1 /* $NetBSD: tmpfs_subr.c,v 1.35 2007/07/09 21:10:50 ad Exp $ */ 2 3 /*- 4 * SPDX-License-Identifier: BSD-2-Clause-NetBSD 5 * 6 * Copyright (c) 2005 The NetBSD Foundation, Inc. 7 * All rights reserved. 8 * 9 * This code is derived from software contributed to The NetBSD Foundation 10 * by Julio M. Merino Vidal, developed as part of Google's Summer of Code 11 * 2005 program. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 32 * POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 /* 36 * Efficient memory file system supporting functions. 37 */ 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/dirent.h> 44 #include <sys/fnv_hash.h> 45 #include <sys/lock.h> 46 #include <sys/limits.h> 47 #include <sys/mount.h> 48 #include <sys/namei.h> 49 #include <sys/priv.h> 50 #include <sys/proc.h> 51 #include <sys/random.h> 52 #include <sys/refcount.h> 53 #include <sys/rwlock.h> 54 #include <sys/smr.h> 55 #include <sys/stat.h> 56 #include <sys/sysctl.h> 57 #include <sys/user.h> 58 #include <sys/vnode.h> 59 #include <sys/vmmeter.h> 60 61 #include <vm/vm.h> 62 #include <vm/vm_param.h> 63 #include <vm/vm_object.h> 64 #include <vm/vm_page.h> 65 #include <vm/vm_pageout.h> 66 #include <vm/vm_pager.h> 67 #include <vm/vm_extern.h> 68 #include <vm/swap_pager.h> 69 70 #include <fs/tmpfs/tmpfs.h> 71 #include <fs/tmpfs/tmpfs_fifoops.h> 72 #include <fs/tmpfs/tmpfs_vnops.h> 73 74 SYSCTL_NODE(_vfs, OID_AUTO, tmpfs, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 75 "tmpfs file system"); 76 77 static long tmpfs_pages_reserved = TMPFS_PAGES_MINRESERVED; 78 79 MALLOC_DEFINE(M_TMPFSDIR, "tmpfs dir", "tmpfs dirent structure"); 80 static uma_zone_t tmpfs_node_pool; 81 VFS_SMR_DECLARE; 82 83 int tmpfs_pager_type = -1; 84 85 static vm_object_t 86 tmpfs_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 87 vm_ooffset_t offset, struct ucred *cred) 88 { 89 vm_object_t object; 90 91 MPASS(handle == NULL); 92 MPASS(offset == 0); 93 object = vm_object_allocate_dyn(tmpfs_pager_type, size, 94 OBJ_COLORED | OBJ_SWAP); 95 if (!swap_pager_init_object(object, NULL, NULL, size, 0)) { 96 vm_object_deallocate(object); 97 object = NULL; 98 } 99 return (object); 100 } 101 102 /* 103 * Make sure tmpfs vnodes with writable mappings can be found on the lazy list. 104 * 105 * This allows for periodic mtime updates while only scanning vnodes which are 106 * plausibly dirty, see tmpfs_update_mtime_lazy. 107 */ 108 static void 109 tmpfs_pager_writecount_recalc(vm_object_t object, vm_offset_t old, 110 vm_offset_t new) 111 { 112 struct vnode *vp; 113 114 VM_OBJECT_ASSERT_WLOCKED(object); 115 116 vp = VM_TO_TMPFS_VP(object); 117 118 /* 119 * Forced unmount? 120 */ 121 if (vp == NULL) { 122 KASSERT((object->flags & OBJ_TMPFS_VREF) == 0, 123 ("object %p with OBJ_TMPFS_VREF but without vnode", 124 object)); 125 VM_OBJECT_WUNLOCK(object); 126 return; 127 } 128 129 if (old == 0) { 130 VNASSERT((object->flags & OBJ_TMPFS_VREF) == 0, vp, 131 ("object without writable mappings has a reference")); 132 VNPASS(vp->v_usecount > 0, vp); 133 } else { 134 VNASSERT((object->flags & OBJ_TMPFS_VREF) != 0, vp, 135 ("object with writable mappings does not " 136 "have a reference")); 137 } 138 139 if (old == new) { 140 VM_OBJECT_WUNLOCK(object); 141 return; 142 } 143 144 if (new == 0) { 145 vm_object_clear_flag(object, OBJ_TMPFS_VREF); 146 VM_OBJECT_WUNLOCK(object); 147 vrele(vp); 148 } else { 149 if ((object->flags & OBJ_TMPFS_VREF) == 0) { 150 vref(vp); 151 vlazy(vp); 152 vm_object_set_flag(object, OBJ_TMPFS_VREF); 153 } 154 VM_OBJECT_WUNLOCK(object); 155 } 156 } 157 158 static void 159 tmpfs_pager_update_writecount(vm_object_t object, vm_offset_t start, 160 vm_offset_t end) 161 { 162 vm_offset_t new, old; 163 164 VM_OBJECT_WLOCK(object); 165 KASSERT((object->flags & OBJ_ANON) == 0, 166 ("%s: object %p with OBJ_ANON", __func__, object)); 167 old = object->un_pager.swp.writemappings; 168 object->un_pager.swp.writemappings += (vm_ooffset_t)end - start; 169 new = object->un_pager.swp.writemappings; 170 tmpfs_pager_writecount_recalc(object, old, new); 171 VM_OBJECT_ASSERT_UNLOCKED(object); 172 } 173 174 static void 175 tmpfs_pager_release_writecount(vm_object_t object, vm_offset_t start, 176 vm_offset_t end) 177 { 178 vm_offset_t new, old; 179 180 VM_OBJECT_WLOCK(object); 181 KASSERT((object->flags & OBJ_ANON) == 0, 182 ("%s: object %p with OBJ_ANON", __func__, object)); 183 old = object->un_pager.swp.writemappings; 184 object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start; 185 new = object->un_pager.swp.writemappings; 186 tmpfs_pager_writecount_recalc(object, old, new); 187 VM_OBJECT_ASSERT_UNLOCKED(object); 188 } 189 190 static void 191 tmpfs_pager_getvp(vm_object_t object, struct vnode **vpp, bool *vp_heldp) 192 { 193 struct vnode *vp; 194 195 /* 196 * Tmpfs VREG node, which was reclaimed, has tmpfs_pager_type 197 * type. In this case there is no v_writecount to adjust. 198 */ 199 if (vp_heldp != NULL) 200 VM_OBJECT_RLOCK(object); 201 else 202 VM_OBJECT_ASSERT_LOCKED(object); 203 if ((object->flags & OBJ_TMPFS) != 0) { 204 vp = VM_TO_TMPFS_VP(object); 205 if (vp != NULL) { 206 *vpp = vp; 207 if (vp_heldp != NULL) { 208 vhold(vp); 209 *vp_heldp = true; 210 } 211 } 212 } 213 if (vp_heldp != NULL) 214 VM_OBJECT_RUNLOCK(object); 215 } 216 217 static void 218 tmpfs_pager_freespace(vm_object_t obj, vm_pindex_t start, vm_size_t size) 219 { 220 struct tmpfs_node *node; 221 struct tmpfs_mount *tm; 222 vm_size_t c; 223 224 swap_pager_freespace(obj, start, size, &c); 225 if ((obj->flags & OBJ_TMPFS) == 0 || c == 0) 226 return; 227 228 node = obj->un_pager.swp.swp_priv; 229 MPASS(node->tn_type == VREG); 230 tm = node->tn_reg.tn_tmp; 231 232 KASSERT(tm->tm_pages_used >= c, 233 ("tmpfs tm %p pages %jd free %jd", tm, 234 (uintmax_t)tm->tm_pages_used, (uintmax_t)c)); 235 atomic_add_long(&tm->tm_pages_used, -c); 236 KASSERT(node->tn_reg.tn_pages >= c, 237 ("tmpfs node %p pages %jd free %jd", node, 238 (uintmax_t)node->tn_reg.tn_pages, (uintmax_t)c)); 239 node->tn_reg.tn_pages -= c; 240 } 241 242 static void 243 tmpfs_page_inserted(vm_object_t obj, vm_page_t m) 244 { 245 struct tmpfs_node *node; 246 struct tmpfs_mount *tm; 247 248 if ((obj->flags & OBJ_TMPFS) == 0) 249 return; 250 251 node = obj->un_pager.swp.swp_priv; 252 MPASS(node->tn_type == VREG); 253 tm = node->tn_reg.tn_tmp; 254 255 if (!vm_pager_has_page(obj, m->pindex, NULL, NULL)) { 256 atomic_add_long(&tm->tm_pages_used, 1); 257 node->tn_reg.tn_pages += 1; 258 } 259 } 260 261 static void 262 tmpfs_page_removed(vm_object_t obj, vm_page_t m) 263 { 264 struct tmpfs_node *node; 265 struct tmpfs_mount *tm; 266 267 if ((obj->flags & OBJ_TMPFS) == 0) 268 return; 269 270 node = obj->un_pager.swp.swp_priv; 271 MPASS(node->tn_type == VREG); 272 tm = node->tn_reg.tn_tmp; 273 274 if (!vm_pager_has_page(obj, m->pindex, NULL, NULL)) { 275 KASSERT(tm->tm_pages_used >= 1, 276 ("tmpfs tm %p pages %jd free 1", tm, 277 (uintmax_t)tm->tm_pages_used)); 278 atomic_add_long(&tm->tm_pages_used, -1); 279 KASSERT(node->tn_reg.tn_pages >= 1, 280 ("tmpfs node %p pages %jd free 1", node, 281 (uintmax_t)node->tn_reg.tn_pages)); 282 node->tn_reg.tn_pages -= 1; 283 } 284 } 285 286 static boolean_t 287 tmpfs_can_alloc_page(vm_object_t obj, vm_pindex_t pindex) 288 { 289 struct tmpfs_mount *tm; 290 291 tm = VM_TO_TMPFS_MP(obj); 292 if (tm == NULL || vm_pager_has_page(obj, pindex, NULL, NULL) || 293 tm->tm_pages_max == 0) 294 return (true); 295 return (tm->tm_pages_max > atomic_load_long(&tm->tm_pages_used)); 296 } 297 298 struct pagerops tmpfs_pager_ops = { 299 .pgo_kvme_type = KVME_TYPE_VNODE, 300 .pgo_alloc = tmpfs_pager_alloc, 301 .pgo_set_writeable_dirty = vm_object_set_writeable_dirty_, 302 .pgo_update_writecount = tmpfs_pager_update_writecount, 303 .pgo_release_writecount = tmpfs_pager_release_writecount, 304 .pgo_mightbedirty = vm_object_mightbedirty_, 305 .pgo_getvp = tmpfs_pager_getvp, 306 .pgo_freespace = tmpfs_pager_freespace, 307 .pgo_page_inserted = tmpfs_page_inserted, 308 .pgo_page_removed = tmpfs_page_removed, 309 .pgo_can_alloc_page = tmpfs_can_alloc_page, 310 }; 311 312 static int 313 tmpfs_node_ctor(void *mem, int size, void *arg, int flags) 314 { 315 struct tmpfs_node *node; 316 317 node = mem; 318 node->tn_gen++; 319 node->tn_size = 0; 320 node->tn_status = 0; 321 node->tn_accessed = false; 322 node->tn_flags = 0; 323 node->tn_links = 0; 324 node->tn_vnode = NULL; 325 node->tn_vpstate = 0; 326 return (0); 327 } 328 329 static void 330 tmpfs_node_dtor(void *mem, int size, void *arg) 331 { 332 struct tmpfs_node *node; 333 334 node = mem; 335 node->tn_type = VNON; 336 } 337 338 static int 339 tmpfs_node_init(void *mem, int size, int flags) 340 { 341 struct tmpfs_node *node; 342 343 node = mem; 344 node->tn_id = 0; 345 mtx_init(&node->tn_interlock, "tmpfsni", NULL, MTX_DEF); 346 node->tn_gen = arc4random(); 347 return (0); 348 } 349 350 static void 351 tmpfs_node_fini(void *mem, int size) 352 { 353 struct tmpfs_node *node; 354 355 node = mem; 356 mtx_destroy(&node->tn_interlock); 357 } 358 359 int 360 tmpfs_subr_init(void) 361 { 362 tmpfs_pager_type = vm_pager_alloc_dyn_type(&tmpfs_pager_ops, 363 OBJT_SWAP); 364 if (tmpfs_pager_type == -1) 365 return (EINVAL); 366 tmpfs_node_pool = uma_zcreate("TMPFS node", 367 sizeof(struct tmpfs_node), tmpfs_node_ctor, tmpfs_node_dtor, 368 tmpfs_node_init, tmpfs_node_fini, UMA_ALIGN_PTR, 0); 369 VFS_SMR_ZONE_SET(tmpfs_node_pool); 370 return (0); 371 } 372 373 void 374 tmpfs_subr_uninit(void) 375 { 376 if (tmpfs_pager_type != -1) 377 vm_pager_free_dyn_type(tmpfs_pager_type); 378 tmpfs_pager_type = -1; 379 uma_zdestroy(tmpfs_node_pool); 380 } 381 382 static int 383 sysctl_mem_reserved(SYSCTL_HANDLER_ARGS) 384 { 385 int error; 386 long pages, bytes; 387 388 pages = *(long *)arg1; 389 bytes = pages * PAGE_SIZE; 390 391 error = sysctl_handle_long(oidp, &bytes, 0, req); 392 if (error || !req->newptr) 393 return (error); 394 395 pages = bytes / PAGE_SIZE; 396 if (pages < TMPFS_PAGES_MINRESERVED) 397 return (EINVAL); 398 399 *(long *)arg1 = pages; 400 return (0); 401 } 402 403 SYSCTL_PROC(_vfs_tmpfs, OID_AUTO, memory_reserved, 404 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &tmpfs_pages_reserved, 0, 405 sysctl_mem_reserved, "L", 406 "Amount of available memory and swap below which tmpfs growth stops"); 407 408 static __inline int tmpfs_dirtree_cmp(struct tmpfs_dirent *a, 409 struct tmpfs_dirent *b); 410 RB_PROTOTYPE_STATIC(tmpfs_dir, tmpfs_dirent, uh.td_entries, tmpfs_dirtree_cmp); 411 412 size_t 413 tmpfs_mem_avail(void) 414 { 415 size_t avail; 416 long reserved; 417 418 avail = swap_pager_avail + vm_free_count(); 419 reserved = atomic_load_long(&tmpfs_pages_reserved); 420 if (__predict_false(avail < reserved)) 421 return (0); 422 return (avail - reserved); 423 } 424 425 size_t 426 tmpfs_pages_used(struct tmpfs_mount *tmp) 427 { 428 const size_t node_size = sizeof(struct tmpfs_node) + 429 sizeof(struct tmpfs_dirent); 430 size_t meta_pages; 431 432 meta_pages = howmany((uintmax_t)tmp->tm_nodes_inuse * node_size, 433 PAGE_SIZE); 434 return (meta_pages + tmp->tm_pages_used); 435 } 436 437 bool 438 tmpfs_pages_check_avail(struct tmpfs_mount *tmp, size_t req_pages) 439 { 440 if (tmpfs_mem_avail() < req_pages) 441 return (false); 442 443 if (tmp->tm_pages_max != ULONG_MAX && 444 tmp->tm_pages_max < req_pages + tmpfs_pages_used(tmp)) 445 return (false); 446 447 return (true); 448 } 449 450 static int 451 tmpfs_partial_page_invalidate(vm_object_t object, vm_pindex_t idx, int base, 452 int end, boolean_t ignerr) 453 { 454 vm_page_t m; 455 int rv, error; 456 457 VM_OBJECT_ASSERT_WLOCKED(object); 458 KASSERT(base >= 0, ("%s: base %d", __func__, base)); 459 KASSERT(end - base <= PAGE_SIZE, ("%s: base %d end %d", __func__, base, 460 end)); 461 error = 0; 462 463 retry: 464 m = vm_page_grab(object, idx, VM_ALLOC_NOCREAT); 465 if (m != NULL) { 466 MPASS(vm_page_all_valid(m)); 467 } else if (vm_pager_has_page(object, idx, NULL, NULL)) { 468 m = vm_page_alloc(object, idx, VM_ALLOC_NORMAL | 469 VM_ALLOC_WAITFAIL); 470 if (m == NULL) 471 goto retry; 472 vm_object_pip_add(object, 1); 473 VM_OBJECT_WUNLOCK(object); 474 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL); 475 VM_OBJECT_WLOCK(object); 476 vm_object_pip_wakeup(object); 477 if (rv == VM_PAGER_OK) { 478 /* 479 * Since the page was not resident, and therefore not 480 * recently accessed, immediately enqueue it for 481 * asynchronous laundering. The current operation is 482 * not regarded as an access. 483 */ 484 vm_page_launder(m); 485 } else { 486 vm_page_free(m); 487 m = NULL; 488 if (!ignerr) 489 error = EIO; 490 } 491 } 492 if (m != NULL) { 493 pmap_zero_page_area(m, base, end - base); 494 vm_page_set_dirty(m); 495 vm_page_xunbusy(m); 496 } 497 498 return (error); 499 } 500 501 void 502 tmpfs_ref_node(struct tmpfs_node *node) 503 { 504 #ifdef INVARIANTS 505 u_int old; 506 507 old = 508 #endif 509 refcount_acquire(&node->tn_refcount); 510 #ifdef INVARIANTS 511 KASSERT(old > 0, ("node %p zero refcount", node)); 512 #endif 513 } 514 515 /* 516 * Allocates a new node of type 'type' inside the 'tmp' mount point, with 517 * its owner set to 'uid', its group to 'gid' and its mode set to 'mode', 518 * using the credentials of the process 'p'. 519 * 520 * If the node type is set to 'VDIR', then the parent parameter must point 521 * to the parent directory of the node being created. It may only be NULL 522 * while allocating the root node. 523 * 524 * If the node type is set to 'VBLK' or 'VCHR', then the rdev parameter 525 * specifies the device the node represents. 526 * 527 * If the node type is set to 'VLNK', then the parameter target specifies 528 * the file name of the target file for the symbolic link that is being 529 * created. 530 * 531 * Note that new nodes are retrieved from the available list if it has 532 * items or, if it is empty, from the node pool as long as there is enough 533 * space to create them. 534 * 535 * Returns zero on success or an appropriate error code on failure. 536 */ 537 int 538 tmpfs_alloc_node(struct mount *mp, struct tmpfs_mount *tmp, enum vtype type, 539 uid_t uid, gid_t gid, mode_t mode, struct tmpfs_node *parent, 540 const char *target, dev_t rdev, struct tmpfs_node **node) 541 { 542 struct tmpfs_node *nnode; 543 char *symlink; 544 char symlink_smr; 545 546 /* If the root directory of the 'tmp' file system is not yet 547 * allocated, this must be the request to do it. */ 548 MPASS(IMPLIES(tmp->tm_root == NULL, parent == NULL && type == VDIR)); 549 550 MPASS(IFF(type == VLNK, target != NULL)); 551 MPASS(IFF(type == VBLK || type == VCHR, rdev != VNOVAL)); 552 553 if (tmp->tm_nodes_inuse >= tmp->tm_nodes_max) 554 return (ENOSPC); 555 if (!tmpfs_pages_check_avail(tmp, 1)) 556 return (ENOSPC); 557 558 if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) { 559 /* 560 * When a new tmpfs node is created for fully 561 * constructed mount point, there must be a parent 562 * node, which vnode is locked exclusively. As 563 * consequence, if the unmount is executing in 564 * parallel, vflush() cannot reclaim the parent vnode. 565 * Due to this, the check for MNTK_UNMOUNT flag is not 566 * racy: if we did not see MNTK_UNMOUNT flag, then tmp 567 * cannot be destroyed until node construction is 568 * finished and the parent vnode unlocked. 569 * 570 * Tmpfs does not need to instantiate new nodes during 571 * unmount. 572 */ 573 return (EBUSY); 574 } 575 if ((mp->mnt_kern_flag & MNT_RDONLY) != 0) 576 return (EROFS); 577 578 nnode = uma_zalloc_smr(tmpfs_node_pool, M_WAITOK); 579 580 /* Generic initialization. */ 581 nnode->tn_type = type; 582 vfs_timestamp(&nnode->tn_atime); 583 nnode->tn_birthtime = nnode->tn_ctime = nnode->tn_mtime = 584 nnode->tn_atime; 585 nnode->tn_uid = uid; 586 nnode->tn_gid = gid; 587 nnode->tn_mode = mode; 588 nnode->tn_id = alloc_unr64(&tmp->tm_ino_unr); 589 nnode->tn_refcount = 1; 590 LIST_INIT(&nnode->tn_extattrs); 591 592 /* Type-specific initialization. */ 593 switch (nnode->tn_type) { 594 case VBLK: 595 case VCHR: 596 nnode->tn_rdev = rdev; 597 break; 598 599 case VDIR: 600 RB_INIT(&nnode->tn_dir.tn_dirhead); 601 LIST_INIT(&nnode->tn_dir.tn_dupindex); 602 MPASS(parent != nnode); 603 MPASS(IMPLIES(parent == NULL, tmp->tm_root == NULL)); 604 nnode->tn_dir.tn_parent = (parent == NULL) ? nnode : parent; 605 nnode->tn_dir.tn_readdir_lastn = 0; 606 nnode->tn_dir.tn_readdir_lastp = NULL; 607 nnode->tn_links++; 608 TMPFS_NODE_LOCK(nnode->tn_dir.tn_parent); 609 nnode->tn_dir.tn_parent->tn_links++; 610 TMPFS_NODE_UNLOCK(nnode->tn_dir.tn_parent); 611 break; 612 613 case VFIFO: 614 /* FALLTHROUGH */ 615 case VSOCK: 616 break; 617 618 case VLNK: 619 MPASS(strlen(target) < MAXPATHLEN); 620 nnode->tn_size = strlen(target); 621 622 symlink = NULL; 623 if (!tmp->tm_nonc) { 624 symlink = cache_symlink_alloc(nnode->tn_size + 1, 625 M_WAITOK); 626 symlink_smr = true; 627 } 628 if (symlink == NULL) { 629 symlink = malloc(nnode->tn_size + 1, M_TMPFSNAME, 630 M_WAITOK); 631 symlink_smr = false; 632 } 633 memcpy(symlink, target, nnode->tn_size + 1); 634 635 /* 636 * Allow safe symlink resolving for lockless lookup. 637 * tmpfs_fplookup_symlink references this comment. 638 * 639 * 1. nnode is not yet visible to the world 640 * 2. both tn_link_target and tn_link_smr get populated 641 * 3. release fence publishes their content 642 * 4. tn_link_target content is immutable until node 643 * destruction, where the pointer gets set to NULL 644 * 5. tn_link_smr is never changed once set 645 * 646 * As a result it is sufficient to issue load consume 647 * on the node pointer to also get the above content 648 * in a stable manner. Worst case tn_link_smr flag 649 * may be set to true despite being stale, while the 650 * target buffer is already cleared out. 651 */ 652 atomic_store_ptr(&nnode->tn_link_target, symlink); 653 atomic_store_char((char *)&nnode->tn_link_smr, symlink_smr); 654 atomic_thread_fence_rel(); 655 break; 656 657 case VREG: 658 nnode->tn_reg.tn_aobj = 659 vm_pager_allocate(tmpfs_pager_type, NULL, 0, 660 VM_PROT_DEFAULT, 0, 661 NULL /* XXXKIB - tmpfs needs swap reservation */); 662 nnode->tn_reg.tn_aobj->un_pager.swp.swp_priv = nnode; 663 vm_object_set_flag(nnode->tn_reg.tn_aobj, OBJ_TMPFS); 664 nnode->tn_reg.tn_tmp = tmp; 665 nnode->tn_reg.tn_pages = 0; 666 break; 667 668 default: 669 panic("tmpfs_alloc_node: type %p %d", nnode, 670 (int)nnode->tn_type); 671 } 672 673 TMPFS_LOCK(tmp); 674 LIST_INSERT_HEAD(&tmp->tm_nodes_used, nnode, tn_entries); 675 nnode->tn_attached = true; 676 tmp->tm_nodes_inuse++; 677 tmp->tm_refcount++; 678 TMPFS_UNLOCK(tmp); 679 680 *node = nnode; 681 return (0); 682 } 683 684 /* 685 * Destroys the node pointed to by node from the file system 'tmp'. 686 * If the node references a directory, no entries are allowed. 687 */ 688 void 689 tmpfs_free_node(struct tmpfs_mount *tmp, struct tmpfs_node *node) 690 { 691 if (refcount_release_if_not_last(&node->tn_refcount)) 692 return; 693 694 TMPFS_LOCK(tmp); 695 TMPFS_NODE_LOCK(node); 696 if (!tmpfs_free_node_locked(tmp, node, false)) { 697 TMPFS_NODE_UNLOCK(node); 698 TMPFS_UNLOCK(tmp); 699 } 700 } 701 702 bool 703 tmpfs_free_node_locked(struct tmpfs_mount *tmp, struct tmpfs_node *node, 704 bool detach) 705 { 706 struct tmpfs_extattr *ea; 707 vm_object_t uobj; 708 char *symlink; 709 bool last; 710 711 TMPFS_MP_ASSERT_LOCKED(tmp); 712 TMPFS_NODE_ASSERT_LOCKED(node); 713 714 last = refcount_release(&node->tn_refcount); 715 if (node->tn_attached && (detach || last)) { 716 MPASS(tmp->tm_nodes_inuse > 0); 717 tmp->tm_nodes_inuse--; 718 LIST_REMOVE(node, tn_entries); 719 node->tn_attached = false; 720 } 721 if (!last) 722 return (false); 723 724 TMPFS_NODE_UNLOCK(node); 725 726 #ifdef INVARIANTS 727 MPASS(node->tn_vnode == NULL); 728 MPASS((node->tn_vpstate & TMPFS_VNODE_ALLOCATING) == 0); 729 730 /* 731 * Make sure this is a node type we can deal with. Everything 732 * is explicitly enumerated without the 'default' clause so 733 * the compiler can throw an error in case a new type is 734 * added. 735 */ 736 switch (node->tn_type) { 737 case VBLK: 738 case VCHR: 739 case VDIR: 740 case VFIFO: 741 case VSOCK: 742 case VLNK: 743 case VREG: 744 break; 745 case VNON: 746 case VBAD: 747 case VMARKER: 748 panic("%s: bad type %d for node %p", __func__, 749 (int)node->tn_type, node); 750 } 751 #endif 752 753 while ((ea = LIST_FIRST(&node->tn_extattrs)) != NULL) { 754 LIST_REMOVE(ea, ea_extattrs); 755 tmpfs_extattr_free(ea); 756 } 757 758 switch (node->tn_type) { 759 case VREG: 760 uobj = node->tn_reg.tn_aobj; 761 node->tn_reg.tn_aobj = NULL; 762 if (uobj != NULL) { 763 VM_OBJECT_WLOCK(uobj); 764 KASSERT((uobj->flags & OBJ_TMPFS) != 0, 765 ("tmpfs node %p uobj %p not tmpfs", node, uobj)); 766 vm_object_clear_flag(uobj, OBJ_TMPFS); 767 KASSERT(tmp->tm_pages_used >= node->tn_reg.tn_pages, 768 ("tmpfs tmp %p node %p pages %jd free %jd", tmp, 769 node, (uintmax_t)tmp->tm_pages_used, 770 (uintmax_t)node->tn_reg.tn_pages)); 771 atomic_add_long(&tmp->tm_pages_used, 772 -node->tn_reg.tn_pages); 773 VM_OBJECT_WUNLOCK(uobj); 774 } 775 tmpfs_free_tmp(tmp); 776 777 /* 778 * vm_object_deallocate() must not be called while 779 * owning tm_allnode_lock, because deallocate might 780 * sleep. Call it after tmpfs_free_tmp() does the 781 * unlock. 782 */ 783 if (uobj != NULL) 784 vm_object_deallocate(uobj); 785 786 break; 787 case VLNK: 788 tmpfs_free_tmp(tmp); 789 790 symlink = node->tn_link_target; 791 atomic_store_ptr(&node->tn_link_target, NULL); 792 if (atomic_load_char(&node->tn_link_smr)) { 793 cache_symlink_free(symlink, node->tn_size + 1); 794 } else { 795 free(symlink, M_TMPFSNAME); 796 } 797 break; 798 default: 799 tmpfs_free_tmp(tmp); 800 break; 801 } 802 803 uma_zfree_smr(tmpfs_node_pool, node); 804 return (true); 805 } 806 807 static __inline uint32_t 808 tmpfs_dirent_hash(const char *name, u_int len) 809 { 810 uint32_t hash; 811 812 hash = fnv_32_buf(name, len, FNV1_32_INIT + len) & TMPFS_DIRCOOKIE_MASK; 813 #ifdef TMPFS_DEBUG_DIRCOOKIE_DUP 814 hash &= 0xf; 815 #endif 816 if (hash < TMPFS_DIRCOOKIE_MIN) 817 hash += TMPFS_DIRCOOKIE_MIN; 818 819 return (hash); 820 } 821 822 static __inline off_t 823 tmpfs_dirent_cookie(struct tmpfs_dirent *de) 824 { 825 if (de == NULL) 826 return (TMPFS_DIRCOOKIE_EOF); 827 828 MPASS(de->td_cookie >= TMPFS_DIRCOOKIE_MIN); 829 830 return (de->td_cookie); 831 } 832 833 static __inline boolean_t 834 tmpfs_dirent_dup(struct tmpfs_dirent *de) 835 { 836 return ((de->td_cookie & TMPFS_DIRCOOKIE_DUP) != 0); 837 } 838 839 static __inline boolean_t 840 tmpfs_dirent_duphead(struct tmpfs_dirent *de) 841 { 842 return ((de->td_cookie & TMPFS_DIRCOOKIE_DUPHEAD) != 0); 843 } 844 845 void 846 tmpfs_dirent_init(struct tmpfs_dirent *de, const char *name, u_int namelen) 847 { 848 de->td_hash = de->td_cookie = tmpfs_dirent_hash(name, namelen); 849 memcpy(de->ud.td_name, name, namelen); 850 de->td_namelen = namelen; 851 } 852 853 /* 854 * Allocates a new directory entry for the node node with a name of name. 855 * The new directory entry is returned in *de. 856 * 857 * The link count of node is increased by one to reflect the new object 858 * referencing it. 859 * 860 * Returns zero on success or an appropriate error code on failure. 861 */ 862 int 863 tmpfs_alloc_dirent(struct tmpfs_mount *tmp, struct tmpfs_node *node, 864 const char *name, u_int len, struct tmpfs_dirent **de) 865 { 866 struct tmpfs_dirent *nde; 867 868 nde = malloc(sizeof(*nde), M_TMPFSDIR, M_WAITOK); 869 nde->td_node = node; 870 if (name != NULL) { 871 nde->ud.td_name = malloc(len, M_TMPFSNAME, M_WAITOK); 872 tmpfs_dirent_init(nde, name, len); 873 } else 874 nde->td_namelen = 0; 875 if (node != NULL) 876 node->tn_links++; 877 878 *de = nde; 879 880 return (0); 881 } 882 883 /* 884 * Frees a directory entry. It is the caller's responsibility to destroy 885 * the node referenced by it if needed. 886 * 887 * The link count of node is decreased by one to reflect the removal of an 888 * object that referenced it. This only happens if 'node_exists' is true; 889 * otherwise the function will not access the node referred to by the 890 * directory entry, as it may already have been released from the outside. 891 */ 892 void 893 tmpfs_free_dirent(struct tmpfs_mount *tmp, struct tmpfs_dirent *de) 894 { 895 struct tmpfs_node *node; 896 897 node = de->td_node; 898 if (node != NULL) { 899 MPASS(node->tn_links > 0); 900 node->tn_links--; 901 } 902 if (!tmpfs_dirent_duphead(de) && de->ud.td_name != NULL) 903 free(de->ud.td_name, M_TMPFSNAME); 904 free(de, M_TMPFSDIR); 905 } 906 907 void 908 tmpfs_destroy_vobject(struct vnode *vp, vm_object_t obj) 909 { 910 bool want_vrele; 911 912 ASSERT_VOP_ELOCKED(vp, "tmpfs_destroy_vobject"); 913 if (vp->v_type != VREG || obj == NULL) 914 return; 915 916 VM_OBJECT_WLOCK(obj); 917 VI_LOCK(vp); 918 /* 919 * May be going through forced unmount. 920 */ 921 want_vrele = false; 922 if ((obj->flags & OBJ_TMPFS_VREF) != 0) { 923 vm_object_clear_flag(obj, OBJ_TMPFS_VREF); 924 want_vrele = true; 925 } 926 927 if (vp->v_writecount < 0) 928 vp->v_writecount = 0; 929 VI_UNLOCK(vp); 930 VM_OBJECT_WUNLOCK(obj); 931 if (want_vrele) { 932 vrele(vp); 933 } 934 } 935 936 /* 937 * Allocates a new vnode for the node node or returns a new reference to 938 * an existing one if the node had already a vnode referencing it. The 939 * resulting locked vnode is returned in *vpp. 940 * 941 * Returns zero on success or an appropriate error code on failure. 942 */ 943 int 944 tmpfs_alloc_vp(struct mount *mp, struct tmpfs_node *node, int lkflag, 945 struct vnode **vpp) 946 { 947 struct vnode *vp; 948 enum vgetstate vs; 949 struct tmpfs_mount *tm; 950 vm_object_t object; 951 int error; 952 953 error = 0; 954 tm = VFS_TO_TMPFS(mp); 955 TMPFS_NODE_LOCK(node); 956 tmpfs_ref_node(node); 957 loop: 958 TMPFS_NODE_ASSERT_LOCKED(node); 959 if ((vp = node->tn_vnode) != NULL) { 960 MPASS((node->tn_vpstate & TMPFS_VNODE_DOOMED) == 0); 961 if ((node->tn_type == VDIR && node->tn_dir.tn_parent == NULL) || 962 (VN_IS_DOOMED(vp) && 963 (lkflag & LK_NOWAIT) != 0)) { 964 TMPFS_NODE_UNLOCK(node); 965 error = ENOENT; 966 vp = NULL; 967 goto out; 968 } 969 if (VN_IS_DOOMED(vp)) { 970 node->tn_vpstate |= TMPFS_VNODE_WRECLAIM; 971 while ((node->tn_vpstate & TMPFS_VNODE_WRECLAIM) != 0) { 972 msleep(&node->tn_vnode, TMPFS_NODE_MTX(node), 973 0, "tmpfsE", 0); 974 } 975 goto loop; 976 } 977 vs = vget_prep(vp); 978 TMPFS_NODE_UNLOCK(node); 979 error = vget_finish(vp, lkflag, vs); 980 if (error == ENOENT) { 981 TMPFS_NODE_LOCK(node); 982 goto loop; 983 } 984 if (error != 0) { 985 vp = NULL; 986 goto out; 987 } 988 989 /* 990 * Make sure the vnode is still there after 991 * getting the interlock to avoid racing a free. 992 */ 993 if (node->tn_vnode != vp) { 994 vput(vp); 995 TMPFS_NODE_LOCK(node); 996 goto loop; 997 } 998 999 goto out; 1000 } 1001 1002 if ((node->tn_vpstate & TMPFS_VNODE_DOOMED) || 1003 (node->tn_type == VDIR && node->tn_dir.tn_parent == NULL)) { 1004 TMPFS_NODE_UNLOCK(node); 1005 error = ENOENT; 1006 vp = NULL; 1007 goto out; 1008 } 1009 1010 /* 1011 * otherwise lock the vp list while we call getnewvnode 1012 * since that can block. 1013 */ 1014 if (node->tn_vpstate & TMPFS_VNODE_ALLOCATING) { 1015 node->tn_vpstate |= TMPFS_VNODE_WANT; 1016 error = msleep((caddr_t) &node->tn_vpstate, 1017 TMPFS_NODE_MTX(node), 0, "tmpfs_alloc_vp", 0); 1018 if (error != 0) 1019 goto out; 1020 goto loop; 1021 } else 1022 node->tn_vpstate |= TMPFS_VNODE_ALLOCATING; 1023 1024 TMPFS_NODE_UNLOCK(node); 1025 1026 /* Get a new vnode and associate it with our node. */ 1027 error = getnewvnode("tmpfs", mp, VFS_TO_TMPFS(mp)->tm_nonc ? 1028 &tmpfs_vnodeop_nonc_entries : &tmpfs_vnodeop_entries, &vp); 1029 if (error != 0) 1030 goto unlock; 1031 MPASS(vp != NULL); 1032 1033 /* lkflag is ignored, the lock is exclusive */ 1034 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1035 1036 vp->v_data = node; 1037 vp->v_type = node->tn_type; 1038 1039 /* Type-specific initialization. */ 1040 switch (node->tn_type) { 1041 case VBLK: 1042 /* FALLTHROUGH */ 1043 case VCHR: 1044 /* FALLTHROUGH */ 1045 case VLNK: 1046 /* FALLTHROUGH */ 1047 case VSOCK: 1048 break; 1049 case VFIFO: 1050 vp->v_op = &tmpfs_fifoop_entries; 1051 break; 1052 case VREG: 1053 object = node->tn_reg.tn_aobj; 1054 VM_OBJECT_WLOCK(object); 1055 KASSERT((object->flags & OBJ_TMPFS_VREF) == 0, 1056 ("%s: object %p with OBJ_TMPFS_VREF but without vnode", 1057 __func__, object)); 1058 KASSERT(object->un_pager.swp.writemappings == 0, 1059 ("%s: object %p has writemappings", 1060 __func__, object)); 1061 VI_LOCK(vp); 1062 KASSERT(vp->v_object == NULL, ("Not NULL v_object in tmpfs")); 1063 vp->v_object = object; 1064 vn_irflag_set_locked(vp, VIRF_PGREAD | VIRF_TEXT_REF); 1065 VI_UNLOCK(vp); 1066 VM_OBJECT_WUNLOCK(object); 1067 break; 1068 case VDIR: 1069 MPASS(node->tn_dir.tn_parent != NULL); 1070 if (node->tn_dir.tn_parent == node) 1071 vp->v_vflag |= VV_ROOT; 1072 break; 1073 1074 default: 1075 panic("tmpfs_alloc_vp: type %p %d", node, (int)node->tn_type); 1076 } 1077 if (vp->v_type != VFIFO) 1078 VN_LOCK_ASHARE(vp); 1079 1080 error = insmntque1(vp, mp); 1081 if (error != 0) { 1082 /* Need to clear v_object for insmntque failure. */ 1083 tmpfs_destroy_vobject(vp, vp->v_object); 1084 vp->v_object = NULL; 1085 vp->v_data = NULL; 1086 vp->v_op = &dead_vnodeops; 1087 vgone(vp); 1088 vput(vp); 1089 vp = NULL; 1090 } else { 1091 vn_set_state(vp, VSTATE_CONSTRUCTED); 1092 } 1093 1094 unlock: 1095 TMPFS_NODE_LOCK(node); 1096 1097 MPASS(node->tn_vpstate & TMPFS_VNODE_ALLOCATING); 1098 node->tn_vpstate &= ~TMPFS_VNODE_ALLOCATING; 1099 node->tn_vnode = vp; 1100 1101 if (node->tn_vpstate & TMPFS_VNODE_WANT) { 1102 node->tn_vpstate &= ~TMPFS_VNODE_WANT; 1103 TMPFS_NODE_UNLOCK(node); 1104 wakeup((caddr_t) &node->tn_vpstate); 1105 } else 1106 TMPFS_NODE_UNLOCK(node); 1107 1108 out: 1109 if (error == 0) { 1110 *vpp = vp; 1111 1112 #ifdef INVARIANTS 1113 MPASS(*vpp != NULL && VOP_ISLOCKED(*vpp)); 1114 TMPFS_NODE_LOCK(node); 1115 MPASS(*vpp == node->tn_vnode); 1116 TMPFS_NODE_UNLOCK(node); 1117 #endif 1118 } 1119 tmpfs_free_node(tm, node); 1120 1121 return (error); 1122 } 1123 1124 /* 1125 * Destroys the association between the vnode vp and the node it 1126 * references. 1127 */ 1128 void 1129 tmpfs_free_vp(struct vnode *vp) 1130 { 1131 struct tmpfs_node *node; 1132 1133 node = VP_TO_TMPFS_NODE(vp); 1134 1135 TMPFS_NODE_ASSERT_LOCKED(node); 1136 node->tn_vnode = NULL; 1137 if ((node->tn_vpstate & TMPFS_VNODE_WRECLAIM) != 0) 1138 wakeup(&node->tn_vnode); 1139 node->tn_vpstate &= ~TMPFS_VNODE_WRECLAIM; 1140 vp->v_data = NULL; 1141 } 1142 1143 /* 1144 * Allocates a new file of type 'type' and adds it to the parent directory 1145 * 'dvp'; this addition is done using the component name given in 'cnp'. 1146 * The ownership of the new file is automatically assigned based on the 1147 * credentials of the caller (through 'cnp'), the group is set based on 1148 * the parent directory and the mode is determined from the 'vap' argument. 1149 * If successful, *vpp holds a vnode to the newly created file and zero 1150 * is returned. Otherwise *vpp is NULL and the function returns an 1151 * appropriate error code. 1152 */ 1153 int 1154 tmpfs_alloc_file(struct vnode *dvp, struct vnode **vpp, struct vattr *vap, 1155 struct componentname *cnp, const char *target) 1156 { 1157 int error; 1158 struct tmpfs_dirent *de; 1159 struct tmpfs_mount *tmp; 1160 struct tmpfs_node *dnode; 1161 struct tmpfs_node *node; 1162 struct tmpfs_node *parent; 1163 1164 ASSERT_VOP_ELOCKED(dvp, "tmpfs_alloc_file"); 1165 1166 tmp = VFS_TO_TMPFS(dvp->v_mount); 1167 dnode = VP_TO_TMPFS_DIR(dvp); 1168 *vpp = NULL; 1169 1170 /* If the entry we are creating is a directory, we cannot overflow 1171 * the number of links of its parent, because it will get a new 1172 * link. */ 1173 if (vap->va_type == VDIR) { 1174 /* Ensure that we do not overflow the maximum number of links 1175 * imposed by the system. */ 1176 MPASS(dnode->tn_links <= TMPFS_LINK_MAX); 1177 if (dnode->tn_links == TMPFS_LINK_MAX) { 1178 return (EMLINK); 1179 } 1180 1181 parent = dnode; 1182 MPASS(parent != NULL); 1183 } else 1184 parent = NULL; 1185 1186 /* Allocate a node that represents the new file. */ 1187 error = tmpfs_alloc_node(dvp->v_mount, tmp, vap->va_type, 1188 cnp->cn_cred->cr_uid, dnode->tn_gid, vap->va_mode, parent, 1189 target, vap->va_rdev, &node); 1190 if (error != 0) 1191 return (error); 1192 1193 /* Allocate a directory entry that points to the new file. */ 1194 error = tmpfs_alloc_dirent(tmp, node, cnp->cn_nameptr, cnp->cn_namelen, 1195 &de); 1196 if (error != 0) { 1197 tmpfs_free_node(tmp, node); 1198 return (error); 1199 } 1200 1201 /* Allocate a vnode for the new file. */ 1202 error = tmpfs_alloc_vp(dvp->v_mount, node, LK_EXCLUSIVE, vpp); 1203 if (error != 0) { 1204 tmpfs_free_dirent(tmp, de); 1205 tmpfs_free_node(tmp, node); 1206 return (error); 1207 } 1208 1209 /* Now that all required items are allocated, we can proceed to 1210 * insert the new node into the directory, an operation that 1211 * cannot fail. */ 1212 if (cnp->cn_flags & ISWHITEOUT) 1213 tmpfs_dir_whiteout_remove(dvp, cnp); 1214 tmpfs_dir_attach(dvp, de); 1215 return (0); 1216 } 1217 1218 struct tmpfs_dirent * 1219 tmpfs_dir_first(struct tmpfs_node *dnode, struct tmpfs_dir_cursor *dc) 1220 { 1221 struct tmpfs_dirent *de; 1222 1223 de = RB_MIN(tmpfs_dir, &dnode->tn_dir.tn_dirhead); 1224 dc->tdc_tree = de; 1225 if (de != NULL && tmpfs_dirent_duphead(de)) 1226 de = LIST_FIRST(&de->ud.td_duphead); 1227 dc->tdc_current = de; 1228 1229 return (dc->tdc_current); 1230 } 1231 1232 struct tmpfs_dirent * 1233 tmpfs_dir_next(struct tmpfs_node *dnode, struct tmpfs_dir_cursor *dc) 1234 { 1235 struct tmpfs_dirent *de; 1236 1237 MPASS(dc->tdc_tree != NULL); 1238 if (tmpfs_dirent_dup(dc->tdc_current)) { 1239 dc->tdc_current = LIST_NEXT(dc->tdc_current, uh.td_dup.entries); 1240 if (dc->tdc_current != NULL) 1241 return (dc->tdc_current); 1242 } 1243 dc->tdc_tree = dc->tdc_current = RB_NEXT(tmpfs_dir, 1244 &dnode->tn_dir.tn_dirhead, dc->tdc_tree); 1245 if ((de = dc->tdc_current) != NULL && tmpfs_dirent_duphead(de)) { 1246 dc->tdc_current = LIST_FIRST(&de->ud.td_duphead); 1247 MPASS(dc->tdc_current != NULL); 1248 } 1249 1250 return (dc->tdc_current); 1251 } 1252 1253 /* Lookup directory entry in RB-Tree. Function may return duphead entry. */ 1254 static struct tmpfs_dirent * 1255 tmpfs_dir_xlookup_hash(struct tmpfs_node *dnode, uint32_t hash) 1256 { 1257 struct tmpfs_dirent *de, dekey; 1258 1259 dekey.td_hash = hash; 1260 de = RB_FIND(tmpfs_dir, &dnode->tn_dir.tn_dirhead, &dekey); 1261 return (de); 1262 } 1263 1264 /* Lookup directory entry by cookie, initialize directory cursor accordingly. */ 1265 static struct tmpfs_dirent * 1266 tmpfs_dir_lookup_cookie(struct tmpfs_node *node, off_t cookie, 1267 struct tmpfs_dir_cursor *dc) 1268 { 1269 struct tmpfs_dir *dirhead = &node->tn_dir.tn_dirhead; 1270 struct tmpfs_dirent *de, dekey; 1271 1272 MPASS(cookie >= TMPFS_DIRCOOKIE_MIN); 1273 1274 if (cookie == node->tn_dir.tn_readdir_lastn && 1275 (de = node->tn_dir.tn_readdir_lastp) != NULL) { 1276 /* Protect against possible race, tn_readdir_last[pn] 1277 * may be updated with only shared vnode lock held. */ 1278 if (cookie == tmpfs_dirent_cookie(de)) 1279 goto out; 1280 } 1281 1282 if ((cookie & TMPFS_DIRCOOKIE_DUP) != 0) { 1283 LIST_FOREACH(de, &node->tn_dir.tn_dupindex, 1284 uh.td_dup.index_entries) { 1285 MPASS(tmpfs_dirent_dup(de)); 1286 if (de->td_cookie == cookie) 1287 goto out; 1288 /* dupindex list is sorted. */ 1289 if (de->td_cookie < cookie) { 1290 de = NULL; 1291 goto out; 1292 } 1293 } 1294 MPASS(de == NULL); 1295 goto out; 1296 } 1297 1298 if ((cookie & TMPFS_DIRCOOKIE_MASK) != cookie) { 1299 de = NULL; 1300 } else { 1301 dekey.td_hash = cookie; 1302 /* Recover if direntry for cookie was removed */ 1303 de = RB_NFIND(tmpfs_dir, dirhead, &dekey); 1304 } 1305 dc->tdc_tree = de; 1306 dc->tdc_current = de; 1307 if (de != NULL && tmpfs_dirent_duphead(de)) { 1308 dc->tdc_current = LIST_FIRST(&de->ud.td_duphead); 1309 MPASS(dc->tdc_current != NULL); 1310 } 1311 return (dc->tdc_current); 1312 1313 out: 1314 dc->tdc_tree = de; 1315 dc->tdc_current = de; 1316 if (de != NULL && tmpfs_dirent_dup(de)) 1317 dc->tdc_tree = tmpfs_dir_xlookup_hash(node, 1318 de->td_hash); 1319 return (dc->tdc_current); 1320 } 1321 1322 /* 1323 * Looks for a directory entry in the directory represented by node. 1324 * 'cnp' describes the name of the entry to look for. Note that the . 1325 * and .. components are not allowed as they do not physically exist 1326 * within directories. 1327 * 1328 * Returns a pointer to the entry when found, otherwise NULL. 1329 */ 1330 struct tmpfs_dirent * 1331 tmpfs_dir_lookup(struct tmpfs_node *node, struct tmpfs_node *f, 1332 struct componentname *cnp) 1333 { 1334 struct tmpfs_dir_duphead *duphead; 1335 struct tmpfs_dirent *de; 1336 uint32_t hash; 1337 1338 MPASS(IMPLIES(cnp->cn_namelen == 1, cnp->cn_nameptr[0] != '.')); 1339 MPASS(IMPLIES(cnp->cn_namelen == 2, !(cnp->cn_nameptr[0] == '.' && 1340 cnp->cn_nameptr[1] == '.'))); 1341 TMPFS_VALIDATE_DIR(node); 1342 1343 hash = tmpfs_dirent_hash(cnp->cn_nameptr, cnp->cn_namelen); 1344 de = tmpfs_dir_xlookup_hash(node, hash); 1345 if (de != NULL && tmpfs_dirent_duphead(de)) { 1346 duphead = &de->ud.td_duphead; 1347 LIST_FOREACH(de, duphead, uh.td_dup.entries) { 1348 if (TMPFS_DIRENT_MATCHES(de, cnp->cn_nameptr, 1349 cnp->cn_namelen)) 1350 break; 1351 } 1352 } else if (de != NULL) { 1353 if (!TMPFS_DIRENT_MATCHES(de, cnp->cn_nameptr, 1354 cnp->cn_namelen)) 1355 de = NULL; 1356 } 1357 if (de != NULL && f != NULL && de->td_node != f) 1358 de = NULL; 1359 1360 return (de); 1361 } 1362 1363 /* 1364 * Attach duplicate-cookie directory entry nde to dnode and insert to dupindex 1365 * list, allocate new cookie value. 1366 */ 1367 static void 1368 tmpfs_dir_attach_dup(struct tmpfs_node *dnode, 1369 struct tmpfs_dir_duphead *duphead, struct tmpfs_dirent *nde) 1370 { 1371 struct tmpfs_dir_duphead *dupindex; 1372 struct tmpfs_dirent *de, *pde; 1373 1374 dupindex = &dnode->tn_dir.tn_dupindex; 1375 de = LIST_FIRST(dupindex); 1376 if (de == NULL || de->td_cookie < TMPFS_DIRCOOKIE_DUP_MAX) { 1377 if (de == NULL) 1378 nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MIN; 1379 else 1380 nde->td_cookie = de->td_cookie + 1; 1381 MPASS(tmpfs_dirent_dup(nde)); 1382 LIST_INSERT_HEAD(dupindex, nde, uh.td_dup.index_entries); 1383 LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries); 1384 return; 1385 } 1386 1387 /* 1388 * Cookie numbers are near exhaustion. Scan dupindex list for unused 1389 * numbers. dupindex list is sorted in descending order. Keep it so 1390 * after inserting nde. 1391 */ 1392 while (1) { 1393 pde = de; 1394 de = LIST_NEXT(de, uh.td_dup.index_entries); 1395 if (de == NULL && pde->td_cookie != TMPFS_DIRCOOKIE_DUP_MIN) { 1396 /* 1397 * Last element of the index doesn't have minimal cookie 1398 * value, use it. 1399 */ 1400 nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MIN; 1401 LIST_INSERT_AFTER(pde, nde, uh.td_dup.index_entries); 1402 LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries); 1403 return; 1404 } else if (de == NULL) { 1405 /* 1406 * We are so lucky have 2^30 hash duplicates in single 1407 * directory :) Return largest possible cookie value. 1408 * It should be fine except possible issues with 1409 * VOP_READDIR restart. 1410 */ 1411 nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MAX; 1412 LIST_INSERT_HEAD(dupindex, nde, 1413 uh.td_dup.index_entries); 1414 LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries); 1415 return; 1416 } 1417 if (de->td_cookie + 1 == pde->td_cookie || 1418 de->td_cookie >= TMPFS_DIRCOOKIE_DUP_MAX) 1419 continue; /* No hole or invalid cookie. */ 1420 nde->td_cookie = de->td_cookie + 1; 1421 MPASS(tmpfs_dirent_dup(nde)); 1422 MPASS(pde->td_cookie > nde->td_cookie); 1423 MPASS(nde->td_cookie > de->td_cookie); 1424 LIST_INSERT_BEFORE(de, nde, uh.td_dup.index_entries); 1425 LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries); 1426 return; 1427 } 1428 } 1429 1430 /* 1431 * Attaches the directory entry de to the directory represented by vp. 1432 * Note that this does not change the link count of the node pointed by 1433 * the directory entry, as this is done by tmpfs_alloc_dirent. 1434 */ 1435 void 1436 tmpfs_dir_attach(struct vnode *vp, struct tmpfs_dirent *de) 1437 { 1438 struct tmpfs_node *dnode; 1439 struct tmpfs_dirent *xde, *nde; 1440 1441 ASSERT_VOP_ELOCKED(vp, __func__); 1442 MPASS(de->td_namelen > 0); 1443 MPASS(de->td_hash >= TMPFS_DIRCOOKIE_MIN); 1444 MPASS(de->td_cookie == de->td_hash); 1445 1446 dnode = VP_TO_TMPFS_DIR(vp); 1447 dnode->tn_dir.tn_readdir_lastn = 0; 1448 dnode->tn_dir.tn_readdir_lastp = NULL; 1449 1450 MPASS(!tmpfs_dirent_dup(de)); 1451 xde = RB_INSERT(tmpfs_dir, &dnode->tn_dir.tn_dirhead, de); 1452 if (xde != NULL && tmpfs_dirent_duphead(xde)) 1453 tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, de); 1454 else if (xde != NULL) { 1455 /* 1456 * Allocate new duphead. Swap xde with duphead to avoid 1457 * adding/removing elements with the same hash. 1458 */ 1459 MPASS(!tmpfs_dirent_dup(xde)); 1460 tmpfs_alloc_dirent(VFS_TO_TMPFS(vp->v_mount), NULL, NULL, 0, 1461 &nde); 1462 /* *nde = *xde; XXX gcc 4.2.1 may generate invalid code. */ 1463 memcpy(nde, xde, sizeof(*xde)); 1464 xde->td_cookie |= TMPFS_DIRCOOKIE_DUPHEAD; 1465 LIST_INIT(&xde->ud.td_duphead); 1466 xde->td_namelen = 0; 1467 xde->td_node = NULL; 1468 tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, nde); 1469 tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, de); 1470 } 1471 dnode->tn_size += sizeof(struct tmpfs_dirent); 1472 dnode->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED; 1473 dnode->tn_accessed = true; 1474 tmpfs_update(vp); 1475 } 1476 1477 /* 1478 * Detaches the directory entry de from the directory represented by vp. 1479 * Note that this does not change the link count of the node pointed by 1480 * the directory entry, as this is done by tmpfs_free_dirent. 1481 */ 1482 void 1483 tmpfs_dir_detach(struct vnode *vp, struct tmpfs_dirent *de) 1484 { 1485 struct tmpfs_mount *tmp; 1486 struct tmpfs_dir *head; 1487 struct tmpfs_node *dnode; 1488 struct tmpfs_dirent *xde; 1489 1490 ASSERT_VOP_ELOCKED(vp, __func__); 1491 1492 dnode = VP_TO_TMPFS_DIR(vp); 1493 head = &dnode->tn_dir.tn_dirhead; 1494 dnode->tn_dir.tn_readdir_lastn = 0; 1495 dnode->tn_dir.tn_readdir_lastp = NULL; 1496 1497 if (tmpfs_dirent_dup(de)) { 1498 /* Remove duphead if de was last entry. */ 1499 if (LIST_NEXT(de, uh.td_dup.entries) == NULL) { 1500 xde = tmpfs_dir_xlookup_hash(dnode, de->td_hash); 1501 MPASS(tmpfs_dirent_duphead(xde)); 1502 } else 1503 xde = NULL; 1504 LIST_REMOVE(de, uh.td_dup.entries); 1505 LIST_REMOVE(de, uh.td_dup.index_entries); 1506 if (xde != NULL) { 1507 if (LIST_EMPTY(&xde->ud.td_duphead)) { 1508 RB_REMOVE(tmpfs_dir, head, xde); 1509 tmp = VFS_TO_TMPFS(vp->v_mount); 1510 MPASS(xde->td_node == NULL); 1511 tmpfs_free_dirent(tmp, xde); 1512 } 1513 } 1514 de->td_cookie = de->td_hash; 1515 } else 1516 RB_REMOVE(tmpfs_dir, head, de); 1517 1518 dnode->tn_size -= sizeof(struct tmpfs_dirent); 1519 dnode->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED; 1520 dnode->tn_accessed = true; 1521 tmpfs_update(vp); 1522 } 1523 1524 void 1525 tmpfs_dir_destroy(struct tmpfs_mount *tmp, struct tmpfs_node *dnode) 1526 { 1527 struct tmpfs_dirent *de, *dde, *nde; 1528 1529 RB_FOREACH_SAFE(de, tmpfs_dir, &dnode->tn_dir.tn_dirhead, nde) { 1530 RB_REMOVE(tmpfs_dir, &dnode->tn_dir.tn_dirhead, de); 1531 /* Node may already be destroyed. */ 1532 de->td_node = NULL; 1533 if (tmpfs_dirent_duphead(de)) { 1534 while ((dde = LIST_FIRST(&de->ud.td_duphead)) != NULL) { 1535 LIST_REMOVE(dde, uh.td_dup.entries); 1536 dde->td_node = NULL; 1537 tmpfs_free_dirent(tmp, dde); 1538 } 1539 } 1540 tmpfs_free_dirent(tmp, de); 1541 } 1542 } 1543 1544 /* 1545 * Helper function for tmpfs_readdir. Creates a '.' entry for the given 1546 * directory and returns it in the uio space. The function returns 0 1547 * on success, -1 if there was not enough space in the uio structure to 1548 * hold the directory entry or an appropriate error code if another 1549 * error happens. 1550 */ 1551 static int 1552 tmpfs_dir_getdotdent(struct tmpfs_mount *tm, struct tmpfs_node *node, 1553 struct uio *uio) 1554 { 1555 int error; 1556 struct dirent dent; 1557 1558 TMPFS_VALIDATE_DIR(node); 1559 MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOT); 1560 1561 dent.d_fileno = node->tn_id; 1562 dent.d_off = TMPFS_DIRCOOKIE_DOTDOT; 1563 dent.d_type = DT_DIR; 1564 dent.d_namlen = 1; 1565 dent.d_name[0] = '.'; 1566 dent.d_reclen = GENERIC_DIRSIZ(&dent); 1567 dirent_terminate(&dent); 1568 1569 if (dent.d_reclen > uio->uio_resid) 1570 error = EJUSTRETURN; 1571 else 1572 error = uiomove(&dent, dent.d_reclen, uio); 1573 1574 tmpfs_set_accessed(tm, node); 1575 1576 return (error); 1577 } 1578 1579 /* 1580 * Helper function for tmpfs_readdir. Creates a '..' entry for the given 1581 * directory and returns it in the uio space. The function returns 0 1582 * on success, -1 if there was not enough space in the uio structure to 1583 * hold the directory entry or an appropriate error code if another 1584 * error happens. 1585 */ 1586 static int 1587 tmpfs_dir_getdotdotdent(struct tmpfs_mount *tm, struct tmpfs_node *node, 1588 struct uio *uio, off_t next) 1589 { 1590 struct tmpfs_node *parent; 1591 struct dirent dent; 1592 int error; 1593 1594 TMPFS_VALIDATE_DIR(node); 1595 MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOTDOT); 1596 1597 /* 1598 * Return ENOENT if the current node is already removed. 1599 */ 1600 TMPFS_ASSERT_LOCKED(node); 1601 parent = node->tn_dir.tn_parent; 1602 if (parent == NULL) 1603 return (ENOENT); 1604 1605 dent.d_fileno = parent->tn_id; 1606 dent.d_off = next; 1607 dent.d_type = DT_DIR; 1608 dent.d_namlen = 2; 1609 dent.d_name[0] = '.'; 1610 dent.d_name[1] = '.'; 1611 dent.d_reclen = GENERIC_DIRSIZ(&dent); 1612 dirent_terminate(&dent); 1613 1614 if (dent.d_reclen > uio->uio_resid) 1615 error = EJUSTRETURN; 1616 else 1617 error = uiomove(&dent, dent.d_reclen, uio); 1618 1619 tmpfs_set_accessed(tm, node); 1620 1621 return (error); 1622 } 1623 1624 /* 1625 * Helper function for tmpfs_readdir. Returns as much directory entries 1626 * as can fit in the uio space. The read starts at uio->uio_offset. 1627 * The function returns 0 on success, -1 if there was not enough space 1628 * in the uio structure to hold the directory entry or an appropriate 1629 * error code if another error happens. 1630 */ 1631 int 1632 tmpfs_dir_getdents(struct tmpfs_mount *tm, struct tmpfs_node *node, 1633 struct uio *uio, int maxcookies, uint64_t *cookies, int *ncookies) 1634 { 1635 struct tmpfs_dir_cursor dc; 1636 struct tmpfs_dirent *de, *nde; 1637 off_t off; 1638 int error; 1639 1640 TMPFS_VALIDATE_DIR(node); 1641 1642 off = 0; 1643 1644 /* 1645 * Lookup the node from the current offset. The starting offset of 1646 * 0 will lookup both '.' and '..', and then the first real entry, 1647 * or EOF if there are none. Then find all entries for the dir that 1648 * fit into the buffer. Once no more entries are found (de == NULL), 1649 * the offset is set to TMPFS_DIRCOOKIE_EOF, which will cause the next 1650 * call to return 0. 1651 */ 1652 switch (uio->uio_offset) { 1653 case TMPFS_DIRCOOKIE_DOT: 1654 error = tmpfs_dir_getdotdent(tm, node, uio); 1655 if (error != 0) 1656 return (error); 1657 uio->uio_offset = off = TMPFS_DIRCOOKIE_DOTDOT; 1658 if (cookies != NULL) 1659 cookies[(*ncookies)++] = off; 1660 /* FALLTHROUGH */ 1661 case TMPFS_DIRCOOKIE_DOTDOT: 1662 de = tmpfs_dir_first(node, &dc); 1663 off = tmpfs_dirent_cookie(de); 1664 error = tmpfs_dir_getdotdotdent(tm, node, uio, off); 1665 if (error != 0) 1666 return (error); 1667 uio->uio_offset = off; 1668 if (cookies != NULL) 1669 cookies[(*ncookies)++] = off; 1670 /* EOF. */ 1671 if (de == NULL) 1672 return (0); 1673 break; 1674 case TMPFS_DIRCOOKIE_EOF: 1675 return (0); 1676 default: 1677 de = tmpfs_dir_lookup_cookie(node, uio->uio_offset, &dc); 1678 if (de == NULL) 1679 return (EINVAL); 1680 if (cookies != NULL) 1681 off = tmpfs_dirent_cookie(de); 1682 } 1683 1684 /* 1685 * Read as much entries as possible; i.e., until we reach the end of the 1686 * directory or we exhaust uio space. 1687 */ 1688 do { 1689 struct dirent d; 1690 1691 /* 1692 * Create a dirent structure representing the current tmpfs_node 1693 * and fill it. 1694 */ 1695 if (de->td_node == NULL) { 1696 d.d_fileno = 1; 1697 d.d_type = DT_WHT; 1698 } else { 1699 d.d_fileno = de->td_node->tn_id; 1700 switch (de->td_node->tn_type) { 1701 case VBLK: 1702 d.d_type = DT_BLK; 1703 break; 1704 1705 case VCHR: 1706 d.d_type = DT_CHR; 1707 break; 1708 1709 case VDIR: 1710 d.d_type = DT_DIR; 1711 break; 1712 1713 case VFIFO: 1714 d.d_type = DT_FIFO; 1715 break; 1716 1717 case VLNK: 1718 d.d_type = DT_LNK; 1719 break; 1720 1721 case VREG: 1722 d.d_type = DT_REG; 1723 break; 1724 1725 case VSOCK: 1726 d.d_type = DT_SOCK; 1727 break; 1728 1729 default: 1730 panic("tmpfs_dir_getdents: type %p %d", 1731 de->td_node, (int)de->td_node->tn_type); 1732 } 1733 } 1734 d.d_namlen = de->td_namelen; 1735 MPASS(de->td_namelen < sizeof(d.d_name)); 1736 (void)memcpy(d.d_name, de->ud.td_name, de->td_namelen); 1737 d.d_reclen = GENERIC_DIRSIZ(&d); 1738 1739 /* 1740 * Stop reading if the directory entry we are treating is bigger 1741 * than the amount of data that can be returned. 1742 */ 1743 if (d.d_reclen > uio->uio_resid) { 1744 error = EJUSTRETURN; 1745 break; 1746 } 1747 1748 nde = tmpfs_dir_next(node, &dc); 1749 d.d_off = tmpfs_dirent_cookie(nde); 1750 dirent_terminate(&d); 1751 1752 /* 1753 * Copy the new dirent structure into the output buffer and 1754 * advance pointers. 1755 */ 1756 error = uiomove(&d, d.d_reclen, uio); 1757 if (error == 0) { 1758 de = nde; 1759 if (cookies != NULL) { 1760 off = tmpfs_dirent_cookie(de); 1761 MPASS(*ncookies < maxcookies); 1762 cookies[(*ncookies)++] = off; 1763 } 1764 } 1765 } while (error == 0 && uio->uio_resid > 0 && de != NULL); 1766 1767 /* Skip setting off when using cookies as it is already done above. */ 1768 if (cookies == NULL) 1769 off = tmpfs_dirent_cookie(de); 1770 1771 /* Update the offset and cache. */ 1772 uio->uio_offset = off; 1773 node->tn_dir.tn_readdir_lastn = off; 1774 node->tn_dir.tn_readdir_lastp = de; 1775 1776 tmpfs_set_accessed(tm, node); 1777 return (error); 1778 } 1779 1780 int 1781 tmpfs_dir_whiteout_add(struct vnode *dvp, struct componentname *cnp) 1782 { 1783 struct tmpfs_dirent *de; 1784 int error; 1785 1786 error = tmpfs_alloc_dirent(VFS_TO_TMPFS(dvp->v_mount), NULL, 1787 cnp->cn_nameptr, cnp->cn_namelen, &de); 1788 if (error != 0) 1789 return (error); 1790 tmpfs_dir_attach(dvp, de); 1791 return (0); 1792 } 1793 1794 void 1795 tmpfs_dir_whiteout_remove(struct vnode *dvp, struct componentname *cnp) 1796 { 1797 struct tmpfs_dirent *de; 1798 1799 de = tmpfs_dir_lookup(VP_TO_TMPFS_DIR(dvp), NULL, cnp); 1800 MPASS(de != NULL && de->td_node == NULL); 1801 tmpfs_dir_detach(dvp, de); 1802 tmpfs_free_dirent(VFS_TO_TMPFS(dvp->v_mount), de); 1803 } 1804 1805 /* 1806 * Resizes the aobj associated with the regular file pointed to by 'vp' to the 1807 * size 'newsize'. 'vp' must point to a vnode that represents a regular file. 1808 * 'newsize' must be positive. 1809 * 1810 * Returns zero on success or an appropriate error code on failure. 1811 */ 1812 int 1813 tmpfs_reg_resize(struct vnode *vp, off_t newsize, boolean_t ignerr) 1814 { 1815 struct tmpfs_node *node; 1816 vm_object_t uobj; 1817 vm_pindex_t idx, newpages, oldpages; 1818 off_t oldsize; 1819 int base, error; 1820 1821 MPASS(vp->v_type == VREG); 1822 MPASS(newsize >= 0); 1823 1824 node = VP_TO_TMPFS_NODE(vp); 1825 uobj = node->tn_reg.tn_aobj; 1826 1827 /* 1828 * Convert the old and new sizes to the number of pages needed to 1829 * store them. It may happen that we do not need to do anything 1830 * because the last allocated page can accommodate the change on 1831 * its own. 1832 */ 1833 oldsize = node->tn_size; 1834 oldpages = OFF_TO_IDX(oldsize + PAGE_MASK); 1835 MPASS(oldpages == uobj->size); 1836 newpages = OFF_TO_IDX(newsize + PAGE_MASK); 1837 1838 if (__predict_true(newpages == oldpages && newsize >= oldsize)) { 1839 node->tn_size = newsize; 1840 return (0); 1841 } 1842 1843 VM_OBJECT_WLOCK(uobj); 1844 if (newsize < oldsize) { 1845 /* 1846 * Zero the truncated part of the last page. 1847 */ 1848 base = newsize & PAGE_MASK; 1849 if (base != 0) { 1850 idx = OFF_TO_IDX(newsize); 1851 error = tmpfs_partial_page_invalidate(uobj, idx, base, 1852 PAGE_SIZE, ignerr); 1853 if (error != 0) { 1854 VM_OBJECT_WUNLOCK(uobj); 1855 return (error); 1856 } 1857 } 1858 1859 /* 1860 * Release any swap space and free any whole pages. 1861 */ 1862 if (newpages < oldpages) 1863 vm_object_page_remove(uobj, newpages, 0, 0); 1864 } 1865 uobj->size = newpages; 1866 VM_OBJECT_WUNLOCK(uobj); 1867 1868 node->tn_size = newsize; 1869 return (0); 1870 } 1871 1872 /* 1873 * Punch hole in the aobj associated with the regular file pointed to by 'vp'. 1874 * Requests completely beyond the end-of-file are converted to no-op. 1875 * 1876 * Returns 0 on success or error code from tmpfs_partial_page_invalidate() on 1877 * failure. 1878 */ 1879 int 1880 tmpfs_reg_punch_hole(struct vnode *vp, off_t *offset, off_t *length) 1881 { 1882 struct tmpfs_node *node; 1883 vm_object_t object; 1884 vm_pindex_t pistart, pi, piend; 1885 int startofs, endofs, end; 1886 off_t off, len; 1887 int error; 1888 1889 KASSERT(*length <= OFF_MAX - *offset, ("%s: offset + length overflows", 1890 __func__)); 1891 node = VP_TO_TMPFS_NODE(vp); 1892 KASSERT(node->tn_type == VREG, ("%s: node is not regular file", 1893 __func__)); 1894 object = node->tn_reg.tn_aobj; 1895 off = *offset; 1896 len = omin(node->tn_size - off, *length); 1897 startofs = off & PAGE_MASK; 1898 endofs = (off + len) & PAGE_MASK; 1899 pistart = OFF_TO_IDX(off); 1900 piend = OFF_TO_IDX(off + len); 1901 pi = OFF_TO_IDX((vm_ooffset_t)off + PAGE_MASK); 1902 error = 0; 1903 1904 /* Handle the case when offset is on or beyond file size. */ 1905 if (len <= 0) { 1906 *length = 0; 1907 return (0); 1908 } 1909 1910 VM_OBJECT_WLOCK(object); 1911 1912 /* 1913 * If there is a partial page at the beginning of the hole-punching 1914 * request, fill the partial page with zeroes. 1915 */ 1916 if (startofs != 0) { 1917 end = pistart != piend ? PAGE_SIZE : endofs; 1918 error = tmpfs_partial_page_invalidate(object, pistart, startofs, 1919 end, FALSE); 1920 if (error != 0) 1921 goto out; 1922 off += end - startofs; 1923 len -= end - startofs; 1924 } 1925 1926 /* 1927 * Toss away the full pages in the affected area. 1928 */ 1929 if (pi < piend) { 1930 vm_object_page_remove(object, pi, piend, 0); 1931 off += IDX_TO_OFF(piend - pi); 1932 len -= IDX_TO_OFF(piend - pi); 1933 } 1934 1935 /* 1936 * If there is a partial page at the end of the hole-punching request, 1937 * fill the partial page with zeroes. 1938 */ 1939 if (endofs != 0 && pistart != piend) { 1940 error = tmpfs_partial_page_invalidate(object, piend, 0, endofs, 1941 FALSE); 1942 if (error != 0) 1943 goto out; 1944 off += endofs; 1945 len -= endofs; 1946 } 1947 1948 out: 1949 VM_OBJECT_WUNLOCK(object); 1950 *offset = off; 1951 *length = len; 1952 return (error); 1953 } 1954 1955 void 1956 tmpfs_check_mtime(struct vnode *vp) 1957 { 1958 struct tmpfs_node *node; 1959 struct vm_object *obj; 1960 1961 ASSERT_VOP_ELOCKED(vp, "check_mtime"); 1962 if (vp->v_type != VREG) 1963 return; 1964 obj = vp->v_object; 1965 KASSERT(obj->type == tmpfs_pager_type && 1966 (obj->flags & (OBJ_SWAP | OBJ_TMPFS)) == 1967 (OBJ_SWAP | OBJ_TMPFS), ("non-tmpfs obj")); 1968 /* unlocked read */ 1969 if (obj->generation != obj->cleangeneration) { 1970 VM_OBJECT_WLOCK(obj); 1971 if (obj->generation != obj->cleangeneration) { 1972 obj->cleangeneration = obj->generation; 1973 node = VP_TO_TMPFS_NODE(vp); 1974 node->tn_status |= TMPFS_NODE_MODIFIED | 1975 TMPFS_NODE_CHANGED; 1976 } 1977 VM_OBJECT_WUNLOCK(obj); 1978 } 1979 } 1980 1981 /* 1982 * Change flags of the given vnode. 1983 * Caller should execute tmpfs_update on vp after a successful execution. 1984 * The vnode must be locked on entry and remain locked on exit. 1985 */ 1986 int 1987 tmpfs_chflags(struct vnode *vp, u_long flags, struct ucred *cred, 1988 struct thread *td) 1989 { 1990 int error; 1991 struct tmpfs_node *node; 1992 1993 ASSERT_VOP_ELOCKED(vp, "chflags"); 1994 1995 node = VP_TO_TMPFS_NODE(vp); 1996 1997 if ((flags & ~(SF_APPEND | SF_ARCHIVED | SF_IMMUTABLE | SF_NOUNLINK | 1998 UF_APPEND | UF_ARCHIVE | UF_HIDDEN | UF_IMMUTABLE | UF_NODUMP | 1999 UF_NOUNLINK | UF_OFFLINE | UF_OPAQUE | UF_READONLY | UF_REPARSE | 2000 UF_SPARSE | UF_SYSTEM)) != 0) 2001 return (EOPNOTSUPP); 2002 2003 /* Disallow this operation if the file system is mounted read-only. */ 2004 if (vp->v_mount->mnt_flag & MNT_RDONLY) 2005 return (EROFS); 2006 2007 /* 2008 * Callers may only modify the file flags on objects they 2009 * have VADMIN rights for. 2010 */ 2011 if ((error = VOP_ACCESS(vp, VADMIN, cred, td))) 2012 return (error); 2013 /* 2014 * Unprivileged processes are not permitted to unset system 2015 * flags, or modify flags if any system flags are set. 2016 */ 2017 if (!priv_check_cred(cred, PRIV_VFS_SYSFLAGS)) { 2018 if (node->tn_flags & 2019 (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND)) { 2020 error = securelevel_gt(cred, 0); 2021 if (error) 2022 return (error); 2023 } 2024 } else { 2025 if (node->tn_flags & 2026 (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND) || 2027 ((flags ^ node->tn_flags) & SF_SETTABLE)) 2028 return (EPERM); 2029 } 2030 node->tn_flags = flags; 2031 node->tn_status |= TMPFS_NODE_CHANGED; 2032 2033 ASSERT_VOP_ELOCKED(vp, "chflags2"); 2034 2035 return (0); 2036 } 2037 2038 /* 2039 * Change access mode on the given vnode. 2040 * Caller should execute tmpfs_update on vp after a successful execution. 2041 * The vnode must be locked on entry and remain locked on exit. 2042 */ 2043 int 2044 tmpfs_chmod(struct vnode *vp, mode_t mode, struct ucred *cred, 2045 struct thread *td) 2046 { 2047 int error; 2048 struct tmpfs_node *node; 2049 mode_t newmode; 2050 2051 ASSERT_VOP_ELOCKED(vp, "chmod"); 2052 ASSERT_VOP_IN_SEQC(vp); 2053 2054 node = VP_TO_TMPFS_NODE(vp); 2055 2056 /* Disallow this operation if the file system is mounted read-only. */ 2057 if (vp->v_mount->mnt_flag & MNT_RDONLY) 2058 return (EROFS); 2059 2060 /* Immutable or append-only files cannot be modified, either. */ 2061 if (node->tn_flags & (IMMUTABLE | APPEND)) 2062 return (EPERM); 2063 2064 /* 2065 * To modify the permissions on a file, must possess VADMIN 2066 * for that file. 2067 */ 2068 if ((error = VOP_ACCESS(vp, VADMIN, cred, td))) 2069 return (error); 2070 2071 /* 2072 * Privileged processes may set the sticky bit on non-directories, 2073 * as well as set the setgid bit on a file with a group that the 2074 * process is not a member of. 2075 */ 2076 if (vp->v_type != VDIR && (mode & S_ISTXT)) { 2077 if (priv_check_cred(cred, PRIV_VFS_STICKYFILE)) 2078 return (EFTYPE); 2079 } 2080 if (!groupmember(node->tn_gid, cred) && (mode & S_ISGID)) { 2081 error = priv_check_cred(cred, PRIV_VFS_SETGID); 2082 if (error) 2083 return (error); 2084 } 2085 2086 newmode = node->tn_mode & ~ALLPERMS; 2087 newmode |= mode & ALLPERMS; 2088 atomic_store_short(&node->tn_mode, newmode); 2089 2090 node->tn_status |= TMPFS_NODE_CHANGED; 2091 2092 ASSERT_VOP_ELOCKED(vp, "chmod2"); 2093 2094 return (0); 2095 } 2096 2097 /* 2098 * Change ownership of the given vnode. At least one of uid or gid must 2099 * be different than VNOVAL. If one is set to that value, the attribute 2100 * is unchanged. 2101 * Caller should execute tmpfs_update on vp after a successful execution. 2102 * The vnode must be locked on entry and remain locked on exit. 2103 */ 2104 int 2105 tmpfs_chown(struct vnode *vp, uid_t uid, gid_t gid, struct ucred *cred, 2106 struct thread *td) 2107 { 2108 int error; 2109 struct tmpfs_node *node; 2110 uid_t ouid; 2111 gid_t ogid; 2112 mode_t newmode; 2113 2114 ASSERT_VOP_ELOCKED(vp, "chown"); 2115 ASSERT_VOP_IN_SEQC(vp); 2116 2117 node = VP_TO_TMPFS_NODE(vp); 2118 2119 /* Assign default values if they are unknown. */ 2120 MPASS(uid != VNOVAL || gid != VNOVAL); 2121 if (uid == VNOVAL) 2122 uid = node->tn_uid; 2123 if (gid == VNOVAL) 2124 gid = node->tn_gid; 2125 MPASS(uid != VNOVAL && gid != VNOVAL); 2126 2127 /* Disallow this operation if the file system is mounted read-only. */ 2128 if (vp->v_mount->mnt_flag & MNT_RDONLY) 2129 return (EROFS); 2130 2131 /* Immutable or append-only files cannot be modified, either. */ 2132 if (node->tn_flags & (IMMUTABLE | APPEND)) 2133 return (EPERM); 2134 2135 /* 2136 * To modify the ownership of a file, must possess VADMIN for that 2137 * file. 2138 */ 2139 if ((error = VOP_ACCESS(vp, VADMIN, cred, td))) 2140 return (error); 2141 2142 /* 2143 * To change the owner of a file, or change the group of a file to a 2144 * group of which we are not a member, the caller must have 2145 * privilege. 2146 */ 2147 if ((uid != node->tn_uid || 2148 (gid != node->tn_gid && !groupmember(gid, cred))) && 2149 (error = priv_check_cred(cred, PRIV_VFS_CHOWN))) 2150 return (error); 2151 2152 ogid = node->tn_gid; 2153 ouid = node->tn_uid; 2154 2155 node->tn_uid = uid; 2156 node->tn_gid = gid; 2157 2158 node->tn_status |= TMPFS_NODE_CHANGED; 2159 2160 if ((node->tn_mode & (S_ISUID | S_ISGID)) != 0 && 2161 (ouid != uid || ogid != gid)) { 2162 if (priv_check_cred(cred, PRIV_VFS_RETAINSUGID)) { 2163 newmode = node->tn_mode & ~(S_ISUID | S_ISGID); 2164 atomic_store_short(&node->tn_mode, newmode); 2165 } 2166 } 2167 2168 ASSERT_VOP_ELOCKED(vp, "chown2"); 2169 2170 return (0); 2171 } 2172 2173 /* 2174 * Change size of the given vnode. 2175 * Caller should execute tmpfs_update on vp after a successful execution. 2176 * The vnode must be locked on entry and remain locked on exit. 2177 */ 2178 int 2179 tmpfs_chsize(struct vnode *vp, u_quad_t size, struct ucred *cred, 2180 struct thread *td) 2181 { 2182 int error; 2183 struct tmpfs_node *node; 2184 2185 ASSERT_VOP_ELOCKED(vp, "chsize"); 2186 2187 node = VP_TO_TMPFS_NODE(vp); 2188 2189 /* Decide whether this is a valid operation based on the file type. */ 2190 error = 0; 2191 switch (vp->v_type) { 2192 case VDIR: 2193 return (EISDIR); 2194 2195 case VREG: 2196 if (vp->v_mount->mnt_flag & MNT_RDONLY) 2197 return (EROFS); 2198 break; 2199 2200 case VBLK: 2201 /* FALLTHROUGH */ 2202 case VCHR: 2203 /* FALLTHROUGH */ 2204 case VFIFO: 2205 /* 2206 * Allow modifications of special files even if in the file 2207 * system is mounted read-only (we are not modifying the 2208 * files themselves, but the objects they represent). 2209 */ 2210 return (0); 2211 2212 default: 2213 /* Anything else is unsupported. */ 2214 return (EOPNOTSUPP); 2215 } 2216 2217 /* Immutable or append-only files cannot be modified, either. */ 2218 if (node->tn_flags & (IMMUTABLE | APPEND)) 2219 return (EPERM); 2220 2221 error = vn_rlimit_trunc(size, td); 2222 if (error != 0) 2223 return (error); 2224 2225 error = tmpfs_truncate(vp, size); 2226 /* 2227 * tmpfs_truncate will raise the NOTE_EXTEND and NOTE_ATTRIB kevents 2228 * for us, as will update tn_status; no need to do that here. 2229 */ 2230 2231 ASSERT_VOP_ELOCKED(vp, "chsize2"); 2232 2233 return (error); 2234 } 2235 2236 /* 2237 * Change access and modification times of the given vnode. 2238 * Caller should execute tmpfs_update on vp after a successful execution. 2239 * The vnode must be locked on entry and remain locked on exit. 2240 */ 2241 int 2242 tmpfs_chtimes(struct vnode *vp, struct vattr *vap, 2243 struct ucred *cred, struct thread *td) 2244 { 2245 int error; 2246 struct tmpfs_node *node; 2247 2248 ASSERT_VOP_ELOCKED(vp, "chtimes"); 2249 2250 node = VP_TO_TMPFS_NODE(vp); 2251 2252 /* Disallow this operation if the file system is mounted read-only. */ 2253 if (vp->v_mount->mnt_flag & MNT_RDONLY) 2254 return (EROFS); 2255 2256 /* Immutable or append-only files cannot be modified, either. */ 2257 if (node->tn_flags & (IMMUTABLE | APPEND)) 2258 return (EPERM); 2259 2260 error = vn_utimes_perm(vp, vap, cred, td); 2261 if (error != 0) 2262 return (error); 2263 2264 if (vap->va_atime.tv_sec != VNOVAL) 2265 node->tn_accessed = true; 2266 if (vap->va_mtime.tv_sec != VNOVAL) 2267 node->tn_status |= TMPFS_NODE_MODIFIED; 2268 if (vap->va_birthtime.tv_sec != VNOVAL) 2269 node->tn_status |= TMPFS_NODE_MODIFIED; 2270 tmpfs_itimes(vp, &vap->va_atime, &vap->va_mtime); 2271 if (vap->va_birthtime.tv_sec != VNOVAL) 2272 node->tn_birthtime = vap->va_birthtime; 2273 ASSERT_VOP_ELOCKED(vp, "chtimes2"); 2274 2275 return (0); 2276 } 2277 2278 void 2279 tmpfs_set_status(struct tmpfs_mount *tm, struct tmpfs_node *node, int status) 2280 { 2281 2282 if ((node->tn_status & status) == status || tm->tm_ronly) 2283 return; 2284 TMPFS_NODE_LOCK(node); 2285 node->tn_status |= status; 2286 TMPFS_NODE_UNLOCK(node); 2287 } 2288 2289 void 2290 tmpfs_set_accessed(struct tmpfs_mount *tm, struct tmpfs_node *node) 2291 { 2292 if (node->tn_accessed || tm->tm_ronly) 2293 return; 2294 atomic_store_8(&node->tn_accessed, true); 2295 } 2296 2297 /* Sync timestamps */ 2298 void 2299 tmpfs_itimes(struct vnode *vp, const struct timespec *acc, 2300 const struct timespec *mod) 2301 { 2302 struct tmpfs_node *node; 2303 struct timespec now; 2304 2305 ASSERT_VOP_LOCKED(vp, "tmpfs_itimes"); 2306 node = VP_TO_TMPFS_NODE(vp); 2307 2308 if (!node->tn_accessed && 2309 (node->tn_status & (TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED)) == 0) 2310 return; 2311 2312 vfs_timestamp(&now); 2313 TMPFS_NODE_LOCK(node); 2314 if (node->tn_accessed) { 2315 if (acc == NULL) 2316 acc = &now; 2317 node->tn_atime = *acc; 2318 } 2319 if (node->tn_status & TMPFS_NODE_MODIFIED) { 2320 if (mod == NULL) 2321 mod = &now; 2322 node->tn_mtime = *mod; 2323 } 2324 if (node->tn_status & TMPFS_NODE_CHANGED) 2325 node->tn_ctime = now; 2326 node->tn_status &= ~(TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED); 2327 node->tn_accessed = false; 2328 TMPFS_NODE_UNLOCK(node); 2329 2330 /* XXX: FIX? The entropy here is desirable, but the harvesting may be expensive */ 2331 random_harvest_queue(node, sizeof(*node), RANDOM_FS_ATIME); 2332 } 2333 2334 int 2335 tmpfs_truncate(struct vnode *vp, off_t length) 2336 { 2337 struct tmpfs_node *node; 2338 int error; 2339 2340 if (length < 0) 2341 return (EINVAL); 2342 if (length > VFS_TO_TMPFS(vp->v_mount)->tm_maxfilesize) 2343 return (EFBIG); 2344 2345 node = VP_TO_TMPFS_NODE(vp); 2346 error = node->tn_size == length ? 0 : tmpfs_reg_resize(vp, length, 2347 FALSE); 2348 if (error == 0) 2349 node->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED; 2350 tmpfs_update(vp); 2351 2352 return (error); 2353 } 2354 2355 static __inline int 2356 tmpfs_dirtree_cmp(struct tmpfs_dirent *a, struct tmpfs_dirent *b) 2357 { 2358 if (a->td_hash > b->td_hash) 2359 return (1); 2360 else if (a->td_hash < b->td_hash) 2361 return (-1); 2362 return (0); 2363 } 2364 2365 RB_GENERATE_STATIC(tmpfs_dir, tmpfs_dirent, uh.td_entries, tmpfs_dirtree_cmp); 2366