xref: /freebsd/sys/fs/tmpfs/tmpfs_subr.c (revision 51015e6d0f570239b0c2088dc6cf2b018928375d)
1 /*	$NetBSD: tmpfs_subr.c,v 1.35 2007/07/09 21:10:50 ad Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-2-Clause-NetBSD
5  *
6  * Copyright (c) 2005 The NetBSD Foundation, Inc.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by Julio M. Merino Vidal, developed as part of Google's Summer of Code
11  * 2005 program.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Efficient memory file system supporting functions.
37  */
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/dirent.h>
44 #include <sys/fnv_hash.h>
45 #include <sys/lock.h>
46 #include <sys/limits.h>
47 #include <sys/mount.h>
48 #include <sys/namei.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/random.h>
52 #include <sys/refcount.h>
53 #include <sys/rwlock.h>
54 #include <sys/smr.h>
55 #include <sys/stat.h>
56 #include <sys/sysctl.h>
57 #include <sys/user.h>
58 #include <sys/vnode.h>
59 #include <sys/vmmeter.h>
60 
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_object.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_pageout.h>
66 #include <vm/vm_pager.h>
67 #include <vm/vm_extern.h>
68 #include <vm/swap_pager.h>
69 
70 #include <fs/tmpfs/tmpfs.h>
71 #include <fs/tmpfs/tmpfs_fifoops.h>
72 #include <fs/tmpfs/tmpfs_vnops.h>
73 
74 SYSCTL_NODE(_vfs, OID_AUTO, tmpfs, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
75     "tmpfs file system");
76 
77 static long tmpfs_pages_reserved = TMPFS_PAGES_MINRESERVED;
78 
79 MALLOC_DEFINE(M_TMPFSDIR, "tmpfs dir", "tmpfs dirent structure");
80 static uma_zone_t tmpfs_node_pool;
81 VFS_SMR_DECLARE;
82 
83 int tmpfs_pager_type = -1;
84 
85 static vm_object_t
86 tmpfs_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
87     vm_ooffset_t offset, struct ucred *cred)
88 {
89 	vm_object_t object;
90 
91 	MPASS(handle == NULL);
92 	MPASS(offset == 0);
93 	object = vm_object_allocate_dyn(tmpfs_pager_type, size,
94 	    OBJ_COLORED | OBJ_SWAP);
95 	if (!swap_pager_init_object(object, NULL, NULL, size, 0)) {
96 		vm_object_deallocate(object);
97 		object = NULL;
98 	}
99 	return (object);
100 }
101 
102 /*
103  * Make sure tmpfs vnodes with writable mappings can be found on the lazy list.
104  *
105  * This allows for periodic mtime updates while only scanning vnodes which are
106  * plausibly dirty, see tmpfs_update_mtime_lazy.
107  */
108 static void
109 tmpfs_pager_writecount_recalc(vm_object_t object, vm_offset_t old,
110     vm_offset_t new)
111 {
112 	struct vnode *vp;
113 
114 	VM_OBJECT_ASSERT_WLOCKED(object);
115 
116 	vp = VM_TO_TMPFS_VP(object);
117 
118 	/*
119 	 * Forced unmount?
120 	 */
121 	if (vp == NULL) {
122 		KASSERT((object->flags & OBJ_TMPFS_VREF) == 0,
123 		    ("object %p with OBJ_TMPFS_VREF but without vnode",
124 		    object));
125 		VM_OBJECT_WUNLOCK(object);
126 		return;
127 	}
128 
129 	if (old == 0) {
130 		VNASSERT((object->flags & OBJ_TMPFS_VREF) == 0, vp,
131 		    ("object without writable mappings has a reference"));
132 		VNPASS(vp->v_usecount > 0, vp);
133 	} else {
134 		VNASSERT((object->flags & OBJ_TMPFS_VREF) != 0, vp,
135 		    ("object with writable mappings does not "
136 		    "have a reference"));
137 	}
138 
139 	if (old == new) {
140 		VM_OBJECT_WUNLOCK(object);
141 		return;
142 	}
143 
144 	if (new == 0) {
145 		vm_object_clear_flag(object, OBJ_TMPFS_VREF);
146 		VM_OBJECT_WUNLOCK(object);
147 		vrele(vp);
148 	} else {
149 		if ((object->flags & OBJ_TMPFS_VREF) == 0) {
150 			vref(vp);
151 			vlazy(vp);
152 			vm_object_set_flag(object, OBJ_TMPFS_VREF);
153 		}
154 		VM_OBJECT_WUNLOCK(object);
155 	}
156 }
157 
158 static void
159 tmpfs_pager_update_writecount(vm_object_t object, vm_offset_t start,
160     vm_offset_t end)
161 {
162 	vm_offset_t new, old;
163 
164 	VM_OBJECT_WLOCK(object);
165 	KASSERT((object->flags & OBJ_ANON) == 0,
166 	    ("%s: object %p with OBJ_ANON", __func__, object));
167 	old = object->un_pager.swp.writemappings;
168 	object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
169 	new = object->un_pager.swp.writemappings;
170 	tmpfs_pager_writecount_recalc(object, old, new);
171 	VM_OBJECT_ASSERT_UNLOCKED(object);
172 }
173 
174 static void
175 tmpfs_pager_release_writecount(vm_object_t object, vm_offset_t start,
176     vm_offset_t end)
177 {
178 	vm_offset_t new, old;
179 
180 	VM_OBJECT_WLOCK(object);
181 	KASSERT((object->flags & OBJ_ANON) == 0,
182 	    ("%s: object %p with OBJ_ANON", __func__, object));
183 	old = object->un_pager.swp.writemappings;
184 	object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
185 	new = object->un_pager.swp.writemappings;
186 	tmpfs_pager_writecount_recalc(object, old, new);
187 	VM_OBJECT_ASSERT_UNLOCKED(object);
188 }
189 
190 static void
191 tmpfs_pager_getvp(vm_object_t object, struct vnode **vpp, bool *vp_heldp)
192 {
193 	struct vnode *vp;
194 
195 	/*
196 	 * Tmpfs VREG node, which was reclaimed, has tmpfs_pager_type
197 	 * type.  In this case there is no v_writecount to adjust.
198 	 */
199 	if (vp_heldp != NULL)
200 		VM_OBJECT_RLOCK(object);
201 	else
202 		VM_OBJECT_ASSERT_LOCKED(object);
203 	if ((object->flags & OBJ_TMPFS) != 0) {
204 		vp = VM_TO_TMPFS_VP(object);
205 		if (vp != NULL) {
206 			*vpp = vp;
207 			if (vp_heldp != NULL) {
208 				vhold(vp);
209 				*vp_heldp = true;
210 			}
211 		}
212 	}
213 	if (vp_heldp != NULL)
214 		VM_OBJECT_RUNLOCK(object);
215 }
216 
217 static void
218 tmpfs_pager_freespace(vm_object_t obj, vm_pindex_t start, vm_size_t size)
219 {
220 	struct tmpfs_node *node;
221 	struct tmpfs_mount *tm;
222 	vm_size_t c;
223 
224 	swap_pager_freespace(obj, start, size, &c);
225 	if ((obj->flags & OBJ_TMPFS) == 0 || c == 0)
226 		return;
227 
228 	node = obj->un_pager.swp.swp_priv;
229 	MPASS(node->tn_type == VREG);
230 	tm = node->tn_reg.tn_tmp;
231 
232 	KASSERT(tm->tm_pages_used >= c,
233 	    ("tmpfs tm %p pages %jd free %jd", tm,
234 	    (uintmax_t)tm->tm_pages_used, (uintmax_t)c));
235 	atomic_add_long(&tm->tm_pages_used, -c);
236 	KASSERT(node->tn_reg.tn_pages >= c,
237 	    ("tmpfs node %p pages %jd free %jd", node,
238 	    (uintmax_t)node->tn_reg.tn_pages, (uintmax_t)c));
239 	node->tn_reg.tn_pages -= c;
240 }
241 
242 static void
243 tmpfs_page_inserted(vm_object_t obj, vm_page_t m)
244 {
245 	struct tmpfs_node *node;
246 	struct tmpfs_mount *tm;
247 
248 	if ((obj->flags & OBJ_TMPFS) == 0)
249 		return;
250 
251 	node = obj->un_pager.swp.swp_priv;
252 	MPASS(node->tn_type == VREG);
253 	tm = node->tn_reg.tn_tmp;
254 
255 	if (!vm_pager_has_page(obj, m->pindex, NULL, NULL)) {
256 		atomic_add_long(&tm->tm_pages_used, 1);
257 		node->tn_reg.tn_pages += 1;
258 	}
259 }
260 
261 static void
262 tmpfs_page_removed(vm_object_t obj, vm_page_t m)
263 {
264 	struct tmpfs_node *node;
265 	struct tmpfs_mount *tm;
266 
267 	if ((obj->flags & OBJ_TMPFS) == 0)
268 		return;
269 
270 	node = obj->un_pager.swp.swp_priv;
271 	MPASS(node->tn_type == VREG);
272 	tm = node->tn_reg.tn_tmp;
273 
274 	if (!vm_pager_has_page(obj, m->pindex, NULL, NULL)) {
275 		KASSERT(tm->tm_pages_used >= 1,
276 		    ("tmpfs tm %p pages %jd free 1", tm,
277 		    (uintmax_t)tm->tm_pages_used));
278 		atomic_add_long(&tm->tm_pages_used, -1);
279 		KASSERT(node->tn_reg.tn_pages >= 1,
280 		    ("tmpfs node %p pages %jd free 1", node,
281 		    (uintmax_t)node->tn_reg.tn_pages));
282 		node->tn_reg.tn_pages -= 1;
283 	}
284 }
285 
286 static boolean_t
287 tmpfs_can_alloc_page(vm_object_t obj, vm_pindex_t pindex)
288 {
289 	struct tmpfs_mount *tm;
290 
291 	tm = VM_TO_TMPFS_MP(obj);
292 	if (tm == NULL || vm_pager_has_page(obj, pindex, NULL, NULL) ||
293 	    tm->tm_pages_max == 0)
294 		return (true);
295 	return (tm->tm_pages_max > atomic_load_long(&tm->tm_pages_used));
296 }
297 
298 struct pagerops tmpfs_pager_ops = {
299 	.pgo_kvme_type = KVME_TYPE_VNODE,
300 	.pgo_alloc = tmpfs_pager_alloc,
301 	.pgo_set_writeable_dirty = vm_object_set_writeable_dirty_,
302 	.pgo_update_writecount = tmpfs_pager_update_writecount,
303 	.pgo_release_writecount = tmpfs_pager_release_writecount,
304 	.pgo_mightbedirty = vm_object_mightbedirty_,
305 	.pgo_getvp = tmpfs_pager_getvp,
306 	.pgo_freespace = tmpfs_pager_freespace,
307 	.pgo_page_inserted = tmpfs_page_inserted,
308 	.pgo_page_removed = tmpfs_page_removed,
309 	.pgo_can_alloc_page = tmpfs_can_alloc_page,
310 };
311 
312 static int
313 tmpfs_node_ctor(void *mem, int size, void *arg, int flags)
314 {
315 	struct tmpfs_node *node;
316 
317 	node = mem;
318 	node->tn_gen++;
319 	node->tn_size = 0;
320 	node->tn_status = 0;
321 	node->tn_accessed = false;
322 	node->tn_flags = 0;
323 	node->tn_links = 0;
324 	node->tn_vnode = NULL;
325 	node->tn_vpstate = 0;
326 	return (0);
327 }
328 
329 static void
330 tmpfs_node_dtor(void *mem, int size, void *arg)
331 {
332 	struct tmpfs_node *node;
333 
334 	node = mem;
335 	node->tn_type = VNON;
336 }
337 
338 static int
339 tmpfs_node_init(void *mem, int size, int flags)
340 {
341 	struct tmpfs_node *node;
342 
343 	node = mem;
344 	node->tn_id = 0;
345 	mtx_init(&node->tn_interlock, "tmpfsni", NULL, MTX_DEF);
346 	node->tn_gen = arc4random();
347 	return (0);
348 }
349 
350 static void
351 tmpfs_node_fini(void *mem, int size)
352 {
353 	struct tmpfs_node *node;
354 
355 	node = mem;
356 	mtx_destroy(&node->tn_interlock);
357 }
358 
359 int
360 tmpfs_subr_init(void)
361 {
362 	tmpfs_pager_type = vm_pager_alloc_dyn_type(&tmpfs_pager_ops,
363 	    OBJT_SWAP);
364 	if (tmpfs_pager_type == -1)
365 		return (EINVAL);
366 	tmpfs_node_pool = uma_zcreate("TMPFS node",
367 	    sizeof(struct tmpfs_node), tmpfs_node_ctor, tmpfs_node_dtor,
368 	    tmpfs_node_init, tmpfs_node_fini, UMA_ALIGN_PTR, 0);
369 	VFS_SMR_ZONE_SET(tmpfs_node_pool);
370 	return (0);
371 }
372 
373 void
374 tmpfs_subr_uninit(void)
375 {
376 	if (tmpfs_pager_type != -1)
377 		vm_pager_free_dyn_type(tmpfs_pager_type);
378 	tmpfs_pager_type = -1;
379 	uma_zdestroy(tmpfs_node_pool);
380 }
381 
382 static int
383 sysctl_mem_reserved(SYSCTL_HANDLER_ARGS)
384 {
385 	int error;
386 	long pages, bytes;
387 
388 	pages = *(long *)arg1;
389 	bytes = pages * PAGE_SIZE;
390 
391 	error = sysctl_handle_long(oidp, &bytes, 0, req);
392 	if (error || !req->newptr)
393 		return (error);
394 
395 	pages = bytes / PAGE_SIZE;
396 	if (pages < TMPFS_PAGES_MINRESERVED)
397 		return (EINVAL);
398 
399 	*(long *)arg1 = pages;
400 	return (0);
401 }
402 
403 SYSCTL_PROC(_vfs_tmpfs, OID_AUTO, memory_reserved,
404     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &tmpfs_pages_reserved, 0,
405     sysctl_mem_reserved, "L",
406     "Amount of available memory and swap below which tmpfs growth stops");
407 
408 static __inline int tmpfs_dirtree_cmp(struct tmpfs_dirent *a,
409     struct tmpfs_dirent *b);
410 RB_PROTOTYPE_STATIC(tmpfs_dir, tmpfs_dirent, uh.td_entries, tmpfs_dirtree_cmp);
411 
412 size_t
413 tmpfs_mem_avail(void)
414 {
415 	size_t avail;
416 	long reserved;
417 
418 	avail = swap_pager_avail + vm_free_count();
419 	reserved = atomic_load_long(&tmpfs_pages_reserved);
420 	if (__predict_false(avail < reserved))
421 		return (0);
422 	return (avail - reserved);
423 }
424 
425 size_t
426 tmpfs_pages_used(struct tmpfs_mount *tmp)
427 {
428 	const size_t node_size = sizeof(struct tmpfs_node) +
429 	    sizeof(struct tmpfs_dirent);
430 	size_t meta_pages;
431 
432 	meta_pages = howmany((uintmax_t)tmp->tm_nodes_inuse * node_size,
433 	    PAGE_SIZE);
434 	return (meta_pages + tmp->tm_pages_used);
435 }
436 
437 bool
438 tmpfs_pages_check_avail(struct tmpfs_mount *tmp, size_t req_pages)
439 {
440 	if (tmpfs_mem_avail() < req_pages)
441 		return (false);
442 
443 	if (tmp->tm_pages_max != ULONG_MAX &&
444 	    tmp->tm_pages_max < req_pages + tmpfs_pages_used(tmp))
445 		return (false);
446 
447 	return (true);
448 }
449 
450 static int
451 tmpfs_partial_page_invalidate(vm_object_t object, vm_pindex_t idx, int base,
452     int end, boolean_t ignerr)
453 {
454 	vm_page_t m;
455 	int rv, error;
456 
457 	VM_OBJECT_ASSERT_WLOCKED(object);
458 	KASSERT(base >= 0, ("%s: base %d", __func__, base));
459 	KASSERT(end - base <= PAGE_SIZE, ("%s: base %d end %d", __func__, base,
460 	    end));
461 	error = 0;
462 
463 retry:
464 	m = vm_page_grab(object, idx, VM_ALLOC_NOCREAT);
465 	if (m != NULL) {
466 		MPASS(vm_page_all_valid(m));
467 	} else if (vm_pager_has_page(object, idx, NULL, NULL)) {
468 		m = vm_page_alloc(object, idx, VM_ALLOC_NORMAL |
469 		    VM_ALLOC_WAITFAIL);
470 		if (m == NULL)
471 			goto retry;
472 		vm_object_pip_add(object, 1);
473 		VM_OBJECT_WUNLOCK(object);
474 		rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
475 		VM_OBJECT_WLOCK(object);
476 		vm_object_pip_wakeup(object);
477 		if (rv == VM_PAGER_OK) {
478 			/*
479 			 * Since the page was not resident, and therefore not
480 			 * recently accessed, immediately enqueue it for
481 			 * asynchronous laundering.  The current operation is
482 			 * not regarded as an access.
483 			 */
484 			vm_page_launder(m);
485 		} else {
486 			vm_page_free(m);
487 			m = NULL;
488 			if (!ignerr)
489 				error = EIO;
490 		}
491 	}
492 	if (m != NULL) {
493 		pmap_zero_page_area(m, base, end - base);
494 		vm_page_set_dirty(m);
495 		vm_page_xunbusy(m);
496 	}
497 
498 	return (error);
499 }
500 
501 void
502 tmpfs_ref_node(struct tmpfs_node *node)
503 {
504 #ifdef INVARIANTS
505 	u_int old;
506 
507 	old =
508 #endif
509 	refcount_acquire(&node->tn_refcount);
510 #ifdef INVARIANTS
511 	KASSERT(old > 0, ("node %p zero refcount", node));
512 #endif
513 }
514 
515 /*
516  * Allocates a new node of type 'type' inside the 'tmp' mount point, with
517  * its owner set to 'uid', its group to 'gid' and its mode set to 'mode',
518  * using the credentials of the process 'p'.
519  *
520  * If the node type is set to 'VDIR', then the parent parameter must point
521  * to the parent directory of the node being created.  It may only be NULL
522  * while allocating the root node.
523  *
524  * If the node type is set to 'VBLK' or 'VCHR', then the rdev parameter
525  * specifies the device the node represents.
526  *
527  * If the node type is set to 'VLNK', then the parameter target specifies
528  * the file name of the target file for the symbolic link that is being
529  * created.
530  *
531  * Note that new nodes are retrieved from the available list if it has
532  * items or, if it is empty, from the node pool as long as there is enough
533  * space to create them.
534  *
535  * Returns zero on success or an appropriate error code on failure.
536  */
537 int
538 tmpfs_alloc_node(struct mount *mp, struct tmpfs_mount *tmp, enum vtype type,
539     uid_t uid, gid_t gid, mode_t mode, struct tmpfs_node *parent,
540     const char *target, dev_t rdev, struct tmpfs_node **node)
541 {
542 	struct tmpfs_node *nnode;
543 	char *symlink;
544 	char symlink_smr;
545 
546 	/* If the root directory of the 'tmp' file system is not yet
547 	 * allocated, this must be the request to do it. */
548 	MPASS(IMPLIES(tmp->tm_root == NULL, parent == NULL && type == VDIR));
549 
550 	MPASS((type == VLNK) ^ (target == NULL));
551 	MPASS((type == VBLK || type == VCHR) ^ (rdev == VNOVAL));
552 
553 	if (tmp->tm_nodes_inuse >= tmp->tm_nodes_max)
554 		return (ENOSPC);
555 	if (!tmpfs_pages_check_avail(tmp, 1))
556 		return (ENOSPC);
557 
558 	if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
559 		/*
560 		 * When a new tmpfs node is created for fully
561 		 * constructed mount point, there must be a parent
562 		 * node, which vnode is locked exclusively.  As
563 		 * consequence, if the unmount is executing in
564 		 * parallel, vflush() cannot reclaim the parent vnode.
565 		 * Due to this, the check for MNTK_UNMOUNT flag is not
566 		 * racy: if we did not see MNTK_UNMOUNT flag, then tmp
567 		 * cannot be destroyed until node construction is
568 		 * finished and the parent vnode unlocked.
569 		 *
570 		 * Tmpfs does not need to instantiate new nodes during
571 		 * unmount.
572 		 */
573 		return (EBUSY);
574 	}
575 	if ((mp->mnt_kern_flag & MNT_RDONLY) != 0)
576 		return (EROFS);
577 
578 	nnode = uma_zalloc_smr(tmpfs_node_pool, M_WAITOK);
579 
580 	/* Generic initialization. */
581 	nnode->tn_type = type;
582 	vfs_timestamp(&nnode->tn_atime);
583 	nnode->tn_birthtime = nnode->tn_ctime = nnode->tn_mtime =
584 	    nnode->tn_atime;
585 	nnode->tn_uid = uid;
586 	nnode->tn_gid = gid;
587 	nnode->tn_mode = mode;
588 	nnode->tn_id = alloc_unr64(&tmp->tm_ino_unr);
589 	nnode->tn_refcount = 1;
590 	LIST_INIT(&nnode->tn_extattrs);
591 
592 	/* Type-specific initialization. */
593 	switch (nnode->tn_type) {
594 	case VBLK:
595 	case VCHR:
596 		nnode->tn_rdev = rdev;
597 		break;
598 
599 	case VDIR:
600 		RB_INIT(&nnode->tn_dir.tn_dirhead);
601 		LIST_INIT(&nnode->tn_dir.tn_dupindex);
602 		MPASS(parent != nnode);
603 		MPASS(IMPLIES(parent == NULL, tmp->tm_root == NULL));
604 		nnode->tn_dir.tn_parent = (parent == NULL) ? nnode : parent;
605 		nnode->tn_dir.tn_readdir_lastn = 0;
606 		nnode->tn_dir.tn_readdir_lastp = NULL;
607 		nnode->tn_links++;
608 		TMPFS_NODE_LOCK(nnode->tn_dir.tn_parent);
609 		nnode->tn_dir.tn_parent->tn_links++;
610 		TMPFS_NODE_UNLOCK(nnode->tn_dir.tn_parent);
611 		break;
612 
613 	case VFIFO:
614 		/* FALLTHROUGH */
615 	case VSOCK:
616 		break;
617 
618 	case VLNK:
619 		MPASS(strlen(target) < MAXPATHLEN);
620 		nnode->tn_size = strlen(target);
621 
622 		symlink = NULL;
623 		if (!tmp->tm_nonc) {
624 			symlink = cache_symlink_alloc(nnode->tn_size + 1,
625 			    M_WAITOK);
626 			symlink_smr = true;
627 		}
628 		if (symlink == NULL) {
629 			symlink = malloc(nnode->tn_size + 1, M_TMPFSNAME,
630 			    M_WAITOK);
631 			symlink_smr = false;
632 		}
633 		memcpy(symlink, target, nnode->tn_size + 1);
634 
635 		/*
636 		 * Allow safe symlink resolving for lockless lookup.
637 		 * tmpfs_fplookup_symlink references this comment.
638 		 *
639 		 * 1. nnode is not yet visible to the world
640 		 * 2. both tn_link_target and tn_link_smr get populated
641 		 * 3. release fence publishes their content
642 		 * 4. tn_link_target content is immutable until node
643 		 *    destruction, where the pointer gets set to NULL
644 		 * 5. tn_link_smr is never changed once set
645 		 *
646 		 * As a result it is sufficient to issue load consume
647 		 * on the node pointer to also get the above content
648 		 * in a stable manner.  Worst case tn_link_smr flag
649 		 * may be set to true despite being stale, while the
650 		 * target buffer is already cleared out.
651 		 */
652 		atomic_store_ptr(&nnode->tn_link_target, symlink);
653 		atomic_store_char((char *)&nnode->tn_link_smr, symlink_smr);
654 		atomic_thread_fence_rel();
655 		break;
656 
657 	case VREG:
658 		nnode->tn_reg.tn_aobj =
659 		    vm_pager_allocate(tmpfs_pager_type, NULL, 0,
660 		    VM_PROT_DEFAULT, 0,
661 		    NULL /* XXXKIB - tmpfs needs swap reservation */);
662 		nnode->tn_reg.tn_aobj->un_pager.swp.swp_priv = nnode;
663 		vm_object_set_flag(nnode->tn_reg.tn_aobj, OBJ_TMPFS);
664 		nnode->tn_reg.tn_tmp = tmp;
665 		nnode->tn_reg.tn_pages = 0;
666 		break;
667 
668 	default:
669 		panic("tmpfs_alloc_node: type %p %d", nnode,
670 		    (int)nnode->tn_type);
671 	}
672 
673 	TMPFS_LOCK(tmp);
674 	LIST_INSERT_HEAD(&tmp->tm_nodes_used, nnode, tn_entries);
675 	nnode->tn_attached = true;
676 	tmp->tm_nodes_inuse++;
677 	tmp->tm_refcount++;
678 	TMPFS_UNLOCK(tmp);
679 
680 	*node = nnode;
681 	return (0);
682 }
683 
684 /*
685  * Destroys the node pointed to by node from the file system 'tmp'.
686  * If the node references a directory, no entries are allowed.
687  */
688 void
689 tmpfs_free_node(struct tmpfs_mount *tmp, struct tmpfs_node *node)
690 {
691 	if (refcount_release_if_not_last(&node->tn_refcount))
692 		return;
693 
694 	TMPFS_LOCK(tmp);
695 	TMPFS_NODE_LOCK(node);
696 	if (!tmpfs_free_node_locked(tmp, node, false)) {
697 		TMPFS_NODE_UNLOCK(node);
698 		TMPFS_UNLOCK(tmp);
699 	}
700 }
701 
702 bool
703 tmpfs_free_node_locked(struct tmpfs_mount *tmp, struct tmpfs_node *node,
704     bool detach)
705 {
706 	struct tmpfs_extattr *ea;
707 	vm_object_t uobj;
708 	char *symlink;
709 	bool last;
710 
711 	TMPFS_MP_ASSERT_LOCKED(tmp);
712 	TMPFS_NODE_ASSERT_LOCKED(node);
713 
714 	last = refcount_release(&node->tn_refcount);
715 	if (node->tn_attached && (detach || last)) {
716 		MPASS(tmp->tm_nodes_inuse > 0);
717 		tmp->tm_nodes_inuse--;
718 		LIST_REMOVE(node, tn_entries);
719 		node->tn_attached = false;
720 	}
721 	if (!last)
722 		return (false);
723 
724 	TMPFS_NODE_UNLOCK(node);
725 
726 #ifdef INVARIANTS
727 	MPASS(node->tn_vnode == NULL);
728 	MPASS((node->tn_vpstate & TMPFS_VNODE_ALLOCATING) == 0);
729 
730 	/*
731 	 * Make sure this is a node type we can deal with. Everything
732 	 * is explicitly enumerated without the 'default' clause so
733 	 * the compiler can throw an error in case a new type is
734 	 * added.
735 	 */
736 	switch (node->tn_type) {
737 	case VBLK:
738 	case VCHR:
739 	case VDIR:
740 	case VFIFO:
741 	case VSOCK:
742 	case VLNK:
743 	case VREG:
744 		break;
745 	case VNON:
746 	case VBAD:
747 	case VMARKER:
748 		panic("%s: bad type %d for node %p", __func__,
749 		    (int)node->tn_type, node);
750 	}
751 #endif
752 
753 	while ((ea = LIST_FIRST(&node->tn_extattrs)) != NULL) {
754 		LIST_REMOVE(ea, ea_extattrs);
755 		tmpfs_extattr_free(ea);
756 	}
757 
758 	switch (node->tn_type) {
759 	case VREG:
760 		uobj = node->tn_reg.tn_aobj;
761 		node->tn_reg.tn_aobj = NULL;
762 		if (uobj != NULL) {
763 			VM_OBJECT_WLOCK(uobj);
764 			KASSERT((uobj->flags & OBJ_TMPFS) != 0,
765 			    ("tmpfs node %p uobj %p not tmpfs", node, uobj));
766 			vm_object_clear_flag(uobj, OBJ_TMPFS);
767 			KASSERT(tmp->tm_pages_used >= node->tn_reg.tn_pages,
768 			    ("tmpfs tmp %p node %p pages %jd free %jd", tmp,
769 			    node, (uintmax_t)tmp->tm_pages_used,
770 			    (uintmax_t)node->tn_reg.tn_pages));
771 			atomic_add_long(&tmp->tm_pages_used,
772 			    -node->tn_reg.tn_pages);
773 			VM_OBJECT_WUNLOCK(uobj);
774 		}
775 		tmpfs_free_tmp(tmp);
776 
777 		/*
778 		 * vm_object_deallocate() must not be called while
779 		 * owning tm_allnode_lock, because deallocate might
780 		 * sleep.  Call it after tmpfs_free_tmp() does the
781 		 * unlock.
782 		 */
783 		if (uobj != NULL)
784 			vm_object_deallocate(uobj);
785 
786 		break;
787 	case VLNK:
788 		tmpfs_free_tmp(tmp);
789 
790 		symlink = node->tn_link_target;
791 		atomic_store_ptr(&node->tn_link_target, NULL);
792 		if (atomic_load_char(&node->tn_link_smr)) {
793 			cache_symlink_free(symlink, node->tn_size + 1);
794 		} else {
795 			free(symlink, M_TMPFSNAME);
796 		}
797 		break;
798 	default:
799 		tmpfs_free_tmp(tmp);
800 		break;
801 	}
802 
803 	uma_zfree_smr(tmpfs_node_pool, node);
804 	return (true);
805 }
806 
807 static __inline uint32_t
808 tmpfs_dirent_hash(const char *name, u_int len)
809 {
810 	uint32_t hash;
811 
812 	hash = fnv_32_buf(name, len, FNV1_32_INIT + len) & TMPFS_DIRCOOKIE_MASK;
813 #ifdef TMPFS_DEBUG_DIRCOOKIE_DUP
814 	hash &= 0xf;
815 #endif
816 	if (hash < TMPFS_DIRCOOKIE_MIN)
817 		hash += TMPFS_DIRCOOKIE_MIN;
818 
819 	return (hash);
820 }
821 
822 static __inline off_t
823 tmpfs_dirent_cookie(struct tmpfs_dirent *de)
824 {
825 	if (de == NULL)
826 		return (TMPFS_DIRCOOKIE_EOF);
827 
828 	MPASS(de->td_cookie >= TMPFS_DIRCOOKIE_MIN);
829 
830 	return (de->td_cookie);
831 }
832 
833 static __inline boolean_t
834 tmpfs_dirent_dup(struct tmpfs_dirent *de)
835 {
836 	return ((de->td_cookie & TMPFS_DIRCOOKIE_DUP) != 0);
837 }
838 
839 static __inline boolean_t
840 tmpfs_dirent_duphead(struct tmpfs_dirent *de)
841 {
842 	return ((de->td_cookie & TMPFS_DIRCOOKIE_DUPHEAD) != 0);
843 }
844 
845 void
846 tmpfs_dirent_init(struct tmpfs_dirent *de, const char *name, u_int namelen)
847 {
848 	de->td_hash = de->td_cookie = tmpfs_dirent_hash(name, namelen);
849 	memcpy(de->ud.td_name, name, namelen);
850 	de->td_namelen = namelen;
851 }
852 
853 /*
854  * Allocates a new directory entry for the node node with a name of name.
855  * The new directory entry is returned in *de.
856  *
857  * The link count of node is increased by one to reflect the new object
858  * referencing it.
859  *
860  * Returns zero on success or an appropriate error code on failure.
861  */
862 int
863 tmpfs_alloc_dirent(struct tmpfs_mount *tmp, struct tmpfs_node *node,
864     const char *name, u_int len, struct tmpfs_dirent **de)
865 {
866 	struct tmpfs_dirent *nde;
867 
868 	nde = malloc(sizeof(*nde), M_TMPFSDIR, M_WAITOK);
869 	nde->td_node = node;
870 	if (name != NULL) {
871 		nde->ud.td_name = malloc(len, M_TMPFSNAME, M_WAITOK);
872 		tmpfs_dirent_init(nde, name, len);
873 	} else
874 		nde->td_namelen = 0;
875 	if (node != NULL)
876 		node->tn_links++;
877 
878 	*de = nde;
879 
880 	return (0);
881 }
882 
883 /*
884  * Frees a directory entry.  It is the caller's responsibility to destroy
885  * the node referenced by it if needed.
886  *
887  * The link count of node is decreased by one to reflect the removal of an
888  * object that referenced it.  This only happens if 'node_exists' is true;
889  * otherwise the function will not access the node referred to by the
890  * directory entry, as it may already have been released from the outside.
891  */
892 void
893 tmpfs_free_dirent(struct tmpfs_mount *tmp, struct tmpfs_dirent *de)
894 {
895 	struct tmpfs_node *node;
896 
897 	node = de->td_node;
898 	if (node != NULL) {
899 		MPASS(node->tn_links > 0);
900 		node->tn_links--;
901 	}
902 	if (!tmpfs_dirent_duphead(de) && de->ud.td_name != NULL)
903 		free(de->ud.td_name, M_TMPFSNAME);
904 	free(de, M_TMPFSDIR);
905 }
906 
907 void
908 tmpfs_destroy_vobject(struct vnode *vp, vm_object_t obj)
909 {
910 	bool want_vrele;
911 
912 	ASSERT_VOP_ELOCKED(vp, "tmpfs_destroy_vobject");
913 	if (vp->v_type != VREG || obj == NULL)
914 		return;
915 
916 	VM_OBJECT_WLOCK(obj);
917 	VI_LOCK(vp);
918 	/*
919 	 * May be going through forced unmount.
920 	 */
921 	want_vrele = false;
922 	if ((obj->flags & OBJ_TMPFS_VREF) != 0) {
923 		vm_object_clear_flag(obj, OBJ_TMPFS_VREF);
924 		want_vrele = true;
925 	}
926 
927 	if (vp->v_writecount < 0)
928 		vp->v_writecount = 0;
929 	VI_UNLOCK(vp);
930 	VM_OBJECT_WUNLOCK(obj);
931 	if (want_vrele) {
932 		vrele(vp);
933 	}
934 }
935 
936 /*
937  * Allocates a new vnode for the node node or returns a new reference to
938  * an existing one if the node had already a vnode referencing it.  The
939  * resulting locked vnode is returned in *vpp.
940  *
941  * Returns zero on success or an appropriate error code on failure.
942  */
943 int
944 tmpfs_alloc_vp(struct mount *mp, struct tmpfs_node *node, int lkflag,
945     struct vnode **vpp)
946 {
947 	struct vnode *vp;
948 	enum vgetstate vs;
949 	struct tmpfs_mount *tm;
950 	vm_object_t object;
951 	int error;
952 
953 	error = 0;
954 	tm = VFS_TO_TMPFS(mp);
955 	TMPFS_NODE_LOCK(node);
956 	tmpfs_ref_node(node);
957 loop:
958 	TMPFS_NODE_ASSERT_LOCKED(node);
959 	if ((vp = node->tn_vnode) != NULL) {
960 		MPASS((node->tn_vpstate & TMPFS_VNODE_DOOMED) == 0);
961 		if ((node->tn_type == VDIR && node->tn_dir.tn_parent == NULL) ||
962 		    (VN_IS_DOOMED(vp) &&
963 		     (lkflag & LK_NOWAIT) != 0)) {
964 			TMPFS_NODE_UNLOCK(node);
965 			error = ENOENT;
966 			vp = NULL;
967 			goto out;
968 		}
969 		if (VN_IS_DOOMED(vp)) {
970 			node->tn_vpstate |= TMPFS_VNODE_WRECLAIM;
971 			while ((node->tn_vpstate & TMPFS_VNODE_WRECLAIM) != 0) {
972 				msleep(&node->tn_vnode, TMPFS_NODE_MTX(node),
973 				    0, "tmpfsE", 0);
974 			}
975 			goto loop;
976 		}
977 		vs = vget_prep(vp);
978 		TMPFS_NODE_UNLOCK(node);
979 		error = vget_finish(vp, lkflag, vs);
980 		if (error == ENOENT) {
981 			TMPFS_NODE_LOCK(node);
982 			goto loop;
983 		}
984 		if (error != 0) {
985 			vp = NULL;
986 			goto out;
987 		}
988 
989 		/*
990 		 * Make sure the vnode is still there after
991 		 * getting the interlock to avoid racing a free.
992 		 */
993 		if (node->tn_vnode != vp) {
994 			vput(vp);
995 			TMPFS_NODE_LOCK(node);
996 			goto loop;
997 		}
998 
999 		goto out;
1000 	}
1001 
1002 	if ((node->tn_vpstate & TMPFS_VNODE_DOOMED) ||
1003 	    (node->tn_type == VDIR && node->tn_dir.tn_parent == NULL)) {
1004 		TMPFS_NODE_UNLOCK(node);
1005 		error = ENOENT;
1006 		vp = NULL;
1007 		goto out;
1008 	}
1009 
1010 	/*
1011 	 * otherwise lock the vp list while we call getnewvnode
1012 	 * since that can block.
1013 	 */
1014 	if (node->tn_vpstate & TMPFS_VNODE_ALLOCATING) {
1015 		node->tn_vpstate |= TMPFS_VNODE_WANT;
1016 		error = msleep((caddr_t) &node->tn_vpstate,
1017 		    TMPFS_NODE_MTX(node), 0, "tmpfs_alloc_vp", 0);
1018 		if (error != 0)
1019 			goto out;
1020 		goto loop;
1021 	} else
1022 		node->tn_vpstate |= TMPFS_VNODE_ALLOCATING;
1023 
1024 	TMPFS_NODE_UNLOCK(node);
1025 
1026 	/* Get a new vnode and associate it with our node. */
1027 	error = getnewvnode("tmpfs", mp, VFS_TO_TMPFS(mp)->tm_nonc ?
1028 	    &tmpfs_vnodeop_nonc_entries : &tmpfs_vnodeop_entries, &vp);
1029 	if (error != 0)
1030 		goto unlock;
1031 	MPASS(vp != NULL);
1032 
1033 	/* lkflag is ignored, the lock is exclusive */
1034 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1035 
1036 	vp->v_data = node;
1037 	vp->v_type = node->tn_type;
1038 
1039 	/* Type-specific initialization. */
1040 	switch (node->tn_type) {
1041 	case VBLK:
1042 		/* FALLTHROUGH */
1043 	case VCHR:
1044 		/* FALLTHROUGH */
1045 	case VLNK:
1046 		/* FALLTHROUGH */
1047 	case VSOCK:
1048 		break;
1049 	case VFIFO:
1050 		vp->v_op = &tmpfs_fifoop_entries;
1051 		break;
1052 	case VREG:
1053 		object = node->tn_reg.tn_aobj;
1054 		VM_OBJECT_WLOCK(object);
1055 		KASSERT((object->flags & OBJ_TMPFS_VREF) == 0,
1056 		    ("%s: object %p with OBJ_TMPFS_VREF but without vnode",
1057 		    __func__, object));
1058 		KASSERT(object->un_pager.swp.writemappings == 0,
1059 		    ("%s: object %p has writemappings",
1060 		    __func__, object));
1061 		VI_LOCK(vp);
1062 		KASSERT(vp->v_object == NULL, ("Not NULL v_object in tmpfs"));
1063 		vp->v_object = object;
1064 		vn_irflag_set_locked(vp, VIRF_PGREAD | VIRF_TEXT_REF);
1065 		VI_UNLOCK(vp);
1066 		VM_OBJECT_WUNLOCK(object);
1067 		break;
1068 	case VDIR:
1069 		MPASS(node->tn_dir.tn_parent != NULL);
1070 		if (node->tn_dir.tn_parent == node)
1071 			vp->v_vflag |= VV_ROOT;
1072 		break;
1073 
1074 	default:
1075 		panic("tmpfs_alloc_vp: type %p %d", node, (int)node->tn_type);
1076 	}
1077 	if (vp->v_type != VFIFO)
1078 		VN_LOCK_ASHARE(vp);
1079 
1080 	error = insmntque1(vp, mp);
1081 	if (error != 0) {
1082 		/* Need to clear v_object for insmntque failure. */
1083 		tmpfs_destroy_vobject(vp, vp->v_object);
1084 		vp->v_object = NULL;
1085 		vp->v_data = NULL;
1086 		vp->v_op = &dead_vnodeops;
1087 		vgone(vp);
1088 		vput(vp);
1089 		vp = NULL;
1090 	} else {
1091 		vn_set_state(vp, VSTATE_CONSTRUCTED);
1092 	}
1093 
1094 unlock:
1095 	TMPFS_NODE_LOCK(node);
1096 
1097 	MPASS(node->tn_vpstate & TMPFS_VNODE_ALLOCATING);
1098 	node->tn_vpstate &= ~TMPFS_VNODE_ALLOCATING;
1099 	node->tn_vnode = vp;
1100 
1101 	if (node->tn_vpstate & TMPFS_VNODE_WANT) {
1102 		node->tn_vpstate &= ~TMPFS_VNODE_WANT;
1103 		TMPFS_NODE_UNLOCK(node);
1104 		wakeup((caddr_t) &node->tn_vpstate);
1105 	} else
1106 		TMPFS_NODE_UNLOCK(node);
1107 
1108 out:
1109 	if (error == 0) {
1110 		*vpp = vp;
1111 
1112 #ifdef INVARIANTS
1113 		MPASS(*vpp != NULL);
1114 		ASSERT_VOP_LOCKED(*vpp, __func__);
1115 		TMPFS_NODE_LOCK(node);
1116 		MPASS(*vpp == node->tn_vnode);
1117 		TMPFS_NODE_UNLOCK(node);
1118 #endif
1119 	}
1120 	tmpfs_free_node(tm, node);
1121 
1122 	return (error);
1123 }
1124 
1125 /*
1126  * Destroys the association between the vnode vp and the node it
1127  * references.
1128  */
1129 void
1130 tmpfs_free_vp(struct vnode *vp)
1131 {
1132 	struct tmpfs_node *node;
1133 
1134 	node = VP_TO_TMPFS_NODE(vp);
1135 
1136 	TMPFS_NODE_ASSERT_LOCKED(node);
1137 	node->tn_vnode = NULL;
1138 	if ((node->tn_vpstate & TMPFS_VNODE_WRECLAIM) != 0)
1139 		wakeup(&node->tn_vnode);
1140 	node->tn_vpstate &= ~TMPFS_VNODE_WRECLAIM;
1141 	vp->v_data = NULL;
1142 }
1143 
1144 /*
1145  * Allocates a new file of type 'type' and adds it to the parent directory
1146  * 'dvp'; this addition is done using the component name given in 'cnp'.
1147  * The ownership of the new file is automatically assigned based on the
1148  * credentials of the caller (through 'cnp'), the group is set based on
1149  * the parent directory and the mode is determined from the 'vap' argument.
1150  * If successful, *vpp holds a vnode to the newly created file and zero
1151  * is returned.  Otherwise *vpp is NULL and the function returns an
1152  * appropriate error code.
1153  */
1154 int
1155 tmpfs_alloc_file(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
1156     struct componentname *cnp, const char *target)
1157 {
1158 	int error;
1159 	struct tmpfs_dirent *de;
1160 	struct tmpfs_mount *tmp;
1161 	struct tmpfs_node *dnode;
1162 	struct tmpfs_node *node;
1163 	struct tmpfs_node *parent;
1164 
1165 	ASSERT_VOP_ELOCKED(dvp, "tmpfs_alloc_file");
1166 
1167 	tmp = VFS_TO_TMPFS(dvp->v_mount);
1168 	dnode = VP_TO_TMPFS_DIR(dvp);
1169 	*vpp = NULL;
1170 
1171 	/* If the entry we are creating is a directory, we cannot overflow
1172 	 * the number of links of its parent, because it will get a new
1173 	 * link. */
1174 	if (vap->va_type == VDIR) {
1175 		/* Ensure that we do not overflow the maximum number of links
1176 		 * imposed by the system. */
1177 		MPASS(dnode->tn_links <= TMPFS_LINK_MAX);
1178 		if (dnode->tn_links == TMPFS_LINK_MAX) {
1179 			return (EMLINK);
1180 		}
1181 
1182 		parent = dnode;
1183 		MPASS(parent != NULL);
1184 	} else
1185 		parent = NULL;
1186 
1187 	/* Allocate a node that represents the new file. */
1188 	error = tmpfs_alloc_node(dvp->v_mount, tmp, vap->va_type,
1189 	    cnp->cn_cred->cr_uid, dnode->tn_gid, vap->va_mode, parent,
1190 	    target, vap->va_rdev, &node);
1191 	if (error != 0)
1192 		return (error);
1193 
1194 	/* Allocate a directory entry that points to the new file. */
1195 	error = tmpfs_alloc_dirent(tmp, node, cnp->cn_nameptr, cnp->cn_namelen,
1196 	    &de);
1197 	if (error != 0) {
1198 		tmpfs_free_node(tmp, node);
1199 		return (error);
1200 	}
1201 
1202 	/* Allocate a vnode for the new file. */
1203 	error = tmpfs_alloc_vp(dvp->v_mount, node, LK_EXCLUSIVE, vpp);
1204 	if (error != 0) {
1205 		tmpfs_free_dirent(tmp, de);
1206 		tmpfs_free_node(tmp, node);
1207 		return (error);
1208 	}
1209 
1210 	/* Now that all required items are allocated, we can proceed to
1211 	 * insert the new node into the directory, an operation that
1212 	 * cannot fail. */
1213 	if (cnp->cn_flags & ISWHITEOUT)
1214 		tmpfs_dir_whiteout_remove(dvp, cnp);
1215 	tmpfs_dir_attach(dvp, de);
1216 	return (0);
1217 }
1218 
1219 struct tmpfs_dirent *
1220 tmpfs_dir_first(struct tmpfs_node *dnode, struct tmpfs_dir_cursor *dc)
1221 {
1222 	struct tmpfs_dirent *de;
1223 
1224 	de = RB_MIN(tmpfs_dir, &dnode->tn_dir.tn_dirhead);
1225 	dc->tdc_tree = de;
1226 	if (de != NULL && tmpfs_dirent_duphead(de))
1227 		de = LIST_FIRST(&de->ud.td_duphead);
1228 	dc->tdc_current = de;
1229 
1230 	return (dc->tdc_current);
1231 }
1232 
1233 struct tmpfs_dirent *
1234 tmpfs_dir_next(struct tmpfs_node *dnode, struct tmpfs_dir_cursor *dc)
1235 {
1236 	struct tmpfs_dirent *de;
1237 
1238 	MPASS(dc->tdc_tree != NULL);
1239 	if (tmpfs_dirent_dup(dc->tdc_current)) {
1240 		dc->tdc_current = LIST_NEXT(dc->tdc_current, uh.td_dup.entries);
1241 		if (dc->tdc_current != NULL)
1242 			return (dc->tdc_current);
1243 	}
1244 	dc->tdc_tree = dc->tdc_current = RB_NEXT(tmpfs_dir,
1245 	    &dnode->tn_dir.tn_dirhead, dc->tdc_tree);
1246 	if ((de = dc->tdc_current) != NULL && tmpfs_dirent_duphead(de)) {
1247 		dc->tdc_current = LIST_FIRST(&de->ud.td_duphead);
1248 		MPASS(dc->tdc_current != NULL);
1249 	}
1250 
1251 	return (dc->tdc_current);
1252 }
1253 
1254 /* Lookup directory entry in RB-Tree. Function may return duphead entry. */
1255 static struct tmpfs_dirent *
1256 tmpfs_dir_xlookup_hash(struct tmpfs_node *dnode, uint32_t hash)
1257 {
1258 	struct tmpfs_dirent *de, dekey;
1259 
1260 	dekey.td_hash = hash;
1261 	de = RB_FIND(tmpfs_dir, &dnode->tn_dir.tn_dirhead, &dekey);
1262 	return (de);
1263 }
1264 
1265 /* Lookup directory entry by cookie, initialize directory cursor accordingly. */
1266 static struct tmpfs_dirent *
1267 tmpfs_dir_lookup_cookie(struct tmpfs_node *node, off_t cookie,
1268     struct tmpfs_dir_cursor *dc)
1269 {
1270 	struct tmpfs_dir *dirhead = &node->tn_dir.tn_dirhead;
1271 	struct tmpfs_dirent *de, dekey;
1272 
1273 	MPASS(cookie >= TMPFS_DIRCOOKIE_MIN);
1274 
1275 	if (cookie == node->tn_dir.tn_readdir_lastn &&
1276 	    (de = node->tn_dir.tn_readdir_lastp) != NULL) {
1277 		/* Protect against possible race, tn_readdir_last[pn]
1278 		 * may be updated with only shared vnode lock held. */
1279 		if (cookie == tmpfs_dirent_cookie(de))
1280 			goto out;
1281 	}
1282 
1283 	if ((cookie & TMPFS_DIRCOOKIE_DUP) != 0) {
1284 		LIST_FOREACH(de, &node->tn_dir.tn_dupindex,
1285 		    uh.td_dup.index_entries) {
1286 			MPASS(tmpfs_dirent_dup(de));
1287 			if (de->td_cookie == cookie)
1288 				goto out;
1289 			/* dupindex list is sorted. */
1290 			if (de->td_cookie < cookie) {
1291 				de = NULL;
1292 				goto out;
1293 			}
1294 		}
1295 		MPASS(de == NULL);
1296 		goto out;
1297 	}
1298 
1299 	if ((cookie & TMPFS_DIRCOOKIE_MASK) != cookie) {
1300 		de = NULL;
1301 	} else {
1302 		dekey.td_hash = cookie;
1303 		/* Recover if direntry for cookie was removed */
1304 		de = RB_NFIND(tmpfs_dir, dirhead, &dekey);
1305 	}
1306 	dc->tdc_tree = de;
1307 	dc->tdc_current = de;
1308 	if (de != NULL && tmpfs_dirent_duphead(de)) {
1309 		dc->tdc_current = LIST_FIRST(&de->ud.td_duphead);
1310 		MPASS(dc->tdc_current != NULL);
1311 	}
1312 	return (dc->tdc_current);
1313 
1314 out:
1315 	dc->tdc_tree = de;
1316 	dc->tdc_current = de;
1317 	if (de != NULL && tmpfs_dirent_dup(de))
1318 		dc->tdc_tree = tmpfs_dir_xlookup_hash(node,
1319 		    de->td_hash);
1320 	return (dc->tdc_current);
1321 }
1322 
1323 /*
1324  * Looks for a directory entry in the directory represented by node.
1325  * 'cnp' describes the name of the entry to look for.  Note that the .
1326  * and .. components are not allowed as they do not physically exist
1327  * within directories.
1328  *
1329  * Returns a pointer to the entry when found, otherwise NULL.
1330  */
1331 struct tmpfs_dirent *
1332 tmpfs_dir_lookup(struct tmpfs_node *node, struct tmpfs_node *f,
1333     struct componentname *cnp)
1334 {
1335 	struct tmpfs_dir_duphead *duphead;
1336 	struct tmpfs_dirent *de;
1337 	uint32_t hash;
1338 
1339 	MPASS(IMPLIES(cnp->cn_namelen == 1, cnp->cn_nameptr[0] != '.'));
1340 	MPASS(IMPLIES(cnp->cn_namelen == 2, !(cnp->cn_nameptr[0] == '.' &&
1341 	    cnp->cn_nameptr[1] == '.')));
1342 	TMPFS_VALIDATE_DIR(node);
1343 
1344 	hash = tmpfs_dirent_hash(cnp->cn_nameptr, cnp->cn_namelen);
1345 	de = tmpfs_dir_xlookup_hash(node, hash);
1346 	if (de != NULL && tmpfs_dirent_duphead(de)) {
1347 		duphead = &de->ud.td_duphead;
1348 		LIST_FOREACH(de, duphead, uh.td_dup.entries) {
1349 			if (TMPFS_DIRENT_MATCHES(de, cnp->cn_nameptr,
1350 			    cnp->cn_namelen))
1351 				break;
1352 		}
1353 	} else if (de != NULL) {
1354 		if (!TMPFS_DIRENT_MATCHES(de, cnp->cn_nameptr,
1355 		    cnp->cn_namelen))
1356 			de = NULL;
1357 	}
1358 	if (de != NULL && f != NULL && de->td_node != f)
1359 		de = NULL;
1360 
1361 	return (de);
1362 }
1363 
1364 /*
1365  * Attach duplicate-cookie directory entry nde to dnode and insert to dupindex
1366  * list, allocate new cookie value.
1367  */
1368 static void
1369 tmpfs_dir_attach_dup(struct tmpfs_node *dnode,
1370     struct tmpfs_dir_duphead *duphead, struct tmpfs_dirent *nde)
1371 {
1372 	struct tmpfs_dir_duphead *dupindex;
1373 	struct tmpfs_dirent *de, *pde;
1374 
1375 	dupindex = &dnode->tn_dir.tn_dupindex;
1376 	de = LIST_FIRST(dupindex);
1377 	if (de == NULL || de->td_cookie < TMPFS_DIRCOOKIE_DUP_MAX) {
1378 		if (de == NULL)
1379 			nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MIN;
1380 		else
1381 			nde->td_cookie = de->td_cookie + 1;
1382 		MPASS(tmpfs_dirent_dup(nde));
1383 		LIST_INSERT_HEAD(dupindex, nde, uh.td_dup.index_entries);
1384 		LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries);
1385 		return;
1386 	}
1387 
1388 	/*
1389 	 * Cookie numbers are near exhaustion. Scan dupindex list for unused
1390 	 * numbers. dupindex list is sorted in descending order. Keep it so
1391 	 * after inserting nde.
1392 	 */
1393 	while (1) {
1394 		pde = de;
1395 		de = LIST_NEXT(de, uh.td_dup.index_entries);
1396 		if (de == NULL && pde->td_cookie != TMPFS_DIRCOOKIE_DUP_MIN) {
1397 			/*
1398 			 * Last element of the index doesn't have minimal cookie
1399 			 * value, use it.
1400 			 */
1401 			nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MIN;
1402 			LIST_INSERT_AFTER(pde, nde, uh.td_dup.index_entries);
1403 			LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries);
1404 			return;
1405 		} else if (de == NULL) {
1406 			/*
1407 			 * We are so lucky have 2^30 hash duplicates in single
1408 			 * directory :) Return largest possible cookie value.
1409 			 * It should be fine except possible issues with
1410 			 * VOP_READDIR restart.
1411 			 */
1412 			nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MAX;
1413 			LIST_INSERT_HEAD(dupindex, nde,
1414 			    uh.td_dup.index_entries);
1415 			LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries);
1416 			return;
1417 		}
1418 		if (de->td_cookie + 1 == pde->td_cookie ||
1419 		    de->td_cookie >= TMPFS_DIRCOOKIE_DUP_MAX)
1420 			continue;	/* No hole or invalid cookie. */
1421 		nde->td_cookie = de->td_cookie + 1;
1422 		MPASS(tmpfs_dirent_dup(nde));
1423 		MPASS(pde->td_cookie > nde->td_cookie);
1424 		MPASS(nde->td_cookie > de->td_cookie);
1425 		LIST_INSERT_BEFORE(de, nde, uh.td_dup.index_entries);
1426 		LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries);
1427 		return;
1428 	}
1429 }
1430 
1431 /*
1432  * Attaches the directory entry de to the directory represented by vp.
1433  * Note that this does not change the link count of the node pointed by
1434  * the directory entry, as this is done by tmpfs_alloc_dirent.
1435  */
1436 void
1437 tmpfs_dir_attach(struct vnode *vp, struct tmpfs_dirent *de)
1438 {
1439 	struct tmpfs_node *dnode;
1440 	struct tmpfs_dirent *xde, *nde;
1441 
1442 	ASSERT_VOP_ELOCKED(vp, __func__);
1443 	MPASS(de->td_namelen > 0);
1444 	MPASS(de->td_hash >= TMPFS_DIRCOOKIE_MIN);
1445 	MPASS(de->td_cookie == de->td_hash);
1446 
1447 	dnode = VP_TO_TMPFS_DIR(vp);
1448 	dnode->tn_dir.tn_readdir_lastn = 0;
1449 	dnode->tn_dir.tn_readdir_lastp = NULL;
1450 
1451 	MPASS(!tmpfs_dirent_dup(de));
1452 	xde = RB_INSERT(tmpfs_dir, &dnode->tn_dir.tn_dirhead, de);
1453 	if (xde != NULL && tmpfs_dirent_duphead(xde))
1454 		tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, de);
1455 	else if (xde != NULL) {
1456 		/*
1457 		 * Allocate new duphead. Swap xde with duphead to avoid
1458 		 * adding/removing elements with the same hash.
1459 		 */
1460 		MPASS(!tmpfs_dirent_dup(xde));
1461 		tmpfs_alloc_dirent(VFS_TO_TMPFS(vp->v_mount), NULL, NULL, 0,
1462 		    &nde);
1463 		/* *nde = *xde; XXX gcc 4.2.1 may generate invalid code. */
1464 		memcpy(nde, xde, sizeof(*xde));
1465 		xde->td_cookie |= TMPFS_DIRCOOKIE_DUPHEAD;
1466 		LIST_INIT(&xde->ud.td_duphead);
1467 		xde->td_namelen = 0;
1468 		xde->td_node = NULL;
1469 		tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, nde);
1470 		tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, de);
1471 	}
1472 	dnode->tn_size += sizeof(struct tmpfs_dirent);
1473 	dnode->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED;
1474 	dnode->tn_accessed = true;
1475 	tmpfs_update(vp);
1476 }
1477 
1478 /*
1479  * Detaches the directory entry de from the directory represented by vp.
1480  * Note that this does not change the link count of the node pointed by
1481  * the directory entry, as this is done by tmpfs_free_dirent.
1482  */
1483 void
1484 tmpfs_dir_detach(struct vnode *vp, struct tmpfs_dirent *de)
1485 {
1486 	struct tmpfs_mount *tmp;
1487 	struct tmpfs_dir *head;
1488 	struct tmpfs_node *dnode;
1489 	struct tmpfs_dirent *xde;
1490 
1491 	ASSERT_VOP_ELOCKED(vp, __func__);
1492 
1493 	dnode = VP_TO_TMPFS_DIR(vp);
1494 	head = &dnode->tn_dir.tn_dirhead;
1495 	dnode->tn_dir.tn_readdir_lastn = 0;
1496 	dnode->tn_dir.tn_readdir_lastp = NULL;
1497 
1498 	if (tmpfs_dirent_dup(de)) {
1499 		/* Remove duphead if de was last entry. */
1500 		if (LIST_NEXT(de, uh.td_dup.entries) == NULL) {
1501 			xde = tmpfs_dir_xlookup_hash(dnode, de->td_hash);
1502 			MPASS(tmpfs_dirent_duphead(xde));
1503 		} else
1504 			xde = NULL;
1505 		LIST_REMOVE(de, uh.td_dup.entries);
1506 		LIST_REMOVE(de, uh.td_dup.index_entries);
1507 		if (xde != NULL) {
1508 			if (LIST_EMPTY(&xde->ud.td_duphead)) {
1509 				RB_REMOVE(tmpfs_dir, head, xde);
1510 				tmp = VFS_TO_TMPFS(vp->v_mount);
1511 				MPASS(xde->td_node == NULL);
1512 				tmpfs_free_dirent(tmp, xde);
1513 			}
1514 		}
1515 		de->td_cookie = de->td_hash;
1516 	} else
1517 		RB_REMOVE(tmpfs_dir, head, de);
1518 
1519 	dnode->tn_size -= sizeof(struct tmpfs_dirent);
1520 	dnode->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED;
1521 	dnode->tn_accessed = true;
1522 	tmpfs_update(vp);
1523 }
1524 
1525 void
1526 tmpfs_dir_destroy(struct tmpfs_mount *tmp, struct tmpfs_node *dnode)
1527 {
1528 	struct tmpfs_dirent *de, *dde, *nde;
1529 
1530 	RB_FOREACH_SAFE(de, tmpfs_dir, &dnode->tn_dir.tn_dirhead, nde) {
1531 		RB_REMOVE(tmpfs_dir, &dnode->tn_dir.tn_dirhead, de);
1532 		/* Node may already be destroyed. */
1533 		de->td_node = NULL;
1534 		if (tmpfs_dirent_duphead(de)) {
1535 			while ((dde = LIST_FIRST(&de->ud.td_duphead)) != NULL) {
1536 				LIST_REMOVE(dde, uh.td_dup.entries);
1537 				dde->td_node = NULL;
1538 				tmpfs_free_dirent(tmp, dde);
1539 			}
1540 		}
1541 		tmpfs_free_dirent(tmp, de);
1542 	}
1543 }
1544 
1545 /*
1546  * Helper function for tmpfs_readdir.  Creates a '.' entry for the given
1547  * directory and returns it in the uio space.  The function returns 0
1548  * on success, -1 if there was not enough space in the uio structure to
1549  * hold the directory entry or an appropriate error code if another
1550  * error happens.
1551  */
1552 static int
1553 tmpfs_dir_getdotdent(struct tmpfs_mount *tm, struct tmpfs_node *node,
1554     struct uio *uio)
1555 {
1556 	int error;
1557 	struct dirent dent;
1558 
1559 	TMPFS_VALIDATE_DIR(node);
1560 	MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOT);
1561 
1562 	dent.d_fileno = node->tn_id;
1563 	dent.d_off = TMPFS_DIRCOOKIE_DOTDOT;
1564 	dent.d_type = DT_DIR;
1565 	dent.d_namlen = 1;
1566 	dent.d_name[0] = '.';
1567 	dent.d_reclen = GENERIC_DIRSIZ(&dent);
1568 	dirent_terminate(&dent);
1569 
1570 	if (dent.d_reclen > uio->uio_resid)
1571 		error = EJUSTRETURN;
1572 	else
1573 		error = uiomove(&dent, dent.d_reclen, uio);
1574 
1575 	tmpfs_set_accessed(tm, node);
1576 
1577 	return (error);
1578 }
1579 
1580 /*
1581  * Helper function for tmpfs_readdir.  Creates a '..' entry for the given
1582  * directory and returns it in the uio space.  The function returns 0
1583  * on success, -1 if there was not enough space in the uio structure to
1584  * hold the directory entry or an appropriate error code if another
1585  * error happens.
1586  */
1587 static int
1588 tmpfs_dir_getdotdotdent(struct tmpfs_mount *tm, struct tmpfs_node *node,
1589     struct uio *uio, off_t next)
1590 {
1591 	struct tmpfs_node *parent;
1592 	struct dirent dent;
1593 	int error;
1594 
1595 	TMPFS_VALIDATE_DIR(node);
1596 	MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOTDOT);
1597 
1598 	/*
1599 	 * Return ENOENT if the current node is already removed.
1600 	 */
1601 	TMPFS_ASSERT_LOCKED(node);
1602 	parent = node->tn_dir.tn_parent;
1603 	if (parent == NULL)
1604 		return (ENOENT);
1605 
1606 	dent.d_fileno = parent->tn_id;
1607 	dent.d_off = next;
1608 	dent.d_type = DT_DIR;
1609 	dent.d_namlen = 2;
1610 	dent.d_name[0] = '.';
1611 	dent.d_name[1] = '.';
1612 	dent.d_reclen = GENERIC_DIRSIZ(&dent);
1613 	dirent_terminate(&dent);
1614 
1615 	if (dent.d_reclen > uio->uio_resid)
1616 		error = EJUSTRETURN;
1617 	else
1618 		error = uiomove(&dent, dent.d_reclen, uio);
1619 
1620 	tmpfs_set_accessed(tm, node);
1621 
1622 	return (error);
1623 }
1624 
1625 /*
1626  * Helper function for tmpfs_readdir.  Returns as much directory entries
1627  * as can fit in the uio space.  The read starts at uio->uio_offset.
1628  * The function returns 0 on success, -1 if there was not enough space
1629  * in the uio structure to hold the directory entry or an appropriate
1630  * error code if another error happens.
1631  */
1632 int
1633 tmpfs_dir_getdents(struct tmpfs_mount *tm, struct tmpfs_node *node,
1634     struct uio *uio, int maxcookies, uint64_t *cookies, int *ncookies)
1635 {
1636 	struct tmpfs_dir_cursor dc;
1637 	struct tmpfs_dirent *de, *nde;
1638 	off_t off;
1639 	int error;
1640 
1641 	TMPFS_VALIDATE_DIR(node);
1642 
1643 	off = 0;
1644 
1645 	/*
1646 	 * Lookup the node from the current offset.  The starting offset of
1647 	 * 0 will lookup both '.' and '..', and then the first real entry,
1648 	 * or EOF if there are none.  Then find all entries for the dir that
1649 	 * fit into the buffer.  Once no more entries are found (de == NULL),
1650 	 * the offset is set to TMPFS_DIRCOOKIE_EOF, which will cause the next
1651 	 * call to return 0.
1652 	 */
1653 	switch (uio->uio_offset) {
1654 	case TMPFS_DIRCOOKIE_DOT:
1655 		error = tmpfs_dir_getdotdent(tm, node, uio);
1656 		if (error != 0)
1657 			return (error);
1658 		uio->uio_offset = off = TMPFS_DIRCOOKIE_DOTDOT;
1659 		if (cookies != NULL)
1660 			cookies[(*ncookies)++] = off;
1661 		/* FALLTHROUGH */
1662 	case TMPFS_DIRCOOKIE_DOTDOT:
1663 		de = tmpfs_dir_first(node, &dc);
1664 		off = tmpfs_dirent_cookie(de);
1665 		error = tmpfs_dir_getdotdotdent(tm, node, uio, off);
1666 		if (error != 0)
1667 			return (error);
1668 		uio->uio_offset = off;
1669 		if (cookies != NULL)
1670 			cookies[(*ncookies)++] = off;
1671 		/* EOF. */
1672 		if (de == NULL)
1673 			return (0);
1674 		break;
1675 	case TMPFS_DIRCOOKIE_EOF:
1676 		return (0);
1677 	default:
1678 		de = tmpfs_dir_lookup_cookie(node, uio->uio_offset, &dc);
1679 		if (de == NULL)
1680 			return (EINVAL);
1681 		if (cookies != NULL)
1682 			off = tmpfs_dirent_cookie(de);
1683 	}
1684 
1685 	/*
1686 	 * Read as much entries as possible; i.e., until we reach the end of the
1687 	 * directory or we exhaust uio space.
1688 	 */
1689 	do {
1690 		struct dirent d;
1691 
1692 		/*
1693 		 * Create a dirent structure representing the current tmpfs_node
1694 		 * and fill it.
1695 		 */
1696 		if (de->td_node == NULL) {
1697 			d.d_fileno = 1;
1698 			d.d_type = DT_WHT;
1699 		} else {
1700 			d.d_fileno = de->td_node->tn_id;
1701 			switch (de->td_node->tn_type) {
1702 			case VBLK:
1703 				d.d_type = DT_BLK;
1704 				break;
1705 
1706 			case VCHR:
1707 				d.d_type = DT_CHR;
1708 				break;
1709 
1710 			case VDIR:
1711 				d.d_type = DT_DIR;
1712 				break;
1713 
1714 			case VFIFO:
1715 				d.d_type = DT_FIFO;
1716 				break;
1717 
1718 			case VLNK:
1719 				d.d_type = DT_LNK;
1720 				break;
1721 
1722 			case VREG:
1723 				d.d_type = DT_REG;
1724 				break;
1725 
1726 			case VSOCK:
1727 				d.d_type = DT_SOCK;
1728 				break;
1729 
1730 			default:
1731 				panic("tmpfs_dir_getdents: type %p %d",
1732 				    de->td_node, (int)de->td_node->tn_type);
1733 			}
1734 		}
1735 		d.d_namlen = de->td_namelen;
1736 		MPASS(de->td_namelen < sizeof(d.d_name));
1737 		(void)memcpy(d.d_name, de->ud.td_name, de->td_namelen);
1738 		d.d_reclen = GENERIC_DIRSIZ(&d);
1739 
1740 		/*
1741 		 * Stop reading if the directory entry we are treating is bigger
1742 		 * than the amount of data that can be returned.
1743 		 */
1744 		if (d.d_reclen > uio->uio_resid) {
1745 			error = EJUSTRETURN;
1746 			break;
1747 		}
1748 
1749 		nde = tmpfs_dir_next(node, &dc);
1750 		d.d_off = tmpfs_dirent_cookie(nde);
1751 		dirent_terminate(&d);
1752 
1753 		/*
1754 		 * Copy the new dirent structure into the output buffer and
1755 		 * advance pointers.
1756 		 */
1757 		error = uiomove(&d, d.d_reclen, uio);
1758 		if (error == 0) {
1759 			de = nde;
1760 			if (cookies != NULL) {
1761 				off = tmpfs_dirent_cookie(de);
1762 				MPASS(*ncookies < maxcookies);
1763 				cookies[(*ncookies)++] = off;
1764 			}
1765 		}
1766 	} while (error == 0 && uio->uio_resid > 0 && de != NULL);
1767 
1768 	/* Skip setting off when using cookies as it is already done above. */
1769 	if (cookies == NULL)
1770 		off = tmpfs_dirent_cookie(de);
1771 
1772 	/* Update the offset and cache. */
1773 	uio->uio_offset = off;
1774 	node->tn_dir.tn_readdir_lastn = off;
1775 	node->tn_dir.tn_readdir_lastp = de;
1776 
1777 	tmpfs_set_accessed(tm, node);
1778 	return (error);
1779 }
1780 
1781 int
1782 tmpfs_dir_whiteout_add(struct vnode *dvp, struct componentname *cnp)
1783 {
1784 	struct tmpfs_dirent *de;
1785 	int error;
1786 
1787 	error = tmpfs_alloc_dirent(VFS_TO_TMPFS(dvp->v_mount), NULL,
1788 	    cnp->cn_nameptr, cnp->cn_namelen, &de);
1789 	if (error != 0)
1790 		return (error);
1791 	tmpfs_dir_attach(dvp, de);
1792 	return (0);
1793 }
1794 
1795 void
1796 tmpfs_dir_whiteout_remove(struct vnode *dvp, struct componentname *cnp)
1797 {
1798 	struct tmpfs_dirent *de;
1799 
1800 	de = tmpfs_dir_lookup(VP_TO_TMPFS_DIR(dvp), NULL, cnp);
1801 	MPASS(de != NULL && de->td_node == NULL);
1802 	tmpfs_dir_detach(dvp, de);
1803 	tmpfs_free_dirent(VFS_TO_TMPFS(dvp->v_mount), de);
1804 }
1805 
1806 /*
1807  * Resizes the aobj associated with the regular file pointed to by 'vp' to the
1808  * size 'newsize'.  'vp' must point to a vnode that represents a regular file.
1809  * 'newsize' must be positive.
1810  *
1811  * Returns zero on success or an appropriate error code on failure.
1812  */
1813 int
1814 tmpfs_reg_resize(struct vnode *vp, off_t newsize, boolean_t ignerr)
1815 {
1816 	struct tmpfs_node *node;
1817 	vm_object_t uobj;
1818 	vm_pindex_t idx, newpages, oldpages;
1819 	off_t oldsize;
1820 	int base, error;
1821 
1822 	MPASS(vp->v_type == VREG);
1823 	MPASS(newsize >= 0);
1824 
1825 	node = VP_TO_TMPFS_NODE(vp);
1826 	uobj = node->tn_reg.tn_aobj;
1827 
1828 	/*
1829 	 * Convert the old and new sizes to the number of pages needed to
1830 	 * store them.  It may happen that we do not need to do anything
1831 	 * because the last allocated page can accommodate the change on
1832 	 * its own.
1833 	 */
1834 	oldsize = node->tn_size;
1835 	oldpages = OFF_TO_IDX(oldsize + PAGE_MASK);
1836 	MPASS(oldpages == uobj->size);
1837 	newpages = OFF_TO_IDX(newsize + PAGE_MASK);
1838 
1839 	if (__predict_true(newpages == oldpages && newsize >= oldsize)) {
1840 		node->tn_size = newsize;
1841 		return (0);
1842 	}
1843 
1844 	VM_OBJECT_WLOCK(uobj);
1845 	if (newsize < oldsize) {
1846 		/*
1847 		 * Zero the truncated part of the last page.
1848 		 */
1849 		base = newsize & PAGE_MASK;
1850 		if (base != 0) {
1851 			idx = OFF_TO_IDX(newsize);
1852 			error = tmpfs_partial_page_invalidate(uobj, idx, base,
1853 			    PAGE_SIZE, ignerr);
1854 			if (error != 0) {
1855 				VM_OBJECT_WUNLOCK(uobj);
1856 				return (error);
1857 			}
1858 		}
1859 
1860 		/*
1861 		 * Release any swap space and free any whole pages.
1862 		 */
1863 		if (newpages < oldpages)
1864 			vm_object_page_remove(uobj, newpages, 0, 0);
1865 	}
1866 	uobj->size = newpages;
1867 	VM_OBJECT_WUNLOCK(uobj);
1868 
1869 	node->tn_size = newsize;
1870 	return (0);
1871 }
1872 
1873 /*
1874  * Punch hole in the aobj associated with the regular file pointed to by 'vp'.
1875  * Requests completely beyond the end-of-file are converted to no-op.
1876  *
1877  * Returns 0 on success or error code from tmpfs_partial_page_invalidate() on
1878  * failure.
1879  */
1880 int
1881 tmpfs_reg_punch_hole(struct vnode *vp, off_t *offset, off_t *length)
1882 {
1883 	struct tmpfs_node *node;
1884 	vm_object_t object;
1885 	vm_pindex_t pistart, pi, piend;
1886 	int startofs, endofs, end;
1887 	off_t off, len;
1888 	int error;
1889 
1890 	KASSERT(*length <= OFF_MAX - *offset, ("%s: offset + length overflows",
1891 	    __func__));
1892 	node = VP_TO_TMPFS_NODE(vp);
1893 	KASSERT(node->tn_type == VREG, ("%s: node is not regular file",
1894 	    __func__));
1895 	object = node->tn_reg.tn_aobj;
1896 	off = *offset;
1897 	len = omin(node->tn_size - off, *length);
1898 	startofs = off & PAGE_MASK;
1899 	endofs = (off + len) & PAGE_MASK;
1900 	pistart = OFF_TO_IDX(off);
1901 	piend = OFF_TO_IDX(off + len);
1902 	pi = OFF_TO_IDX((vm_ooffset_t)off + PAGE_MASK);
1903 	error = 0;
1904 
1905 	/* Handle the case when offset is on or beyond file size. */
1906 	if (len <= 0) {
1907 		*length = 0;
1908 		return (0);
1909 	}
1910 
1911 	VM_OBJECT_WLOCK(object);
1912 
1913 	/*
1914 	 * If there is a partial page at the beginning of the hole-punching
1915 	 * request, fill the partial page with zeroes.
1916 	 */
1917 	if (startofs != 0) {
1918 		end = pistart != piend ? PAGE_SIZE : endofs;
1919 		error = tmpfs_partial_page_invalidate(object, pistart, startofs,
1920 		    end, FALSE);
1921 		if (error != 0)
1922 			goto out;
1923 		off += end - startofs;
1924 		len -= end - startofs;
1925 	}
1926 
1927 	/*
1928 	 * Toss away the full pages in the affected area.
1929 	 */
1930 	if (pi < piend) {
1931 		vm_object_page_remove(object, pi, piend, 0);
1932 		off += IDX_TO_OFF(piend - pi);
1933 		len -= IDX_TO_OFF(piend - pi);
1934 	}
1935 
1936 	/*
1937 	 * If there is a partial page at the end of the hole-punching request,
1938 	 * fill the partial page with zeroes.
1939 	 */
1940 	if (endofs != 0 && pistart != piend) {
1941 		error = tmpfs_partial_page_invalidate(object, piend, 0, endofs,
1942 		    FALSE);
1943 		if (error != 0)
1944 			goto out;
1945 		off += endofs;
1946 		len -= endofs;
1947 	}
1948 
1949 out:
1950 	VM_OBJECT_WUNLOCK(object);
1951 	*offset = off;
1952 	*length = len;
1953 	return (error);
1954 }
1955 
1956 void
1957 tmpfs_check_mtime(struct vnode *vp)
1958 {
1959 	struct tmpfs_node *node;
1960 	struct vm_object *obj;
1961 
1962 	ASSERT_VOP_ELOCKED(vp, "check_mtime");
1963 	if (vp->v_type != VREG)
1964 		return;
1965 	obj = vp->v_object;
1966 	KASSERT(obj->type == tmpfs_pager_type &&
1967 	    (obj->flags & (OBJ_SWAP | OBJ_TMPFS)) ==
1968 	    (OBJ_SWAP | OBJ_TMPFS), ("non-tmpfs obj"));
1969 	/* unlocked read */
1970 	if (obj->generation != obj->cleangeneration) {
1971 		VM_OBJECT_WLOCK(obj);
1972 		if (obj->generation != obj->cleangeneration) {
1973 			obj->cleangeneration = obj->generation;
1974 			node = VP_TO_TMPFS_NODE(vp);
1975 			node->tn_status |= TMPFS_NODE_MODIFIED |
1976 			    TMPFS_NODE_CHANGED;
1977 		}
1978 		VM_OBJECT_WUNLOCK(obj);
1979 	}
1980 }
1981 
1982 /*
1983  * Change flags of the given vnode.
1984  * Caller should execute tmpfs_update on vp after a successful execution.
1985  * The vnode must be locked on entry and remain locked on exit.
1986  */
1987 int
1988 tmpfs_chflags(struct vnode *vp, u_long flags, struct ucred *cred,
1989     struct thread *td)
1990 {
1991 	int error;
1992 	struct tmpfs_node *node;
1993 
1994 	ASSERT_VOP_ELOCKED(vp, "chflags");
1995 
1996 	node = VP_TO_TMPFS_NODE(vp);
1997 
1998 	if ((flags & ~(SF_APPEND | SF_ARCHIVED | SF_IMMUTABLE | SF_NOUNLINK |
1999 	    UF_APPEND | UF_ARCHIVE | UF_HIDDEN | UF_IMMUTABLE | UF_NODUMP |
2000 	    UF_NOUNLINK | UF_OFFLINE | UF_OPAQUE | UF_READONLY | UF_REPARSE |
2001 	    UF_SPARSE | UF_SYSTEM)) != 0)
2002 		return (EOPNOTSUPP);
2003 
2004 	/* Disallow this operation if the file system is mounted read-only. */
2005 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
2006 		return (EROFS);
2007 
2008 	/*
2009 	 * Callers may only modify the file flags on objects they
2010 	 * have VADMIN rights for.
2011 	 */
2012 	if ((error = VOP_ACCESS(vp, VADMIN, cred, td)))
2013 		return (error);
2014 	/*
2015 	 * Unprivileged processes are not permitted to unset system
2016 	 * flags, or modify flags if any system flags are set.
2017 	 */
2018 	if (!priv_check_cred(cred, PRIV_VFS_SYSFLAGS)) {
2019 		if (node->tn_flags &
2020 		    (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND)) {
2021 			error = securelevel_gt(cred, 0);
2022 			if (error)
2023 				return (error);
2024 		}
2025 	} else {
2026 		if (node->tn_flags &
2027 		    (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND) ||
2028 		    ((flags ^ node->tn_flags) & SF_SETTABLE))
2029 			return (EPERM);
2030 	}
2031 	node->tn_flags = flags;
2032 	node->tn_status |= TMPFS_NODE_CHANGED;
2033 
2034 	ASSERT_VOP_ELOCKED(vp, "chflags2");
2035 
2036 	return (0);
2037 }
2038 
2039 /*
2040  * Change access mode on the given vnode.
2041  * Caller should execute tmpfs_update on vp after a successful execution.
2042  * The vnode must be locked on entry and remain locked on exit.
2043  */
2044 int
2045 tmpfs_chmod(struct vnode *vp, mode_t mode, struct ucred *cred,
2046     struct thread *td)
2047 {
2048 	int error;
2049 	struct tmpfs_node *node;
2050 	mode_t newmode;
2051 
2052 	ASSERT_VOP_ELOCKED(vp, "chmod");
2053 	ASSERT_VOP_IN_SEQC(vp);
2054 
2055 	node = VP_TO_TMPFS_NODE(vp);
2056 
2057 	/* Disallow this operation if the file system is mounted read-only. */
2058 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
2059 		return (EROFS);
2060 
2061 	/* Immutable or append-only files cannot be modified, either. */
2062 	if (node->tn_flags & (IMMUTABLE | APPEND))
2063 		return (EPERM);
2064 
2065 	/*
2066 	 * To modify the permissions on a file, must possess VADMIN
2067 	 * for that file.
2068 	 */
2069 	if ((error = VOP_ACCESS(vp, VADMIN, cred, td)))
2070 		return (error);
2071 
2072 	/*
2073 	 * Privileged processes may set the sticky bit on non-directories,
2074 	 * as well as set the setgid bit on a file with a group that the
2075 	 * process is not a member of.
2076 	 */
2077 	if (vp->v_type != VDIR && (mode & S_ISTXT)) {
2078 		if (priv_check_cred(cred, PRIV_VFS_STICKYFILE))
2079 			return (EFTYPE);
2080 	}
2081 	if (!groupmember(node->tn_gid, cred) && (mode & S_ISGID)) {
2082 		error = priv_check_cred(cred, PRIV_VFS_SETGID);
2083 		if (error)
2084 			return (error);
2085 	}
2086 
2087 	newmode = node->tn_mode & ~ALLPERMS;
2088 	newmode |= mode & ALLPERMS;
2089 	atomic_store_short(&node->tn_mode, newmode);
2090 
2091 	node->tn_status |= TMPFS_NODE_CHANGED;
2092 
2093 	ASSERT_VOP_ELOCKED(vp, "chmod2");
2094 
2095 	return (0);
2096 }
2097 
2098 /*
2099  * Change ownership of the given vnode.  At least one of uid or gid must
2100  * be different than VNOVAL.  If one is set to that value, the attribute
2101  * is unchanged.
2102  * Caller should execute tmpfs_update on vp after a successful execution.
2103  * The vnode must be locked on entry and remain locked on exit.
2104  */
2105 int
2106 tmpfs_chown(struct vnode *vp, uid_t uid, gid_t gid, struct ucred *cred,
2107     struct thread *td)
2108 {
2109 	int error;
2110 	struct tmpfs_node *node;
2111 	uid_t ouid;
2112 	gid_t ogid;
2113 	mode_t newmode;
2114 
2115 	ASSERT_VOP_ELOCKED(vp, "chown");
2116 	ASSERT_VOP_IN_SEQC(vp);
2117 
2118 	node = VP_TO_TMPFS_NODE(vp);
2119 
2120 	/* Assign default values if they are unknown. */
2121 	MPASS(uid != VNOVAL || gid != VNOVAL);
2122 	if (uid == VNOVAL)
2123 		uid = node->tn_uid;
2124 	if (gid == VNOVAL)
2125 		gid = node->tn_gid;
2126 	MPASS(uid != VNOVAL && gid != VNOVAL);
2127 
2128 	/* Disallow this operation if the file system is mounted read-only. */
2129 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
2130 		return (EROFS);
2131 
2132 	/* Immutable or append-only files cannot be modified, either. */
2133 	if (node->tn_flags & (IMMUTABLE | APPEND))
2134 		return (EPERM);
2135 
2136 	/*
2137 	 * To modify the ownership of a file, must possess VADMIN for that
2138 	 * file.
2139 	 */
2140 	if ((error = VOP_ACCESS(vp, VADMIN, cred, td)))
2141 		return (error);
2142 
2143 	/*
2144 	 * To change the owner of a file, or change the group of a file to a
2145 	 * group of which we are not a member, the caller must have
2146 	 * privilege.
2147 	 */
2148 	if ((uid != node->tn_uid ||
2149 	    (gid != node->tn_gid && !groupmember(gid, cred))) &&
2150 	    (error = priv_check_cred(cred, PRIV_VFS_CHOWN)))
2151 		return (error);
2152 
2153 	ogid = node->tn_gid;
2154 	ouid = node->tn_uid;
2155 
2156 	node->tn_uid = uid;
2157 	node->tn_gid = gid;
2158 
2159 	node->tn_status |= TMPFS_NODE_CHANGED;
2160 
2161 	if ((node->tn_mode & (S_ISUID | S_ISGID)) != 0 &&
2162 	    (ouid != uid || ogid != gid)) {
2163 		if (priv_check_cred(cred, PRIV_VFS_RETAINSUGID)) {
2164 			newmode = node->tn_mode & ~(S_ISUID | S_ISGID);
2165 			atomic_store_short(&node->tn_mode, newmode);
2166 		}
2167 	}
2168 
2169 	ASSERT_VOP_ELOCKED(vp, "chown2");
2170 
2171 	return (0);
2172 }
2173 
2174 /*
2175  * Change size of the given vnode.
2176  * Caller should execute tmpfs_update on vp after a successful execution.
2177  * The vnode must be locked on entry and remain locked on exit.
2178  */
2179 int
2180 tmpfs_chsize(struct vnode *vp, u_quad_t size, struct ucred *cred,
2181     struct thread *td)
2182 {
2183 	int error;
2184 	struct tmpfs_node *node;
2185 
2186 	ASSERT_VOP_ELOCKED(vp, "chsize");
2187 
2188 	node = VP_TO_TMPFS_NODE(vp);
2189 
2190 	/* Decide whether this is a valid operation based on the file type. */
2191 	error = 0;
2192 	switch (vp->v_type) {
2193 	case VDIR:
2194 		return (EISDIR);
2195 
2196 	case VREG:
2197 		if (vp->v_mount->mnt_flag & MNT_RDONLY)
2198 			return (EROFS);
2199 		break;
2200 
2201 	case VBLK:
2202 		/* FALLTHROUGH */
2203 	case VCHR:
2204 		/* FALLTHROUGH */
2205 	case VFIFO:
2206 		/*
2207 		 * Allow modifications of special files even if in the file
2208 		 * system is mounted read-only (we are not modifying the
2209 		 * files themselves, but the objects they represent).
2210 		 */
2211 		return (0);
2212 
2213 	default:
2214 		/* Anything else is unsupported. */
2215 		return (EOPNOTSUPP);
2216 	}
2217 
2218 	/* Immutable or append-only files cannot be modified, either. */
2219 	if (node->tn_flags & (IMMUTABLE | APPEND))
2220 		return (EPERM);
2221 
2222 	error = vn_rlimit_trunc(size, td);
2223 	if (error != 0)
2224 		return (error);
2225 
2226 	error = tmpfs_truncate(vp, size);
2227 	/*
2228 	 * tmpfs_truncate will raise the NOTE_EXTEND and NOTE_ATTRIB kevents
2229 	 * for us, as will update tn_status; no need to do that here.
2230 	 */
2231 
2232 	ASSERT_VOP_ELOCKED(vp, "chsize2");
2233 
2234 	return (error);
2235 }
2236 
2237 /*
2238  * Change access and modification times of the given vnode.
2239  * Caller should execute tmpfs_update on vp after a successful execution.
2240  * The vnode must be locked on entry and remain locked on exit.
2241  */
2242 int
2243 tmpfs_chtimes(struct vnode *vp, struct vattr *vap,
2244     struct ucred *cred, struct thread *td)
2245 {
2246 	int error;
2247 	struct tmpfs_node *node;
2248 
2249 	ASSERT_VOP_ELOCKED(vp, "chtimes");
2250 
2251 	node = VP_TO_TMPFS_NODE(vp);
2252 
2253 	/* Disallow this operation if the file system is mounted read-only. */
2254 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
2255 		return (EROFS);
2256 
2257 	/* Immutable or append-only files cannot be modified, either. */
2258 	if (node->tn_flags & (IMMUTABLE | APPEND))
2259 		return (EPERM);
2260 
2261 	error = vn_utimes_perm(vp, vap, cred, td);
2262 	if (error != 0)
2263 		return (error);
2264 
2265 	if (vap->va_atime.tv_sec != VNOVAL)
2266 		node->tn_accessed = true;
2267 	if (vap->va_mtime.tv_sec != VNOVAL)
2268 		node->tn_status |= TMPFS_NODE_MODIFIED;
2269 	if (vap->va_birthtime.tv_sec != VNOVAL)
2270 		node->tn_status |= TMPFS_NODE_MODIFIED;
2271 	tmpfs_itimes(vp, &vap->va_atime, &vap->va_mtime);
2272 	if (vap->va_birthtime.tv_sec != VNOVAL)
2273 		node->tn_birthtime = vap->va_birthtime;
2274 	ASSERT_VOP_ELOCKED(vp, "chtimes2");
2275 
2276 	return (0);
2277 }
2278 
2279 void
2280 tmpfs_set_status(struct tmpfs_mount *tm, struct tmpfs_node *node, int status)
2281 {
2282 
2283 	if ((node->tn_status & status) == status || tm->tm_ronly)
2284 		return;
2285 	TMPFS_NODE_LOCK(node);
2286 	node->tn_status |= status;
2287 	TMPFS_NODE_UNLOCK(node);
2288 }
2289 
2290 void
2291 tmpfs_set_accessed(struct tmpfs_mount *tm, struct tmpfs_node *node)
2292 {
2293 	if (node->tn_accessed || tm->tm_ronly)
2294 		return;
2295 	atomic_store_8(&node->tn_accessed, true);
2296 }
2297 
2298 /* Sync timestamps */
2299 void
2300 tmpfs_itimes(struct vnode *vp, const struct timespec *acc,
2301     const struct timespec *mod)
2302 {
2303 	struct tmpfs_node *node;
2304 	struct timespec now;
2305 
2306 	ASSERT_VOP_LOCKED(vp, "tmpfs_itimes");
2307 	node = VP_TO_TMPFS_NODE(vp);
2308 
2309 	if (!node->tn_accessed &&
2310 	    (node->tn_status & (TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED)) == 0)
2311 		return;
2312 
2313 	vfs_timestamp(&now);
2314 	TMPFS_NODE_LOCK(node);
2315 	if (node->tn_accessed) {
2316 		if (acc == NULL)
2317 			 acc = &now;
2318 		node->tn_atime = *acc;
2319 	}
2320 	if (node->tn_status & TMPFS_NODE_MODIFIED) {
2321 		if (mod == NULL)
2322 			mod = &now;
2323 		node->tn_mtime = *mod;
2324 	}
2325 	if (node->tn_status & TMPFS_NODE_CHANGED)
2326 		node->tn_ctime = now;
2327 	node->tn_status &= ~(TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED);
2328 	node->tn_accessed = false;
2329 	TMPFS_NODE_UNLOCK(node);
2330 
2331 	/* XXX: FIX? The entropy here is desirable, but the harvesting may be expensive */
2332 	random_harvest_queue(node, sizeof(*node), RANDOM_FS_ATIME);
2333 }
2334 
2335 int
2336 tmpfs_truncate(struct vnode *vp, off_t length)
2337 {
2338 	struct tmpfs_node *node;
2339 	int error;
2340 
2341 	if (length < 0)
2342 		return (EINVAL);
2343 	if (length > VFS_TO_TMPFS(vp->v_mount)->tm_maxfilesize)
2344 		return (EFBIG);
2345 
2346 	node = VP_TO_TMPFS_NODE(vp);
2347 	error = node->tn_size == length ? 0 : tmpfs_reg_resize(vp, length,
2348 	    FALSE);
2349 	if (error == 0)
2350 		node->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED;
2351 	tmpfs_update(vp);
2352 
2353 	return (error);
2354 }
2355 
2356 static __inline int
2357 tmpfs_dirtree_cmp(struct tmpfs_dirent *a, struct tmpfs_dirent *b)
2358 {
2359 	if (a->td_hash > b->td_hash)
2360 		return (1);
2361 	else if (a->td_hash < b->td_hash)
2362 		return (-1);
2363 	return (0);
2364 }
2365 
2366 RB_GENERATE_STATIC(tmpfs_dir, tmpfs_dirent, uh.td_entries, tmpfs_dirtree_cmp);
2367