xref: /freebsd/sys/fs/tmpfs/tmpfs_subr.c (revision c0a4a7bb942fd3302f0093e4353820916d3661d1)
1 /*	$NetBSD: tmpfs_subr.c,v 1.35 2007/07/09 21:10:50 ad Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-2-Clause-NetBSD
5  *
6  * Copyright (c) 2005 The NetBSD Foundation, Inc.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by Julio M. Merino Vidal, developed as part of Google's Summer of Code
11  * 2005 program.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Efficient memory file system supporting functions.
37  */
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/dirent.h>
44 #include <sys/fnv_hash.h>
45 #include <sys/lock.h>
46 #include <sys/limits.h>
47 #include <sys/mount.h>
48 #include <sys/namei.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/random.h>
52 #include <sys/refcount.h>
53 #include <sys/rwlock.h>
54 #include <sys/smr.h>
55 #include <sys/stat.h>
56 #include <sys/sysctl.h>
57 #include <sys/user.h>
58 #include <sys/vnode.h>
59 #include <sys/vmmeter.h>
60 
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_object.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_pageout.h>
66 #include <vm/vm_pager.h>
67 #include <vm/vm_extern.h>
68 #include <vm/swap_pager.h>
69 
70 #include <fs/tmpfs/tmpfs.h>
71 #include <fs/tmpfs/tmpfs_fifoops.h>
72 #include <fs/tmpfs/tmpfs_vnops.h>
73 
74 SYSCTL_NODE(_vfs, OID_AUTO, tmpfs, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
75     "tmpfs file system");
76 
77 static long tmpfs_pages_reserved = TMPFS_PAGES_MINRESERVED;
78 
79 MALLOC_DEFINE(M_TMPFSDIR, "tmpfs dir", "tmpfs dirent structure");
80 static uma_zone_t tmpfs_node_pool;
81 VFS_SMR_DECLARE;
82 
83 int tmpfs_pager_type = -1;
84 
85 static vm_object_t
86 tmpfs_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
87     vm_ooffset_t offset, struct ucred *cred)
88 {
89 	vm_object_t object;
90 
91 	MPASS(handle == NULL);
92 	MPASS(offset == 0);
93 	object = vm_object_allocate_dyn(tmpfs_pager_type, size,
94 	    OBJ_COLORED | OBJ_SWAP);
95 	if (!swap_pager_init_object(object, NULL, NULL, size, 0)) {
96 		vm_object_deallocate(object);
97 		object = NULL;
98 	}
99 	return (object);
100 }
101 
102 /*
103  * Make sure tmpfs vnodes with writable mappings can be found on the lazy list.
104  *
105  * This allows for periodic mtime updates while only scanning vnodes which are
106  * plausibly dirty, see tmpfs_update_mtime_lazy.
107  */
108 static void
109 tmpfs_pager_writecount_recalc(vm_object_t object, vm_offset_t old,
110     vm_offset_t new)
111 {
112 	struct vnode *vp;
113 
114 	VM_OBJECT_ASSERT_WLOCKED(object);
115 
116 	vp = VM_TO_TMPFS_VP(object);
117 
118 	/*
119 	 * Forced unmount?
120 	 */
121 	if (vp == NULL) {
122 		KASSERT((object->flags & OBJ_TMPFS_VREF) == 0,
123 		    ("object %p with OBJ_TMPFS_VREF but without vnode",
124 		    object));
125 		VM_OBJECT_WUNLOCK(object);
126 		return;
127 	}
128 
129 	if (old == 0) {
130 		VNASSERT((object->flags & OBJ_TMPFS_VREF) == 0, vp,
131 		    ("object without writable mappings has a reference"));
132 		VNPASS(vp->v_usecount > 0, vp);
133 	} else {
134 		VNASSERT((object->flags & OBJ_TMPFS_VREF) != 0, vp,
135 		    ("object with writable mappings does not "
136 		    "have a reference"));
137 	}
138 
139 	if (old == new) {
140 		VM_OBJECT_WUNLOCK(object);
141 		return;
142 	}
143 
144 	if (new == 0) {
145 		vm_object_clear_flag(object, OBJ_TMPFS_VREF);
146 		VM_OBJECT_WUNLOCK(object);
147 		vrele(vp);
148 	} else {
149 		if ((object->flags & OBJ_TMPFS_VREF) == 0) {
150 			vref(vp);
151 			vlazy(vp);
152 			vm_object_set_flag(object, OBJ_TMPFS_VREF);
153 		}
154 		VM_OBJECT_WUNLOCK(object);
155 	}
156 }
157 
158 static void
159 tmpfs_pager_update_writecount(vm_object_t object, vm_offset_t start,
160     vm_offset_t end)
161 {
162 	vm_offset_t new, old;
163 
164 	VM_OBJECT_WLOCK(object);
165 	KASSERT((object->flags & OBJ_ANON) == 0,
166 	    ("%s: object %p with OBJ_ANON", __func__, object));
167 	old = object->un_pager.swp.writemappings;
168 	object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
169 	new = object->un_pager.swp.writemappings;
170 	tmpfs_pager_writecount_recalc(object, old, new);
171 	VM_OBJECT_ASSERT_UNLOCKED(object);
172 }
173 
174 static void
175 tmpfs_pager_release_writecount(vm_object_t object, vm_offset_t start,
176     vm_offset_t end)
177 {
178 	vm_offset_t new, old;
179 
180 	VM_OBJECT_WLOCK(object);
181 	KASSERT((object->flags & OBJ_ANON) == 0,
182 	    ("%s: object %p with OBJ_ANON", __func__, object));
183 	old = object->un_pager.swp.writemappings;
184 	object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
185 	new = object->un_pager.swp.writemappings;
186 	tmpfs_pager_writecount_recalc(object, old, new);
187 	VM_OBJECT_ASSERT_UNLOCKED(object);
188 }
189 
190 static void
191 tmpfs_pager_getvp(vm_object_t object, struct vnode **vpp, bool *vp_heldp)
192 {
193 	struct vnode *vp;
194 
195 	/*
196 	 * Tmpfs VREG node, which was reclaimed, has tmpfs_pager_type
197 	 * type.  In this case there is no v_writecount to adjust.
198 	 */
199 	if (vp_heldp != NULL)
200 		VM_OBJECT_RLOCK(object);
201 	else
202 		VM_OBJECT_ASSERT_LOCKED(object);
203 	if ((object->flags & OBJ_TMPFS) != 0) {
204 		vp = VM_TO_TMPFS_VP(object);
205 		if (vp != NULL) {
206 			*vpp = vp;
207 			if (vp_heldp != NULL) {
208 				vhold(vp);
209 				*vp_heldp = true;
210 			}
211 		}
212 	}
213 	if (vp_heldp != NULL)
214 		VM_OBJECT_RUNLOCK(object);
215 }
216 
217 static void
218 tmpfs_pager_freespace(vm_object_t obj, vm_pindex_t start, vm_size_t size)
219 {
220 	struct tmpfs_node *node;
221 	struct tmpfs_mount *tm;
222 	vm_size_t c;
223 
224 	swap_pager_freespace(obj, start, size, &c);
225 	if ((obj->flags & OBJ_TMPFS) == 0 || c == 0)
226 		return;
227 
228 	node = obj->un_pager.swp.swp_priv;
229 	MPASS(node->tn_type == VREG);
230 	tm = node->tn_reg.tn_tmp;
231 
232 	KASSERT(tm->tm_pages_used >= c,
233 	    ("tmpfs tm %p pages %jd free %jd", tm,
234 	    (uintmax_t)tm->tm_pages_used, (uintmax_t)c));
235 	atomic_add_long(&tm->tm_pages_used, -c);
236 	KASSERT(node->tn_reg.tn_pages >= c,
237 	    ("tmpfs node %p pages %jd free %jd", node,
238 	    (uintmax_t)node->tn_reg.tn_pages, (uintmax_t)c));
239 	node->tn_reg.tn_pages -= c;
240 }
241 
242 static void
243 tmpfs_page_inserted(vm_object_t obj, vm_page_t m)
244 {
245 	struct tmpfs_node *node;
246 	struct tmpfs_mount *tm;
247 
248 	if ((obj->flags & OBJ_TMPFS) == 0)
249 		return;
250 
251 	node = obj->un_pager.swp.swp_priv;
252 	MPASS(node->tn_type == VREG);
253 	tm = node->tn_reg.tn_tmp;
254 
255 	if (!vm_pager_has_page(obj, m->pindex, NULL, NULL)) {
256 		atomic_add_long(&tm->tm_pages_used, 1);
257 		node->tn_reg.tn_pages += 1;
258 	}
259 }
260 
261 static void
262 tmpfs_page_removed(vm_object_t obj, vm_page_t m)
263 {
264 	struct tmpfs_node *node;
265 	struct tmpfs_mount *tm;
266 
267 	if ((obj->flags & OBJ_TMPFS) == 0)
268 		return;
269 
270 	node = obj->un_pager.swp.swp_priv;
271 	MPASS(node->tn_type == VREG);
272 	tm = node->tn_reg.tn_tmp;
273 
274 	if (!vm_pager_has_page(obj, m->pindex, NULL, NULL)) {
275 		KASSERT(tm->tm_pages_used >= 1,
276 		    ("tmpfs tm %p pages %jd free 1", tm,
277 		    (uintmax_t)tm->tm_pages_used));
278 		atomic_add_long(&tm->tm_pages_used, -1);
279 		KASSERT(node->tn_reg.tn_pages >= 1,
280 		    ("tmpfs node %p pages %jd free 1", node,
281 		    (uintmax_t)node->tn_reg.tn_pages));
282 		node->tn_reg.tn_pages -= 1;
283 	}
284 }
285 
286 static boolean_t
287 tmpfs_can_alloc_page(vm_object_t obj, vm_pindex_t pindex)
288 {
289 	struct tmpfs_mount *tm;
290 
291 	tm = VM_TO_TMPFS_MP(obj);
292 	if (tm == NULL || vm_pager_has_page(obj, pindex, NULL, NULL) ||
293 	    tm->tm_pages_max == 0)
294 		return (true);
295 	return (tm->tm_pages_max > atomic_load_long(&tm->tm_pages_used));
296 }
297 
298 struct pagerops tmpfs_pager_ops = {
299 	.pgo_kvme_type = KVME_TYPE_VNODE,
300 	.pgo_alloc = tmpfs_pager_alloc,
301 	.pgo_set_writeable_dirty = vm_object_set_writeable_dirty_,
302 	.pgo_update_writecount = tmpfs_pager_update_writecount,
303 	.pgo_release_writecount = tmpfs_pager_release_writecount,
304 	.pgo_mightbedirty = vm_object_mightbedirty_,
305 	.pgo_getvp = tmpfs_pager_getvp,
306 	.pgo_freespace = tmpfs_pager_freespace,
307 	.pgo_page_inserted = tmpfs_page_inserted,
308 	.pgo_page_removed = tmpfs_page_removed,
309 	.pgo_can_alloc_page = tmpfs_can_alloc_page,
310 };
311 
312 static int
313 tmpfs_node_ctor(void *mem, int size, void *arg, int flags)
314 {
315 	struct tmpfs_node *node;
316 
317 	node = mem;
318 	node->tn_gen++;
319 	node->tn_size = 0;
320 	node->tn_status = 0;
321 	node->tn_accessed = false;
322 	node->tn_flags = 0;
323 	node->tn_links = 0;
324 	node->tn_vnode = NULL;
325 	node->tn_vpstate = 0;
326 	return (0);
327 }
328 
329 static void
330 tmpfs_node_dtor(void *mem, int size, void *arg)
331 {
332 	struct tmpfs_node *node;
333 
334 	node = mem;
335 	node->tn_type = VNON;
336 }
337 
338 static int
339 tmpfs_node_init(void *mem, int size, int flags)
340 {
341 	struct tmpfs_node *node;
342 
343 	node = mem;
344 	node->tn_id = 0;
345 	mtx_init(&node->tn_interlock, "tmpfsni", NULL, MTX_DEF);
346 	node->tn_gen = arc4random();
347 	return (0);
348 }
349 
350 static void
351 tmpfs_node_fini(void *mem, int size)
352 {
353 	struct tmpfs_node *node;
354 
355 	node = mem;
356 	mtx_destroy(&node->tn_interlock);
357 }
358 
359 int
360 tmpfs_subr_init(void)
361 {
362 	tmpfs_pager_type = vm_pager_alloc_dyn_type(&tmpfs_pager_ops,
363 	    OBJT_SWAP);
364 	if (tmpfs_pager_type == -1)
365 		return (EINVAL);
366 	tmpfs_node_pool = uma_zcreate("TMPFS node",
367 	    sizeof(struct tmpfs_node), tmpfs_node_ctor, tmpfs_node_dtor,
368 	    tmpfs_node_init, tmpfs_node_fini, UMA_ALIGN_PTR, 0);
369 	VFS_SMR_ZONE_SET(tmpfs_node_pool);
370 	return (0);
371 }
372 
373 void
374 tmpfs_subr_uninit(void)
375 {
376 	if (tmpfs_pager_type != -1)
377 		vm_pager_free_dyn_type(tmpfs_pager_type);
378 	tmpfs_pager_type = -1;
379 	uma_zdestroy(tmpfs_node_pool);
380 }
381 
382 static int
383 sysctl_mem_reserved(SYSCTL_HANDLER_ARGS)
384 {
385 	int error;
386 	long pages, bytes;
387 
388 	pages = *(long *)arg1;
389 	bytes = pages * PAGE_SIZE;
390 
391 	error = sysctl_handle_long(oidp, &bytes, 0, req);
392 	if (error || !req->newptr)
393 		return (error);
394 
395 	pages = bytes / PAGE_SIZE;
396 	if (pages < TMPFS_PAGES_MINRESERVED)
397 		return (EINVAL);
398 
399 	*(long *)arg1 = pages;
400 	return (0);
401 }
402 
403 SYSCTL_PROC(_vfs_tmpfs, OID_AUTO, memory_reserved,
404     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &tmpfs_pages_reserved, 0,
405     sysctl_mem_reserved, "L",
406     "Amount of available memory and swap below which tmpfs growth stops");
407 
408 static __inline int tmpfs_dirtree_cmp(struct tmpfs_dirent *a,
409     struct tmpfs_dirent *b);
410 RB_PROTOTYPE_STATIC(tmpfs_dir, tmpfs_dirent, uh.td_entries, tmpfs_dirtree_cmp);
411 
412 size_t
413 tmpfs_mem_avail(void)
414 {
415 	size_t avail;
416 	long reserved;
417 
418 	avail = swap_pager_avail + vm_free_count();
419 	reserved = atomic_load_long(&tmpfs_pages_reserved);
420 	if (__predict_false(avail < reserved))
421 		return (0);
422 	return (avail - reserved);
423 }
424 
425 size_t
426 tmpfs_pages_used(struct tmpfs_mount *tmp)
427 {
428 	const size_t node_size = sizeof(struct tmpfs_node) +
429 	    sizeof(struct tmpfs_dirent);
430 	size_t meta_pages;
431 
432 	meta_pages = howmany((uintmax_t)tmp->tm_nodes_inuse * node_size,
433 	    PAGE_SIZE);
434 	return (meta_pages + tmp->tm_pages_used);
435 }
436 
437 bool
438 tmpfs_pages_check_avail(struct tmpfs_mount *tmp, size_t req_pages)
439 {
440 	if (tmpfs_mem_avail() < req_pages)
441 		return (false);
442 
443 	if (tmp->tm_pages_max != ULONG_MAX &&
444 	    tmp->tm_pages_max < req_pages + tmpfs_pages_used(tmp))
445 		return (false);
446 
447 	return (true);
448 }
449 
450 static int
451 tmpfs_partial_page_invalidate(vm_object_t object, vm_pindex_t idx, int base,
452     int end, boolean_t ignerr)
453 {
454 	vm_page_t m;
455 	int rv, error;
456 
457 	VM_OBJECT_ASSERT_WLOCKED(object);
458 	KASSERT(base >= 0, ("%s: base %d", __func__, base));
459 	KASSERT(end - base <= PAGE_SIZE, ("%s: base %d end %d", __func__, base,
460 	    end));
461 	error = 0;
462 
463 retry:
464 	m = vm_page_grab(object, idx, VM_ALLOC_NOCREAT);
465 	if (m != NULL) {
466 		MPASS(vm_page_all_valid(m));
467 	} else if (vm_pager_has_page(object, idx, NULL, NULL)) {
468 		m = vm_page_alloc(object, idx, VM_ALLOC_NORMAL |
469 		    VM_ALLOC_WAITFAIL);
470 		if (m == NULL)
471 			goto retry;
472 		vm_object_pip_add(object, 1);
473 		VM_OBJECT_WUNLOCK(object);
474 		rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
475 		VM_OBJECT_WLOCK(object);
476 		vm_object_pip_wakeup(object);
477 		if (rv == VM_PAGER_OK) {
478 			/*
479 			 * Since the page was not resident, and therefore not
480 			 * recently accessed, immediately enqueue it for
481 			 * asynchronous laundering.  The current operation is
482 			 * not regarded as an access.
483 			 */
484 			vm_page_launder(m);
485 		} else {
486 			vm_page_free(m);
487 			m = NULL;
488 			if (!ignerr)
489 				error = EIO;
490 		}
491 	}
492 	if (m != NULL) {
493 		pmap_zero_page_area(m, base, end - base);
494 		vm_page_set_dirty(m);
495 		vm_page_xunbusy(m);
496 	}
497 
498 	return (error);
499 }
500 
501 void
502 tmpfs_ref_node(struct tmpfs_node *node)
503 {
504 #ifdef INVARIANTS
505 	u_int old;
506 
507 	old =
508 #endif
509 	refcount_acquire(&node->tn_refcount);
510 #ifdef INVARIANTS
511 	KASSERT(old > 0, ("node %p zero refcount", node));
512 #endif
513 }
514 
515 /*
516  * Allocates a new node of type 'type' inside the 'tmp' mount point, with
517  * its owner set to 'uid', its group to 'gid' and its mode set to 'mode',
518  * using the credentials of the process 'p'.
519  *
520  * If the node type is set to 'VDIR', then the parent parameter must point
521  * to the parent directory of the node being created.  It may only be NULL
522  * while allocating the root node.
523  *
524  * If the node type is set to 'VBLK' or 'VCHR', then the rdev parameter
525  * specifies the device the node represents.
526  *
527  * If the node type is set to 'VLNK', then the parameter target specifies
528  * the file name of the target file for the symbolic link that is being
529  * created.
530  *
531  * Note that new nodes are retrieved from the available list if it has
532  * items or, if it is empty, from the node pool as long as there is enough
533  * space to create them.
534  *
535  * Returns zero on success or an appropriate error code on failure.
536  */
537 int
538 tmpfs_alloc_node(struct mount *mp, struct tmpfs_mount *tmp, enum vtype type,
539     uid_t uid, gid_t gid, mode_t mode, struct tmpfs_node *parent,
540     const char *target, dev_t rdev, struct tmpfs_node **node)
541 {
542 	struct tmpfs_node *nnode;
543 	char *symlink;
544 	char symlink_smr;
545 
546 	/* If the root directory of the 'tmp' file system is not yet
547 	 * allocated, this must be the request to do it. */
548 	MPASS(IMPLIES(tmp->tm_root == NULL, parent == NULL && type == VDIR));
549 
550 	MPASS(IFF(type == VLNK, target != NULL));
551 	MPASS(IFF(type == VBLK || type == VCHR, rdev != VNOVAL));
552 
553 	if (tmp->tm_nodes_inuse >= tmp->tm_nodes_max)
554 		return (ENOSPC);
555 	if (!tmpfs_pages_check_avail(tmp, 1))
556 		return (ENOSPC);
557 
558 	if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
559 		/*
560 		 * When a new tmpfs node is created for fully
561 		 * constructed mount point, there must be a parent
562 		 * node, which vnode is locked exclusively.  As
563 		 * consequence, if the unmount is executing in
564 		 * parallel, vflush() cannot reclaim the parent vnode.
565 		 * Due to this, the check for MNTK_UNMOUNT flag is not
566 		 * racy: if we did not see MNTK_UNMOUNT flag, then tmp
567 		 * cannot be destroyed until node construction is
568 		 * finished and the parent vnode unlocked.
569 		 *
570 		 * Tmpfs does not need to instantiate new nodes during
571 		 * unmount.
572 		 */
573 		return (EBUSY);
574 	}
575 	if ((mp->mnt_kern_flag & MNT_RDONLY) != 0)
576 		return (EROFS);
577 
578 	nnode = uma_zalloc_smr(tmpfs_node_pool, M_WAITOK);
579 
580 	/* Generic initialization. */
581 	nnode->tn_type = type;
582 	vfs_timestamp(&nnode->tn_atime);
583 	nnode->tn_birthtime = nnode->tn_ctime = nnode->tn_mtime =
584 	    nnode->tn_atime;
585 	nnode->tn_uid = uid;
586 	nnode->tn_gid = gid;
587 	nnode->tn_mode = mode;
588 	nnode->tn_id = alloc_unr64(&tmp->tm_ino_unr);
589 	nnode->tn_refcount = 1;
590 	LIST_INIT(&nnode->tn_extattrs);
591 
592 	/* Type-specific initialization. */
593 	switch (nnode->tn_type) {
594 	case VBLK:
595 	case VCHR:
596 		nnode->tn_rdev = rdev;
597 		break;
598 
599 	case VDIR:
600 		RB_INIT(&nnode->tn_dir.tn_dirhead);
601 		LIST_INIT(&nnode->tn_dir.tn_dupindex);
602 		MPASS(parent != nnode);
603 		MPASS(IMPLIES(parent == NULL, tmp->tm_root == NULL));
604 		nnode->tn_dir.tn_parent = (parent == NULL) ? nnode : parent;
605 		nnode->tn_dir.tn_readdir_lastn = 0;
606 		nnode->tn_dir.tn_readdir_lastp = NULL;
607 		nnode->tn_links++;
608 		TMPFS_NODE_LOCK(nnode->tn_dir.tn_parent);
609 		nnode->tn_dir.tn_parent->tn_links++;
610 		TMPFS_NODE_UNLOCK(nnode->tn_dir.tn_parent);
611 		break;
612 
613 	case VFIFO:
614 		/* FALLTHROUGH */
615 	case VSOCK:
616 		break;
617 
618 	case VLNK:
619 		MPASS(strlen(target) < MAXPATHLEN);
620 		nnode->tn_size = strlen(target);
621 
622 		symlink = NULL;
623 		if (!tmp->tm_nonc) {
624 			symlink = cache_symlink_alloc(nnode->tn_size + 1,
625 			    M_WAITOK);
626 			symlink_smr = true;
627 		}
628 		if (symlink == NULL) {
629 			symlink = malloc(nnode->tn_size + 1, M_TMPFSNAME,
630 			    M_WAITOK);
631 			symlink_smr = false;
632 		}
633 		memcpy(symlink, target, nnode->tn_size + 1);
634 
635 		/*
636 		 * Allow safe symlink resolving for lockless lookup.
637 		 * tmpfs_fplookup_symlink references this comment.
638 		 *
639 		 * 1. nnode is not yet visible to the world
640 		 * 2. both tn_link_target and tn_link_smr get populated
641 		 * 3. release fence publishes their content
642 		 * 4. tn_link_target content is immutable until node
643 		 *    destruction, where the pointer gets set to NULL
644 		 * 5. tn_link_smr is never changed once set
645 		 *
646 		 * As a result it is sufficient to issue load consume
647 		 * on the node pointer to also get the above content
648 		 * in a stable manner.  Worst case tn_link_smr flag
649 		 * may be set to true despite being stale, while the
650 		 * target buffer is already cleared out.
651 		 */
652 		atomic_store_ptr(&nnode->tn_link_target, symlink);
653 		atomic_store_char((char *)&nnode->tn_link_smr, symlink_smr);
654 		atomic_thread_fence_rel();
655 		break;
656 
657 	case VREG:
658 		nnode->tn_reg.tn_aobj =
659 		    vm_pager_allocate(tmpfs_pager_type, NULL, 0,
660 		    VM_PROT_DEFAULT, 0,
661 		    NULL /* XXXKIB - tmpfs needs swap reservation */);
662 		nnode->tn_reg.tn_aobj->un_pager.swp.swp_priv = nnode;
663 		vm_object_set_flag(nnode->tn_reg.tn_aobj, OBJ_TMPFS);
664 		nnode->tn_reg.tn_tmp = tmp;
665 		nnode->tn_reg.tn_pages = 0;
666 		break;
667 
668 	default:
669 		panic("tmpfs_alloc_node: type %p %d", nnode,
670 		    (int)nnode->tn_type);
671 	}
672 
673 	TMPFS_LOCK(tmp);
674 	LIST_INSERT_HEAD(&tmp->tm_nodes_used, nnode, tn_entries);
675 	nnode->tn_attached = true;
676 	tmp->tm_nodes_inuse++;
677 	tmp->tm_refcount++;
678 	TMPFS_UNLOCK(tmp);
679 
680 	*node = nnode;
681 	return (0);
682 }
683 
684 /*
685  * Destroys the node pointed to by node from the file system 'tmp'.
686  * If the node references a directory, no entries are allowed.
687  */
688 void
689 tmpfs_free_node(struct tmpfs_mount *tmp, struct tmpfs_node *node)
690 {
691 	if (refcount_release_if_not_last(&node->tn_refcount))
692 		return;
693 
694 	TMPFS_LOCK(tmp);
695 	TMPFS_NODE_LOCK(node);
696 	if (!tmpfs_free_node_locked(tmp, node, false)) {
697 		TMPFS_NODE_UNLOCK(node);
698 		TMPFS_UNLOCK(tmp);
699 	}
700 }
701 
702 bool
703 tmpfs_free_node_locked(struct tmpfs_mount *tmp, struct tmpfs_node *node,
704     bool detach)
705 {
706 	struct tmpfs_extattr *ea;
707 	vm_object_t uobj;
708 	char *symlink;
709 	bool last;
710 
711 	TMPFS_MP_ASSERT_LOCKED(tmp);
712 	TMPFS_NODE_ASSERT_LOCKED(node);
713 
714 	last = refcount_release(&node->tn_refcount);
715 	if (node->tn_attached && (detach || last)) {
716 		MPASS(tmp->tm_nodes_inuse > 0);
717 		tmp->tm_nodes_inuse--;
718 		LIST_REMOVE(node, tn_entries);
719 		node->tn_attached = false;
720 	}
721 	if (!last)
722 		return (false);
723 
724 	TMPFS_NODE_UNLOCK(node);
725 
726 #ifdef INVARIANTS
727 	MPASS(node->tn_vnode == NULL);
728 	MPASS((node->tn_vpstate & TMPFS_VNODE_ALLOCATING) == 0);
729 
730 	/*
731 	 * Make sure this is a node type we can deal with. Everything
732 	 * is explicitly enumerated without the 'default' clause so
733 	 * the compiler can throw an error in case a new type is
734 	 * added.
735 	 */
736 	switch (node->tn_type) {
737 	case VBLK:
738 	case VCHR:
739 	case VDIR:
740 	case VFIFO:
741 	case VSOCK:
742 	case VLNK:
743 	case VREG:
744 		break;
745 	case VNON:
746 	case VBAD:
747 	case VMARKER:
748 		panic("%s: bad type %d for node %p", __func__,
749 		    (int)node->tn_type, node);
750 	}
751 #endif
752 
753 	while ((ea = LIST_FIRST(&node->tn_extattrs)) != NULL) {
754 		LIST_REMOVE(ea, ea_extattrs);
755 		tmpfs_extattr_free(ea);
756 	}
757 
758 	switch (node->tn_type) {
759 	case VREG:
760 		uobj = node->tn_reg.tn_aobj;
761 		node->tn_reg.tn_aobj = NULL;
762 		if (uobj != NULL) {
763 			VM_OBJECT_WLOCK(uobj);
764 			KASSERT((uobj->flags & OBJ_TMPFS) != 0,
765 			    ("tmpfs node %p uobj %p not tmpfs", node, uobj));
766 			vm_object_clear_flag(uobj, OBJ_TMPFS);
767 			KASSERT(tmp->tm_pages_used >= node->tn_reg.tn_pages,
768 			    ("tmpfs tmp %p node %p pages %jd free %jd", tmp,
769 			    node, (uintmax_t)tmp->tm_pages_used,
770 			    (uintmax_t)node->tn_reg.tn_pages));
771 			atomic_add_long(&tmp->tm_pages_used,
772 			    -node->tn_reg.tn_pages);
773 			VM_OBJECT_WUNLOCK(uobj);
774 		}
775 		tmpfs_free_tmp(tmp);
776 
777 		/*
778 		 * vm_object_deallocate() must not be called while
779 		 * owning tm_allnode_lock, because deallocate might
780 		 * sleep.  Call it after tmpfs_free_tmp() does the
781 		 * unlock.
782 		 */
783 		if (uobj != NULL)
784 			vm_object_deallocate(uobj);
785 
786 		break;
787 	case VLNK:
788 		tmpfs_free_tmp(tmp);
789 
790 		symlink = node->tn_link_target;
791 		atomic_store_ptr(&node->tn_link_target, NULL);
792 		if (atomic_load_char(&node->tn_link_smr)) {
793 			cache_symlink_free(symlink, node->tn_size + 1);
794 		} else {
795 			free(symlink, M_TMPFSNAME);
796 		}
797 		break;
798 	default:
799 		tmpfs_free_tmp(tmp);
800 		break;
801 	}
802 
803 	uma_zfree_smr(tmpfs_node_pool, node);
804 	return (true);
805 }
806 
807 static __inline uint32_t
808 tmpfs_dirent_hash(const char *name, u_int len)
809 {
810 	uint32_t hash;
811 
812 	hash = fnv_32_buf(name, len, FNV1_32_INIT + len) & TMPFS_DIRCOOKIE_MASK;
813 #ifdef TMPFS_DEBUG_DIRCOOKIE_DUP
814 	hash &= 0xf;
815 #endif
816 	if (hash < TMPFS_DIRCOOKIE_MIN)
817 		hash += TMPFS_DIRCOOKIE_MIN;
818 
819 	return (hash);
820 }
821 
822 static __inline off_t
823 tmpfs_dirent_cookie(struct tmpfs_dirent *de)
824 {
825 	if (de == NULL)
826 		return (TMPFS_DIRCOOKIE_EOF);
827 
828 	MPASS(de->td_cookie >= TMPFS_DIRCOOKIE_MIN);
829 
830 	return (de->td_cookie);
831 }
832 
833 static __inline boolean_t
834 tmpfs_dirent_dup(struct tmpfs_dirent *de)
835 {
836 	return ((de->td_cookie & TMPFS_DIRCOOKIE_DUP) != 0);
837 }
838 
839 static __inline boolean_t
840 tmpfs_dirent_duphead(struct tmpfs_dirent *de)
841 {
842 	return ((de->td_cookie & TMPFS_DIRCOOKIE_DUPHEAD) != 0);
843 }
844 
845 void
846 tmpfs_dirent_init(struct tmpfs_dirent *de, const char *name, u_int namelen)
847 {
848 	de->td_hash = de->td_cookie = tmpfs_dirent_hash(name, namelen);
849 	memcpy(de->ud.td_name, name, namelen);
850 	de->td_namelen = namelen;
851 }
852 
853 /*
854  * Allocates a new directory entry for the node node with a name of name.
855  * The new directory entry is returned in *de.
856  *
857  * The link count of node is increased by one to reflect the new object
858  * referencing it.
859  *
860  * Returns zero on success or an appropriate error code on failure.
861  */
862 int
863 tmpfs_alloc_dirent(struct tmpfs_mount *tmp, struct tmpfs_node *node,
864     const char *name, u_int len, struct tmpfs_dirent **de)
865 {
866 	struct tmpfs_dirent *nde;
867 
868 	nde = malloc(sizeof(*nde), M_TMPFSDIR, M_WAITOK);
869 	nde->td_node = node;
870 	if (name != NULL) {
871 		nde->ud.td_name = malloc(len, M_TMPFSNAME, M_WAITOK);
872 		tmpfs_dirent_init(nde, name, len);
873 	} else
874 		nde->td_namelen = 0;
875 	if (node != NULL)
876 		node->tn_links++;
877 
878 	*de = nde;
879 
880 	return (0);
881 }
882 
883 /*
884  * Frees a directory entry.  It is the caller's responsibility to destroy
885  * the node referenced by it if needed.
886  *
887  * The link count of node is decreased by one to reflect the removal of an
888  * object that referenced it.  This only happens if 'node_exists' is true;
889  * otherwise the function will not access the node referred to by the
890  * directory entry, as it may already have been released from the outside.
891  */
892 void
893 tmpfs_free_dirent(struct tmpfs_mount *tmp, struct tmpfs_dirent *de)
894 {
895 	struct tmpfs_node *node;
896 
897 	node = de->td_node;
898 	if (node != NULL) {
899 		MPASS(node->tn_links > 0);
900 		node->tn_links--;
901 	}
902 	if (!tmpfs_dirent_duphead(de) && de->ud.td_name != NULL)
903 		free(de->ud.td_name, M_TMPFSNAME);
904 	free(de, M_TMPFSDIR);
905 }
906 
907 void
908 tmpfs_destroy_vobject(struct vnode *vp, vm_object_t obj)
909 {
910 	bool want_vrele;
911 
912 	ASSERT_VOP_ELOCKED(vp, "tmpfs_destroy_vobject");
913 	if (vp->v_type != VREG || obj == NULL)
914 		return;
915 
916 	VM_OBJECT_WLOCK(obj);
917 	VI_LOCK(vp);
918 	/*
919 	 * May be going through forced unmount.
920 	 */
921 	want_vrele = false;
922 	if ((obj->flags & OBJ_TMPFS_VREF) != 0) {
923 		vm_object_clear_flag(obj, OBJ_TMPFS_VREF);
924 		want_vrele = true;
925 	}
926 
927 	if (vp->v_writecount < 0)
928 		vp->v_writecount = 0;
929 	VI_UNLOCK(vp);
930 	VM_OBJECT_WUNLOCK(obj);
931 	if (want_vrele) {
932 		vrele(vp);
933 	}
934 }
935 
936 /*
937  * Allocates a new vnode for the node node or returns a new reference to
938  * an existing one if the node had already a vnode referencing it.  The
939  * resulting locked vnode is returned in *vpp.
940  *
941  * Returns zero on success or an appropriate error code on failure.
942  */
943 int
944 tmpfs_alloc_vp(struct mount *mp, struct tmpfs_node *node, int lkflag,
945     struct vnode **vpp)
946 {
947 	struct vnode *vp;
948 	enum vgetstate vs;
949 	struct tmpfs_mount *tm;
950 	vm_object_t object;
951 	int error;
952 
953 	error = 0;
954 	tm = VFS_TO_TMPFS(mp);
955 	TMPFS_NODE_LOCK(node);
956 	tmpfs_ref_node(node);
957 loop:
958 	TMPFS_NODE_ASSERT_LOCKED(node);
959 	if ((vp = node->tn_vnode) != NULL) {
960 		MPASS((node->tn_vpstate & TMPFS_VNODE_DOOMED) == 0);
961 		if ((node->tn_type == VDIR && node->tn_dir.tn_parent == NULL) ||
962 		    (VN_IS_DOOMED(vp) &&
963 		     (lkflag & LK_NOWAIT) != 0)) {
964 			TMPFS_NODE_UNLOCK(node);
965 			error = ENOENT;
966 			vp = NULL;
967 			goto out;
968 		}
969 		if (VN_IS_DOOMED(vp)) {
970 			node->tn_vpstate |= TMPFS_VNODE_WRECLAIM;
971 			while ((node->tn_vpstate & TMPFS_VNODE_WRECLAIM) != 0) {
972 				msleep(&node->tn_vnode, TMPFS_NODE_MTX(node),
973 				    0, "tmpfsE", 0);
974 			}
975 			goto loop;
976 		}
977 		vs = vget_prep(vp);
978 		TMPFS_NODE_UNLOCK(node);
979 		error = vget_finish(vp, lkflag, vs);
980 		if (error == ENOENT) {
981 			TMPFS_NODE_LOCK(node);
982 			goto loop;
983 		}
984 		if (error != 0) {
985 			vp = NULL;
986 			goto out;
987 		}
988 
989 		/*
990 		 * Make sure the vnode is still there after
991 		 * getting the interlock to avoid racing a free.
992 		 */
993 		if (node->tn_vnode != vp) {
994 			vput(vp);
995 			TMPFS_NODE_LOCK(node);
996 			goto loop;
997 		}
998 
999 		goto out;
1000 	}
1001 
1002 	if ((node->tn_vpstate & TMPFS_VNODE_DOOMED) ||
1003 	    (node->tn_type == VDIR && node->tn_dir.tn_parent == NULL)) {
1004 		TMPFS_NODE_UNLOCK(node);
1005 		error = ENOENT;
1006 		vp = NULL;
1007 		goto out;
1008 	}
1009 
1010 	/*
1011 	 * otherwise lock the vp list while we call getnewvnode
1012 	 * since that can block.
1013 	 */
1014 	if (node->tn_vpstate & TMPFS_VNODE_ALLOCATING) {
1015 		node->tn_vpstate |= TMPFS_VNODE_WANT;
1016 		error = msleep((caddr_t) &node->tn_vpstate,
1017 		    TMPFS_NODE_MTX(node), 0, "tmpfs_alloc_vp", 0);
1018 		if (error != 0)
1019 			goto out;
1020 		goto loop;
1021 	} else
1022 		node->tn_vpstate |= TMPFS_VNODE_ALLOCATING;
1023 
1024 	TMPFS_NODE_UNLOCK(node);
1025 
1026 	/* Get a new vnode and associate it with our node. */
1027 	error = getnewvnode("tmpfs", mp, VFS_TO_TMPFS(mp)->tm_nonc ?
1028 	    &tmpfs_vnodeop_nonc_entries : &tmpfs_vnodeop_entries, &vp);
1029 	if (error != 0)
1030 		goto unlock;
1031 	MPASS(vp != NULL);
1032 
1033 	/* lkflag is ignored, the lock is exclusive */
1034 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1035 
1036 	vp->v_data = node;
1037 	vp->v_type = node->tn_type;
1038 
1039 	/* Type-specific initialization. */
1040 	switch (node->tn_type) {
1041 	case VBLK:
1042 		/* FALLTHROUGH */
1043 	case VCHR:
1044 		/* FALLTHROUGH */
1045 	case VLNK:
1046 		/* FALLTHROUGH */
1047 	case VSOCK:
1048 		break;
1049 	case VFIFO:
1050 		vp->v_op = &tmpfs_fifoop_entries;
1051 		break;
1052 	case VREG:
1053 		object = node->tn_reg.tn_aobj;
1054 		VM_OBJECT_WLOCK(object);
1055 		KASSERT((object->flags & OBJ_TMPFS_VREF) == 0,
1056 		    ("%s: object %p with OBJ_TMPFS_VREF but without vnode",
1057 		    __func__, object));
1058 		KASSERT(object->un_pager.swp.writemappings == 0,
1059 		    ("%s: object %p has writemappings",
1060 		    __func__, object));
1061 		VI_LOCK(vp);
1062 		KASSERT(vp->v_object == NULL, ("Not NULL v_object in tmpfs"));
1063 		vp->v_object = object;
1064 		vn_irflag_set_locked(vp, VIRF_PGREAD | VIRF_TEXT_REF);
1065 		VI_UNLOCK(vp);
1066 		VM_OBJECT_WUNLOCK(object);
1067 		break;
1068 	case VDIR:
1069 		MPASS(node->tn_dir.tn_parent != NULL);
1070 		if (node->tn_dir.tn_parent == node)
1071 			vp->v_vflag |= VV_ROOT;
1072 		break;
1073 
1074 	default:
1075 		panic("tmpfs_alloc_vp: type %p %d", node, (int)node->tn_type);
1076 	}
1077 	if (vp->v_type != VFIFO)
1078 		VN_LOCK_ASHARE(vp);
1079 
1080 	error = insmntque1(vp, mp);
1081 	if (error != 0) {
1082 		/* Need to clear v_object for insmntque failure. */
1083 		tmpfs_destroy_vobject(vp, vp->v_object);
1084 		vp->v_object = NULL;
1085 		vp->v_data = NULL;
1086 		vp->v_op = &dead_vnodeops;
1087 		vgone(vp);
1088 		vput(vp);
1089 		vp = NULL;
1090 	} else {
1091 		vn_set_state(vp, VSTATE_CONSTRUCTED);
1092 	}
1093 
1094 unlock:
1095 	TMPFS_NODE_LOCK(node);
1096 
1097 	MPASS(node->tn_vpstate & TMPFS_VNODE_ALLOCATING);
1098 	node->tn_vpstate &= ~TMPFS_VNODE_ALLOCATING;
1099 	node->tn_vnode = vp;
1100 
1101 	if (node->tn_vpstate & TMPFS_VNODE_WANT) {
1102 		node->tn_vpstate &= ~TMPFS_VNODE_WANT;
1103 		TMPFS_NODE_UNLOCK(node);
1104 		wakeup((caddr_t) &node->tn_vpstate);
1105 	} else
1106 		TMPFS_NODE_UNLOCK(node);
1107 
1108 out:
1109 	if (error == 0) {
1110 		*vpp = vp;
1111 
1112 #ifdef INVARIANTS
1113 		MPASS(*vpp != NULL && VOP_ISLOCKED(*vpp));
1114 		TMPFS_NODE_LOCK(node);
1115 		MPASS(*vpp == node->tn_vnode);
1116 		TMPFS_NODE_UNLOCK(node);
1117 #endif
1118 	}
1119 	tmpfs_free_node(tm, node);
1120 
1121 	return (error);
1122 }
1123 
1124 /*
1125  * Destroys the association between the vnode vp and the node it
1126  * references.
1127  */
1128 void
1129 tmpfs_free_vp(struct vnode *vp)
1130 {
1131 	struct tmpfs_node *node;
1132 
1133 	node = VP_TO_TMPFS_NODE(vp);
1134 
1135 	TMPFS_NODE_ASSERT_LOCKED(node);
1136 	node->tn_vnode = NULL;
1137 	if ((node->tn_vpstate & TMPFS_VNODE_WRECLAIM) != 0)
1138 		wakeup(&node->tn_vnode);
1139 	node->tn_vpstate &= ~TMPFS_VNODE_WRECLAIM;
1140 	vp->v_data = NULL;
1141 }
1142 
1143 /*
1144  * Allocates a new file of type 'type' and adds it to the parent directory
1145  * 'dvp'; this addition is done using the component name given in 'cnp'.
1146  * The ownership of the new file is automatically assigned based on the
1147  * credentials of the caller (through 'cnp'), the group is set based on
1148  * the parent directory and the mode is determined from the 'vap' argument.
1149  * If successful, *vpp holds a vnode to the newly created file and zero
1150  * is returned.  Otherwise *vpp is NULL and the function returns an
1151  * appropriate error code.
1152  */
1153 int
1154 tmpfs_alloc_file(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
1155     struct componentname *cnp, const char *target)
1156 {
1157 	int error;
1158 	struct tmpfs_dirent *de;
1159 	struct tmpfs_mount *tmp;
1160 	struct tmpfs_node *dnode;
1161 	struct tmpfs_node *node;
1162 	struct tmpfs_node *parent;
1163 
1164 	ASSERT_VOP_ELOCKED(dvp, "tmpfs_alloc_file");
1165 
1166 	tmp = VFS_TO_TMPFS(dvp->v_mount);
1167 	dnode = VP_TO_TMPFS_DIR(dvp);
1168 	*vpp = NULL;
1169 
1170 	/* If the entry we are creating is a directory, we cannot overflow
1171 	 * the number of links of its parent, because it will get a new
1172 	 * link. */
1173 	if (vap->va_type == VDIR) {
1174 		/* Ensure that we do not overflow the maximum number of links
1175 		 * imposed by the system. */
1176 		MPASS(dnode->tn_links <= TMPFS_LINK_MAX);
1177 		if (dnode->tn_links == TMPFS_LINK_MAX) {
1178 			return (EMLINK);
1179 		}
1180 
1181 		parent = dnode;
1182 		MPASS(parent != NULL);
1183 	} else
1184 		parent = NULL;
1185 
1186 	/* Allocate a node that represents the new file. */
1187 	error = tmpfs_alloc_node(dvp->v_mount, tmp, vap->va_type,
1188 	    cnp->cn_cred->cr_uid, dnode->tn_gid, vap->va_mode, parent,
1189 	    target, vap->va_rdev, &node);
1190 	if (error != 0)
1191 		return (error);
1192 
1193 	/* Allocate a directory entry that points to the new file. */
1194 	error = tmpfs_alloc_dirent(tmp, node, cnp->cn_nameptr, cnp->cn_namelen,
1195 	    &de);
1196 	if (error != 0) {
1197 		tmpfs_free_node(tmp, node);
1198 		return (error);
1199 	}
1200 
1201 	/* Allocate a vnode for the new file. */
1202 	error = tmpfs_alloc_vp(dvp->v_mount, node, LK_EXCLUSIVE, vpp);
1203 	if (error != 0) {
1204 		tmpfs_free_dirent(tmp, de);
1205 		tmpfs_free_node(tmp, node);
1206 		return (error);
1207 	}
1208 
1209 	/* Now that all required items are allocated, we can proceed to
1210 	 * insert the new node into the directory, an operation that
1211 	 * cannot fail. */
1212 	if (cnp->cn_flags & ISWHITEOUT)
1213 		tmpfs_dir_whiteout_remove(dvp, cnp);
1214 	tmpfs_dir_attach(dvp, de);
1215 	return (0);
1216 }
1217 
1218 struct tmpfs_dirent *
1219 tmpfs_dir_first(struct tmpfs_node *dnode, struct tmpfs_dir_cursor *dc)
1220 {
1221 	struct tmpfs_dirent *de;
1222 
1223 	de = RB_MIN(tmpfs_dir, &dnode->tn_dir.tn_dirhead);
1224 	dc->tdc_tree = de;
1225 	if (de != NULL && tmpfs_dirent_duphead(de))
1226 		de = LIST_FIRST(&de->ud.td_duphead);
1227 	dc->tdc_current = de;
1228 
1229 	return (dc->tdc_current);
1230 }
1231 
1232 struct tmpfs_dirent *
1233 tmpfs_dir_next(struct tmpfs_node *dnode, struct tmpfs_dir_cursor *dc)
1234 {
1235 	struct tmpfs_dirent *de;
1236 
1237 	MPASS(dc->tdc_tree != NULL);
1238 	if (tmpfs_dirent_dup(dc->tdc_current)) {
1239 		dc->tdc_current = LIST_NEXT(dc->tdc_current, uh.td_dup.entries);
1240 		if (dc->tdc_current != NULL)
1241 			return (dc->tdc_current);
1242 	}
1243 	dc->tdc_tree = dc->tdc_current = RB_NEXT(tmpfs_dir,
1244 	    &dnode->tn_dir.tn_dirhead, dc->tdc_tree);
1245 	if ((de = dc->tdc_current) != NULL && tmpfs_dirent_duphead(de)) {
1246 		dc->tdc_current = LIST_FIRST(&de->ud.td_duphead);
1247 		MPASS(dc->tdc_current != NULL);
1248 	}
1249 
1250 	return (dc->tdc_current);
1251 }
1252 
1253 /* Lookup directory entry in RB-Tree. Function may return duphead entry. */
1254 static struct tmpfs_dirent *
1255 tmpfs_dir_xlookup_hash(struct tmpfs_node *dnode, uint32_t hash)
1256 {
1257 	struct tmpfs_dirent *de, dekey;
1258 
1259 	dekey.td_hash = hash;
1260 	de = RB_FIND(tmpfs_dir, &dnode->tn_dir.tn_dirhead, &dekey);
1261 	return (de);
1262 }
1263 
1264 /* Lookup directory entry by cookie, initialize directory cursor accordingly. */
1265 static struct tmpfs_dirent *
1266 tmpfs_dir_lookup_cookie(struct tmpfs_node *node, off_t cookie,
1267     struct tmpfs_dir_cursor *dc)
1268 {
1269 	struct tmpfs_dir *dirhead = &node->tn_dir.tn_dirhead;
1270 	struct tmpfs_dirent *de, dekey;
1271 
1272 	MPASS(cookie >= TMPFS_DIRCOOKIE_MIN);
1273 
1274 	if (cookie == node->tn_dir.tn_readdir_lastn &&
1275 	    (de = node->tn_dir.tn_readdir_lastp) != NULL) {
1276 		/* Protect against possible race, tn_readdir_last[pn]
1277 		 * may be updated with only shared vnode lock held. */
1278 		if (cookie == tmpfs_dirent_cookie(de))
1279 			goto out;
1280 	}
1281 
1282 	if ((cookie & TMPFS_DIRCOOKIE_DUP) != 0) {
1283 		LIST_FOREACH(de, &node->tn_dir.tn_dupindex,
1284 		    uh.td_dup.index_entries) {
1285 			MPASS(tmpfs_dirent_dup(de));
1286 			if (de->td_cookie == cookie)
1287 				goto out;
1288 			/* dupindex list is sorted. */
1289 			if (de->td_cookie < cookie) {
1290 				de = NULL;
1291 				goto out;
1292 			}
1293 		}
1294 		MPASS(de == NULL);
1295 		goto out;
1296 	}
1297 
1298 	if ((cookie & TMPFS_DIRCOOKIE_MASK) != cookie) {
1299 		de = NULL;
1300 	} else {
1301 		dekey.td_hash = cookie;
1302 		/* Recover if direntry for cookie was removed */
1303 		de = RB_NFIND(tmpfs_dir, dirhead, &dekey);
1304 	}
1305 	dc->tdc_tree = de;
1306 	dc->tdc_current = de;
1307 	if (de != NULL && tmpfs_dirent_duphead(de)) {
1308 		dc->tdc_current = LIST_FIRST(&de->ud.td_duphead);
1309 		MPASS(dc->tdc_current != NULL);
1310 	}
1311 	return (dc->tdc_current);
1312 
1313 out:
1314 	dc->tdc_tree = de;
1315 	dc->tdc_current = de;
1316 	if (de != NULL && tmpfs_dirent_dup(de))
1317 		dc->tdc_tree = tmpfs_dir_xlookup_hash(node,
1318 		    de->td_hash);
1319 	return (dc->tdc_current);
1320 }
1321 
1322 /*
1323  * Looks for a directory entry in the directory represented by node.
1324  * 'cnp' describes the name of the entry to look for.  Note that the .
1325  * and .. components are not allowed as they do not physically exist
1326  * within directories.
1327  *
1328  * Returns a pointer to the entry when found, otherwise NULL.
1329  */
1330 struct tmpfs_dirent *
1331 tmpfs_dir_lookup(struct tmpfs_node *node, struct tmpfs_node *f,
1332     struct componentname *cnp)
1333 {
1334 	struct tmpfs_dir_duphead *duphead;
1335 	struct tmpfs_dirent *de;
1336 	uint32_t hash;
1337 
1338 	MPASS(IMPLIES(cnp->cn_namelen == 1, cnp->cn_nameptr[0] != '.'));
1339 	MPASS(IMPLIES(cnp->cn_namelen == 2, !(cnp->cn_nameptr[0] == '.' &&
1340 	    cnp->cn_nameptr[1] == '.')));
1341 	TMPFS_VALIDATE_DIR(node);
1342 
1343 	hash = tmpfs_dirent_hash(cnp->cn_nameptr, cnp->cn_namelen);
1344 	de = tmpfs_dir_xlookup_hash(node, hash);
1345 	if (de != NULL && tmpfs_dirent_duphead(de)) {
1346 		duphead = &de->ud.td_duphead;
1347 		LIST_FOREACH(de, duphead, uh.td_dup.entries) {
1348 			if (TMPFS_DIRENT_MATCHES(de, cnp->cn_nameptr,
1349 			    cnp->cn_namelen))
1350 				break;
1351 		}
1352 	} else if (de != NULL) {
1353 		if (!TMPFS_DIRENT_MATCHES(de, cnp->cn_nameptr,
1354 		    cnp->cn_namelen))
1355 			de = NULL;
1356 	}
1357 	if (de != NULL && f != NULL && de->td_node != f)
1358 		de = NULL;
1359 
1360 	return (de);
1361 }
1362 
1363 /*
1364  * Attach duplicate-cookie directory entry nde to dnode and insert to dupindex
1365  * list, allocate new cookie value.
1366  */
1367 static void
1368 tmpfs_dir_attach_dup(struct tmpfs_node *dnode,
1369     struct tmpfs_dir_duphead *duphead, struct tmpfs_dirent *nde)
1370 {
1371 	struct tmpfs_dir_duphead *dupindex;
1372 	struct tmpfs_dirent *de, *pde;
1373 
1374 	dupindex = &dnode->tn_dir.tn_dupindex;
1375 	de = LIST_FIRST(dupindex);
1376 	if (de == NULL || de->td_cookie < TMPFS_DIRCOOKIE_DUP_MAX) {
1377 		if (de == NULL)
1378 			nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MIN;
1379 		else
1380 			nde->td_cookie = de->td_cookie + 1;
1381 		MPASS(tmpfs_dirent_dup(nde));
1382 		LIST_INSERT_HEAD(dupindex, nde, uh.td_dup.index_entries);
1383 		LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries);
1384 		return;
1385 	}
1386 
1387 	/*
1388 	 * Cookie numbers are near exhaustion. Scan dupindex list for unused
1389 	 * numbers. dupindex list is sorted in descending order. Keep it so
1390 	 * after inserting nde.
1391 	 */
1392 	while (1) {
1393 		pde = de;
1394 		de = LIST_NEXT(de, uh.td_dup.index_entries);
1395 		if (de == NULL && pde->td_cookie != TMPFS_DIRCOOKIE_DUP_MIN) {
1396 			/*
1397 			 * Last element of the index doesn't have minimal cookie
1398 			 * value, use it.
1399 			 */
1400 			nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MIN;
1401 			LIST_INSERT_AFTER(pde, nde, uh.td_dup.index_entries);
1402 			LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries);
1403 			return;
1404 		} else if (de == NULL) {
1405 			/*
1406 			 * We are so lucky have 2^30 hash duplicates in single
1407 			 * directory :) Return largest possible cookie value.
1408 			 * It should be fine except possible issues with
1409 			 * VOP_READDIR restart.
1410 			 */
1411 			nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MAX;
1412 			LIST_INSERT_HEAD(dupindex, nde,
1413 			    uh.td_dup.index_entries);
1414 			LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries);
1415 			return;
1416 		}
1417 		if (de->td_cookie + 1 == pde->td_cookie ||
1418 		    de->td_cookie >= TMPFS_DIRCOOKIE_DUP_MAX)
1419 			continue;	/* No hole or invalid cookie. */
1420 		nde->td_cookie = de->td_cookie + 1;
1421 		MPASS(tmpfs_dirent_dup(nde));
1422 		MPASS(pde->td_cookie > nde->td_cookie);
1423 		MPASS(nde->td_cookie > de->td_cookie);
1424 		LIST_INSERT_BEFORE(de, nde, uh.td_dup.index_entries);
1425 		LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries);
1426 		return;
1427 	}
1428 }
1429 
1430 /*
1431  * Attaches the directory entry de to the directory represented by vp.
1432  * Note that this does not change the link count of the node pointed by
1433  * the directory entry, as this is done by tmpfs_alloc_dirent.
1434  */
1435 void
1436 tmpfs_dir_attach(struct vnode *vp, struct tmpfs_dirent *de)
1437 {
1438 	struct tmpfs_node *dnode;
1439 	struct tmpfs_dirent *xde, *nde;
1440 
1441 	ASSERT_VOP_ELOCKED(vp, __func__);
1442 	MPASS(de->td_namelen > 0);
1443 	MPASS(de->td_hash >= TMPFS_DIRCOOKIE_MIN);
1444 	MPASS(de->td_cookie == de->td_hash);
1445 
1446 	dnode = VP_TO_TMPFS_DIR(vp);
1447 	dnode->tn_dir.tn_readdir_lastn = 0;
1448 	dnode->tn_dir.tn_readdir_lastp = NULL;
1449 
1450 	MPASS(!tmpfs_dirent_dup(de));
1451 	xde = RB_INSERT(tmpfs_dir, &dnode->tn_dir.tn_dirhead, de);
1452 	if (xde != NULL && tmpfs_dirent_duphead(xde))
1453 		tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, de);
1454 	else if (xde != NULL) {
1455 		/*
1456 		 * Allocate new duphead. Swap xde with duphead to avoid
1457 		 * adding/removing elements with the same hash.
1458 		 */
1459 		MPASS(!tmpfs_dirent_dup(xde));
1460 		tmpfs_alloc_dirent(VFS_TO_TMPFS(vp->v_mount), NULL, NULL, 0,
1461 		    &nde);
1462 		/* *nde = *xde; XXX gcc 4.2.1 may generate invalid code. */
1463 		memcpy(nde, xde, sizeof(*xde));
1464 		xde->td_cookie |= TMPFS_DIRCOOKIE_DUPHEAD;
1465 		LIST_INIT(&xde->ud.td_duphead);
1466 		xde->td_namelen = 0;
1467 		xde->td_node = NULL;
1468 		tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, nde);
1469 		tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, de);
1470 	}
1471 	dnode->tn_size += sizeof(struct tmpfs_dirent);
1472 	dnode->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED;
1473 	dnode->tn_accessed = true;
1474 	tmpfs_update(vp);
1475 }
1476 
1477 /*
1478  * Detaches the directory entry de from the directory represented by vp.
1479  * Note that this does not change the link count of the node pointed by
1480  * the directory entry, as this is done by tmpfs_free_dirent.
1481  */
1482 void
1483 tmpfs_dir_detach(struct vnode *vp, struct tmpfs_dirent *de)
1484 {
1485 	struct tmpfs_mount *tmp;
1486 	struct tmpfs_dir *head;
1487 	struct tmpfs_node *dnode;
1488 	struct tmpfs_dirent *xde;
1489 
1490 	ASSERT_VOP_ELOCKED(vp, __func__);
1491 
1492 	dnode = VP_TO_TMPFS_DIR(vp);
1493 	head = &dnode->tn_dir.tn_dirhead;
1494 	dnode->tn_dir.tn_readdir_lastn = 0;
1495 	dnode->tn_dir.tn_readdir_lastp = NULL;
1496 
1497 	if (tmpfs_dirent_dup(de)) {
1498 		/* Remove duphead if de was last entry. */
1499 		if (LIST_NEXT(de, uh.td_dup.entries) == NULL) {
1500 			xde = tmpfs_dir_xlookup_hash(dnode, de->td_hash);
1501 			MPASS(tmpfs_dirent_duphead(xde));
1502 		} else
1503 			xde = NULL;
1504 		LIST_REMOVE(de, uh.td_dup.entries);
1505 		LIST_REMOVE(de, uh.td_dup.index_entries);
1506 		if (xde != NULL) {
1507 			if (LIST_EMPTY(&xde->ud.td_duphead)) {
1508 				RB_REMOVE(tmpfs_dir, head, xde);
1509 				tmp = VFS_TO_TMPFS(vp->v_mount);
1510 				MPASS(xde->td_node == NULL);
1511 				tmpfs_free_dirent(tmp, xde);
1512 			}
1513 		}
1514 		de->td_cookie = de->td_hash;
1515 	} else
1516 		RB_REMOVE(tmpfs_dir, head, de);
1517 
1518 	dnode->tn_size -= sizeof(struct tmpfs_dirent);
1519 	dnode->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED;
1520 	dnode->tn_accessed = true;
1521 	tmpfs_update(vp);
1522 }
1523 
1524 void
1525 tmpfs_dir_destroy(struct tmpfs_mount *tmp, struct tmpfs_node *dnode)
1526 {
1527 	struct tmpfs_dirent *de, *dde, *nde;
1528 
1529 	RB_FOREACH_SAFE(de, tmpfs_dir, &dnode->tn_dir.tn_dirhead, nde) {
1530 		RB_REMOVE(tmpfs_dir, &dnode->tn_dir.tn_dirhead, de);
1531 		/* Node may already be destroyed. */
1532 		de->td_node = NULL;
1533 		if (tmpfs_dirent_duphead(de)) {
1534 			while ((dde = LIST_FIRST(&de->ud.td_duphead)) != NULL) {
1535 				LIST_REMOVE(dde, uh.td_dup.entries);
1536 				dde->td_node = NULL;
1537 				tmpfs_free_dirent(tmp, dde);
1538 			}
1539 		}
1540 		tmpfs_free_dirent(tmp, de);
1541 	}
1542 }
1543 
1544 /*
1545  * Helper function for tmpfs_readdir.  Creates a '.' entry for the given
1546  * directory and returns it in the uio space.  The function returns 0
1547  * on success, -1 if there was not enough space in the uio structure to
1548  * hold the directory entry or an appropriate error code if another
1549  * error happens.
1550  */
1551 static int
1552 tmpfs_dir_getdotdent(struct tmpfs_mount *tm, struct tmpfs_node *node,
1553     struct uio *uio)
1554 {
1555 	int error;
1556 	struct dirent dent;
1557 
1558 	TMPFS_VALIDATE_DIR(node);
1559 	MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOT);
1560 
1561 	dent.d_fileno = node->tn_id;
1562 	dent.d_off = TMPFS_DIRCOOKIE_DOTDOT;
1563 	dent.d_type = DT_DIR;
1564 	dent.d_namlen = 1;
1565 	dent.d_name[0] = '.';
1566 	dent.d_reclen = GENERIC_DIRSIZ(&dent);
1567 	dirent_terminate(&dent);
1568 
1569 	if (dent.d_reclen > uio->uio_resid)
1570 		error = EJUSTRETURN;
1571 	else
1572 		error = uiomove(&dent, dent.d_reclen, uio);
1573 
1574 	tmpfs_set_accessed(tm, node);
1575 
1576 	return (error);
1577 }
1578 
1579 /*
1580  * Helper function for tmpfs_readdir.  Creates a '..' entry for the given
1581  * directory and returns it in the uio space.  The function returns 0
1582  * on success, -1 if there was not enough space in the uio structure to
1583  * hold the directory entry or an appropriate error code if another
1584  * error happens.
1585  */
1586 static int
1587 tmpfs_dir_getdotdotdent(struct tmpfs_mount *tm, struct tmpfs_node *node,
1588     struct uio *uio, off_t next)
1589 {
1590 	struct tmpfs_node *parent;
1591 	struct dirent dent;
1592 	int error;
1593 
1594 	TMPFS_VALIDATE_DIR(node);
1595 	MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOTDOT);
1596 
1597 	/*
1598 	 * Return ENOENT if the current node is already removed.
1599 	 */
1600 	TMPFS_ASSERT_LOCKED(node);
1601 	parent = node->tn_dir.tn_parent;
1602 	if (parent == NULL)
1603 		return (ENOENT);
1604 
1605 	dent.d_fileno = parent->tn_id;
1606 	dent.d_off = next;
1607 	dent.d_type = DT_DIR;
1608 	dent.d_namlen = 2;
1609 	dent.d_name[0] = '.';
1610 	dent.d_name[1] = '.';
1611 	dent.d_reclen = GENERIC_DIRSIZ(&dent);
1612 	dirent_terminate(&dent);
1613 
1614 	if (dent.d_reclen > uio->uio_resid)
1615 		error = EJUSTRETURN;
1616 	else
1617 		error = uiomove(&dent, dent.d_reclen, uio);
1618 
1619 	tmpfs_set_accessed(tm, node);
1620 
1621 	return (error);
1622 }
1623 
1624 /*
1625  * Helper function for tmpfs_readdir.  Returns as much directory entries
1626  * as can fit in the uio space.  The read starts at uio->uio_offset.
1627  * The function returns 0 on success, -1 if there was not enough space
1628  * in the uio structure to hold the directory entry or an appropriate
1629  * error code if another error happens.
1630  */
1631 int
1632 tmpfs_dir_getdents(struct tmpfs_mount *tm, struct tmpfs_node *node,
1633     struct uio *uio, int maxcookies, uint64_t *cookies, int *ncookies)
1634 {
1635 	struct tmpfs_dir_cursor dc;
1636 	struct tmpfs_dirent *de, *nde;
1637 	off_t off;
1638 	int error;
1639 
1640 	TMPFS_VALIDATE_DIR(node);
1641 
1642 	off = 0;
1643 
1644 	/*
1645 	 * Lookup the node from the current offset.  The starting offset of
1646 	 * 0 will lookup both '.' and '..', and then the first real entry,
1647 	 * or EOF if there are none.  Then find all entries for the dir that
1648 	 * fit into the buffer.  Once no more entries are found (de == NULL),
1649 	 * the offset is set to TMPFS_DIRCOOKIE_EOF, which will cause the next
1650 	 * call to return 0.
1651 	 */
1652 	switch (uio->uio_offset) {
1653 	case TMPFS_DIRCOOKIE_DOT:
1654 		error = tmpfs_dir_getdotdent(tm, node, uio);
1655 		if (error != 0)
1656 			return (error);
1657 		uio->uio_offset = off = TMPFS_DIRCOOKIE_DOTDOT;
1658 		if (cookies != NULL)
1659 			cookies[(*ncookies)++] = off;
1660 		/* FALLTHROUGH */
1661 	case TMPFS_DIRCOOKIE_DOTDOT:
1662 		de = tmpfs_dir_first(node, &dc);
1663 		off = tmpfs_dirent_cookie(de);
1664 		error = tmpfs_dir_getdotdotdent(tm, node, uio, off);
1665 		if (error != 0)
1666 			return (error);
1667 		uio->uio_offset = off;
1668 		if (cookies != NULL)
1669 			cookies[(*ncookies)++] = off;
1670 		/* EOF. */
1671 		if (de == NULL)
1672 			return (0);
1673 		break;
1674 	case TMPFS_DIRCOOKIE_EOF:
1675 		return (0);
1676 	default:
1677 		de = tmpfs_dir_lookup_cookie(node, uio->uio_offset, &dc);
1678 		if (de == NULL)
1679 			return (EINVAL);
1680 		if (cookies != NULL)
1681 			off = tmpfs_dirent_cookie(de);
1682 	}
1683 
1684 	/*
1685 	 * Read as much entries as possible; i.e., until we reach the end of the
1686 	 * directory or we exhaust uio space.
1687 	 */
1688 	do {
1689 		struct dirent d;
1690 
1691 		/*
1692 		 * Create a dirent structure representing the current tmpfs_node
1693 		 * and fill it.
1694 		 */
1695 		if (de->td_node == NULL) {
1696 			d.d_fileno = 1;
1697 			d.d_type = DT_WHT;
1698 		} else {
1699 			d.d_fileno = de->td_node->tn_id;
1700 			switch (de->td_node->tn_type) {
1701 			case VBLK:
1702 				d.d_type = DT_BLK;
1703 				break;
1704 
1705 			case VCHR:
1706 				d.d_type = DT_CHR;
1707 				break;
1708 
1709 			case VDIR:
1710 				d.d_type = DT_DIR;
1711 				break;
1712 
1713 			case VFIFO:
1714 				d.d_type = DT_FIFO;
1715 				break;
1716 
1717 			case VLNK:
1718 				d.d_type = DT_LNK;
1719 				break;
1720 
1721 			case VREG:
1722 				d.d_type = DT_REG;
1723 				break;
1724 
1725 			case VSOCK:
1726 				d.d_type = DT_SOCK;
1727 				break;
1728 
1729 			default:
1730 				panic("tmpfs_dir_getdents: type %p %d",
1731 				    de->td_node, (int)de->td_node->tn_type);
1732 			}
1733 		}
1734 		d.d_namlen = de->td_namelen;
1735 		MPASS(de->td_namelen < sizeof(d.d_name));
1736 		(void)memcpy(d.d_name, de->ud.td_name, de->td_namelen);
1737 		d.d_reclen = GENERIC_DIRSIZ(&d);
1738 
1739 		/*
1740 		 * Stop reading if the directory entry we are treating is bigger
1741 		 * than the amount of data that can be returned.
1742 		 */
1743 		if (d.d_reclen > uio->uio_resid) {
1744 			error = EJUSTRETURN;
1745 			break;
1746 		}
1747 
1748 		nde = tmpfs_dir_next(node, &dc);
1749 		d.d_off = tmpfs_dirent_cookie(nde);
1750 		dirent_terminate(&d);
1751 
1752 		/*
1753 		 * Copy the new dirent structure into the output buffer and
1754 		 * advance pointers.
1755 		 */
1756 		error = uiomove(&d, d.d_reclen, uio);
1757 		if (error == 0) {
1758 			de = nde;
1759 			if (cookies != NULL) {
1760 				off = tmpfs_dirent_cookie(de);
1761 				MPASS(*ncookies < maxcookies);
1762 				cookies[(*ncookies)++] = off;
1763 			}
1764 		}
1765 	} while (error == 0 && uio->uio_resid > 0 && de != NULL);
1766 
1767 	/* Skip setting off when using cookies as it is already done above. */
1768 	if (cookies == NULL)
1769 		off = tmpfs_dirent_cookie(de);
1770 
1771 	/* Update the offset and cache. */
1772 	uio->uio_offset = off;
1773 	node->tn_dir.tn_readdir_lastn = off;
1774 	node->tn_dir.tn_readdir_lastp = de;
1775 
1776 	tmpfs_set_accessed(tm, node);
1777 	return (error);
1778 }
1779 
1780 int
1781 tmpfs_dir_whiteout_add(struct vnode *dvp, struct componentname *cnp)
1782 {
1783 	struct tmpfs_dirent *de;
1784 	int error;
1785 
1786 	error = tmpfs_alloc_dirent(VFS_TO_TMPFS(dvp->v_mount), NULL,
1787 	    cnp->cn_nameptr, cnp->cn_namelen, &de);
1788 	if (error != 0)
1789 		return (error);
1790 	tmpfs_dir_attach(dvp, de);
1791 	return (0);
1792 }
1793 
1794 void
1795 tmpfs_dir_whiteout_remove(struct vnode *dvp, struct componentname *cnp)
1796 {
1797 	struct tmpfs_dirent *de;
1798 
1799 	de = tmpfs_dir_lookup(VP_TO_TMPFS_DIR(dvp), NULL, cnp);
1800 	MPASS(de != NULL && de->td_node == NULL);
1801 	tmpfs_dir_detach(dvp, de);
1802 	tmpfs_free_dirent(VFS_TO_TMPFS(dvp->v_mount), de);
1803 }
1804 
1805 /*
1806  * Resizes the aobj associated with the regular file pointed to by 'vp' to the
1807  * size 'newsize'.  'vp' must point to a vnode that represents a regular file.
1808  * 'newsize' must be positive.
1809  *
1810  * Returns zero on success or an appropriate error code on failure.
1811  */
1812 int
1813 tmpfs_reg_resize(struct vnode *vp, off_t newsize, boolean_t ignerr)
1814 {
1815 	struct tmpfs_node *node;
1816 	vm_object_t uobj;
1817 	vm_pindex_t idx, newpages, oldpages;
1818 	off_t oldsize;
1819 	int base, error;
1820 
1821 	MPASS(vp->v_type == VREG);
1822 	MPASS(newsize >= 0);
1823 
1824 	node = VP_TO_TMPFS_NODE(vp);
1825 	uobj = node->tn_reg.tn_aobj;
1826 
1827 	/*
1828 	 * Convert the old and new sizes to the number of pages needed to
1829 	 * store them.  It may happen that we do not need to do anything
1830 	 * because the last allocated page can accommodate the change on
1831 	 * its own.
1832 	 */
1833 	oldsize = node->tn_size;
1834 	oldpages = OFF_TO_IDX(oldsize + PAGE_MASK);
1835 	MPASS(oldpages == uobj->size);
1836 	newpages = OFF_TO_IDX(newsize + PAGE_MASK);
1837 
1838 	if (__predict_true(newpages == oldpages && newsize >= oldsize)) {
1839 		node->tn_size = newsize;
1840 		return (0);
1841 	}
1842 
1843 	VM_OBJECT_WLOCK(uobj);
1844 	if (newsize < oldsize) {
1845 		/*
1846 		 * Zero the truncated part of the last page.
1847 		 */
1848 		base = newsize & PAGE_MASK;
1849 		if (base != 0) {
1850 			idx = OFF_TO_IDX(newsize);
1851 			error = tmpfs_partial_page_invalidate(uobj, idx, base,
1852 			    PAGE_SIZE, ignerr);
1853 			if (error != 0) {
1854 				VM_OBJECT_WUNLOCK(uobj);
1855 				return (error);
1856 			}
1857 		}
1858 
1859 		/*
1860 		 * Release any swap space and free any whole pages.
1861 		 */
1862 		if (newpages < oldpages)
1863 			vm_object_page_remove(uobj, newpages, 0, 0);
1864 	}
1865 	uobj->size = newpages;
1866 	VM_OBJECT_WUNLOCK(uobj);
1867 
1868 	node->tn_size = newsize;
1869 	return (0);
1870 }
1871 
1872 /*
1873  * Punch hole in the aobj associated with the regular file pointed to by 'vp'.
1874  * Requests completely beyond the end-of-file are converted to no-op.
1875  *
1876  * Returns 0 on success or error code from tmpfs_partial_page_invalidate() on
1877  * failure.
1878  */
1879 int
1880 tmpfs_reg_punch_hole(struct vnode *vp, off_t *offset, off_t *length)
1881 {
1882 	struct tmpfs_node *node;
1883 	vm_object_t object;
1884 	vm_pindex_t pistart, pi, piend;
1885 	int startofs, endofs, end;
1886 	off_t off, len;
1887 	int error;
1888 
1889 	KASSERT(*length <= OFF_MAX - *offset, ("%s: offset + length overflows",
1890 	    __func__));
1891 	node = VP_TO_TMPFS_NODE(vp);
1892 	KASSERT(node->tn_type == VREG, ("%s: node is not regular file",
1893 	    __func__));
1894 	object = node->tn_reg.tn_aobj;
1895 	off = *offset;
1896 	len = omin(node->tn_size - off, *length);
1897 	startofs = off & PAGE_MASK;
1898 	endofs = (off + len) & PAGE_MASK;
1899 	pistart = OFF_TO_IDX(off);
1900 	piend = OFF_TO_IDX(off + len);
1901 	pi = OFF_TO_IDX((vm_ooffset_t)off + PAGE_MASK);
1902 	error = 0;
1903 
1904 	/* Handle the case when offset is on or beyond file size. */
1905 	if (len <= 0) {
1906 		*length = 0;
1907 		return (0);
1908 	}
1909 
1910 	VM_OBJECT_WLOCK(object);
1911 
1912 	/*
1913 	 * If there is a partial page at the beginning of the hole-punching
1914 	 * request, fill the partial page with zeroes.
1915 	 */
1916 	if (startofs != 0) {
1917 		end = pistart != piend ? PAGE_SIZE : endofs;
1918 		error = tmpfs_partial_page_invalidate(object, pistart, startofs,
1919 		    end, FALSE);
1920 		if (error != 0)
1921 			goto out;
1922 		off += end - startofs;
1923 		len -= end - startofs;
1924 	}
1925 
1926 	/*
1927 	 * Toss away the full pages in the affected area.
1928 	 */
1929 	if (pi < piend) {
1930 		vm_object_page_remove(object, pi, piend, 0);
1931 		off += IDX_TO_OFF(piend - pi);
1932 		len -= IDX_TO_OFF(piend - pi);
1933 	}
1934 
1935 	/*
1936 	 * If there is a partial page at the end of the hole-punching request,
1937 	 * fill the partial page with zeroes.
1938 	 */
1939 	if (endofs != 0 && pistart != piend) {
1940 		error = tmpfs_partial_page_invalidate(object, piend, 0, endofs,
1941 		    FALSE);
1942 		if (error != 0)
1943 			goto out;
1944 		off += endofs;
1945 		len -= endofs;
1946 	}
1947 
1948 out:
1949 	VM_OBJECT_WUNLOCK(object);
1950 	*offset = off;
1951 	*length = len;
1952 	return (error);
1953 }
1954 
1955 void
1956 tmpfs_check_mtime(struct vnode *vp)
1957 {
1958 	struct tmpfs_node *node;
1959 	struct vm_object *obj;
1960 
1961 	ASSERT_VOP_ELOCKED(vp, "check_mtime");
1962 	if (vp->v_type != VREG)
1963 		return;
1964 	obj = vp->v_object;
1965 	KASSERT(obj->type == tmpfs_pager_type &&
1966 	    (obj->flags & (OBJ_SWAP | OBJ_TMPFS)) ==
1967 	    (OBJ_SWAP | OBJ_TMPFS), ("non-tmpfs obj"));
1968 	/* unlocked read */
1969 	if (obj->generation != obj->cleangeneration) {
1970 		VM_OBJECT_WLOCK(obj);
1971 		if (obj->generation != obj->cleangeneration) {
1972 			obj->cleangeneration = obj->generation;
1973 			node = VP_TO_TMPFS_NODE(vp);
1974 			node->tn_status |= TMPFS_NODE_MODIFIED |
1975 			    TMPFS_NODE_CHANGED;
1976 		}
1977 		VM_OBJECT_WUNLOCK(obj);
1978 	}
1979 }
1980 
1981 /*
1982  * Change flags of the given vnode.
1983  * Caller should execute tmpfs_update on vp after a successful execution.
1984  * The vnode must be locked on entry and remain locked on exit.
1985  */
1986 int
1987 tmpfs_chflags(struct vnode *vp, u_long flags, struct ucred *cred,
1988     struct thread *td)
1989 {
1990 	int error;
1991 	struct tmpfs_node *node;
1992 
1993 	ASSERT_VOP_ELOCKED(vp, "chflags");
1994 
1995 	node = VP_TO_TMPFS_NODE(vp);
1996 
1997 	if ((flags & ~(SF_APPEND | SF_ARCHIVED | SF_IMMUTABLE | SF_NOUNLINK |
1998 	    UF_APPEND | UF_ARCHIVE | UF_HIDDEN | UF_IMMUTABLE | UF_NODUMP |
1999 	    UF_NOUNLINK | UF_OFFLINE | UF_OPAQUE | UF_READONLY | UF_REPARSE |
2000 	    UF_SPARSE | UF_SYSTEM)) != 0)
2001 		return (EOPNOTSUPP);
2002 
2003 	/* Disallow this operation if the file system is mounted read-only. */
2004 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
2005 		return (EROFS);
2006 
2007 	/*
2008 	 * Callers may only modify the file flags on objects they
2009 	 * have VADMIN rights for.
2010 	 */
2011 	if ((error = VOP_ACCESS(vp, VADMIN, cred, td)))
2012 		return (error);
2013 	/*
2014 	 * Unprivileged processes are not permitted to unset system
2015 	 * flags, or modify flags if any system flags are set.
2016 	 */
2017 	if (!priv_check_cred(cred, PRIV_VFS_SYSFLAGS)) {
2018 		if (node->tn_flags &
2019 		    (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND)) {
2020 			error = securelevel_gt(cred, 0);
2021 			if (error)
2022 				return (error);
2023 		}
2024 	} else {
2025 		if (node->tn_flags &
2026 		    (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND) ||
2027 		    ((flags ^ node->tn_flags) & SF_SETTABLE))
2028 			return (EPERM);
2029 	}
2030 	node->tn_flags = flags;
2031 	node->tn_status |= TMPFS_NODE_CHANGED;
2032 
2033 	ASSERT_VOP_ELOCKED(vp, "chflags2");
2034 
2035 	return (0);
2036 }
2037 
2038 /*
2039  * Change access mode on the given vnode.
2040  * Caller should execute tmpfs_update on vp after a successful execution.
2041  * The vnode must be locked on entry and remain locked on exit.
2042  */
2043 int
2044 tmpfs_chmod(struct vnode *vp, mode_t mode, struct ucred *cred,
2045     struct thread *td)
2046 {
2047 	int error;
2048 	struct tmpfs_node *node;
2049 	mode_t newmode;
2050 
2051 	ASSERT_VOP_ELOCKED(vp, "chmod");
2052 	ASSERT_VOP_IN_SEQC(vp);
2053 
2054 	node = VP_TO_TMPFS_NODE(vp);
2055 
2056 	/* Disallow this operation if the file system is mounted read-only. */
2057 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
2058 		return (EROFS);
2059 
2060 	/* Immutable or append-only files cannot be modified, either. */
2061 	if (node->tn_flags & (IMMUTABLE | APPEND))
2062 		return (EPERM);
2063 
2064 	/*
2065 	 * To modify the permissions on a file, must possess VADMIN
2066 	 * for that file.
2067 	 */
2068 	if ((error = VOP_ACCESS(vp, VADMIN, cred, td)))
2069 		return (error);
2070 
2071 	/*
2072 	 * Privileged processes may set the sticky bit on non-directories,
2073 	 * as well as set the setgid bit on a file with a group that the
2074 	 * process is not a member of.
2075 	 */
2076 	if (vp->v_type != VDIR && (mode & S_ISTXT)) {
2077 		if (priv_check_cred(cred, PRIV_VFS_STICKYFILE))
2078 			return (EFTYPE);
2079 	}
2080 	if (!groupmember(node->tn_gid, cred) && (mode & S_ISGID)) {
2081 		error = priv_check_cred(cred, PRIV_VFS_SETGID);
2082 		if (error)
2083 			return (error);
2084 	}
2085 
2086 	newmode = node->tn_mode & ~ALLPERMS;
2087 	newmode |= mode & ALLPERMS;
2088 	atomic_store_short(&node->tn_mode, newmode);
2089 
2090 	node->tn_status |= TMPFS_NODE_CHANGED;
2091 
2092 	ASSERT_VOP_ELOCKED(vp, "chmod2");
2093 
2094 	return (0);
2095 }
2096 
2097 /*
2098  * Change ownership of the given vnode.  At least one of uid or gid must
2099  * be different than VNOVAL.  If one is set to that value, the attribute
2100  * is unchanged.
2101  * Caller should execute tmpfs_update on vp after a successful execution.
2102  * The vnode must be locked on entry and remain locked on exit.
2103  */
2104 int
2105 tmpfs_chown(struct vnode *vp, uid_t uid, gid_t gid, struct ucred *cred,
2106     struct thread *td)
2107 {
2108 	int error;
2109 	struct tmpfs_node *node;
2110 	uid_t ouid;
2111 	gid_t ogid;
2112 	mode_t newmode;
2113 
2114 	ASSERT_VOP_ELOCKED(vp, "chown");
2115 	ASSERT_VOP_IN_SEQC(vp);
2116 
2117 	node = VP_TO_TMPFS_NODE(vp);
2118 
2119 	/* Assign default values if they are unknown. */
2120 	MPASS(uid != VNOVAL || gid != VNOVAL);
2121 	if (uid == VNOVAL)
2122 		uid = node->tn_uid;
2123 	if (gid == VNOVAL)
2124 		gid = node->tn_gid;
2125 	MPASS(uid != VNOVAL && gid != VNOVAL);
2126 
2127 	/* Disallow this operation if the file system is mounted read-only. */
2128 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
2129 		return (EROFS);
2130 
2131 	/* Immutable or append-only files cannot be modified, either. */
2132 	if (node->tn_flags & (IMMUTABLE | APPEND))
2133 		return (EPERM);
2134 
2135 	/*
2136 	 * To modify the ownership of a file, must possess VADMIN for that
2137 	 * file.
2138 	 */
2139 	if ((error = VOP_ACCESS(vp, VADMIN, cred, td)))
2140 		return (error);
2141 
2142 	/*
2143 	 * To change the owner of a file, or change the group of a file to a
2144 	 * group of which we are not a member, the caller must have
2145 	 * privilege.
2146 	 */
2147 	if ((uid != node->tn_uid ||
2148 	    (gid != node->tn_gid && !groupmember(gid, cred))) &&
2149 	    (error = priv_check_cred(cred, PRIV_VFS_CHOWN)))
2150 		return (error);
2151 
2152 	ogid = node->tn_gid;
2153 	ouid = node->tn_uid;
2154 
2155 	node->tn_uid = uid;
2156 	node->tn_gid = gid;
2157 
2158 	node->tn_status |= TMPFS_NODE_CHANGED;
2159 
2160 	if ((node->tn_mode & (S_ISUID | S_ISGID)) != 0 &&
2161 	    (ouid != uid || ogid != gid)) {
2162 		if (priv_check_cred(cred, PRIV_VFS_RETAINSUGID)) {
2163 			newmode = node->tn_mode & ~(S_ISUID | S_ISGID);
2164 			atomic_store_short(&node->tn_mode, newmode);
2165 		}
2166 	}
2167 
2168 	ASSERT_VOP_ELOCKED(vp, "chown2");
2169 
2170 	return (0);
2171 }
2172 
2173 /*
2174  * Change size of the given vnode.
2175  * Caller should execute tmpfs_update on vp after a successful execution.
2176  * The vnode must be locked on entry and remain locked on exit.
2177  */
2178 int
2179 tmpfs_chsize(struct vnode *vp, u_quad_t size, struct ucred *cred,
2180     struct thread *td)
2181 {
2182 	int error;
2183 	struct tmpfs_node *node;
2184 
2185 	ASSERT_VOP_ELOCKED(vp, "chsize");
2186 
2187 	node = VP_TO_TMPFS_NODE(vp);
2188 
2189 	/* Decide whether this is a valid operation based on the file type. */
2190 	error = 0;
2191 	switch (vp->v_type) {
2192 	case VDIR:
2193 		return (EISDIR);
2194 
2195 	case VREG:
2196 		if (vp->v_mount->mnt_flag & MNT_RDONLY)
2197 			return (EROFS);
2198 		break;
2199 
2200 	case VBLK:
2201 		/* FALLTHROUGH */
2202 	case VCHR:
2203 		/* FALLTHROUGH */
2204 	case VFIFO:
2205 		/*
2206 		 * Allow modifications of special files even if in the file
2207 		 * system is mounted read-only (we are not modifying the
2208 		 * files themselves, but the objects they represent).
2209 		 */
2210 		return (0);
2211 
2212 	default:
2213 		/* Anything else is unsupported. */
2214 		return (EOPNOTSUPP);
2215 	}
2216 
2217 	/* Immutable or append-only files cannot be modified, either. */
2218 	if (node->tn_flags & (IMMUTABLE | APPEND))
2219 		return (EPERM);
2220 
2221 	error = vn_rlimit_trunc(size, td);
2222 	if (error != 0)
2223 		return (error);
2224 
2225 	error = tmpfs_truncate(vp, size);
2226 	/*
2227 	 * tmpfs_truncate will raise the NOTE_EXTEND and NOTE_ATTRIB kevents
2228 	 * for us, as will update tn_status; no need to do that here.
2229 	 */
2230 
2231 	ASSERT_VOP_ELOCKED(vp, "chsize2");
2232 
2233 	return (error);
2234 }
2235 
2236 /*
2237  * Change access and modification times of the given vnode.
2238  * Caller should execute tmpfs_update on vp after a successful execution.
2239  * The vnode must be locked on entry and remain locked on exit.
2240  */
2241 int
2242 tmpfs_chtimes(struct vnode *vp, struct vattr *vap,
2243     struct ucred *cred, struct thread *td)
2244 {
2245 	int error;
2246 	struct tmpfs_node *node;
2247 
2248 	ASSERT_VOP_ELOCKED(vp, "chtimes");
2249 
2250 	node = VP_TO_TMPFS_NODE(vp);
2251 
2252 	/* Disallow this operation if the file system is mounted read-only. */
2253 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
2254 		return (EROFS);
2255 
2256 	/* Immutable or append-only files cannot be modified, either. */
2257 	if (node->tn_flags & (IMMUTABLE | APPEND))
2258 		return (EPERM);
2259 
2260 	error = vn_utimes_perm(vp, vap, cred, td);
2261 	if (error != 0)
2262 		return (error);
2263 
2264 	if (vap->va_atime.tv_sec != VNOVAL)
2265 		node->tn_accessed = true;
2266 	if (vap->va_mtime.tv_sec != VNOVAL)
2267 		node->tn_status |= TMPFS_NODE_MODIFIED;
2268 	if (vap->va_birthtime.tv_sec != VNOVAL)
2269 		node->tn_status |= TMPFS_NODE_MODIFIED;
2270 	tmpfs_itimes(vp, &vap->va_atime, &vap->va_mtime);
2271 	if (vap->va_birthtime.tv_sec != VNOVAL)
2272 		node->tn_birthtime = vap->va_birthtime;
2273 	ASSERT_VOP_ELOCKED(vp, "chtimes2");
2274 
2275 	return (0);
2276 }
2277 
2278 void
2279 tmpfs_set_status(struct tmpfs_mount *tm, struct tmpfs_node *node, int status)
2280 {
2281 
2282 	if ((node->tn_status & status) == status || tm->tm_ronly)
2283 		return;
2284 	TMPFS_NODE_LOCK(node);
2285 	node->tn_status |= status;
2286 	TMPFS_NODE_UNLOCK(node);
2287 }
2288 
2289 void
2290 tmpfs_set_accessed(struct tmpfs_mount *tm, struct tmpfs_node *node)
2291 {
2292 	if (node->tn_accessed || tm->tm_ronly)
2293 		return;
2294 	atomic_store_8(&node->tn_accessed, true);
2295 }
2296 
2297 /* Sync timestamps */
2298 void
2299 tmpfs_itimes(struct vnode *vp, const struct timespec *acc,
2300     const struct timespec *mod)
2301 {
2302 	struct tmpfs_node *node;
2303 	struct timespec now;
2304 
2305 	ASSERT_VOP_LOCKED(vp, "tmpfs_itimes");
2306 	node = VP_TO_TMPFS_NODE(vp);
2307 
2308 	if (!node->tn_accessed &&
2309 	    (node->tn_status & (TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED)) == 0)
2310 		return;
2311 
2312 	vfs_timestamp(&now);
2313 	TMPFS_NODE_LOCK(node);
2314 	if (node->tn_accessed) {
2315 		if (acc == NULL)
2316 			 acc = &now;
2317 		node->tn_atime = *acc;
2318 	}
2319 	if (node->tn_status & TMPFS_NODE_MODIFIED) {
2320 		if (mod == NULL)
2321 			mod = &now;
2322 		node->tn_mtime = *mod;
2323 	}
2324 	if (node->tn_status & TMPFS_NODE_CHANGED)
2325 		node->tn_ctime = now;
2326 	node->tn_status &= ~(TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED);
2327 	node->tn_accessed = false;
2328 	TMPFS_NODE_UNLOCK(node);
2329 
2330 	/* XXX: FIX? The entropy here is desirable, but the harvesting may be expensive */
2331 	random_harvest_queue(node, sizeof(*node), RANDOM_FS_ATIME);
2332 }
2333 
2334 int
2335 tmpfs_truncate(struct vnode *vp, off_t length)
2336 {
2337 	struct tmpfs_node *node;
2338 	int error;
2339 
2340 	if (length < 0)
2341 		return (EINVAL);
2342 	if (length > VFS_TO_TMPFS(vp->v_mount)->tm_maxfilesize)
2343 		return (EFBIG);
2344 
2345 	node = VP_TO_TMPFS_NODE(vp);
2346 	error = node->tn_size == length ? 0 : tmpfs_reg_resize(vp, length,
2347 	    FALSE);
2348 	if (error == 0)
2349 		node->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED;
2350 	tmpfs_update(vp);
2351 
2352 	return (error);
2353 }
2354 
2355 static __inline int
2356 tmpfs_dirtree_cmp(struct tmpfs_dirent *a, struct tmpfs_dirent *b)
2357 {
2358 	if (a->td_hash > b->td_hash)
2359 		return (1);
2360 	else if (a->td_hash < b->td_hash)
2361 		return (-1);
2362 	return (0);
2363 }
2364 
2365 RB_GENERATE_STATIC(tmpfs_dir, tmpfs_dirent, uh.td_entries, tmpfs_dirtree_cmp);
2366