xref: /freebsd/sys/fs/procfs/procfs_mem.c (revision a316b26e50bbed7cf655fbba726ab87d8ab7599d)
1 /*
2  * Copyright (c) 1993 Jan-Simon Pendry
3  * Copyright (c) 1993 Sean Eric Fagan
4  * Copyright (c) 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Jan-Simon Pendry and Sean Eric Fagan.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)procfs_mem.c	8.4 (Berkeley) 1/21/94
39  *
40  *	$Id: procfs_mem.c,v 1.5 1994/10/18 04:40:41 davidg Exp $
41  */
42 
43 /*
44  * This is a lightly hacked and merged version
45  * of sef's pread/pwrite functions
46  */
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/time.h>
51 #include <sys/kernel.h>
52 #include <sys/proc.h>
53 #include <sys/vnode.h>
54 #include <miscfs/procfs/procfs.h>
55 #include <vm/vm.h>
56 #include <vm/vm_kern.h>
57 #include <vm/vm_page.h>
58 
59 static int
60 procfs_rwmem(p, uio)
61 	struct proc *p;
62 	struct uio *uio;
63 {
64 	int error;
65 	int writing;
66 
67 	writing = uio->uio_rw == UIO_WRITE;
68 
69 	/*
70 	 * Only map in one page at a time.  We don't have to, but it
71 	 * makes things easier.  This way is trivial - right?
72 	 */
73 	do {
74 		vm_map_t map, tmap;
75 		vm_object_t object;
76 		vm_offset_t kva = 0;
77 		vm_offset_t uva;
78 		int page_offset;		/* offset into page */
79 		vm_offset_t pageno;		/* page number */
80 		vm_map_entry_t out_entry;
81 		vm_prot_t out_prot;
82 		vm_page_t m;
83 		boolean_t wired, single_use;
84 		vm_offset_t off;
85 		u_int len;
86 		int fix_prot;
87 
88 		uva = (vm_offset_t) uio->uio_offset;
89 		if (uva >= VM_MAXUSER_ADDRESS) {
90 			if (writing || (uva >= (VM_MAXUSER_ADDRESS + UPAGES * PAGE_SIZE))) {
91 				error = 0;
92 				break;
93 			}
94 		}
95 
96 		/*
97 		 * Get the page number of this segment.
98 		 */
99 		pageno = trunc_page(uva);
100 		page_offset = uva - pageno;
101 
102 		/*
103 		 * How many bytes to copy
104 		 */
105 		len = min(PAGE_SIZE - page_offset, uio->uio_resid);
106 
107 		/*
108 		 * The map we want...
109 		 */
110 		map = &p->p_vmspace->vm_map;
111 
112 		/*
113 		 * Check the permissions for the area we're interested
114 		 * in.
115 		 */
116 		fix_prot = 0;
117 		if (writing)
118 			fix_prot = !vm_map_check_protection(map, pageno,
119 					pageno + PAGE_SIZE, VM_PROT_WRITE);
120 
121 		if (fix_prot) {
122 			/*
123 			 * If the page is not writable, we make it so.
124 			 * XXX It is possible that a page may *not* be
125 			 * read/executable, if a process changes that!
126 			 * We will assume, for now, that a page is either
127 			 * VM_PROT_ALL, or VM_PROT_READ|VM_PROT_EXECUTE.
128 			 */
129 			error = vm_map_protect(map, pageno,
130 					pageno + PAGE_SIZE, VM_PROT_ALL, 0);
131 			if (error)
132 				break;
133 		}
134 
135 		/*
136 		 * Now we need to get the page.  out_entry, out_prot, wired,
137 		 * and single_use aren't used.  One would think the vm code
138 		 * would be a *bit* nicer...  We use tmap because
139 		 * vm_map_lookup() can change the map argument.
140 		 */
141 		tmap = map;
142 		error = vm_map_lookup(&tmap, pageno,
143 				      writing ? VM_PROT_WRITE : VM_PROT_READ,
144 				      &out_entry, &object, &off, &out_prot,
145 				      &wired, &single_use);
146 		/*
147 		 * We're done with tmap now.
148 		 */
149 		if (!error)
150 			vm_map_lookup_done(tmap, out_entry);
151 
152 		/*
153 		 * Fault the page in...
154 		 */
155 		if (!error && writing && object->shadow) {
156 			m = vm_page_lookup(object, off);
157 			if (m == 0 || (m->flags & PG_COPYONWRITE))
158 				error = vm_fault(map, pageno,
159 							VM_PROT_WRITE, FALSE);
160 		}
161 
162 		/* Find space in kernel_map for the page we're interested in */
163 		if (!error)
164 			error = vm_map_find(kernel_map, object, off, &kva,
165 					PAGE_SIZE, 1);
166 
167 		if (!error) {
168 			/*
169 			 * Neither vm_map_lookup() nor vm_map_find() appear
170 			 * to add a reference count to the object, so we do
171 			 * that here and now.
172 			 */
173 			vm_object_reference(object);
174 
175 			/*
176 			 * Mark the page we just found as pageable.
177 			 */
178 			error = vm_map_pageable(kernel_map, kva,
179 				kva + PAGE_SIZE, 0);
180 
181 			/*
182 			 * Now do the i/o move.
183 			 */
184 			if (!error)
185 				error = uiomove((caddr_t)(kva + page_offset),
186 						len, uio);
187 
188 			vm_map_remove(kernel_map, kva, kva + PAGE_SIZE);
189 		}
190 		if (fix_prot)
191 			vm_map_protect(map, pageno, pageno + PAGE_SIZE,
192 					VM_PROT_READ|VM_PROT_EXECUTE, 0);
193 	} while (error == 0 && uio->uio_resid > 0);
194 
195 	return (error);
196 }
197 
198 /*
199  * Copy data in and out of the target process.
200  * We do this by mapping the process's page into
201  * the kernel and then doing a uiomove direct
202  * from the kernel address space.
203  */
204 int
205 procfs_domem(curp, p, pfs, uio)
206 	struct proc *curp;
207 	struct proc *p;
208 	struct pfsnode *pfs;
209 	struct uio *uio;
210 {
211 	int error;
212 
213 	if (uio->uio_resid == 0)
214 		return (0);
215 
216 	error = procfs_rwmem(p, uio);
217 
218 	return (error);
219 }
220 
221 /*
222  * Given process (p), find the vnode from which
223  * it's text segment is being executed.
224  *
225  * It would be nice to grab this information from
226  * the VM system, however, there is no sure-fire
227  * way of doing that.  Instead, fork(), exec() and
228  * wait() all maintain the p_textvp field in the
229  * process proc structure which contains a held
230  * reference to the exec'ed vnode.
231  */
232 struct vnode *
233 procfs_findtextvp(p)
234 	struct proc *p;
235 {
236 	return (p->p_textvp);
237 }
238 
239 
240 #ifdef probably_never
241 /*
242  * Given process (p), find the vnode from which
243  * it's text segment is being mapped.
244  *
245  * (This is here, rather than in procfs_subr in order
246  * to keep all the VM related code in one place.)
247  */
248 struct vnode *
249 procfs_findtextvp(p)
250 	struct proc *p;
251 {
252 	int error;
253 	vm_object_t object;
254 	vm_offset_t pageno;		/* page number */
255 
256 	/* find a vnode pager for the user address space */
257 
258 	for (pageno = VM_MIN_ADDRESS;
259 			pageno < VM_MAXUSER_ADDRESS;
260 			pageno += PAGE_SIZE) {
261 		vm_map_t map;
262 		vm_map_entry_t out_entry;
263 		vm_prot_t out_prot;
264 		boolean_t wired, single_use;
265 		vm_offset_t off;
266 
267 		map = &p->p_vmspace->vm_map;
268 		error = vm_map_lookup(&map, pageno,
269 			      VM_PROT_READ,
270 			      &out_entry, &object, &off, &out_prot,
271 			      &wired, &single_use);
272 
273 		if (!error) {
274 			vm_pager_t pager;
275 
276 			printf("procfs: found vm object\n");
277 			vm_map_lookup_done(map, out_entry);
278 			printf("procfs: vm object = %x\n", object);
279 
280 			/*
281 			 * At this point, assuming no errors, object
282 			 * is the VM object mapping UVA (pageno).
283 			 * Ensure it has a vnode pager, then grab
284 			 * the vnode from that pager's handle.
285 			 */
286 
287 			pager = object->pager;
288 			printf("procfs: pager = %x\n", pager);
289 			if (pager)
290 				printf("procfs: found pager, type = %d\n", pager->pg_type);
291 			if (pager && pager->pg_type == PG_VNODE) {
292 				struct vnode *vp;
293 
294 				vp = (struct vnode *) pager->pg_handle;
295 				printf("procfs: vp = 0x%x\n", vp);
296 				return (vp);
297 			}
298 		}
299 	}
300 
301 	printf("procfs: text object not found\n");
302 	return (0);
303 }
304 #endif /* probably_never */
305