TMPFS_DIR(vp); 1494 head = &dnode->tn_dir.tn_dirhead; 1495 dnode->tn_dir.tn_readdir_lastn = 0; 1496 dnode->tn_dir.tn_readdir_lastp = NULL; 1497 1498 if (tmpfs_dirent_dup(de)) { 1499 /* Remove duphead if de was last entry. */ 1500 if (LIST_NEXT(de, uh.td_dup.entries) == NULL) { 1501 xde = tmpfs_dir_xlookup_hash(dnode, de->td_hash); 1502 MPASS(tmpfs_dirent_duphead(xde)); 1503 } else 1504 xde = NULL; 1505 LIST_REMOVE(de, uh.td_dup.entries); 1506 LIST_REMOVE(de, uh.td_dup.index_entries); 1507 if (xde != NULL) { 1508 if (LIST_EMPTY(&xde->ud.td_duphead)) { 1509 RB_REMOVE(tmpfs_dir, head, xde); 1510 tmp = VFS_TO_TMPFS(vp->v_mount); 1511 MPASS(xde->td_node == NULL); 1512 tmpfs_free_dirent(tmp, xde); 1513 } 1514 } 1515 de->td_cookie = de->td_hash; 1516 } else 1517 RB_REMOVE(tmpfs_dir, head, de); 1518 1519 dnode->tn_size -= sizeof(struct tmpfs_dirent); 1520 dnode->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED; 1521 dnode->tn_accessed = true; 1522 tmpfs_update(vp); 1523 } 1524 1525 void 1526 tmpfs_dir_destroy(struct tmpfs_mount *tmp, struct tmpfs_node *dnode) 1527 { 1528 struct tmpfs_dirent *de, *dde, *nde; 1529 1530 RB_FOREACH_SAFE(de, tmpfs_dir, &dnode->tn_dir.tn_dirhead, nde) { 1531 RB_REMOVE(tmpfs_dir, &dnode->tn_dir.tn_dirhead, de); 1532 /* Node may already be destroyed. */ 1533 de->td_node = NULL; 1534 if (tmpfs_dirent_duphead(de)) { 1535 while ((dde = LIST_FIRST(&de->ud.td_duphead)) != NULL) { 1536 LIST_REMOVE(dde, uh.td_dup.entries); 1537 dde->td_node = NULL; 1538 tmpfs_free_dirent(tmp, dde); 1539 } 1540 } 1541 tmpfs_free_dirent(tmp, de); 1542 } 1543 } 1544 1545 /* 1546 * Helper function for tmpfs_readdir. Creates a '.' entry for the given 1547 * directory and returns it in the uio space. The function returns 0 1548 * on success, -1 if there was not enough space in the uio structure to 1549 * hold the directory entry or an appropriate error code if another 1550 * error happens. 1551 */ 1552 static int 1553 tmpfs_dir_getdotdent(struct tmpfs_mount *tm, struct tmpfs_node *node, 1554 struct uio *uio) 1555 { 1556 int error; 1557 struct dirent dent; 1558 1559 TMPFS_VALIDATE_DIR(node); 1560 MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOT); 1561 1562 dent.d_fileno = node->tn_id; 1563 dent.d_off = TMPFS_DIRCOOKIE_DOTDOT; 1564 dent.d_type = DT_DIR; 1565 dent.d_namlen = 1; 1566 dent.d_name[0] = '.'; 1567 dent.d_reclen = GENERIC_DIRSIZ(&dent); 1568 dirent_terminate(&dent); 1569 1570 if (dent.d_reclen > uio->uio_resid) 1571 error = EJUSTRETURN; 1572 else 1573 error = uiomove(&dent, dent.d_reclen, uio); 1574 1575 tmpfs_set_accessed(tm, node); 1576 1577 return (error); 1578 } 1579 1580 /* 1581 * Helper function for tmpfs_readdir. Creates a '..' entry for the given 1582 * directory and returns it in the uio space. The function returns 0 1583 * on success, -1 if there was not enough space in the uio structure to 1584 * hold the directory entry or an appropriate error code if another 1585 * error happens. 1586 */ 1587 static int 1588 tmpfs_dir_getdotdotdent(struct tmpfs_mount *tm, struct tmpfs_node *node, 1589 struct uio *uio, off_t next) 1590 { 1591 struct tmpfs_node *parent; 1592 struct dirent dent; 1593 int error; 1594 1595 TMPFS_VALIDATE_DIR(node); 1596 MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOTDOT); 1597 1598 /* 1599 * Return ENOENT if the current node is already removed. 1600 */ 1601 TMPFS_ASSERT_LOCKED(node); 1602 parent = node->tn_dir.tn_parent; 1603 if (parent == NULL) 1604 return (ENOENT); 1605 1606 dent.d_fileno = parent->tn_id; 1607 dent.d_off = next; 1608 dent.d_type = DT_DIR; 1609 dent.d_namlen = 2; 1610 dent.d_name[0] = '.'; 1611 dent.d_name[1] = '.'; 1612 dent.d_reclen = GENERIC_DIRSIZ(&dent); 1613 dirent_terminate(&dent); 1614 1615 if (dent.d_reclen > uio->uio_resid) 1616 error = EJUSTRETURN; 1617 else 1618 error = uiomove(&dent, dent.d_reclen, uio); 1619 1620 tmpfs_set_accessed(tm, node); 1621 1622 return (error); 1623 } 1624 1625 /* 1626 * Helper function for tmpfs_readdir. Returns as much directory entries 1627 * as can fit in the uio space. The read starts at uio->uio_offset. 1628 * The function returns 0 on success, -1 if there was not enough space 1629 * in the uio structure to hold the directory entry or an appropriate 1630 * error code if another error happens. 1631 */ 1632 int 1633 tmpfs_dir_getdents(struct tmpfs_mount *tm, struct tmpfs_node *node, 1634 struct uio *uio, int maxcookies, uint64_t *cookies, int *ncookies) 1635 { 1636 struct tmpfs_dir_cursor dc; 1637 struct tmpfs_dirent *de, *nde; 1638 off_t off; 1639 int error; 1640 1641 TMPFS_VALIDATE_DIR(node); 1642 1643 off = 0; 1644 1645 /* 1646 * Lookup the node from the current offset. The starting offset of 1647 * 0 will lookup both '.' and '..', and then the first real entry, 1648 * or EOF if there are none. Then find all entries for the dir that 1649 * fit into the buffer. Once no more entries are found (de == NULL), 1650 * the offset is set to TMPFS_DIRCOOKIE_EOF, which will cause the next 1651 * call to return 0. 1652 */ 1653 switch (uio->uio_offset) { 1654 case TMPFS_DIRCOOKIE_DOT: 1655 error = tmpfs_dir_getdotdent(tm, node, uio); 1656 if (error != 0) 1657 return (error); 1658 uio->uio_offset = off = TMPFS_DIRCOOKIE_DOTDOT; 1659 if (cookies != NULL) 1660 cookies[(*ncookies)++] = off; 1661 /* FALLTHROUGH */ 1662 case TMPFS_DIRCOOKIE_DOTDOT: 1663 de = tmpfs_dir_first(node, &dc); 1664 off = tmpfs_dirent_cookie(de); 1665 error = tmpfs_dir_getdotdotdent(tm, node, uio, off); 1666 if (error != 0) 1667 return (error); 1668 uio->uio_offset = off; 1669 if (cookies != NULL) 1670 cookies[(*ncookies)++] = off; 1671 /* EOF. */ 1672 if (de == NULL) 1673 return (0); 1674 break; 1675 case TMPFS_DIRCOOKIE_EOF: 1676 return (0); 1677 default: 1678 de = tmpfs_dir_lookup_cookie(node, uio->uio_offset, &dc); 1679 if (de == NULL) 1680 return (EINVAL); 1681 if (cookies != NULL) 1682 off = tmpfs_dirent_cookie(de); 1683 } 1684 1685 /* 1686 * Read as much entries as possible; i.e., until we reach the end of the 1687 * directory or we exhaust uio space. 1688 */ 1689 do { 1690 struct dirent d; 1691 1692 /* 1693 * Create a dirent structure representing the current tmpfs_node 1694 * and fill it. 1695 */ 1696 if (de->td_node == NULL) { 1697 d.d_fileno = 1; 1698 d.d_type = DT_WHT; 1699 } else { 1700 d.d_fileno = de->td_node->tn_id; 1701 switch (de->td_node->tn_type) { 1702 case VBLK: 1703 d.d_type = DT_BLK; 1704 break; 1705 1706 case VCHR: 1707 d.d_type = DT_CHR; 1708 break; 1709 1710 case VDIR: 1711 d.d_type = DT_DIR; 1712 break; 1713 1714 case VFIFO: 1715 d.d_type = DT_FIFO; 1716 break; 1717 1718 case VLNK: 1719 d.d_type = DT_LNK; 1720 break; 1721 1722 case VREG: 1723 d.d_type = DT_REG; 1724 break; 1725 1726 case VSOCK: 1727 d.d_type = DT_SOCK; 1728 break; 1729 1730 default: 1731 panic("tmpfs_dir_getdents: type %p %d", 1732 de->td_node, (int)de->td_node->tn_type); 1733 } 1734 } 1735 d.d_namlen = de->td_namelen; 1736 MPASS(de->td_namelen < sizeof(d.d_name)); 1737 (void)memcpy(d.d_name, de->ud.td_name, de->td_namelen); 1738 d.d_reclen = GENERIC_DIRSIZ(&d); 1739 1740 /* 1741 * Stop reading if the directory entry we are treating is bigger 1742 * than the amount of data that can be returned. 1743 */ 1744 if (d.d_reclen > uio->uio_resid) { 1745 error = EJUSTRETURN; 1746 break; 1747 } 1748 1749 nde = tmpfs_dir_next(node, &dc); 1750 d.d_off = tmpfs_dirent_cookie(nde); 1751 dirent_terminate(&d); 1752 1753 /* 1754 * Copy the new dirent structure into the output buffer and 1755 * advance pointers. 1756 */ 1757 error = uiomove(&d, d.d_reclen, uio); 1758 if (error == 0) { 1759 de = nde; 1760 if (cookies != NULL) { 1761 off = tmpfs_dirent_cookie(de); 1762 MPASS(*ncookies < maxcookies); 1763 cookies[(*ncookies)++] = off; 1764 } 1765 } 1766 } while (error == 0 && uio->uio_resid > 0 && de != NULL); 1767 1768 /* Skip setting off when using cookies as it is already done above. */ 1769 if (cookies == NULL) 1770 off = tmpfs_dirent_cookie(de); 1771 1772 /* Update the offset and cache. */ 1773 uio->uio_offset = off; 1774 node->tn_dir.tn_readdir_lastn = off; 1775 node->tn_dir.tn_readdir_lastp = de; 1776 1777 tmpfs_set_accessed(tm, node); 1778 return (error); 1779 } 1780 1781 int 1782 tmpfs_dir_whiteout_add(struct vnode *dvp, struct componentname *cnp) 1783 { 1784 struct tmpfs_dirent *de; 1785 int error; 1786 1787 error = tmpfs_alloc_dirent(VFS_TO_TMPFS(dvp->v_mount), NULL, 1788 cnp->cn_nameptr, cnp->cn_namelen, &de); 1789 if (error != 0) 1790 return (error); 1791 tmpfs_dir_attach(dvp, de); 1792 return (0); 1793 } 1794 1795 void 1796 tmpfs_dir_whiteout_remove(struct vnode *dvp, struct componentname *cnp) 1797 { 1798 struct tmpfs_dirent *de; 1799 1800 de = tmpfs_dir_lookup(VP_TO_TMPFS_DIR(dvp), NULL, cnp); 1801 MPASS(de != NULL && de->td_node == NULL); 1802 tmpfs_dir_detach(dvp, de); 1803 tmpfs_free_dirent(VFS_TO_TMPFS(dvp->v_mount), de); 1804 } 1805 1806 /* 1807 * Resizes the aobj associated with the regular file pointed to by 'vp' to the 1808 * size 'newsize'. 'vp' must point to a vnode that represents a regular file. 1809 * 'newsize' must be positive. 1810 * 1811 * Returns zero on success or an appropriate error code on failure. 1812 */ 1813 int 1814 tmpfs_reg_resize(struct vnode *vp, off_t newsize, boolean_t ignerr) 1815 { 1816 struct tmpfs_node *node; 1817 vm_object_t uobj; 1818 vm_pindex_t idx, newpages, oldpages; 1819 off_t oldsize; 1820 int base, error; 1821 1822 MPASS(vp->v_type == VREG); 1823 MPASS(newsize >= 0); 1824 1825 node = VP_TO_TMPFS_NODE(vp); 1826 uobj = node->tn_reg.tn_aobj; 1827 1828 /* 1829 * Convert the old and new sizes to the number of pages needed to 1830 * store them. It may happen that we do not need to do anything 1831 * because the last allocated page can accommodate the change on 1832 * its own. 1833 */ 1834 oldsize = node->tn_size; 1835 oldpages = OFF_TO_IDX(oldsize + PAGE_MASK); 1836 MPASS(oldpages == uobj->size); 1837 newpages = OFF_TO_IDX(newsize + PAGE_MASK); 1838 1839 if (__predict_true(newpages == oldpages && newsize >= oldsize)) { 1840 node->tn_size = newsize; 1841 return (0); 1842 } 1843 1844 VM_OBJECT_WLOCK(uobj); 1845 if (newsize < oldsize) { 1846 /* 1847 * Zero the truncated part of the last page. 1848 */ 1849 base = newsize & PAGE_MASK; 1850 if (base != 0) { 1851 idx = OFF_TO_IDX(newsize); 1852 error = tmpfs_partial_page_invalidate(uobj, idx, base, 1853 PAGE_SIZE, ignerr); 1854 if (error != 0) { 1855 VM_OBJECT_WUNLOCK(uobj); 1856 return (error); 1857 } 1858 } 1859 1860 /* 1861 * Release any swap space and free any whole pages. 1862 */ 1863 if (newpages < oldpages) 1864 vm_object_page_remove(uobj, newpages, 0, 0); 1865 } 1866 uobj->size = newpages; 1867 VM_OBJECT_WUNLOCK(uobj); 1868 1869 node->tn_size = newsize; 1870 return (0); 1871 } 1872 1873 /* 1874 * Punch hole in the aobj associated with the regular file pointed to by 'vp'. 1875 * Requests completely beyond the end-of-file are converted to no-op. 1876 * 1877 * Returns 0 on success or error code from tmpfs_partial_page_invalidate() on 1878 * failure. 1879 */ 1880 int 1881 tmpfs_reg_punch_hole(struct vnode *vp, off_t *offset, off_t *length) 1882 { 1883 struct tmpfs_node *node; 1884 vm_object_t object; 1885 vm_pindex_t pistart, pi, piend; 1886 int startofs, endofs, end; 1887 off_t off, len; 1888 int error; 1889 1890 KASSERT(*length <= OFF_MAX - *offset, ("%s: offset + length overflows", 1891 __func__)); 1892 node = VP_TO_TMPFS_NODE(vp); 1893 KASSERT(node->tn_type == VREG, ("%s: node is not regular file", 1894 __func__)); 1895 object = node->tn_reg.tn_aobj; 1896 off = *offset; 1897 len = omin(node->tn_size - off, *length); 1898 startofs = off & PAGE_MASK; 1899 endofs = (off + len) & PAGE_MASK; 1900 pistart = OFF_TO_IDX(off); 1901 piend = OFF_TO_IDX(off + len); 1902 pi = OFF_TO_IDX((vm_ooffset_t)off + PAGE_MASK); 1903 error = 0; 1904 1905 /* Handle the case when offset is on or beyond file size. */ 1906 if (len <= 0) { 1907 *length = 0; 1908 return (0); 1909 } 1910 1911 VM_OBJECT_WLOCK(object); 1912 1913 /* 1914 * If there is a partial page at the beginning of the hole-punching 1915 * request, fill the partial page with zeroes. 1916 */ 1917 if (startofs != 0) { 1918 end = pistart != piend ? PAGE_SIZE : endofs; 1919 error = tmpfs_partial_page_invalidate(object, pistart, startofs, 1920 end, FALSE); 1921 if (error != 0) 1922 goto out; 1923 off += end - startofs; 1924 len -= end - startofs; 1925 } 1926 1927 /* 1928 * Toss away the full pages in the affected area. 1929 */ 1930 if (pi < piend) { 1931 vm_object_page_remove(object, pi, piend, 0); 1932 off += IDX_TO_OFF(piend - pi); 1933 len -= IDX_TO_OFF(piend - pi); 1934 } 1935 1936 /* 1937 * If there is a partial page at the end of the hole-punching request, 1938 * fill the partial page with zeroes. 1939 */ 1940 if (endofs != 0 && pistart != piend) { 1941 error = tmpfs_partial_page_invalidate(object, piend, 0, endofs, 1942 FALSE); 1943 if (error != 0) 1944 goto out; 1945 off += endofs; 1946 len -= endofs; 1947 } 1948 1949 out: 1950 VM_OBJECT_WUNLOCK(object); 1951 *offset = off; 1952 *length = len; 1953 return (error); 1954 } 1955 1956 void 1957 tmpfs_check_mtime(struct vnode *vp) 1958 { 1959 struct tmpfs_node *node; 1960 struct vm_object *obj; 1961 1962 ASSERT_VOP_ELOCKED(vp, "check_mtime"); 1963 if (vp->v_type != VREG) 1964 return; 1965 obj = vp->v_object; 1966 KASSERT(obj->type == tmpfs_pager_type && 1967 (obj->flags & (OBJ_SWAP | OBJ_TMPFS)) == 1968 (OBJ_SWAP | OBJ_TMPFS), ("non-tmpfs obj")); 1969 /* unlocked read */ 1970 if (obj->generation != obj->cleangeneration) { 1971 VM_OBJECT_WLOCK(obj); 1972 if (obj->generation != obj->cleangeneration) { 1973 obj->cleangeneration = obj->generation; 1974 node = VP_TO_TMPFS_NODE(vp); 1975 node->tn_status |= TMPFS_NODE_MODIFIED | 1976 TMPFS_NODE_CHANGED; 1977 } 1978 VM_OBJECT_WUNLOCK(obj); 1979 } 1980 } 1981 1982 /* 1983 * Change flags of the given vnode. 1984 * Caller should execute tmpfs_update on vp after a successful execution. 1985 * The vnode must be locked on entry and remain locked on exit. 1986 */ 1987 int 1988 tmpfs_chflags(struct vnode *vp, u_long flags, struct ucred *cred, 1989 struct thread *td) 1990 { 1991 int error; 1992 struct tmpfs_node *node; 1993 1994 ASSERT_VOP_ELOCKED(vp, "chflags"); 1995 1996 node = VP_TO_TMPFS_NODE(vp); 1997 1998 if ((flags & ~(SF_APPEND | SF_ARCHIVED | SF_IMMUTABLE | SF_NOUNLINK | 1999 UF_APPEND | UF_ARCHIVE | UF_HIDDEN | UF_IMMUTABLE | UF_NODUMP | 2000 UF_NOUNLINK | UF_OFFLINE | UF_OPAQUE | UF_READONLY | UF_REPARSE | 2001 UF_SPARSE | UF_SYSTEM)) != 0) 2002 return (EOPNOTSUPP); 2003 2004 /* Disallow this operation if the file system is mounted read-only. */ 2005 if (vp->v_mount->mnt_flag & MNT_RDONLY) 2006 return (EROFS); 2007 2008 /* 2009 * Callers may only modify the file flags on objects they 2010 * have VADMIN rights for. 2011 */ 2012 if ((error = VOP_ACCESS(vp, VADMIN, cred, td))) 2013 return (error); 2014 /* 2015 * Unprivileged processes are not permitted to unset system 2016 * flags, or modify flags if any system flags are set. 2017 */ 2018 if (!priv_check_cred(cred, PRIV_VFS_SYSFLAGS)) { 2019 if (node->tn_flags & 2020 (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND)) { 2021 error = securelevel_gt(cred, 0); 2022 if (error) 2023 return (error); 2024 } 2025 } else { 2026 if (node->tn_flags & 2027 (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND) || 2028 ((flags ^ node->tn_flags) & SF_SETTABLE)) 2029 return (EPERM); 2030 } 2031 node->tn_flags = flags; 2032 node->tn_status |= TMPFS_NODE_CHANGED; 2033 2034 ASSERT_VOP_ELOCKED(vp, "chflags2"); 2035 2036 return (0); 2037 } 2038 2039 /* 2040 * Change access mode on the given vnode. 2041 * Caller should execute tmpfs_update on vp after a successful execution. 2042 * The vnode must be locked on entry and remain locked on exit. 2043 */ 2044 int 2045 tmpfs_chmod(struct vnode *vp, mode_t mode, struct ucred *cred, 2046 struct thread *td) 2047 { 2048 int error; 2049 struct tmpfs_node *node; 2050 mode_t newmode; 2051 2052 ASSERT_VOP_ELOCKED(vp, "chmod"); 2053 ASSERT_VOP_IN_SEQC(vp); 2054 2055 node = VP_TO_TMPFS_NODE(vp); 2056 2057 /* Disallow this operation if the file system is mounted read-only. */ 2058 if (vp->v_mount->mnt_flag & MNT_RDONLY) 2059 return (EROFS); 2060 2061 /* Immutable or append-only files cannot be modified, either. */ 2062 if (node->tn_flags & (IMMUTABLE | APPEND)) 2063 return (EPERM); 2064 2065 /* 2066 * To modify the permissions on a file, must possess VADMIN 2067 * for that file. 2068 */ 2069 if ((error = VOP_ACCESS(vp, VADMIN, cred, td))) 2070 return (error); 2071 2072 /* 2073 * Privileged processes may set the sticky bit on non-directories, 2074 * as well as set the setgid bit on a file with a group that the 2075 * process is not a member of. 2076 */ 2077 if (vp->v_type != VDIR && (mode & S_ISTXT)) { 2078 if (priv_check_cred(cred, PRIV_VFS_STICKYFILE)) 2079 return (EFTYPE); 2080 } 2081 if (!groupmember(node->tn_gid, cred) && (mode & S_ISGID)) { 2082 error = priv_check_cred(cred, PRIV_VFS_SETGID); 2083 if (error) 2084 return (error); 2085 } 2086 2087 newmode = node->tn_mode & ~ALLPERMS; 2088 newmode |= mode & ALLPERMS; 2089 atomic_store_short(&node->tn_mode, newmode); 2090 2091 node->tn_status |= TMPFS_NODE_CHANGED; 2092 2093 ASSERT_VOP_ELOCKED(vp, "chmod2"); 2094 2095 return (0); 2096 } 2097 2098 /* 2099 * Change ownership of the given vnode. At least one of uid or gid must 2100 * be different than VNOVAL. If one is set to that value, the attribute 2101 * is unchanged. 2102 * Caller should execute tmpfs_update on vp after a successful execution. 2103 * The vnode must be locked on entry and remain locked on exit. 2104 */ 2105 int 2106 tmpfs_chown(struct vnode *vp, uid_t uid, gid_t gid, struct ucred *cred, 2107 struct thread *td) 2108 { 2109 int error; 2110 struct tmpfs_node *node; 2111 uid_t ouid; 2112 gid_t ogid; 2113 mode_t newmode; 2114 2115 ASSERT_VOP_ELOCKED(vp, "chown"); 2116 ASSERT_VOP_IN_SEQC(vp); 2117 2118 node = VP_TO_TMPFS_NODE(vp); 2119 2120 /* Assign default values if they are unknown. */ 2121 MPASS(uid != VNOVAL || gid != VNOVAL); 2122 if (uid == VNOVAL) 2123 uid = node->tn_uid; 2124 if (gid == VNOVAL) 2125 gid = node->tn_gid; 2126 MPASS(uid != VNOVAL && gid != VNOVAL); 2127 2128 /* Disallow this operation if the file system is mounted read-only. */ 2129 if (vp->v_mount->mnt_flag & MNT_RDONLY) 2130 return (EROFS); 2131 2132 /* Immutable or append-only files cannot be modified, either. */ 2133 if (node->tn_flags & (IMMUTABLE | APPEND)) 2134 return (EPERM); 2135 2136 /* 2137 * To modify the ownership of a file, must possess VADMIN for that 2138 * file. 2139 */ 2140 if ((error = VOP_ACCESS(vp, VADMIN, cred, td))) 2141 return (error); 2142 2143 /* 2144 * To change the owner of a file, or change the group of a file to a 2145 * group of which we are not a member, the caller must have 2146 * privilege. 2147 */ 2148 if ((uid != node->tn_uid || 2149 (gid != node->tn_gid && !groupmember(gid, cred))) && 2150 (error = priv_check_cred(cred, PRIV_VFS_CHOWN))) 2151 return (error); 2152 2153 ogid = node->tn_gid; 2154 ouid = node->tn_uid; 2155 2156 node->tn_uid = uid; 2157 node->tn_gid = gid; 2158 2159 node->tn_status |= TMPFS_NODE_CHANGED; 2160 2161 if ((node->tn_mode & (S_ISUID | S_ISGID)) != 0 && 2162 (ouid != uid || ogid != gid)) { 2163 if (priv_check_cred(cred, PRIV_VFS_RETAINSUGID)) { 2164 newmode = node->tn_mode & ~(S_ISUID | S_ISGID); 2165 atomic_store_short(&node->tn_mode, newmode); 2166 } 2167 } 2168 2169 ASSERT_VOP_ELOCKED(vp, "chown2"); 2170 2171 return (0); 2172 } 2173 2174 /* 2175 * Change size of the given vnode. 2176 * Caller should execute tmpfs_update on vp after a successful execution. 2177 * The vnode must be locked on entry and remain locked on exit. 2178 */ 2179 int 2180 tmpfs_chsize(struct vnode *vp, u_quad_t size, struct ucred *cred, 2181 struct thread *td) 2182 { 2183 int error; 2184 struct tmpfs_node *node; 2185 2186 ASSERT_VOP_ELOCKED(vp, "chsize"); 2187 2188 node = VP_TO_TMPFS_NODE(vp); 2189 2190 /* Decide whether this is a valid operation based on the file type. */ 2191 error = 0; 2192 switch (vp->v_type) { 2193 case VDIR: 2194 return (EISDIR); 2195 2196 case VREG: 2197 if (vp->v_mount->mnt_flag & MNT_RDONLY) 2198 return (EROFS); 2199 break; 2200 2201 case VBLK: 2202 /* FALLTHROUGH */ 2203 case VCHR: 2204 /* FALLTHROUGH */ 2205 case VFIFO: 2206 /* 2207 * Allow modifications of special files even if in the file 2208 * system is mounted read-only (we are not modifying the 2209 * files themselves, but the objects they represent). 2210 */ 2211 return (0); 2212 2213 default: 2214 /* Anything else is unsupported. */ 2215 return (EOPNOTSUPP); 2216 } 2217 2218 /* Immutable or append-only files cannot be modified, either. */ 2219 if (node->tn_flags & (IMMUTABLE | APPEND)) 2220 return (EPERM); 2221 2222 error = vn_rlimit_trunc(size, td); 2223 if (error != 0) 2224 return (error); 2225 2226 error = tmpfs_truncate(vp, size); 2227 /* 2228 * tmpfs_truncate will raise the NOTE_EXTEND and NOTE_ATTRIB kevents 2229 * for us, as will update tn_status; no need to do that here. 2230 */ 2231 2232 ASSERT_VOP_ELOCKED(vp, "chsize2"); 2233 2234 return (error); 2235 } 2236 2237 /* 2238 * Change access and modification times of the given vnode. 2239 * Caller should execute tmpfs_update on vp after a successful execution. 2240 * The vnode must be locked on entry and remain locked on exit. 2241 */ 2242 int 2243 tmpfs_chtimes(struct vnode *vp, struct vattr *vap, 2244 struct ucred *cred, struct thread *td) 2245 { 2246 int error; 2247 struct tmpfs_node *node; 2248 2249 ASSERT_VOP_ELOCKED(vp, "chtimes"); 2250 2251 node = VP_TO_TMPFS_NODE(vp); 2252 2253 /* Disallow this operation if the file system is mounted read-only. */ 2254 if (vp->v_mount->mnt_flag & MNT_RDONLY) 2255 return (EROFS); 2256 2257 /* Immutable or append-only files cannot be modified, either. */ 2258 if (node->tn_flags & (IMMUTABLE | APPEND)) 2259 return (EPERM); 2260 2261 error = vn_utimes_perm(vp, vap, cred, td); 2262 if (error != 0) 2263 return (error); 2264 2265 if (vap->va_atime.tv_sec != VNOVAL) 2266 node->tn_accessed = true; 2267 if (vap->va_mtime.tv_sec != VNOVAL) 2268 node->tn_status |= TMPFS_NODE_MODIFIED; 2269 if (vap->va_birthtime.tv_sec != VNOVAL) 2270 node->tn_status |= TMPFS_NODE_MODIFIED; 2271 tmpfs_itimes(vp, &vap->va_atime, &vap->va_mtime); 2272 if (vap->va_birthtime.tv_sec != VNOVAL) 2273 node->tn_birthtime = vap->va_birthtime; 2274 ASSERT_VOP_ELOCKED(vp, "chtimes2"); 2275 2276 return (0); 2277 } 2278 2279 void 2280 tmpfs_set_status(struct tmpfs_mount *tm, struct tmpfs_node *node, int status) 2281 { 2282 2283 if ((node->tn_status & status) == status || tm->tm_ronly) 2284 return; 2285 TMPFS_NODE_LOCK(node); 2286 node->tn_status |= status; 2287 TMPFS_NODE_UNLOCK(node); 2288 } 2289 2290 void 2291 tmpfs_set_accessed(struct tmpfs_mount *tm, struct tmpfs_node *node) 2292 { 2293 if (node->tn_accessed || tm->tm_ronly) 2294 return; 2295 atomic_store_8(&node->tn_accessed, true); 2296 } 2297 2298 /* Sync timestamps */ 2299 void 2300 tmpfs_itimes(struct vnode *vp, const struct timespec *acc, 2301 const struct timespec *mod) 2302 { 2303 struct tmpfs_node *node; 2304 struct timespec now; 2305 2306 ASSERT_VOP_LOCKED(vp, "tmpfs_itimes"); 2307 node = VP_TO_TMPFS_NODE(vp); 2308 2309 if (!node->tn_accessed && 2310 (node->tn_status & (TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED)) == 0) 2311 return; 2312 2313 vfs_timestamp(&now); 2314 TMPFS_NODE_LOCK(node); 2315 if (node->tn_accessed) { 2316 if (acc == NULL) 2317 acc = &now; 2318 node->tn_atime = *acc; 2319 } 2320 if (node->tn_status & TMPFS_NODE_MODIFIED) { 2321 if (mod == NULL) 2322 mod = &now; 2323 node->tn_mtime = *mod; 2324 } 2325 if (node->tn_status & TMPFS_NODE_CHANGED) 2326 node->tn_ctime = now; 2327 node->tn_status &= ~(TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED); 2328 node->tn_accessed = false; 2329 TMPFS_NODE_UNLOCK(node); 2330 2331 /* XXX: FIX? The entropy here is desirable, but the harvesting may be expensive */ 2332 random_harvest_queue(node, sizeof(*node), RANDOM_FS_ATIME); 2333 } 2334 2335 int 2336 tmpfs_truncate(struct vnode *vp, off_t length) 2337 { 2338 struct tmpfs_node *node; 2339 int error; 2340 2341 if (length < 0) 2342 return (EINVAL); 2343 if (length > VFS_TO_TMPFS(vp->v_mount)->tm_maxfilesize) 2344 return (EFBIG); 2345 2346 node = VP_TO_TMPFS_NODE(vp); 2347 error = node->tn_size == length ? 0 : tmpfs_reg_resize(vp, length, 2348 FALSE); 2349 if (error == 0) 2350 node->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED; 2351 tmpfs_update(vp); 2352 2353 return (error); 2354 } 2355 2356 static __inline int 2357 tmpfs_dirtree_cmp(struct tmpfs_dirent *a, struct tmpfs_dirent *b) 2358 { 2359 if (a->td_hash > b->td_hash) 2360 return (1); 2361 else if (a->td_hash < b->td_hash) 2362 return (-1); 2363 return (0); 2364 } 2365 2366 RB_GENERATE_STATIC(tmpfs_dir, tmpfs_dirent, uh.td_entries, tmpfs_dirtree_cmp); 2367