1 /* $NetBSD: tmpfs_subr.c,v 1.35 2007/07/09 21:10:50 ad Exp $ */ 2 3 /*- 4 * SPDX-License-Identifier: BSD-2-Clause-NetBSD 5 * 6 * Copyright (c) 2005 The NetBSD Foundation, Inc. 7 * All rights reserved. 8 * 9 * This code is derived from software contributed to The NetBSD Foundation 10 * by Julio M. Merino Vidal, developed as part of Google's Summer of Code 11 * 2005 program. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 32 * POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 /* 36 * Efficient memory file system supporting functions. 37 */ 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/dirent.h> 44 #include <sys/fnv_hash.h> 45 #include <sys/lock.h> 46 #include <sys/limits.h> 47 #include <sys/mount.h> 48 #include <sys/namei.h> 49 #include <sys/priv.h> 50 #include <sys/proc.h> 51 #include <sys/random.h> 52 #include <sys/refcount.h> 53 #include <sys/rwlock.h> 54 #include <sys/smr.h> 55 #include <sys/stat.h> 56 #include <sys/sysctl.h> 57 #include <sys/user.h> 58 #include <sys/vnode.h> 59 #include <sys/vmmeter.h> 60 61 #include <vm/vm.h> 62 #include <vm/vm_param.h> 63 #include <vm/vm_object.h> 64 #include <vm/vm_page.h> 65 #include <vm/vm_pageout.h> 66 #include <vm/vm_pager.h> 67 #include <vm/vm_extern.h> 68 #include <vm/swap_pager.h> 69 70 #include <fs/tmpfs/tmpfs.h> 71 #include <fs/tmpfs/tmpfs_fifoops.h> 72 #include <fs/tmpfs/tmpfs_vnops.h> 73 74 SYSCTL_NODE(_vfs, OID_AUTO, tmpfs, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 75 "tmpfs file system"); 76 77 static long tmpfs_pages_reserved = TMPFS_PAGES_MINRESERVED; 78 79 MALLOC_DEFINE(M_TMPFSDIR, "tmpfs dir", "tmpfs dirent structure"); 80 static uma_zone_t tmpfs_node_pool; 81 VFS_SMR_DECLARE; 82 83 int tmpfs_pager_type = -1; 84 85 static vm_object_t 86 tmpfs_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 87 vm_ooffset_t offset, struct ucred *cred) 88 { 89 vm_object_t object; 90 91 MPASS(handle == NULL); 92 MPASS(offset == 0); 93 object = vm_object_allocate_dyn(tmpfs_pager_type, size, 94 OBJ_COLORED | OBJ_SWAP); 95 if (!swap_pager_init_object(object, NULL, NULL, size, 0)) { 96 vm_object_deallocate(object); 97 object = NULL; 98 } 99 return (object); 100 } 101 102 /* 103 * Make sure tmpfs vnodes with writable mappings can be found on the lazy list. 104 * 105 * This allows for periodic mtime updates while only scanning vnodes which are 106 * plausibly dirty, see tmpfs_update_mtime_lazy. 107 */ 108 static void 109 tmpfs_pager_writecount_recalc(vm_object_t object, vm_offset_t old, 110 vm_offset_t new) 111 { 112 struct vnode *vp; 113 114 VM_OBJECT_ASSERT_WLOCKED(object); 115 116 vp = object->un_pager.swp.swp_tmpfs; 117 118 /* 119 * Forced unmount? 120 */ 121 if (vp == NULL) { 122 KASSERT((object->flags & OBJ_TMPFS_VREF) == 0, 123 ("object %p with OBJ_TMPFS_VREF but without vnode", object)); 124 VM_OBJECT_WUNLOCK(object); 125 return; 126 } 127 128 if (old == 0) { 129 VNASSERT((object->flags & OBJ_TMPFS_VREF) == 0, vp, 130 ("object without writable mappings has a reference")); 131 VNPASS(vp->v_usecount > 0, vp); 132 } else { 133 VNASSERT((object->flags & OBJ_TMPFS_VREF) != 0, vp, 134 ("object with writable mappings does not have a reference")); 135 } 136 137 if (old == new) { 138 VM_OBJECT_WUNLOCK(object); 139 return; 140 } 141 142 if (new == 0) { 143 vm_object_clear_flag(object, OBJ_TMPFS_VREF); 144 VM_OBJECT_WUNLOCK(object); 145 vrele(vp); 146 } else { 147 if ((object->flags & OBJ_TMPFS_VREF) == 0) { 148 vref(vp); 149 vlazy(vp); 150 vm_object_set_flag(object, OBJ_TMPFS_VREF); 151 } 152 VM_OBJECT_WUNLOCK(object); 153 } 154 } 155 156 static void 157 tmpfs_pager_update_writecount(vm_object_t object, vm_offset_t start, 158 vm_offset_t end) 159 { 160 vm_offset_t new, old; 161 162 VM_OBJECT_WLOCK(object); 163 KASSERT((object->flags & OBJ_ANON) == 0, 164 ("%s: object %p with OBJ_ANON", __func__, object)); 165 old = object->un_pager.swp.writemappings; 166 object->un_pager.swp.writemappings += (vm_ooffset_t)end - start; 167 new = object->un_pager.swp.writemappings; 168 tmpfs_pager_writecount_recalc(object, old, new); 169 VM_OBJECT_ASSERT_UNLOCKED(object); 170 } 171 172 static void 173 tmpfs_pager_release_writecount(vm_object_t object, vm_offset_t start, 174 vm_offset_t end) 175 { 176 vm_offset_t new, old; 177 178 VM_OBJECT_WLOCK(object); 179 KASSERT((object->flags & OBJ_ANON) == 0, 180 ("%s: object %p with OBJ_ANON", __func__, object)); 181 old = object->un_pager.swp.writemappings; 182 object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start; 183 new = object->un_pager.swp.writemappings; 184 tmpfs_pager_writecount_recalc(object, old, new); 185 VM_OBJECT_ASSERT_UNLOCKED(object); 186 } 187 188 static void 189 tmpfs_pager_getvp(vm_object_t object, struct vnode **vpp, bool *vp_heldp) 190 { 191 struct vnode *vp; 192 193 /* 194 * Tmpfs VREG node, which was reclaimed, has tmpfs_pager_type 195 * type, but not OBJ_TMPFS flag. In this case there is no 196 * v_writecount to adjust. 197 */ 198 if (vp_heldp != NULL) 199 VM_OBJECT_RLOCK(object); 200 else 201 VM_OBJECT_ASSERT_LOCKED(object); 202 if ((object->flags & OBJ_TMPFS) != 0) { 203 vp = object->un_pager.swp.swp_tmpfs; 204 if (vp != NULL) { 205 *vpp = vp; 206 if (vp_heldp != NULL) { 207 vhold(vp); 208 *vp_heldp = true; 209 } 210 } 211 } 212 if (vp_heldp != NULL) 213 VM_OBJECT_RUNLOCK(object); 214 } 215 216 struct pagerops tmpfs_pager_ops = { 217 .pgo_kvme_type = KVME_TYPE_VNODE, 218 .pgo_alloc = tmpfs_pager_alloc, 219 .pgo_set_writeable_dirty = vm_object_set_writeable_dirty_, 220 .pgo_update_writecount = tmpfs_pager_update_writecount, 221 .pgo_release_writecount = tmpfs_pager_release_writecount, 222 .pgo_mightbedirty = vm_object_mightbedirty_, 223 .pgo_getvp = tmpfs_pager_getvp, 224 }; 225 226 static int 227 tmpfs_node_ctor(void *mem, int size, void *arg, int flags) 228 { 229 struct tmpfs_node *node; 230 231 node = mem; 232 node->tn_gen++; 233 node->tn_size = 0; 234 node->tn_status = 0; 235 node->tn_accessed = false; 236 node->tn_flags = 0; 237 node->tn_links = 0; 238 node->tn_vnode = NULL; 239 node->tn_vpstate = 0; 240 return (0); 241 } 242 243 static void 244 tmpfs_node_dtor(void *mem, int size, void *arg) 245 { 246 struct tmpfs_node *node; 247 248 node = mem; 249 node->tn_type = VNON; 250 } 251 252 static int 253 tmpfs_node_init(void *mem, int size, int flags) 254 { 255 struct tmpfs_node *node; 256 257 node = mem; 258 node->tn_id = 0; 259 mtx_init(&node->tn_interlock, "tmpfsni", NULL, MTX_DEF); 260 node->tn_gen = arc4random(); 261 return (0); 262 } 263 264 static void 265 tmpfs_node_fini(void *mem, int size) 266 { 267 struct tmpfs_node *node; 268 269 node = mem; 270 mtx_destroy(&node->tn_interlock); 271 } 272 273 int 274 tmpfs_subr_init(void) 275 { 276 tmpfs_pager_type = vm_pager_alloc_dyn_type(&tmpfs_pager_ops, 277 OBJT_SWAP); 278 if (tmpfs_pager_type == -1) 279 return (EINVAL); 280 tmpfs_node_pool = uma_zcreate("TMPFS node", 281 sizeof(struct tmpfs_node), tmpfs_node_ctor, tmpfs_node_dtor, 282 tmpfs_node_init, tmpfs_node_fini, UMA_ALIGN_PTR, 0); 283 VFS_SMR_ZONE_SET(tmpfs_node_pool); 284 return (0); 285 } 286 287 void 288 tmpfs_subr_uninit(void) 289 { 290 if (tmpfs_pager_type != -1) 291 vm_pager_free_dyn_type(tmpfs_pager_type); 292 tmpfs_pager_type = -1; 293 uma_zdestroy(tmpfs_node_pool); 294 } 295 296 static int 297 sysctl_mem_reserved(SYSCTL_HANDLER_ARGS) 298 { 299 int error; 300 long pages, bytes; 301 302 pages = *(long *)arg1; 303 bytes = pages * PAGE_SIZE; 304 305 error = sysctl_handle_long(oidp, &bytes, 0, req); 306 if (error || !req->newptr) 307 return (error); 308 309 pages = bytes / PAGE_SIZE; 310 if (pages < TMPFS_PAGES_MINRESERVED) 311 return (EINVAL); 312 313 *(long *)arg1 = pages; 314 return (0); 315 } 316 317 SYSCTL_PROC(_vfs_tmpfs, OID_AUTO, memory_reserved, 318 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &tmpfs_pages_reserved, 0, 319 sysctl_mem_reserved, "L", 320 "Amount of available memory and swap below which tmpfs growth stops"); 321 322 static __inline int tmpfs_dirtree_cmp(struct tmpfs_dirent *a, 323 struct tmpfs_dirent *b); 324 RB_PROTOTYPE_STATIC(tmpfs_dir, tmpfs_dirent, uh.td_entries, tmpfs_dirtree_cmp); 325 326 size_t 327 tmpfs_mem_avail(void) 328 { 329 size_t avail; 330 long reserved; 331 332 avail = swap_pager_avail + vm_free_count(); 333 reserved = atomic_load_long(&tmpfs_pages_reserved); 334 if (__predict_false(avail < reserved)) 335 return (0); 336 return (avail - reserved); 337 } 338 339 size_t 340 tmpfs_pages_used(struct tmpfs_mount *tmp) 341 { 342 const size_t node_size = sizeof(struct tmpfs_node) + 343 sizeof(struct tmpfs_dirent); 344 size_t meta_pages; 345 346 meta_pages = howmany((uintmax_t)tmp->tm_nodes_inuse * node_size, 347 PAGE_SIZE); 348 return (meta_pages + tmp->tm_pages_used); 349 } 350 351 static size_t 352 tmpfs_pages_check_avail(struct tmpfs_mount *tmp, size_t req_pages) 353 { 354 if (tmpfs_mem_avail() < req_pages) 355 return (0); 356 357 if (tmp->tm_pages_max != ULONG_MAX && 358 tmp->tm_pages_max < req_pages + tmpfs_pages_used(tmp)) 359 return (0); 360 361 return (1); 362 } 363 364 void 365 tmpfs_ref_node(struct tmpfs_node *node) 366 { 367 #ifdef INVARIANTS 368 u_int old; 369 370 old = 371 #endif 372 refcount_acquire(&node->tn_refcount); 373 #ifdef INVARIANTS 374 KASSERT(old > 0, ("node %p zero refcount", node)); 375 #endif 376 } 377 378 /* 379 * Allocates a new node of type 'type' inside the 'tmp' mount point, with 380 * its owner set to 'uid', its group to 'gid' and its mode set to 'mode', 381 * using the credentials of the process 'p'. 382 * 383 * If the node type is set to 'VDIR', then the parent parameter must point 384 * to the parent directory of the node being created. It may only be NULL 385 * while allocating the root node. 386 * 387 * If the node type is set to 'VBLK' or 'VCHR', then the rdev parameter 388 * specifies the device the node represents. 389 * 390 * If the node type is set to 'VLNK', then the parameter target specifies 391 * the file name of the target file for the symbolic link that is being 392 * created. 393 * 394 * Note that new nodes are retrieved from the available list if it has 395 * items or, if it is empty, from the node pool as long as there is enough 396 * space to create them. 397 * 398 * Returns zero on success or an appropriate error code on failure. 399 */ 400 int 401 tmpfs_alloc_node(struct mount *mp, struct tmpfs_mount *tmp, enum vtype type, 402 uid_t uid, gid_t gid, mode_t mode, struct tmpfs_node *parent, 403 const char *target, dev_t rdev, struct tmpfs_node **node) 404 { 405 struct tmpfs_node *nnode; 406 vm_object_t obj; 407 char *symlink; 408 char symlink_smr; 409 410 /* If the root directory of the 'tmp' file system is not yet 411 * allocated, this must be the request to do it. */ 412 MPASS(IMPLIES(tmp->tm_root == NULL, parent == NULL && type == VDIR)); 413 414 MPASS(IFF(type == VLNK, target != NULL)); 415 MPASS(IFF(type == VBLK || type == VCHR, rdev != VNOVAL)); 416 417 if (tmp->tm_nodes_inuse >= tmp->tm_nodes_max) 418 return (ENOSPC); 419 if (tmpfs_pages_check_avail(tmp, 1) == 0) 420 return (ENOSPC); 421 422 if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) { 423 /* 424 * When a new tmpfs node is created for fully 425 * constructed mount point, there must be a parent 426 * node, which vnode is locked exclusively. As 427 * consequence, if the unmount is executing in 428 * parallel, vflush() cannot reclaim the parent vnode. 429 * Due to this, the check for MNTK_UNMOUNT flag is not 430 * racy: if we did not see MNTK_UNMOUNT flag, then tmp 431 * cannot be destroyed until node construction is 432 * finished and the parent vnode unlocked. 433 * 434 * Tmpfs does not need to instantiate new nodes during 435 * unmount. 436 */ 437 return (EBUSY); 438 } 439 if ((mp->mnt_kern_flag & MNT_RDONLY) != 0) 440 return (EROFS); 441 442 nnode = uma_zalloc_smr(tmpfs_node_pool, M_WAITOK); 443 444 /* Generic initialization. */ 445 nnode->tn_type = type; 446 vfs_timestamp(&nnode->tn_atime); 447 nnode->tn_birthtime = nnode->tn_ctime = nnode->tn_mtime = 448 nnode->tn_atime; 449 nnode->tn_uid = uid; 450 nnode->tn_gid = gid; 451 nnode->tn_mode = mode; 452 nnode->tn_id = alloc_unr64(&tmp->tm_ino_unr); 453 nnode->tn_refcount = 1; 454 455 /* Type-specific initialization. */ 456 switch (nnode->tn_type) { 457 case VBLK: 458 case VCHR: 459 nnode->tn_rdev = rdev; 460 break; 461 462 case VDIR: 463 RB_INIT(&nnode->tn_dir.tn_dirhead); 464 LIST_INIT(&nnode->tn_dir.tn_dupindex); 465 MPASS(parent != nnode); 466 MPASS(IMPLIES(parent == NULL, tmp->tm_root == NULL)); 467 nnode->tn_dir.tn_parent = (parent == NULL) ? nnode : parent; 468 nnode->tn_dir.tn_readdir_lastn = 0; 469 nnode->tn_dir.tn_readdir_lastp = NULL; 470 nnode->tn_links++; 471 TMPFS_NODE_LOCK(nnode->tn_dir.tn_parent); 472 nnode->tn_dir.tn_parent->tn_links++; 473 TMPFS_NODE_UNLOCK(nnode->tn_dir.tn_parent); 474 break; 475 476 case VFIFO: 477 /* FALLTHROUGH */ 478 case VSOCK: 479 break; 480 481 case VLNK: 482 MPASS(strlen(target) < MAXPATHLEN); 483 nnode->tn_size = strlen(target); 484 485 symlink = NULL; 486 if (!tmp->tm_nonc) { 487 symlink = cache_symlink_alloc(nnode->tn_size + 1, M_WAITOK); 488 symlink_smr = true; 489 } 490 if (symlink == NULL) { 491 symlink = malloc(nnode->tn_size + 1, M_TMPFSNAME, M_WAITOK); 492 symlink_smr = false; 493 } 494 memcpy(symlink, target, nnode->tn_size + 1); 495 496 /* 497 * Allow safe symlink resolving for lockless lookup. 498 * tmpfs_fplookup_symlink references this comment. 499 * 500 * 1. nnode is not yet visible to the world 501 * 2. both tn_link_target and tn_link_smr get populated 502 * 3. release fence publishes their content 503 * 4. tn_link_target content is immutable until node destruction, 504 * where the pointer gets set to NULL 505 * 5. tn_link_smr is never changed once set 506 * 507 * As a result it is sufficient to issue load consume on the node 508 * pointer to also get the above content in a stable manner. 509 * Worst case tn_link_smr flag may be set to true despite being stale, 510 * while the target buffer is already cleared out. 511 */ 512 atomic_store_ptr(&nnode->tn_link_target, symlink); 513 atomic_store_char((char *)&nnode->tn_link_smr, symlink_smr); 514 atomic_thread_fence_rel(); 515 break; 516 517 case VREG: 518 obj = nnode->tn_reg.tn_aobj = 519 vm_pager_allocate(tmpfs_pager_type, NULL, 0, 520 VM_PROT_DEFAULT, 0, 521 NULL /* XXXKIB - tmpfs needs swap reservation */); 522 /* OBJ_TMPFS is set together with the setting of vp->v_object */ 523 nnode->tn_reg.tn_tmp = tmp; 524 break; 525 526 default: 527 panic("tmpfs_alloc_node: type %p %d", nnode, 528 (int)nnode->tn_type); 529 } 530 531 TMPFS_LOCK(tmp); 532 LIST_INSERT_HEAD(&tmp->tm_nodes_used, nnode, tn_entries); 533 nnode->tn_attached = true; 534 tmp->tm_nodes_inuse++; 535 tmp->tm_refcount++; 536 TMPFS_UNLOCK(tmp); 537 538 *node = nnode; 539 return (0); 540 } 541 542 /* 543 * Destroys the node pointed to by node from the file system 'tmp'. 544 * If the node references a directory, no entries are allowed. 545 */ 546 void 547 tmpfs_free_node(struct tmpfs_mount *tmp, struct tmpfs_node *node) 548 { 549 if (refcount_release_if_not_last(&node->tn_refcount)) 550 return; 551 552 TMPFS_LOCK(tmp); 553 TMPFS_NODE_LOCK(node); 554 if (!tmpfs_free_node_locked(tmp, node, false)) { 555 TMPFS_NODE_UNLOCK(node); 556 TMPFS_UNLOCK(tmp); 557 } 558 } 559 560 bool 561 tmpfs_free_node_locked(struct tmpfs_mount *tmp, struct tmpfs_node *node, 562 bool detach) 563 { 564 vm_object_t uobj; 565 char *symlink; 566 bool last; 567 568 TMPFS_MP_ASSERT_LOCKED(tmp); 569 TMPFS_NODE_ASSERT_LOCKED(node); 570 571 last = refcount_release(&node->tn_refcount); 572 if (node->tn_attached && (detach || last)) { 573 MPASS(tmp->tm_nodes_inuse > 0); 574 tmp->tm_nodes_inuse--; 575 LIST_REMOVE(node, tn_entries); 576 node->tn_attached = false; 577 } 578 if (!last) 579 return (false); 580 581 #ifdef INVARIANTS 582 MPASS(node->tn_vnode == NULL); 583 MPASS((node->tn_vpstate & TMPFS_VNODE_ALLOCATING) == 0); 584 #endif 585 TMPFS_NODE_UNLOCK(node); 586 TMPFS_UNLOCK(tmp); 587 588 switch (node->tn_type) { 589 case VBLK: 590 /* FALLTHROUGH */ 591 case VCHR: 592 /* FALLTHROUGH */ 593 case VDIR: 594 /* FALLTHROUGH */ 595 case VFIFO: 596 /* FALLTHROUGH */ 597 case VSOCK: 598 break; 599 600 case VLNK: 601 symlink = node->tn_link_target; 602 atomic_store_ptr(&node->tn_link_target, NULL); 603 if (atomic_load_char(&node->tn_link_smr)) { 604 cache_symlink_free(symlink, node->tn_size + 1); 605 } else { 606 free(symlink, M_TMPFSNAME); 607 } 608 break; 609 610 case VREG: 611 uobj = node->tn_reg.tn_aobj; 612 if (uobj != NULL) { 613 if (uobj->size != 0) 614 atomic_subtract_long(&tmp->tm_pages_used, uobj->size); 615 KASSERT((uobj->flags & OBJ_TMPFS) == 0, 616 ("leaked OBJ_TMPFS node %p vm_obj %p", node, uobj)); 617 vm_object_deallocate(uobj); 618 } 619 break; 620 621 default: 622 panic("tmpfs_free_node: type %p %d", node, (int)node->tn_type); 623 } 624 625 uma_zfree_smr(tmpfs_node_pool, node); 626 TMPFS_LOCK(tmp); 627 tmpfs_free_tmp(tmp); 628 return (true); 629 } 630 631 static __inline uint32_t 632 tmpfs_dirent_hash(const char *name, u_int len) 633 { 634 uint32_t hash; 635 636 hash = fnv_32_buf(name, len, FNV1_32_INIT + len) & TMPFS_DIRCOOKIE_MASK; 637 #ifdef TMPFS_DEBUG_DIRCOOKIE_DUP 638 hash &= 0xf; 639 #endif 640 if (hash < TMPFS_DIRCOOKIE_MIN) 641 hash += TMPFS_DIRCOOKIE_MIN; 642 643 return (hash); 644 } 645 646 static __inline off_t 647 tmpfs_dirent_cookie(struct tmpfs_dirent *de) 648 { 649 if (de == NULL) 650 return (TMPFS_DIRCOOKIE_EOF); 651 652 MPASS(de->td_cookie >= TMPFS_DIRCOOKIE_MIN); 653 654 return (de->td_cookie); 655 } 656 657 static __inline boolean_t 658 tmpfs_dirent_dup(struct tmpfs_dirent *de) 659 { 660 return ((de->td_cookie & TMPFS_DIRCOOKIE_DUP) != 0); 661 } 662 663 static __inline boolean_t 664 tmpfs_dirent_duphead(struct tmpfs_dirent *de) 665 { 666 return ((de->td_cookie & TMPFS_DIRCOOKIE_DUPHEAD) != 0); 667 } 668 669 void 670 tmpfs_dirent_init(struct tmpfs_dirent *de, const char *name, u_int namelen) 671 { 672 de->td_hash = de->td_cookie = tmpfs_dirent_hash(name, namelen); 673 memcpy(de->ud.td_name, name, namelen); 674 de->td_namelen = namelen; 675 } 676 677 /* 678 * Allocates a new directory entry for the node node with a name of name. 679 * The new directory entry is returned in *de. 680 * 681 * The link count of node is increased by one to reflect the new object 682 * referencing it. 683 * 684 * Returns zero on success or an appropriate error code on failure. 685 */ 686 int 687 tmpfs_alloc_dirent(struct tmpfs_mount *tmp, struct tmpfs_node *node, 688 const char *name, u_int len, struct tmpfs_dirent **de) 689 { 690 struct tmpfs_dirent *nde; 691 692 nde = malloc(sizeof(*nde), M_TMPFSDIR, M_WAITOK); 693 nde->td_node = node; 694 if (name != NULL) { 695 nde->ud.td_name = malloc(len, M_TMPFSNAME, M_WAITOK); 696 tmpfs_dirent_init(nde, name, len); 697 } else 698 nde->td_namelen = 0; 699 if (node != NULL) 700 node->tn_links++; 701 702 *de = nde; 703 704 return 0; 705 } 706 707 /* 708 * Frees a directory entry. It is the caller's responsibility to destroy 709 * the node referenced by it if needed. 710 * 711 * The link count of node is decreased by one to reflect the removal of an 712 * object that referenced it. This only happens if 'node_exists' is true; 713 * otherwise the function will not access the node referred to by the 714 * directory entry, as it may already have been released from the outside. 715 */ 716 void 717 tmpfs_free_dirent(struct tmpfs_mount *tmp, struct tmpfs_dirent *de) 718 { 719 struct tmpfs_node *node; 720 721 node = de->td_node; 722 if (node != NULL) { 723 MPASS(node->tn_links > 0); 724 node->tn_links--; 725 } 726 if (!tmpfs_dirent_duphead(de) && de->ud.td_name != NULL) 727 free(de->ud.td_name, M_TMPFSNAME); 728 free(de, M_TMPFSDIR); 729 } 730 731 void 732 tmpfs_destroy_vobject(struct vnode *vp, vm_object_t obj) 733 { 734 bool want_vrele; 735 736 ASSERT_VOP_ELOCKED(vp, "tmpfs_destroy_vobject"); 737 if (vp->v_type != VREG || obj == NULL) 738 return; 739 740 VM_OBJECT_WLOCK(obj); 741 VI_LOCK(vp); 742 /* 743 * May be going through forced unmount. 744 */ 745 want_vrele = false; 746 if ((obj->flags & OBJ_TMPFS_VREF) != 0) { 747 vm_object_clear_flag(obj, OBJ_TMPFS_VREF); 748 want_vrele = true; 749 } 750 751 vm_object_clear_flag(obj, OBJ_TMPFS); 752 obj->un_pager.swp.swp_tmpfs = NULL; 753 if (vp->v_writecount < 0) 754 vp->v_writecount = 0; 755 VI_UNLOCK(vp); 756 VM_OBJECT_WUNLOCK(obj); 757 if (want_vrele) { 758 vrele(vp); 759 } 760 } 761 762 /* 763 * Need to clear v_object for insmntque failure. 764 */ 765 static void 766 tmpfs_insmntque_dtr(struct vnode *vp, void *dtr_arg) 767 { 768 769 tmpfs_destroy_vobject(vp, vp->v_object); 770 vp->v_object = NULL; 771 vp->v_data = NULL; 772 vp->v_op = &dead_vnodeops; 773 vgone(vp); 774 vput(vp); 775 } 776 777 /* 778 * Allocates a new vnode for the node node or returns a new reference to 779 * an existing one if the node had already a vnode referencing it. The 780 * resulting locked vnode is returned in *vpp. 781 * 782 * Returns zero on success or an appropriate error code on failure. 783 */ 784 int 785 tmpfs_alloc_vp(struct mount *mp, struct tmpfs_node *node, int lkflag, 786 struct vnode **vpp) 787 { 788 struct vnode *vp; 789 enum vgetstate vs; 790 struct tmpfs_mount *tm; 791 vm_object_t object; 792 int error; 793 794 error = 0; 795 tm = VFS_TO_TMPFS(mp); 796 TMPFS_NODE_LOCK(node); 797 tmpfs_ref_node(node); 798 loop: 799 TMPFS_NODE_ASSERT_LOCKED(node); 800 if ((vp = node->tn_vnode) != NULL) { 801 MPASS((node->tn_vpstate & TMPFS_VNODE_DOOMED) == 0); 802 if ((node->tn_type == VDIR && node->tn_dir.tn_parent == NULL) || 803 (VN_IS_DOOMED(vp) && 804 (lkflag & LK_NOWAIT) != 0)) { 805 TMPFS_NODE_UNLOCK(node); 806 error = ENOENT; 807 vp = NULL; 808 goto out; 809 } 810 if (VN_IS_DOOMED(vp)) { 811 node->tn_vpstate |= TMPFS_VNODE_WRECLAIM; 812 while ((node->tn_vpstate & TMPFS_VNODE_WRECLAIM) != 0) { 813 msleep(&node->tn_vnode, TMPFS_NODE_MTX(node), 814 0, "tmpfsE", 0); 815 } 816 goto loop; 817 } 818 vs = vget_prep(vp); 819 TMPFS_NODE_UNLOCK(node); 820 error = vget_finish(vp, lkflag, vs); 821 if (error == ENOENT) { 822 TMPFS_NODE_LOCK(node); 823 goto loop; 824 } 825 if (error != 0) { 826 vp = NULL; 827 goto out; 828 } 829 830 /* 831 * Make sure the vnode is still there after 832 * getting the interlock to avoid racing a free. 833 */ 834 if (node->tn_vnode == NULL || node->tn_vnode != vp) { 835 vput(vp); 836 TMPFS_NODE_LOCK(node); 837 goto loop; 838 } 839 840 goto out; 841 } 842 843 if ((node->tn_vpstate & TMPFS_VNODE_DOOMED) || 844 (node->tn_type == VDIR && node->tn_dir.tn_parent == NULL)) { 845 TMPFS_NODE_UNLOCK(node); 846 error = ENOENT; 847 vp = NULL; 848 goto out; 849 } 850 851 /* 852 * otherwise lock the vp list while we call getnewvnode 853 * since that can block. 854 */ 855 if (node->tn_vpstate & TMPFS_VNODE_ALLOCATING) { 856 node->tn_vpstate |= TMPFS_VNODE_WANT; 857 error = msleep((caddr_t) &node->tn_vpstate, 858 TMPFS_NODE_MTX(node), 0, "tmpfs_alloc_vp", 0); 859 if (error != 0) 860 goto out; 861 goto loop; 862 } else 863 node->tn_vpstate |= TMPFS_VNODE_ALLOCATING; 864 865 TMPFS_NODE_UNLOCK(node); 866 867 /* Get a new vnode and associate it with our node. */ 868 error = getnewvnode("tmpfs", mp, VFS_TO_TMPFS(mp)->tm_nonc ? 869 &tmpfs_vnodeop_nonc_entries : &tmpfs_vnodeop_entries, &vp); 870 if (error != 0) 871 goto unlock; 872 MPASS(vp != NULL); 873 874 /* lkflag is ignored, the lock is exclusive */ 875 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 876 877 vp->v_data = node; 878 vp->v_type = node->tn_type; 879 880 /* Type-specific initialization. */ 881 switch (node->tn_type) { 882 case VBLK: 883 /* FALLTHROUGH */ 884 case VCHR: 885 /* FALLTHROUGH */ 886 case VLNK: 887 /* FALLTHROUGH */ 888 case VSOCK: 889 break; 890 case VFIFO: 891 vp->v_op = &tmpfs_fifoop_entries; 892 break; 893 case VREG: 894 object = node->tn_reg.tn_aobj; 895 VM_OBJECT_WLOCK(object); 896 KASSERT((object->flags & OBJ_TMPFS_VREF) == 0, 897 ("%s: object %p with OBJ_TMPFS_VREF but without vnode", 898 __func__, object)); 899 KASSERT(object->un_pager.swp.writemappings == 0, 900 ("%s: object %p has writemappings", 901 __func__, object)); 902 VI_LOCK(vp); 903 KASSERT(vp->v_object == NULL, ("Not NULL v_object in tmpfs")); 904 vp->v_object = object; 905 object->un_pager.swp.swp_tmpfs = vp; 906 vm_object_set_flag(object, OBJ_TMPFS); 907 vn_irflag_set_locked(vp, VIRF_PGREAD); 908 VI_UNLOCK(vp); 909 VM_OBJECT_WUNLOCK(object); 910 break; 911 case VDIR: 912 MPASS(node->tn_dir.tn_parent != NULL); 913 if (node->tn_dir.tn_parent == node) 914 vp->v_vflag |= VV_ROOT; 915 break; 916 917 default: 918 panic("tmpfs_alloc_vp: type %p %d", node, (int)node->tn_type); 919 } 920 if (vp->v_type != VFIFO) 921 VN_LOCK_ASHARE(vp); 922 923 error = insmntque1(vp, mp, tmpfs_insmntque_dtr, NULL); 924 if (error != 0) 925 vp = NULL; 926 927 unlock: 928 TMPFS_NODE_LOCK(node); 929 930 MPASS(node->tn_vpstate & TMPFS_VNODE_ALLOCATING); 931 node->tn_vpstate &= ~TMPFS_VNODE_ALLOCATING; 932 node->tn_vnode = vp; 933 934 if (node->tn_vpstate & TMPFS_VNODE_WANT) { 935 node->tn_vpstate &= ~TMPFS_VNODE_WANT; 936 TMPFS_NODE_UNLOCK(node); 937 wakeup((caddr_t) &node->tn_vpstate); 938 } else 939 TMPFS_NODE_UNLOCK(node); 940 941 out: 942 if (error == 0) { 943 *vpp = vp; 944 945 #ifdef INVARIANTS 946 MPASS(*vpp != NULL && VOP_ISLOCKED(*vpp)); 947 TMPFS_NODE_LOCK(node); 948 MPASS(*vpp == node->tn_vnode); 949 TMPFS_NODE_UNLOCK(node); 950 #endif 951 } 952 tmpfs_free_node(tm, node); 953 954 return (error); 955 } 956 957 /* 958 * Destroys the association between the vnode vp and the node it 959 * references. 960 */ 961 void 962 tmpfs_free_vp(struct vnode *vp) 963 { 964 struct tmpfs_node *node; 965 966 node = VP_TO_TMPFS_NODE(vp); 967 968 TMPFS_NODE_ASSERT_LOCKED(node); 969 node->tn_vnode = NULL; 970 if ((node->tn_vpstate & TMPFS_VNODE_WRECLAIM) != 0) 971 wakeup(&node->tn_vnode); 972 node->tn_vpstate &= ~TMPFS_VNODE_WRECLAIM; 973 vp->v_data = NULL; 974 } 975 976 /* 977 * Allocates a new file of type 'type' and adds it to the parent directory 978 * 'dvp'; this addition is done using the component name given in 'cnp'. 979 * The ownership of the new file is automatically assigned based on the 980 * credentials of the caller (through 'cnp'), the group is set based on 981 * the parent directory and the mode is determined from the 'vap' argument. 982 * If successful, *vpp holds a vnode to the newly created file and zero 983 * is returned. Otherwise *vpp is NULL and the function returns an 984 * appropriate error code. 985 */ 986 int 987 tmpfs_alloc_file(struct vnode *dvp, struct vnode **vpp, struct vattr *vap, 988 struct componentname *cnp, const char *target) 989 { 990 int error; 991 struct tmpfs_dirent *de; 992 struct tmpfs_mount *tmp; 993 struct tmpfs_node *dnode; 994 struct tmpfs_node *node; 995 struct tmpfs_node *parent; 996 997 ASSERT_VOP_ELOCKED(dvp, "tmpfs_alloc_file"); 998 MPASS(cnp->cn_flags & HASBUF); 999 1000 tmp = VFS_TO_TMPFS(dvp->v_mount); 1001 dnode = VP_TO_TMPFS_DIR(dvp); 1002 *vpp = NULL; 1003 1004 /* If the entry we are creating is a directory, we cannot overflow 1005 * the number of links of its parent, because it will get a new 1006 * link. */ 1007 if (vap->va_type == VDIR) { 1008 /* Ensure that we do not overflow the maximum number of links 1009 * imposed by the system. */ 1010 MPASS(dnode->tn_links <= TMPFS_LINK_MAX); 1011 if (dnode->tn_links == TMPFS_LINK_MAX) { 1012 return (EMLINK); 1013 } 1014 1015 parent = dnode; 1016 MPASS(parent != NULL); 1017 } else 1018 parent = NULL; 1019 1020 /* Allocate a node that represents the new file. */ 1021 error = tmpfs_alloc_node(dvp->v_mount, tmp, vap->va_type, 1022 cnp->cn_cred->cr_uid, dnode->tn_gid, vap->va_mode, parent, 1023 target, vap->va_rdev, &node); 1024 if (error != 0) 1025 return (error); 1026 1027 /* Allocate a directory entry that points to the new file. */ 1028 error = tmpfs_alloc_dirent(tmp, node, cnp->cn_nameptr, cnp->cn_namelen, 1029 &de); 1030 if (error != 0) { 1031 tmpfs_free_node(tmp, node); 1032 return (error); 1033 } 1034 1035 /* Allocate a vnode for the new file. */ 1036 error = tmpfs_alloc_vp(dvp->v_mount, node, LK_EXCLUSIVE, vpp); 1037 if (error != 0) { 1038 tmpfs_free_dirent(tmp, de); 1039 tmpfs_free_node(tmp, node); 1040 return (error); 1041 } 1042 1043 /* Now that all required items are allocated, we can proceed to 1044 * insert the new node into the directory, an operation that 1045 * cannot fail. */ 1046 if (cnp->cn_flags & ISWHITEOUT) 1047 tmpfs_dir_whiteout_remove(dvp, cnp); 1048 tmpfs_dir_attach(dvp, de); 1049 return (0); 1050 } 1051 1052 struct tmpfs_dirent * 1053 tmpfs_dir_first(struct tmpfs_node *dnode, struct tmpfs_dir_cursor *dc) 1054 { 1055 struct tmpfs_dirent *de; 1056 1057 de = RB_MIN(tmpfs_dir, &dnode->tn_dir.tn_dirhead); 1058 dc->tdc_tree = de; 1059 if (de != NULL && tmpfs_dirent_duphead(de)) 1060 de = LIST_FIRST(&de->ud.td_duphead); 1061 dc->tdc_current = de; 1062 1063 return (dc->tdc_current); 1064 } 1065 1066 struct tmpfs_dirent * 1067 tmpfs_dir_next(struct tmpfs_node *dnode, struct tmpfs_dir_cursor *dc) 1068 { 1069 struct tmpfs_dirent *de; 1070 1071 MPASS(dc->tdc_tree != NULL); 1072 if (tmpfs_dirent_dup(dc->tdc_current)) { 1073 dc->tdc_current = LIST_NEXT(dc->tdc_current, uh.td_dup.entries); 1074 if (dc->tdc_current != NULL) 1075 return (dc->tdc_current); 1076 } 1077 dc->tdc_tree = dc->tdc_current = RB_NEXT(tmpfs_dir, 1078 &dnode->tn_dir.tn_dirhead, dc->tdc_tree); 1079 if ((de = dc->tdc_current) != NULL && tmpfs_dirent_duphead(de)) { 1080 dc->tdc_current = LIST_FIRST(&de->ud.td_duphead); 1081 MPASS(dc->tdc_current != NULL); 1082 } 1083 1084 return (dc->tdc_current); 1085 } 1086 1087 /* Lookup directory entry in RB-Tree. Function may return duphead entry. */ 1088 static struct tmpfs_dirent * 1089 tmpfs_dir_xlookup_hash(struct tmpfs_node *dnode, uint32_t hash) 1090 { 1091 struct tmpfs_dirent *de, dekey; 1092 1093 dekey.td_hash = hash; 1094 de = RB_FIND(tmpfs_dir, &dnode->tn_dir.tn_dirhead, &dekey); 1095 return (de); 1096 } 1097 1098 /* Lookup directory entry by cookie, initialize directory cursor accordingly. */ 1099 static struct tmpfs_dirent * 1100 tmpfs_dir_lookup_cookie(struct tmpfs_node *node, off_t cookie, 1101 struct tmpfs_dir_cursor *dc) 1102 { 1103 struct tmpfs_dir *dirhead = &node->tn_dir.tn_dirhead; 1104 struct tmpfs_dirent *de, dekey; 1105 1106 MPASS(cookie >= TMPFS_DIRCOOKIE_MIN); 1107 1108 if (cookie == node->tn_dir.tn_readdir_lastn && 1109 (de = node->tn_dir.tn_readdir_lastp) != NULL) { 1110 /* Protect against possible race, tn_readdir_last[pn] 1111 * may be updated with only shared vnode lock held. */ 1112 if (cookie == tmpfs_dirent_cookie(de)) 1113 goto out; 1114 } 1115 1116 if ((cookie & TMPFS_DIRCOOKIE_DUP) != 0) { 1117 LIST_FOREACH(de, &node->tn_dir.tn_dupindex, 1118 uh.td_dup.index_entries) { 1119 MPASS(tmpfs_dirent_dup(de)); 1120 if (de->td_cookie == cookie) 1121 goto out; 1122 /* dupindex list is sorted. */ 1123 if (de->td_cookie < cookie) { 1124 de = NULL; 1125 goto out; 1126 } 1127 } 1128 MPASS(de == NULL); 1129 goto out; 1130 } 1131 1132 if ((cookie & TMPFS_DIRCOOKIE_MASK) != cookie) { 1133 de = NULL; 1134 } else { 1135 dekey.td_hash = cookie; 1136 /* Recover if direntry for cookie was removed */ 1137 de = RB_NFIND(tmpfs_dir, dirhead, &dekey); 1138 } 1139 dc->tdc_tree = de; 1140 dc->tdc_current = de; 1141 if (de != NULL && tmpfs_dirent_duphead(de)) { 1142 dc->tdc_current = LIST_FIRST(&de->ud.td_duphead); 1143 MPASS(dc->tdc_current != NULL); 1144 } 1145 return (dc->tdc_current); 1146 1147 out: 1148 dc->tdc_tree = de; 1149 dc->tdc_current = de; 1150 if (de != NULL && tmpfs_dirent_dup(de)) 1151 dc->tdc_tree = tmpfs_dir_xlookup_hash(node, 1152 de->td_hash); 1153 return (dc->tdc_current); 1154 } 1155 1156 /* 1157 * Looks for a directory entry in the directory represented by node. 1158 * 'cnp' describes the name of the entry to look for. Note that the . 1159 * and .. components are not allowed as they do not physically exist 1160 * within directories. 1161 * 1162 * Returns a pointer to the entry when found, otherwise NULL. 1163 */ 1164 struct tmpfs_dirent * 1165 tmpfs_dir_lookup(struct tmpfs_node *node, struct tmpfs_node *f, 1166 struct componentname *cnp) 1167 { 1168 struct tmpfs_dir_duphead *duphead; 1169 struct tmpfs_dirent *de; 1170 uint32_t hash; 1171 1172 MPASS(IMPLIES(cnp->cn_namelen == 1, cnp->cn_nameptr[0] != '.')); 1173 MPASS(IMPLIES(cnp->cn_namelen == 2, !(cnp->cn_nameptr[0] == '.' && 1174 cnp->cn_nameptr[1] == '.'))); 1175 TMPFS_VALIDATE_DIR(node); 1176 1177 hash = tmpfs_dirent_hash(cnp->cn_nameptr, cnp->cn_namelen); 1178 de = tmpfs_dir_xlookup_hash(node, hash); 1179 if (de != NULL && tmpfs_dirent_duphead(de)) { 1180 duphead = &de->ud.td_duphead; 1181 LIST_FOREACH(de, duphead, uh.td_dup.entries) { 1182 if (TMPFS_DIRENT_MATCHES(de, cnp->cn_nameptr, 1183 cnp->cn_namelen)) 1184 break; 1185 } 1186 } else if (de != NULL) { 1187 if (!TMPFS_DIRENT_MATCHES(de, cnp->cn_nameptr, 1188 cnp->cn_namelen)) 1189 de = NULL; 1190 } 1191 if (de != NULL && f != NULL && de->td_node != f) 1192 de = NULL; 1193 1194 return (de); 1195 } 1196 1197 /* 1198 * Attach duplicate-cookie directory entry nde to dnode and insert to dupindex 1199 * list, allocate new cookie value. 1200 */ 1201 static void 1202 tmpfs_dir_attach_dup(struct tmpfs_node *dnode, 1203 struct tmpfs_dir_duphead *duphead, struct tmpfs_dirent *nde) 1204 { 1205 struct tmpfs_dir_duphead *dupindex; 1206 struct tmpfs_dirent *de, *pde; 1207 1208 dupindex = &dnode->tn_dir.tn_dupindex; 1209 de = LIST_FIRST(dupindex); 1210 if (de == NULL || de->td_cookie < TMPFS_DIRCOOKIE_DUP_MAX) { 1211 if (de == NULL) 1212 nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MIN; 1213 else 1214 nde->td_cookie = de->td_cookie + 1; 1215 MPASS(tmpfs_dirent_dup(nde)); 1216 LIST_INSERT_HEAD(dupindex, nde, uh.td_dup.index_entries); 1217 LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries); 1218 return; 1219 } 1220 1221 /* 1222 * Cookie numbers are near exhaustion. Scan dupindex list for unused 1223 * numbers. dupindex list is sorted in descending order. Keep it so 1224 * after inserting nde. 1225 */ 1226 while (1) { 1227 pde = de; 1228 de = LIST_NEXT(de, uh.td_dup.index_entries); 1229 if (de == NULL && pde->td_cookie != TMPFS_DIRCOOKIE_DUP_MIN) { 1230 /* 1231 * Last element of the index doesn't have minimal cookie 1232 * value, use it. 1233 */ 1234 nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MIN; 1235 LIST_INSERT_AFTER(pde, nde, uh.td_dup.index_entries); 1236 LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries); 1237 return; 1238 } else if (de == NULL) { 1239 /* 1240 * We are so lucky have 2^30 hash duplicates in single 1241 * directory :) Return largest possible cookie value. 1242 * It should be fine except possible issues with 1243 * VOP_READDIR restart. 1244 */ 1245 nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MAX; 1246 LIST_INSERT_HEAD(dupindex, nde, 1247 uh.td_dup.index_entries); 1248 LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries); 1249 return; 1250 } 1251 if (de->td_cookie + 1 == pde->td_cookie || 1252 de->td_cookie >= TMPFS_DIRCOOKIE_DUP_MAX) 1253 continue; /* No hole or invalid cookie. */ 1254 nde->td_cookie = de->td_cookie + 1; 1255 MPASS(tmpfs_dirent_dup(nde)); 1256 MPASS(pde->td_cookie > nde->td_cookie); 1257 MPASS(nde->td_cookie > de->td_cookie); 1258 LIST_INSERT_BEFORE(de, nde, uh.td_dup.index_entries); 1259 LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries); 1260 return; 1261 } 1262 } 1263 1264 /* 1265 * Attaches the directory entry de to the directory represented by vp. 1266 * Note that this does not change the link count of the node pointed by 1267 * the directory entry, as this is done by tmpfs_alloc_dirent. 1268 */ 1269 void 1270 tmpfs_dir_attach(struct vnode *vp, struct tmpfs_dirent *de) 1271 { 1272 struct tmpfs_node *dnode; 1273 struct tmpfs_dirent *xde, *nde; 1274 1275 ASSERT_VOP_ELOCKED(vp, __func__); 1276 MPASS(de->td_namelen > 0); 1277 MPASS(de->td_hash >= TMPFS_DIRCOOKIE_MIN); 1278 MPASS(de->td_cookie == de->td_hash); 1279 1280 dnode = VP_TO_TMPFS_DIR(vp); 1281 dnode->tn_dir.tn_readdir_lastn = 0; 1282 dnode->tn_dir.tn_readdir_lastp = NULL; 1283 1284 MPASS(!tmpfs_dirent_dup(de)); 1285 xde = RB_INSERT(tmpfs_dir, &dnode->tn_dir.tn_dirhead, de); 1286 if (xde != NULL && tmpfs_dirent_duphead(xde)) 1287 tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, de); 1288 else if (xde != NULL) { 1289 /* 1290 * Allocate new duphead. Swap xde with duphead to avoid 1291 * adding/removing elements with the same hash. 1292 */ 1293 MPASS(!tmpfs_dirent_dup(xde)); 1294 tmpfs_alloc_dirent(VFS_TO_TMPFS(vp->v_mount), NULL, NULL, 0, 1295 &nde); 1296 /* *nde = *xde; XXX gcc 4.2.1 may generate invalid code. */ 1297 memcpy(nde, xde, sizeof(*xde)); 1298 xde->td_cookie |= TMPFS_DIRCOOKIE_DUPHEAD; 1299 LIST_INIT(&xde->ud.td_duphead); 1300 xde->td_namelen = 0; 1301 xde->td_node = NULL; 1302 tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, nde); 1303 tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, de); 1304 } 1305 dnode->tn_size += sizeof(struct tmpfs_dirent); 1306 dnode->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED; 1307 dnode->tn_accessed = true; 1308 tmpfs_update(vp); 1309 } 1310 1311 /* 1312 * Detaches the directory entry de from the directory represented by vp. 1313 * Note that this does not change the link count of the node pointed by 1314 * the directory entry, as this is done by tmpfs_free_dirent. 1315 */ 1316 void 1317 tmpfs_dir_detach(struct vnode *vp, struct tmpfs_dirent *de) 1318 { 1319 struct tmpfs_mount *tmp; 1320 struct tmpfs_dir *head; 1321 struct tmpfs_node *dnode; 1322 struct tmpfs_dirent *xde; 1323 1324 ASSERT_VOP_ELOCKED(vp, __func__); 1325 1326 dnode = VP_TO_TMPFS_DIR(vp); 1327 head = &dnode->tn_dir.tn_dirhead; 1328 dnode->tn_dir.tn_readdir_lastn = 0; 1329 dnode->tn_dir.tn_readdir_lastp = NULL; 1330 1331 if (tmpfs_dirent_dup(de)) { 1332 /* Remove duphead if de was last entry. */ 1333 if (LIST_NEXT(de, uh.td_dup.entries) == NULL) { 1334 xde = tmpfs_dir_xlookup_hash(dnode, de->td_hash); 1335 MPASS(tmpfs_dirent_duphead(xde)); 1336 } else 1337 xde = NULL; 1338 LIST_REMOVE(de, uh.td_dup.entries); 1339 LIST_REMOVE(de, uh.td_dup.index_entries); 1340 if (xde != NULL) { 1341 if (LIST_EMPTY(&xde->ud.td_duphead)) { 1342 RB_REMOVE(tmpfs_dir, head, xde); 1343 tmp = VFS_TO_TMPFS(vp->v_mount); 1344 MPASS(xde->td_node == NULL); 1345 tmpfs_free_dirent(tmp, xde); 1346 } 1347 } 1348 de->td_cookie = de->td_hash; 1349 } else 1350 RB_REMOVE(tmpfs_dir, head, de); 1351 1352 dnode->tn_size -= sizeof(struct tmpfs_dirent); 1353 dnode->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED; 1354 dnode->tn_accessed = true; 1355 tmpfs_update(vp); 1356 } 1357 1358 void 1359 tmpfs_dir_destroy(struct tmpfs_mount *tmp, struct tmpfs_node *dnode) 1360 { 1361 struct tmpfs_dirent *de, *dde, *nde; 1362 1363 RB_FOREACH_SAFE(de, tmpfs_dir, &dnode->tn_dir.tn_dirhead, nde) { 1364 RB_REMOVE(tmpfs_dir, &dnode->tn_dir.tn_dirhead, de); 1365 /* Node may already be destroyed. */ 1366 de->td_node = NULL; 1367 if (tmpfs_dirent_duphead(de)) { 1368 while ((dde = LIST_FIRST(&de->ud.td_duphead)) != NULL) { 1369 LIST_REMOVE(dde, uh.td_dup.entries); 1370 dde->td_node = NULL; 1371 tmpfs_free_dirent(tmp, dde); 1372 } 1373 } 1374 tmpfs_free_dirent(tmp, de); 1375 } 1376 } 1377 1378 /* 1379 * Helper function for tmpfs_readdir. Creates a '.' entry for the given 1380 * directory and returns it in the uio space. The function returns 0 1381 * on success, -1 if there was not enough space in the uio structure to 1382 * hold the directory entry or an appropriate error code if another 1383 * error happens. 1384 */ 1385 static int 1386 tmpfs_dir_getdotdent(struct tmpfs_mount *tm, struct tmpfs_node *node, 1387 struct uio *uio) 1388 { 1389 int error; 1390 struct dirent dent; 1391 1392 TMPFS_VALIDATE_DIR(node); 1393 MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOT); 1394 1395 dent.d_fileno = node->tn_id; 1396 dent.d_off = TMPFS_DIRCOOKIE_DOTDOT; 1397 dent.d_type = DT_DIR; 1398 dent.d_namlen = 1; 1399 dent.d_name[0] = '.'; 1400 dent.d_reclen = GENERIC_DIRSIZ(&dent); 1401 dirent_terminate(&dent); 1402 1403 if (dent.d_reclen > uio->uio_resid) 1404 error = EJUSTRETURN; 1405 else 1406 error = uiomove(&dent, dent.d_reclen, uio); 1407 1408 tmpfs_set_accessed(tm, node); 1409 1410 return (error); 1411 } 1412 1413 /* 1414 * Helper function for tmpfs_readdir. Creates a '..' entry for the given 1415 * directory and returns it in the uio space. The function returns 0 1416 * on success, -1 if there was not enough space in the uio structure to 1417 * hold the directory entry or an appropriate error code if another 1418 * error happens. 1419 */ 1420 static int 1421 tmpfs_dir_getdotdotdent(struct tmpfs_mount *tm, struct tmpfs_node *node, 1422 struct uio *uio, off_t next) 1423 { 1424 struct tmpfs_node *parent; 1425 struct dirent dent; 1426 int error; 1427 1428 TMPFS_VALIDATE_DIR(node); 1429 MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOTDOT); 1430 1431 /* 1432 * Return ENOENT if the current node is already removed. 1433 */ 1434 TMPFS_ASSERT_LOCKED(node); 1435 parent = node->tn_dir.tn_parent; 1436 if (parent == NULL) 1437 return (ENOENT); 1438 1439 TMPFS_NODE_LOCK(parent); 1440 dent.d_fileno = parent->tn_id; 1441 TMPFS_NODE_UNLOCK(parent); 1442 1443 dent.d_off = next; 1444 dent.d_type = DT_DIR; 1445 dent.d_namlen = 2; 1446 dent.d_name[0] = '.'; 1447 dent.d_name[1] = '.'; 1448 dent.d_reclen = GENERIC_DIRSIZ(&dent); 1449 dirent_terminate(&dent); 1450 1451 if (dent.d_reclen > uio->uio_resid) 1452 error = EJUSTRETURN; 1453 else 1454 error = uiomove(&dent, dent.d_reclen, uio); 1455 1456 tmpfs_set_accessed(tm, node); 1457 1458 return (error); 1459 } 1460 1461 /* 1462 * Helper function for tmpfs_readdir. Returns as much directory entries 1463 * as can fit in the uio space. The read starts at uio->uio_offset. 1464 * The function returns 0 on success, -1 if there was not enough space 1465 * in the uio structure to hold the directory entry or an appropriate 1466 * error code if another error happens. 1467 */ 1468 int 1469 tmpfs_dir_getdents(struct tmpfs_mount *tm, struct tmpfs_node *node, 1470 struct uio *uio, int maxcookies, u_long *cookies, int *ncookies) 1471 { 1472 struct tmpfs_dir_cursor dc; 1473 struct tmpfs_dirent *de, *nde; 1474 off_t off; 1475 int error; 1476 1477 TMPFS_VALIDATE_DIR(node); 1478 1479 off = 0; 1480 1481 /* 1482 * Lookup the node from the current offset. The starting offset of 1483 * 0 will lookup both '.' and '..', and then the first real entry, 1484 * or EOF if there are none. Then find all entries for the dir that 1485 * fit into the buffer. Once no more entries are found (de == NULL), 1486 * the offset is set to TMPFS_DIRCOOKIE_EOF, which will cause the next 1487 * call to return 0. 1488 */ 1489 switch (uio->uio_offset) { 1490 case TMPFS_DIRCOOKIE_DOT: 1491 error = tmpfs_dir_getdotdent(tm, node, uio); 1492 if (error != 0) 1493 return (error); 1494 uio->uio_offset = off = TMPFS_DIRCOOKIE_DOTDOT; 1495 if (cookies != NULL) 1496 cookies[(*ncookies)++] = off; 1497 /* FALLTHROUGH */ 1498 case TMPFS_DIRCOOKIE_DOTDOT: 1499 de = tmpfs_dir_first(node, &dc); 1500 off = tmpfs_dirent_cookie(de); 1501 error = tmpfs_dir_getdotdotdent(tm, node, uio, off); 1502 if (error != 0) 1503 return (error); 1504 uio->uio_offset = off; 1505 if (cookies != NULL) 1506 cookies[(*ncookies)++] = off; 1507 /* EOF. */ 1508 if (de == NULL) 1509 return (0); 1510 break; 1511 case TMPFS_DIRCOOKIE_EOF: 1512 return (0); 1513 default: 1514 de = tmpfs_dir_lookup_cookie(node, uio->uio_offset, &dc); 1515 if (de == NULL) 1516 return (EINVAL); 1517 if (cookies != NULL) 1518 off = tmpfs_dirent_cookie(de); 1519 } 1520 1521 /* 1522 * Read as much entries as possible; i.e., until we reach the end of the 1523 * directory or we exhaust uio space. 1524 */ 1525 do { 1526 struct dirent d; 1527 1528 /* 1529 * Create a dirent structure representing the current tmpfs_node 1530 * and fill it. 1531 */ 1532 if (de->td_node == NULL) { 1533 d.d_fileno = 1; 1534 d.d_type = DT_WHT; 1535 } else { 1536 d.d_fileno = de->td_node->tn_id; 1537 switch (de->td_node->tn_type) { 1538 case VBLK: 1539 d.d_type = DT_BLK; 1540 break; 1541 1542 case VCHR: 1543 d.d_type = DT_CHR; 1544 break; 1545 1546 case VDIR: 1547 d.d_type = DT_DIR; 1548 break; 1549 1550 case VFIFO: 1551 d.d_type = DT_FIFO; 1552 break; 1553 1554 case VLNK: 1555 d.d_type = DT_LNK; 1556 break; 1557 1558 case VREG: 1559 d.d_type = DT_REG; 1560 break; 1561 1562 case VSOCK: 1563 d.d_type = DT_SOCK; 1564 break; 1565 1566 default: 1567 panic("tmpfs_dir_getdents: type %p %d", 1568 de->td_node, (int)de->td_node->tn_type); 1569 } 1570 } 1571 d.d_namlen = de->td_namelen; 1572 MPASS(de->td_namelen < sizeof(d.d_name)); 1573 (void)memcpy(d.d_name, de->ud.td_name, de->td_namelen); 1574 d.d_reclen = GENERIC_DIRSIZ(&d); 1575 1576 /* 1577 * Stop reading if the directory entry we are treating is bigger 1578 * than the amount of data that can be returned. 1579 */ 1580 if (d.d_reclen > uio->uio_resid) { 1581 error = EJUSTRETURN; 1582 break; 1583 } 1584 1585 nde = tmpfs_dir_next(node, &dc); 1586 d.d_off = tmpfs_dirent_cookie(nde); 1587 dirent_terminate(&d); 1588 1589 /* 1590 * Copy the new dirent structure into the output buffer and 1591 * advance pointers. 1592 */ 1593 error = uiomove(&d, d.d_reclen, uio); 1594 if (error == 0) { 1595 de = nde; 1596 if (cookies != NULL) { 1597 off = tmpfs_dirent_cookie(de); 1598 MPASS(*ncookies < maxcookies); 1599 cookies[(*ncookies)++] = off; 1600 } 1601 } 1602 } while (error == 0 && uio->uio_resid > 0 && de != NULL); 1603 1604 /* Skip setting off when using cookies as it is already done above. */ 1605 if (cookies == NULL) 1606 off = tmpfs_dirent_cookie(de); 1607 1608 /* Update the offset and cache. */ 1609 uio->uio_offset = off; 1610 node->tn_dir.tn_readdir_lastn = off; 1611 node->tn_dir.tn_readdir_lastp = de; 1612 1613 tmpfs_set_accessed(tm, node); 1614 return (error); 1615 } 1616 1617 int 1618 tmpfs_dir_whiteout_add(struct vnode *dvp, struct componentname *cnp) 1619 { 1620 struct tmpfs_dirent *de; 1621 int error; 1622 1623 error = tmpfs_alloc_dirent(VFS_TO_TMPFS(dvp->v_mount), NULL, 1624 cnp->cn_nameptr, cnp->cn_namelen, &de); 1625 if (error != 0) 1626 return (error); 1627 tmpfs_dir_attach(dvp, de); 1628 return (0); 1629 } 1630 1631 void 1632 tmpfs_dir_whiteout_remove(struct vnode *dvp, struct componentname *cnp) 1633 { 1634 struct tmpfs_dirent *de; 1635 1636 de = tmpfs_dir_lookup(VP_TO_TMPFS_DIR(dvp), NULL, cnp); 1637 MPASS(de != NULL && de->td_node == NULL); 1638 tmpfs_dir_detach(dvp, de); 1639 tmpfs_free_dirent(VFS_TO_TMPFS(dvp->v_mount), de); 1640 } 1641 1642 /* 1643 * Resizes the aobj associated with the regular file pointed to by 'vp' to the 1644 * size 'newsize'. 'vp' must point to a vnode that represents a regular file. 1645 * 'newsize' must be positive. 1646 * 1647 * Returns zero on success or an appropriate error code on failure. 1648 */ 1649 int 1650 tmpfs_reg_resize(struct vnode *vp, off_t newsize, boolean_t ignerr) 1651 { 1652 struct tmpfs_mount *tmp; 1653 struct tmpfs_node *node; 1654 vm_object_t uobj; 1655 vm_page_t m; 1656 vm_pindex_t idx, newpages, oldpages; 1657 off_t oldsize; 1658 int base, rv; 1659 1660 MPASS(vp->v_type == VREG); 1661 MPASS(newsize >= 0); 1662 1663 node = VP_TO_TMPFS_NODE(vp); 1664 uobj = node->tn_reg.tn_aobj; 1665 tmp = VFS_TO_TMPFS(vp->v_mount); 1666 1667 /* 1668 * Convert the old and new sizes to the number of pages needed to 1669 * store them. It may happen that we do not need to do anything 1670 * because the last allocated page can accommodate the change on 1671 * its own. 1672 */ 1673 oldsize = node->tn_size; 1674 oldpages = OFF_TO_IDX(oldsize + PAGE_MASK); 1675 MPASS(oldpages == uobj->size); 1676 newpages = OFF_TO_IDX(newsize + PAGE_MASK); 1677 1678 if (__predict_true(newpages == oldpages && newsize >= oldsize)) { 1679 node->tn_size = newsize; 1680 return (0); 1681 } 1682 1683 if (newpages > oldpages && 1684 tmpfs_pages_check_avail(tmp, newpages - oldpages) == 0) 1685 return (ENOSPC); 1686 1687 VM_OBJECT_WLOCK(uobj); 1688 if (newsize < oldsize) { 1689 /* 1690 * Zero the truncated part of the last page. 1691 */ 1692 base = newsize & PAGE_MASK; 1693 if (base != 0) { 1694 idx = OFF_TO_IDX(newsize); 1695 retry: 1696 m = vm_page_grab(uobj, idx, VM_ALLOC_NOCREAT); 1697 if (m != NULL) { 1698 MPASS(vm_page_all_valid(m)); 1699 } else if (vm_pager_has_page(uobj, idx, NULL, NULL)) { 1700 m = vm_page_alloc(uobj, idx, VM_ALLOC_NORMAL | 1701 VM_ALLOC_WAITFAIL); 1702 if (m == NULL) 1703 goto retry; 1704 vm_object_pip_add(uobj, 1); 1705 VM_OBJECT_WUNLOCK(uobj); 1706 rv = vm_pager_get_pages(uobj, &m, 1, NULL, 1707 NULL); 1708 VM_OBJECT_WLOCK(uobj); 1709 vm_object_pip_wakeup(uobj); 1710 if (rv == VM_PAGER_OK) { 1711 /* 1712 * Since the page was not resident, 1713 * and therefore not recently 1714 * accessed, immediately enqueue it 1715 * for asynchronous laundering. The 1716 * current operation is not regarded 1717 * as an access. 1718 */ 1719 vm_page_launder(m); 1720 } else { 1721 vm_page_free(m); 1722 if (ignerr) 1723 m = NULL; 1724 else { 1725 VM_OBJECT_WUNLOCK(uobj); 1726 return (EIO); 1727 } 1728 } 1729 } 1730 if (m != NULL) { 1731 pmap_zero_page_area(m, base, PAGE_SIZE - base); 1732 vm_page_set_dirty(m); 1733 vm_page_xunbusy(m); 1734 } 1735 } 1736 1737 /* 1738 * Release any swap space and free any whole pages. 1739 */ 1740 if (newpages < oldpages) 1741 vm_object_page_remove(uobj, newpages, 0, 0); 1742 } 1743 uobj->size = newpages; 1744 VM_OBJECT_WUNLOCK(uobj); 1745 1746 atomic_add_long(&tmp->tm_pages_used, newpages - oldpages); 1747 1748 node->tn_size = newsize; 1749 return (0); 1750 } 1751 1752 void 1753 tmpfs_check_mtime(struct vnode *vp) 1754 { 1755 struct tmpfs_node *node; 1756 struct vm_object *obj; 1757 1758 ASSERT_VOP_ELOCKED(vp, "check_mtime"); 1759 if (vp->v_type != VREG) 1760 return; 1761 obj = vp->v_object; 1762 KASSERT(obj->type == tmpfs_pager_type && 1763 (obj->flags & (OBJ_SWAP | OBJ_TMPFS)) == 1764 (OBJ_SWAP | OBJ_TMPFS), ("non-tmpfs obj")); 1765 /* unlocked read */ 1766 if (obj->generation != obj->cleangeneration) { 1767 VM_OBJECT_WLOCK(obj); 1768 if (obj->generation != obj->cleangeneration) { 1769 obj->cleangeneration = obj->generation; 1770 node = VP_TO_TMPFS_NODE(vp); 1771 node->tn_status |= TMPFS_NODE_MODIFIED | 1772 TMPFS_NODE_CHANGED; 1773 } 1774 VM_OBJECT_WUNLOCK(obj); 1775 } 1776 } 1777 1778 /* 1779 * Change flags of the given vnode. 1780 * Caller should execute tmpfs_update on vp after a successful execution. 1781 * The vnode must be locked on entry and remain locked on exit. 1782 */ 1783 int 1784 tmpfs_chflags(struct vnode *vp, u_long flags, struct ucred *cred, 1785 struct thread *p) 1786 { 1787 int error; 1788 struct tmpfs_node *node; 1789 1790 ASSERT_VOP_ELOCKED(vp, "chflags"); 1791 1792 node = VP_TO_TMPFS_NODE(vp); 1793 1794 if ((flags & ~(SF_APPEND | SF_ARCHIVED | SF_IMMUTABLE | SF_NOUNLINK | 1795 UF_APPEND | UF_ARCHIVE | UF_HIDDEN | UF_IMMUTABLE | UF_NODUMP | 1796 UF_NOUNLINK | UF_OFFLINE | UF_OPAQUE | UF_READONLY | UF_REPARSE | 1797 UF_SPARSE | UF_SYSTEM)) != 0) 1798 return (EOPNOTSUPP); 1799 1800 /* Disallow this operation if the file system is mounted read-only. */ 1801 if (vp->v_mount->mnt_flag & MNT_RDONLY) 1802 return (EROFS); 1803 1804 /* 1805 * Callers may only modify the file flags on objects they 1806 * have VADMIN rights for. 1807 */ 1808 if ((error = VOP_ACCESS(vp, VADMIN, cred, p))) 1809 return (error); 1810 /* 1811 * Unprivileged processes are not permitted to unset system 1812 * flags, or modify flags if any system flags are set. 1813 */ 1814 if (!priv_check_cred(cred, PRIV_VFS_SYSFLAGS)) { 1815 if (node->tn_flags & 1816 (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND)) { 1817 error = securelevel_gt(cred, 0); 1818 if (error) 1819 return (error); 1820 } 1821 } else { 1822 if (node->tn_flags & 1823 (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND) || 1824 ((flags ^ node->tn_flags) & SF_SETTABLE)) 1825 return (EPERM); 1826 } 1827 node->tn_flags = flags; 1828 node->tn_status |= TMPFS_NODE_CHANGED; 1829 1830 ASSERT_VOP_ELOCKED(vp, "chflags2"); 1831 1832 return (0); 1833 } 1834 1835 /* 1836 * Change access mode on the given vnode. 1837 * Caller should execute tmpfs_update on vp after a successful execution. 1838 * The vnode must be locked on entry and remain locked on exit. 1839 */ 1840 int 1841 tmpfs_chmod(struct vnode *vp, mode_t mode, struct ucred *cred, struct thread *p) 1842 { 1843 int error; 1844 struct tmpfs_node *node; 1845 mode_t newmode; 1846 1847 ASSERT_VOP_ELOCKED(vp, "chmod"); 1848 ASSERT_VOP_IN_SEQC(vp); 1849 1850 node = VP_TO_TMPFS_NODE(vp); 1851 1852 /* Disallow this operation if the file system is mounted read-only. */ 1853 if (vp->v_mount->mnt_flag & MNT_RDONLY) 1854 return EROFS; 1855 1856 /* Immutable or append-only files cannot be modified, either. */ 1857 if (node->tn_flags & (IMMUTABLE | APPEND)) 1858 return EPERM; 1859 1860 /* 1861 * To modify the permissions on a file, must possess VADMIN 1862 * for that file. 1863 */ 1864 if ((error = VOP_ACCESS(vp, VADMIN, cred, p))) 1865 return (error); 1866 1867 /* 1868 * Privileged processes may set the sticky bit on non-directories, 1869 * as well as set the setgid bit on a file with a group that the 1870 * process is not a member of. 1871 */ 1872 if (vp->v_type != VDIR && (mode & S_ISTXT)) { 1873 if (priv_check_cred(cred, PRIV_VFS_STICKYFILE)) 1874 return (EFTYPE); 1875 } 1876 if (!groupmember(node->tn_gid, cred) && (mode & S_ISGID)) { 1877 error = priv_check_cred(cred, PRIV_VFS_SETGID); 1878 if (error) 1879 return (error); 1880 } 1881 1882 newmode = node->tn_mode & ~ALLPERMS; 1883 newmode |= mode & ALLPERMS; 1884 atomic_store_short(&node->tn_mode, newmode); 1885 1886 node->tn_status |= TMPFS_NODE_CHANGED; 1887 1888 ASSERT_VOP_ELOCKED(vp, "chmod2"); 1889 1890 return (0); 1891 } 1892 1893 /* 1894 * Change ownership of the given vnode. At least one of uid or gid must 1895 * be different than VNOVAL. If one is set to that value, the attribute 1896 * is unchanged. 1897 * Caller should execute tmpfs_update on vp after a successful execution. 1898 * The vnode must be locked on entry and remain locked on exit. 1899 */ 1900 int 1901 tmpfs_chown(struct vnode *vp, uid_t uid, gid_t gid, struct ucred *cred, 1902 struct thread *p) 1903 { 1904 int error; 1905 struct tmpfs_node *node; 1906 uid_t ouid; 1907 gid_t ogid; 1908 mode_t newmode; 1909 1910 ASSERT_VOP_ELOCKED(vp, "chown"); 1911 ASSERT_VOP_IN_SEQC(vp); 1912 1913 node = VP_TO_TMPFS_NODE(vp); 1914 1915 /* Assign default values if they are unknown. */ 1916 MPASS(uid != VNOVAL || gid != VNOVAL); 1917 if (uid == VNOVAL) 1918 uid = node->tn_uid; 1919 if (gid == VNOVAL) 1920 gid = node->tn_gid; 1921 MPASS(uid != VNOVAL && gid != VNOVAL); 1922 1923 /* Disallow this operation if the file system is mounted read-only. */ 1924 if (vp->v_mount->mnt_flag & MNT_RDONLY) 1925 return (EROFS); 1926 1927 /* Immutable or append-only files cannot be modified, either. */ 1928 if (node->tn_flags & (IMMUTABLE | APPEND)) 1929 return (EPERM); 1930 1931 /* 1932 * To modify the ownership of a file, must possess VADMIN for that 1933 * file. 1934 */ 1935 if ((error = VOP_ACCESS(vp, VADMIN, cred, p))) 1936 return (error); 1937 1938 /* 1939 * To change the owner of a file, or change the group of a file to a 1940 * group of which we are not a member, the caller must have 1941 * privilege. 1942 */ 1943 if ((uid != node->tn_uid || 1944 (gid != node->tn_gid && !groupmember(gid, cred))) && 1945 (error = priv_check_cred(cred, PRIV_VFS_CHOWN))) 1946 return (error); 1947 1948 ogid = node->tn_gid; 1949 ouid = node->tn_uid; 1950 1951 node->tn_uid = uid; 1952 node->tn_gid = gid; 1953 1954 node->tn_status |= TMPFS_NODE_CHANGED; 1955 1956 if ((node->tn_mode & (S_ISUID | S_ISGID)) && (ouid != uid || ogid != gid)) { 1957 if (priv_check_cred(cred, PRIV_VFS_RETAINSUGID)) { 1958 newmode = node->tn_mode & ~(S_ISUID | S_ISGID); 1959 atomic_store_short(&node->tn_mode, newmode); 1960 } 1961 } 1962 1963 ASSERT_VOP_ELOCKED(vp, "chown2"); 1964 1965 return (0); 1966 } 1967 1968 /* 1969 * Change size of the given vnode. 1970 * Caller should execute tmpfs_update on vp after a successful execution. 1971 * The vnode must be locked on entry and remain locked on exit. 1972 */ 1973 int 1974 tmpfs_chsize(struct vnode *vp, u_quad_t size, struct ucred *cred, 1975 struct thread *p) 1976 { 1977 int error; 1978 struct tmpfs_node *node; 1979 1980 ASSERT_VOP_ELOCKED(vp, "chsize"); 1981 1982 node = VP_TO_TMPFS_NODE(vp); 1983 1984 /* Decide whether this is a valid operation based on the file type. */ 1985 error = 0; 1986 switch (vp->v_type) { 1987 case VDIR: 1988 return (EISDIR); 1989 1990 case VREG: 1991 if (vp->v_mount->mnt_flag & MNT_RDONLY) 1992 return (EROFS); 1993 break; 1994 1995 case VBLK: 1996 /* FALLTHROUGH */ 1997 case VCHR: 1998 /* FALLTHROUGH */ 1999 case VFIFO: 2000 /* 2001 * Allow modifications of special files even if in the file 2002 * system is mounted read-only (we are not modifying the 2003 * files themselves, but the objects they represent). 2004 */ 2005 return (0); 2006 2007 default: 2008 /* Anything else is unsupported. */ 2009 return (EOPNOTSUPP); 2010 } 2011 2012 /* Immutable or append-only files cannot be modified, either. */ 2013 if (node->tn_flags & (IMMUTABLE | APPEND)) 2014 return (EPERM); 2015 2016 error = tmpfs_truncate(vp, size); 2017 /* 2018 * tmpfs_truncate will raise the NOTE_EXTEND and NOTE_ATTRIB kevents 2019 * for us, as will update tn_status; no need to do that here. 2020 */ 2021 2022 ASSERT_VOP_ELOCKED(vp, "chsize2"); 2023 2024 return (error); 2025 } 2026 2027 /* 2028 * Change access and modification times of the given vnode. 2029 * Caller should execute tmpfs_update on vp after a successful execution. 2030 * The vnode must be locked on entry and remain locked on exit. 2031 */ 2032 int 2033 tmpfs_chtimes(struct vnode *vp, struct vattr *vap, 2034 struct ucred *cred, struct thread *l) 2035 { 2036 int error; 2037 struct tmpfs_node *node; 2038 2039 ASSERT_VOP_ELOCKED(vp, "chtimes"); 2040 2041 node = VP_TO_TMPFS_NODE(vp); 2042 2043 /* Disallow this operation if the file system is mounted read-only. */ 2044 if (vp->v_mount->mnt_flag & MNT_RDONLY) 2045 return (EROFS); 2046 2047 /* Immutable or append-only files cannot be modified, either. */ 2048 if (node->tn_flags & (IMMUTABLE | APPEND)) 2049 return (EPERM); 2050 2051 error = vn_utimes_perm(vp, vap, cred, l); 2052 if (error != 0) 2053 return (error); 2054 2055 if (vap->va_atime.tv_sec != VNOVAL) 2056 node->tn_accessed = true; 2057 2058 if (vap->va_mtime.tv_sec != VNOVAL) 2059 node->tn_status |= TMPFS_NODE_MODIFIED; 2060 2061 if (vap->va_birthtime.tv_sec != VNOVAL) 2062 node->tn_status |= TMPFS_NODE_MODIFIED; 2063 2064 tmpfs_itimes(vp, &vap->va_atime, &vap->va_mtime); 2065 2066 if (vap->va_birthtime.tv_sec != VNOVAL) 2067 node->tn_birthtime = vap->va_birthtime; 2068 ASSERT_VOP_ELOCKED(vp, "chtimes2"); 2069 2070 return (0); 2071 } 2072 2073 void 2074 tmpfs_set_status(struct tmpfs_mount *tm, struct tmpfs_node *node, int status) 2075 { 2076 2077 if ((node->tn_status & status) == status || tm->tm_ronly) 2078 return; 2079 TMPFS_NODE_LOCK(node); 2080 node->tn_status |= status; 2081 TMPFS_NODE_UNLOCK(node); 2082 } 2083 2084 void 2085 tmpfs_set_accessed(struct tmpfs_mount *tm, struct tmpfs_node *node) 2086 { 2087 if (node->tn_accessed || tm->tm_ronly) 2088 return; 2089 atomic_store_8(&node->tn_accessed, true); 2090 } 2091 2092 /* Sync timestamps */ 2093 void 2094 tmpfs_itimes(struct vnode *vp, const struct timespec *acc, 2095 const struct timespec *mod) 2096 { 2097 struct tmpfs_node *node; 2098 struct timespec now; 2099 2100 ASSERT_VOP_LOCKED(vp, "tmpfs_itimes"); 2101 node = VP_TO_TMPFS_NODE(vp); 2102 2103 if (!node->tn_accessed && 2104 (node->tn_status & (TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED)) == 0) 2105 return; 2106 2107 vfs_timestamp(&now); 2108 TMPFS_NODE_LOCK(node); 2109 if (node->tn_accessed) { 2110 if (acc == NULL) 2111 acc = &now; 2112 node->tn_atime = *acc; 2113 } 2114 if (node->tn_status & TMPFS_NODE_MODIFIED) { 2115 if (mod == NULL) 2116 mod = &now; 2117 node->tn_mtime = *mod; 2118 } 2119 if (node->tn_status & TMPFS_NODE_CHANGED) 2120 node->tn_ctime = now; 2121 node->tn_status &= ~(TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED); 2122 node->tn_accessed = false; 2123 TMPFS_NODE_UNLOCK(node); 2124 2125 /* XXX: FIX? The entropy here is desirable, but the harvesting may be expensive */ 2126 random_harvest_queue(node, sizeof(*node), RANDOM_FS_ATIME); 2127 } 2128 2129 int 2130 tmpfs_truncate(struct vnode *vp, off_t length) 2131 { 2132 int error; 2133 struct tmpfs_node *node; 2134 2135 node = VP_TO_TMPFS_NODE(vp); 2136 2137 if (length < 0) { 2138 error = EINVAL; 2139 goto out; 2140 } 2141 2142 if (node->tn_size == length) { 2143 error = 0; 2144 goto out; 2145 } 2146 2147 if (length > VFS_TO_TMPFS(vp->v_mount)->tm_maxfilesize) 2148 return (EFBIG); 2149 2150 error = tmpfs_reg_resize(vp, length, FALSE); 2151 if (error == 0) 2152 node->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED; 2153 2154 out: 2155 tmpfs_update(vp); 2156 2157 return (error); 2158 } 2159 2160 static __inline int 2161 tmpfs_dirtree_cmp(struct tmpfs_dirent *a, struct tmpfs_dirent *b) 2162 { 2163 if (a->td_hash > b->td_hash) 2164 return (1); 2165 else if (a->td_hash < b->td_hash) 2166 return (-1); 2167 return (0); 2168 } 2169 2170 RB_GENERATE_STATIC(tmpfs_dir, tmpfs_dirent, uh.td_entries, tmpfs_dirtree_cmp); 2171