xref: /freebsd/sys/fs/procfs/procfs_mem.c (revision 4cf49a43559ed9fdad601bdcccd2c55963008675)
1 /*
2  * Copyright (c) 1993 Jan-Simon Pendry
3  * Copyright (c) 1993 Sean Eric Fagan
4  * Copyright (c) 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Jan-Simon Pendry and Sean Eric Fagan.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)procfs_mem.c	8.5 (Berkeley) 6/15/94
39  *
40  * $FreeBSD$
41  */
42 
43 /*
44  * This is a lightly hacked and merged version
45  * of sef's pread/pwrite functions
46  */
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/proc.h>
51 #include <sys/vnode.h>
52 #include <miscfs/procfs/procfs.h>
53 #include <vm/vm.h>
54 #include <vm/vm_param.h>
55 #include <vm/vm_prot.h>
56 #include <sys/lock.h>
57 #include <vm/pmap.h>
58 #include <vm/vm_map.h>
59 #include <vm/vm_kern.h>
60 #include <vm/vm_object.h>
61 #include <vm/vm_page.h>
62 #include <vm/vm_extern.h>
63 #include <sys/user.h>
64 #include <sys/ptrace.h>
65 
66 static int	procfs_rwmem __P((struct proc *curp,
67 				  struct proc *p, struct uio *uio));
68 
69 static int
70 procfs_rwmem(curp, p, uio)
71 	struct proc *curp;
72 	struct proc *p;
73 	struct uio *uio;
74 {
75 	int error;
76 	int writing;
77 	struct vmspace *vm;
78 	vm_map_t map;
79 	vm_object_t object = NULL;
80 	vm_offset_t pageno = 0;		/* page number */
81 	vm_prot_t reqprot;
82 	vm_offset_t kva;
83 
84 	/*
85 	 * if the vmspace is in the midst of being deallocated or the
86 	 * process is exiting, don't try to grab anything.  The page table
87 	 * usage in that process can be messed up.
88 	 */
89 	vm = p->p_vmspace;
90 	if ((p->p_flag & P_WEXIT) || (vm->vm_refcnt < 1))
91 		return EFAULT;
92 	++vm->vm_refcnt;
93 	/*
94 	 * The map we want...
95 	 */
96 	map = &vm->vm_map;
97 
98 	writing = uio->uio_rw == UIO_WRITE;
99 	reqprot = writing ? (VM_PROT_WRITE | VM_PROT_OVERRIDE_WRITE) : VM_PROT_READ;
100 
101 	kva = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
102 
103 	/*
104 	 * Only map in one page at a time.  We don't have to, but it
105 	 * makes things easier.  This way is trivial - right?
106 	 */
107 	do {
108 		vm_map_t tmap;
109 		vm_offset_t uva;
110 		int page_offset;		/* offset into page */
111 		vm_map_entry_t out_entry;
112 		vm_prot_t out_prot;
113 		boolean_t wired;
114 		vm_pindex_t pindex;
115 		u_int len;
116 		vm_page_t m;
117 
118 		object = NULL;
119 
120 		uva = (vm_offset_t) uio->uio_offset;
121 
122 		/*
123 		 * Get the page number of this segment.
124 		 */
125 		pageno = trunc_page(uva);
126 		page_offset = uva - pageno;
127 
128 		/*
129 		 * How many bytes to copy
130 		 */
131 		len = min(PAGE_SIZE - page_offset, uio->uio_resid);
132 
133 		if (uva >= VM_MAXUSER_ADDRESS) {
134 			vm_offset_t tkva;
135 
136 			if (writing ||
137 			    uva >= VM_MAXUSER_ADDRESS + UPAGES * PAGE_SIZE ||
138 			    (ptrace_read_u_check(p,
139 						 uva - (vm_offset_t) VM_MAXUSER_ADDRESS,
140 						 (size_t) len) &&
141 			     !procfs_kmemaccess(curp))) {
142 				error = 0;
143 				break;
144 			}
145 
146 			/* we are reading the "U area", force it into core */
147 			PHOLD(p);
148 
149 			/* sanity check */
150 			if (!(p->p_flag & P_INMEM)) {
151 				/* aiee! */
152 				PRELE(p);
153 				error = EFAULT;
154 				break;
155 			}
156 
157 			/* populate the ptrace/procfs area */
158 			p->p_addr->u_kproc.kp_proc = *p;
159 			fill_eproc (p, &p->p_addr->u_kproc.kp_eproc);
160 
161 			/* locate the in-core address */
162 			tkva = (uintptr_t)p->p_addr + uva - VM_MAXUSER_ADDRESS;
163 
164 			/* transfer it */
165 			error = uiomove((caddr_t)tkva, len, uio);
166 
167 			/* let the pages go */
168 			PRELE(p);
169 
170 			continue;
171 		}
172 
173 		/*
174 		 * Fault the page on behalf of the process
175 		 */
176 		error = vm_fault(map, pageno, reqprot, FALSE);
177 		if (error) {
178 			error = EFAULT;
179 			break;
180 		}
181 
182 		/*
183 		 * Now we need to get the page.  out_entry, out_prot, wired,
184 		 * and single_use aren't used.  One would think the vm code
185 		 * would be a *bit* nicer...  We use tmap because
186 		 * vm_map_lookup() can change the map argument.
187 		 */
188 		tmap = map;
189 		error = vm_map_lookup(&tmap, pageno, reqprot,
190 			      &out_entry, &object, &pindex, &out_prot,
191 			      &wired);
192 
193 		if (error) {
194 			error = EFAULT;
195 
196 			/*
197 			 * Make sure that there is no residue in 'object' from
198 			 * an error return on vm_map_lookup.
199 			 */
200 			object = NULL;
201 
202 			break;
203 		}
204 
205 		m = vm_page_lookup(object, pindex);
206 
207 		/* Allow fallback to backing objects if we are reading */
208 
209 		while (m == NULL && !writing && object->backing_object) {
210 
211 		  pindex += OFF_TO_IDX(object->backing_object_offset);
212 		  object = object->backing_object;
213 
214 		  m = vm_page_lookup(object, pindex);
215 		}
216 
217 		if (m == NULL) {
218 			error = EFAULT;
219 
220 			/*
221 			 * Make sure that there is no residue in 'object' from
222 			 * an error return on vm_map_lookup.
223 			 */
224 			object = NULL;
225 
226 			vm_map_lookup_done(tmap, out_entry);
227 
228 			break;
229 		}
230 
231 		/*
232 		 * Wire the page into memory
233 		 */
234 		vm_page_wire(m);
235 
236 		/*
237 		 * We're done with tmap now.
238 		 * But reference the object first, so that we won't loose
239 		 * it.
240 		 */
241 		vm_object_reference(object);
242 		vm_map_lookup_done(tmap, out_entry);
243 
244 		pmap_kenter(kva, VM_PAGE_TO_PHYS(m));
245 
246 		/*
247 		 * Now do the i/o move.
248 		 */
249 		error = uiomove((caddr_t)(kva + page_offset), len, uio);
250 
251 		pmap_kremove(kva);
252 
253 		/*
254 		 * release the page and the object
255 		 */
256 		vm_page_unwire(m, 1);
257 		vm_object_deallocate(object);
258 
259 		object = NULL;
260 
261 	} while (error == 0 && uio->uio_resid > 0);
262 
263 	if (object)
264 		vm_object_deallocate(object);
265 
266 	kmem_free(kernel_map, kva, PAGE_SIZE);
267 	vmspace_free(vm);
268 	return (error);
269 }
270 
271 /*
272  * Copy data in and out of the target process.
273  * We do this by mapping the process's page into
274  * the kernel and then doing a uiomove direct
275  * from the kernel address space.
276  */
277 int
278 procfs_domem(curp, p, pfs, uio)
279 	struct proc *curp;
280 	struct proc *p;
281 	struct pfsnode *pfs;
282 	struct uio *uio;
283 {
284 
285 	if (uio->uio_resid == 0)
286 		return (0);
287 
288  	/*
289  	 * XXX
290  	 * We need to check for KMEM_GROUP because ps is sgid kmem;
291  	 * not allowing it here causes ps to not work properly.  Arguably,
292  	 * this is a bug with what ps does.  We only need to do this
293  	 * for Pmem nodes, and only if it's reading.  This is still not
294  	 * good, as it may still be possible to grab illicit data if
295  	 * a process somehow gets to be KMEM_GROUP.  Note that this also
296  	 * means that KMEM_GROUP can't change without editing procfs.h!
297  	 * All in all, quite yucky.
298  	 */
299 
300  	if (!CHECKIO(curp, p) &&
301 	    !(uio->uio_rw == UIO_READ &&
302 	      procfs_kmemaccess(curp)))
303  		return EPERM;
304 
305 	return (procfs_rwmem(curp, p, uio));
306 }
307 
308 /*
309  * Given process (p), find the vnode from which
310  * its text segment is being executed.
311  *
312  * It would be nice to grab this information from
313  * the VM system, however, there is no sure-fire
314  * way of doing that.  Instead, fork(), exec() and
315  * wait() all maintain the p_textvp field in the
316  * process proc structure which contains a held
317  * reference to the exec'ed vnode.
318  */
319 struct vnode *
320 procfs_findtextvp(p)
321 	struct proc *p;
322 {
323 
324 	return (p->p_textvp);
325 }
326 
327 int procfs_kmemaccess(curp)
328 	struct proc *curp;
329 {
330 	int i;
331 	struct ucred *cred;
332 
333 	cred = curp->p_cred->pc_ucred;
334 	if (suser(curp))
335 		return 1;
336 
337 	/* XXX: Why isn't this done with file-perms ??? */
338 	for (i = 0; i < cred->cr_ngroups; i++)
339 		if (cred->cr_groups[i] == KMEM_GROUP)
340 			return 1;
341 
342 	return 0;
343 }
344