xref: /freebsd/sys/fs/nullfs/null_vnops.c (revision fafb1ee7bdc5d8a7d07cd03b2fb0bbb76f7a9d7c)
1 /*-
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * John Heidemann of the UCLA Ficus project.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
33  *
34  * Ancestors:
35  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
36  *	...and...
37  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
38  *
39  * $FreeBSD$
40  */
41 
42 /*
43  * Null Layer
44  *
45  * (See mount_nullfs(8) for more information.)
46  *
47  * The null layer duplicates a portion of the filesystem
48  * name space under a new name.  In this respect, it is
49  * similar to the loopback filesystem.  It differs from
50  * the loopback fs in two respects:  it is implemented using
51  * a stackable layers techniques, and its "null-node"s stack above
52  * all lower-layer vnodes, not just over directory vnodes.
53  *
54  * The null layer has two purposes.  First, it serves as a demonstration
55  * of layering by proving a layer which does nothing.  (It actually
56  * does everything the loopback filesystem does, which is slightly
57  * more than nothing.)  Second, the null layer can serve as a prototype
58  * layer.  Since it provides all necessary layer framework,
59  * new filesystem layers can be created very easily be starting
60  * with a null layer.
61  *
62  * The remainder of this man page examines the null layer as a basis
63  * for constructing new layers.
64  *
65  *
66  * INSTANTIATING NEW NULL LAYERS
67  *
68  * New null layers are created with mount_nullfs(8).
69  * Mount_nullfs(8) takes two arguments, the pathname
70  * of the lower vfs (target-pn) and the pathname where the null
71  * layer will appear in the namespace (alias-pn).  After
72  * the null layer is put into place, the contents
73  * of target-pn subtree will be aliased under alias-pn.
74  *
75  *
76  * OPERATION OF A NULL LAYER
77  *
78  * The null layer is the minimum filesystem layer,
79  * simply bypassing all possible operations to the lower layer
80  * for processing there.  The majority of its activity centers
81  * on the bypass routine, through which nearly all vnode operations
82  * pass.
83  *
84  * The bypass routine accepts arbitrary vnode operations for
85  * handling by the lower layer.  It begins by examing vnode
86  * operation arguments and replacing any null-nodes by their
87  * lower-layer equivlants.  It then invokes the operation
88  * on the lower layer.  Finally, it replaces the null-nodes
89  * in the arguments and, if a vnode is return by the operation,
90  * stacks a null-node on top of the returned vnode.
91  *
92  * Although bypass handles most operations, vop_getattr, vop_lock,
93  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
94  * bypassed. Vop_getattr must change the fsid being returned.
95  * Vop_lock and vop_unlock must handle any locking for the
96  * current vnode as well as pass the lock request down.
97  * Vop_inactive and vop_reclaim are not bypassed so that
98  * they can handle freeing null-layer specific data. Vop_print
99  * is not bypassed to avoid excessive debugging information.
100  * Also, certain vnode operations change the locking state within
101  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
102  * and symlink). Ideally these operations should not change the
103  * lock state, but should be changed to let the caller of the
104  * function unlock them. Otherwise all intermediate vnode layers
105  * (such as union, umapfs, etc) must catch these functions to do
106  * the necessary locking at their layer.
107  *
108  *
109  * INSTANTIATING VNODE STACKS
110  *
111  * Mounting associates the null layer with a lower layer,
112  * effect stacking two VFSes.  Vnode stacks are instead
113  * created on demand as files are accessed.
114  *
115  * The initial mount creates a single vnode stack for the
116  * root of the new null layer.  All other vnode stacks
117  * are created as a result of vnode operations on
118  * this or other null vnode stacks.
119  *
120  * New vnode stacks come into existance as a result of
121  * an operation which returns a vnode.
122  * The bypass routine stacks a null-node above the new
123  * vnode before returning it to the caller.
124  *
125  * For example, imagine mounting a null layer with
126  * "mount_nullfs /usr/include /dev/layer/null".
127  * Changing directory to /dev/layer/null will assign
128  * the root null-node (which was created when the null layer was mounted).
129  * Now consider opening "sys".  A vop_lookup would be
130  * done on the root null-node.  This operation would bypass through
131  * to the lower layer which would return a vnode representing
132  * the UFS "sys".  Null_bypass then builds a null-node
133  * aliasing the UFS "sys" and returns this to the caller.
134  * Later operations on the null-node "sys" will repeat this
135  * process when constructing other vnode stacks.
136  *
137  *
138  * CREATING OTHER FILE SYSTEM LAYERS
139  *
140  * One of the easiest ways to construct new filesystem layers is to make
141  * a copy of the null layer, rename all files and variables, and
142  * then begin modifing the copy.  Sed can be used to easily rename
143  * all variables.
144  *
145  * The umap layer is an example of a layer descended from the
146  * null layer.
147  *
148  *
149  * INVOKING OPERATIONS ON LOWER LAYERS
150  *
151  * There are two techniques to invoke operations on a lower layer
152  * when the operation cannot be completely bypassed.  Each method
153  * is appropriate in different situations.  In both cases,
154  * it is the responsibility of the aliasing layer to make
155  * the operation arguments "correct" for the lower layer
156  * by mapping a vnode arguments to the lower layer.
157  *
158  * The first approach is to call the aliasing layer's bypass routine.
159  * This method is most suitable when you wish to invoke the operation
160  * currently being handled on the lower layer.  It has the advantage
161  * that the bypass routine already must do argument mapping.
162  * An example of this is null_getattrs in the null layer.
163  *
164  * A second approach is to directly invoke vnode operations on
165  * the lower layer with the VOP_OPERATIONNAME interface.
166  * The advantage of this method is that it is easy to invoke
167  * arbitrary operations on the lower layer.  The disadvantage
168  * is that vnode arguments must be manualy mapped.
169  *
170  */
171 
172 #include <sys/param.h>
173 #include <sys/systm.h>
174 #include <sys/conf.h>
175 #include <sys/kernel.h>
176 #include <sys/lock.h>
177 #include <sys/malloc.h>
178 #include <sys/mount.h>
179 #include <sys/mutex.h>
180 #include <sys/namei.h>
181 #include <sys/sysctl.h>
182 #include <sys/vnode.h>
183 
184 #include <fs/nullfs/null.h>
185 
186 #include <vm/vm.h>
187 #include <vm/vm_extern.h>
188 #include <vm/vm_object.h>
189 #include <vm/vnode_pager.h>
190 
191 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
192 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
193 	&null_bug_bypass, 0, "");
194 
195 /*
196  * This is the 10-Apr-92 bypass routine.
197  *    This version has been optimized for speed, throwing away some
198  * safety checks.  It should still always work, but it's not as
199  * robust to programmer errors.
200  *
201  * In general, we map all vnodes going down and unmap them on the way back.
202  * As an exception to this, vnodes can be marked "unmapped" by setting
203  * the Nth bit in operation's vdesc_flags.
204  *
205  * Also, some BSD vnode operations have the side effect of vrele'ing
206  * their arguments.  With stacking, the reference counts are held
207  * by the upper node, not the lower one, so we must handle these
208  * side-effects here.  This is not of concern in Sun-derived systems
209  * since there are no such side-effects.
210  *
211  * This makes the following assumptions:
212  * - only one returned vpp
213  * - no INOUT vpp's (Sun's vop_open has one of these)
214  * - the vnode operation vector of the first vnode should be used
215  *   to determine what implementation of the op should be invoked
216  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
217  *   problems on rmdir'ing mount points and renaming?)
218  */
219 int
220 null_bypass(struct vop_generic_args *ap)
221 {
222 	struct vnode **this_vp_p;
223 	int error;
224 	struct vnode *old_vps[VDESC_MAX_VPS];
225 	struct vnode **vps_p[VDESC_MAX_VPS];
226 	struct vnode ***vppp;
227 	struct vnodeop_desc *descp = ap->a_desc;
228 	int reles, i;
229 
230 	if (null_bug_bypass)
231 		printf ("null_bypass: %s\n", descp->vdesc_name);
232 
233 #ifdef DIAGNOSTIC
234 	/*
235 	 * We require at least one vp.
236 	 */
237 	if (descp->vdesc_vp_offsets == NULL ||
238 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
239 		panic ("null_bypass: no vp's in map");
240 #endif
241 
242 	/*
243 	 * Map the vnodes going in.
244 	 * Later, we'll invoke the operation based on
245 	 * the first mapped vnode's operation vector.
246 	 */
247 	reles = descp->vdesc_flags;
248 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
249 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
250 			break;   /* bail out at end of list */
251 		vps_p[i] = this_vp_p =
252 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
253 		/*
254 		 * We're not guaranteed that any but the first vnode
255 		 * are of our type.  Check for and don't map any
256 		 * that aren't.  (We must always map first vp or vclean fails.)
257 		 */
258 		if (i && (*this_vp_p == NULLVP ||
259 		    (*this_vp_p)->v_op != &null_vnodeops)) {
260 			old_vps[i] = NULLVP;
261 		} else {
262 			old_vps[i] = *this_vp_p;
263 			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
264 			/*
265 			 * XXX - Several operations have the side effect
266 			 * of vrele'ing their vp's.  We must account for
267 			 * that.  (This should go away in the future.)
268 			 */
269 			if (reles & VDESC_VP0_WILLRELE)
270 				VREF(*this_vp_p);
271 		}
272 
273 	}
274 
275 	/*
276 	 * Call the operation on the lower layer
277 	 * with the modified argument structure.
278 	 */
279 	if (vps_p[0] && *vps_p[0])
280 		error = VCALL(ap);
281 	else {
282 		printf("null_bypass: no map for %s\n", descp->vdesc_name);
283 		error = EINVAL;
284 	}
285 
286 	/*
287 	 * Maintain the illusion of call-by-value
288 	 * by restoring vnodes in the argument structure
289 	 * to their original value.
290 	 */
291 	reles = descp->vdesc_flags;
292 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
293 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
294 			break;   /* bail out at end of list */
295 		if (old_vps[i]) {
296 			*(vps_p[i]) = old_vps[i];
297 #if 0
298 			if (reles & VDESC_VP0_WILLUNLOCK)
299 				VOP_UNLOCK(*(vps_p[i]), 0);
300 #endif
301 			if (reles & VDESC_VP0_WILLRELE)
302 				vrele(*(vps_p[i]));
303 		}
304 	}
305 
306 	/*
307 	 * Map the possible out-going vpp
308 	 * (Assumes that the lower layer always returns
309 	 * a VREF'ed vpp unless it gets an error.)
310 	 */
311 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
312 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
313 	    !error) {
314 		/*
315 		 * XXX - even though some ops have vpp returned vp's,
316 		 * several ops actually vrele this before returning.
317 		 * We must avoid these ops.
318 		 * (This should go away when these ops are regularized.)
319 		 */
320 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
321 			goto out;
322 		vppp = VOPARG_OFFSETTO(struct vnode***,
323 				 descp->vdesc_vpp_offset,ap);
324 		if (*vppp)
325 			error = null_nodeget(old_vps[0]->v_mount, **vppp, *vppp);
326 	}
327 
328  out:
329 	return (error);
330 }
331 
332 static int
333 null_add_writecount(struct vop_add_writecount_args *ap)
334 {
335 	struct vnode *lvp, *vp;
336 	int error;
337 
338 	vp = ap->a_vp;
339 	lvp = NULLVPTOLOWERVP(vp);
340 	KASSERT(vp->v_writecount + ap->a_inc >= 0, ("wrong writecount inc"));
341 	if (vp->v_writecount > 0 && vp->v_writecount + ap->a_inc == 0)
342 		error = VOP_ADD_WRITECOUNT(lvp, -1);
343 	else if (vp->v_writecount == 0 && vp->v_writecount + ap->a_inc > 0)
344 		error = VOP_ADD_WRITECOUNT(lvp, 1);
345 	else
346 		error = 0;
347 	if (error == 0)
348 		vp->v_writecount += ap->a_inc;
349 	return (error);
350 }
351 
352 /*
353  * We have to carry on the locking protocol on the null layer vnodes
354  * as we progress through the tree. We also have to enforce read-only
355  * if this layer is mounted read-only.
356  */
357 static int
358 null_lookup(struct vop_lookup_args *ap)
359 {
360 	struct componentname *cnp = ap->a_cnp;
361 	struct vnode *dvp = ap->a_dvp;
362 	int flags = cnp->cn_flags;
363 	struct vnode *vp, *ldvp, *lvp;
364 	struct mount *mp;
365 	int error;
366 
367 	mp = dvp->v_mount;
368 	if ((flags & ISLASTCN) != 0 && (mp->mnt_flag & MNT_RDONLY) != 0 &&
369 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
370 		return (EROFS);
371 	/*
372 	 * Although it is possible to call null_bypass(), we'll do
373 	 * a direct call to reduce overhead
374 	 */
375 	ldvp = NULLVPTOLOWERVP(dvp);
376 	vp = lvp = NULL;
377 	KASSERT((ldvp->v_vflag & VV_ROOT) == 0 ||
378 	    ((dvp->v_vflag & VV_ROOT) != 0 && (flags & ISDOTDOT) == 0),
379 	    ("ldvp %p fl %#x dvp %p fl %#x flags %#x", ldvp, ldvp->v_vflag,
380 	     dvp, dvp->v_vflag, flags));
381 
382 	/*
383 	 * Hold ldvp.  The reference on it, owned by dvp, is lost in
384 	 * case of dvp reclamation, and we need ldvp to move our lock
385 	 * from ldvp to dvp.
386 	 */
387 	vhold(ldvp);
388 
389 	error = VOP_LOOKUP(ldvp, &lvp, cnp);
390 
391 	/*
392 	 * VOP_LOOKUP() on lower vnode may unlock ldvp, which allows
393 	 * dvp to be reclaimed due to shared v_vnlock.  Check for the
394 	 * doomed state and return error.
395 	 */
396 	if ((error == 0 || error == EJUSTRETURN) &&
397 	    (dvp->v_iflag & VI_DOOMED) != 0) {
398 		error = ENOENT;
399 		if (lvp != NULL)
400 			vput(lvp);
401 
402 		/*
403 		 * If vgone() did reclaimed dvp before curthread
404 		 * relocked ldvp, the locks of dvp and ldpv are no
405 		 * longer shared.  In this case, relock of ldvp in
406 		 * lower fs VOP_LOOKUP() does not restore the locking
407 		 * state of dvp.  Compensate for this by unlocking
408 		 * ldvp and locking dvp, which is also correct if the
409 		 * locks are still shared.
410 		 */
411 		VOP_UNLOCK(ldvp, 0);
412 		vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
413 	}
414 	vdrop(ldvp);
415 
416 	if (error == EJUSTRETURN && (flags & ISLASTCN) != 0 &&
417 	    (mp->mnt_flag & MNT_RDONLY) != 0 &&
418 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
419 		error = EROFS;
420 
421 	if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
422 		if (ldvp == lvp) {
423 			*ap->a_vpp = dvp;
424 			VREF(dvp);
425 			vrele(lvp);
426 		} else {
427 			error = null_nodeget(mp, lvp, &vp);
428 			if (error == 0)
429 				*ap->a_vpp = vp;
430 		}
431 	}
432 	return (error);
433 }
434 
435 static int
436 null_open(struct vop_open_args *ap)
437 {
438 	int retval;
439 	struct vnode *vp, *ldvp;
440 
441 	vp = ap->a_vp;
442 	ldvp = NULLVPTOLOWERVP(vp);
443 	retval = null_bypass(&ap->a_gen);
444 	if (retval == 0)
445 		vp->v_object = ldvp->v_object;
446 	return (retval);
447 }
448 
449 /*
450  * Setattr call. Disallow write attempts if the layer is mounted read-only.
451  */
452 static int
453 null_setattr(struct vop_setattr_args *ap)
454 {
455 	struct vnode *vp = ap->a_vp;
456 	struct vattr *vap = ap->a_vap;
457 
458   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
459 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
460 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
461 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
462 		return (EROFS);
463 	if (vap->va_size != VNOVAL) {
464  		switch (vp->v_type) {
465  		case VDIR:
466  			return (EISDIR);
467  		case VCHR:
468  		case VBLK:
469  		case VSOCK:
470  		case VFIFO:
471 			if (vap->va_flags != VNOVAL)
472 				return (EOPNOTSUPP);
473 			return (0);
474 		case VREG:
475 		case VLNK:
476  		default:
477 			/*
478 			 * Disallow write attempts if the filesystem is
479 			 * mounted read-only.
480 			 */
481 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
482 				return (EROFS);
483 		}
484 	}
485 
486 	return (null_bypass((struct vop_generic_args *)ap));
487 }
488 
489 /*
490  *  We handle getattr only to change the fsid.
491  */
492 static int
493 null_getattr(struct vop_getattr_args *ap)
494 {
495 	int error;
496 
497 	if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
498 		return (error);
499 
500 	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
501 	return (0);
502 }
503 
504 /*
505  * Handle to disallow write access if mounted read-only.
506  */
507 static int
508 null_access(struct vop_access_args *ap)
509 {
510 	struct vnode *vp = ap->a_vp;
511 	accmode_t accmode = ap->a_accmode;
512 
513 	/*
514 	 * Disallow write attempts on read-only layers;
515 	 * unless the file is a socket, fifo, or a block or
516 	 * character device resident on the filesystem.
517 	 */
518 	if (accmode & VWRITE) {
519 		switch (vp->v_type) {
520 		case VDIR:
521 		case VLNK:
522 		case VREG:
523 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
524 				return (EROFS);
525 			break;
526 		default:
527 			break;
528 		}
529 	}
530 	return (null_bypass((struct vop_generic_args *)ap));
531 }
532 
533 static int
534 null_accessx(struct vop_accessx_args *ap)
535 {
536 	struct vnode *vp = ap->a_vp;
537 	accmode_t accmode = ap->a_accmode;
538 
539 	/*
540 	 * Disallow write attempts on read-only layers;
541 	 * unless the file is a socket, fifo, or a block or
542 	 * character device resident on the filesystem.
543 	 */
544 	if (accmode & VWRITE) {
545 		switch (vp->v_type) {
546 		case VDIR:
547 		case VLNK:
548 		case VREG:
549 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
550 				return (EROFS);
551 			break;
552 		default:
553 			break;
554 		}
555 	}
556 	return (null_bypass((struct vop_generic_args *)ap));
557 }
558 
559 /*
560  * Increasing refcount of lower vnode is needed at least for the case
561  * when lower FS is NFS to do sillyrename if the file is in use.
562  * Unfortunately v_usecount is incremented in many places in
563  * the kernel and, as such, there may be races that result in
564  * the NFS client doing an extraneous silly rename, but that seems
565  * preferable to not doing a silly rename when it is needed.
566  */
567 static int
568 null_remove(struct vop_remove_args *ap)
569 {
570 	int retval, vreleit;
571 	struct vnode *lvp, *vp;
572 
573 	vp = ap->a_vp;
574 	if (vrefcnt(vp) > 1) {
575 		lvp = NULLVPTOLOWERVP(vp);
576 		VREF(lvp);
577 		vreleit = 1;
578 	} else
579 		vreleit = 0;
580 	VTONULL(vp)->null_flags |= NULLV_DROP;
581 	retval = null_bypass(&ap->a_gen);
582 	if (vreleit != 0)
583 		vrele(lvp);
584 	return (retval);
585 }
586 
587 /*
588  * We handle this to eliminate null FS to lower FS
589  * file moving. Don't know why we don't allow this,
590  * possibly we should.
591  */
592 static int
593 null_rename(struct vop_rename_args *ap)
594 {
595 	struct vnode *tdvp = ap->a_tdvp;
596 	struct vnode *fvp = ap->a_fvp;
597 	struct vnode *fdvp = ap->a_fdvp;
598 	struct vnode *tvp = ap->a_tvp;
599 	struct null_node *tnn;
600 
601 	/* Check for cross-device rename. */
602 	if ((fvp->v_mount != tdvp->v_mount) ||
603 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
604 		if (tdvp == tvp)
605 			vrele(tdvp);
606 		else
607 			vput(tdvp);
608 		if (tvp)
609 			vput(tvp);
610 		vrele(fdvp);
611 		vrele(fvp);
612 		return (EXDEV);
613 	}
614 
615 	if (tvp != NULL) {
616 		tnn = VTONULL(tvp);
617 		tnn->null_flags |= NULLV_DROP;
618 	}
619 	return (null_bypass((struct vop_generic_args *)ap));
620 }
621 
622 /*
623  * We need to process our own vnode lock and then clear the
624  * interlock flag as it applies only to our vnode, not the
625  * vnodes below us on the stack.
626  */
627 static int
628 null_lock(struct vop_lock1_args *ap)
629 {
630 	struct vnode *vp = ap->a_vp;
631 	int flags = ap->a_flags;
632 	struct null_node *nn;
633 	struct vnode *lvp;
634 	int error;
635 
636 
637 	if ((flags & LK_INTERLOCK) == 0) {
638 		VI_LOCK(vp);
639 		ap->a_flags = flags |= LK_INTERLOCK;
640 	}
641 	nn = VTONULL(vp);
642 	/*
643 	 * If we're still active we must ask the lower layer to
644 	 * lock as ffs has special lock considerations in it's
645 	 * vop lock.
646 	 */
647 	if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
648 		VI_LOCK_FLAGS(lvp, MTX_DUPOK);
649 		VI_UNLOCK(vp);
650 		/*
651 		 * We have to hold the vnode here to solve a potential
652 		 * reclaim race.  If we're forcibly vgone'd while we
653 		 * still have refs, a thread could be sleeping inside
654 		 * the lowervp's vop_lock routine.  When we vgone we will
655 		 * drop our last ref to the lowervp, which would allow it
656 		 * to be reclaimed.  The lowervp could then be recycled,
657 		 * in which case it is not legal to be sleeping in it's VOP.
658 		 * We prevent it from being recycled by holding the vnode
659 		 * here.
660 		 */
661 		vholdl(lvp);
662 		error = VOP_LOCK(lvp, flags);
663 
664 		/*
665 		 * We might have slept to get the lock and someone might have
666 		 * clean our vnode already, switching vnode lock from one in
667 		 * lowervp to v_lock in our own vnode structure.  Handle this
668 		 * case by reacquiring correct lock in requested mode.
669 		 */
670 		if (VTONULL(vp) == NULL && error == 0) {
671 			ap->a_flags &= ~(LK_TYPE_MASK | LK_INTERLOCK);
672 			switch (flags & LK_TYPE_MASK) {
673 			case LK_SHARED:
674 				ap->a_flags |= LK_SHARED;
675 				break;
676 			case LK_UPGRADE:
677 			case LK_EXCLUSIVE:
678 				ap->a_flags |= LK_EXCLUSIVE;
679 				break;
680 			default:
681 				panic("Unsupported lock request %d\n",
682 				    ap->a_flags);
683 			}
684 			VOP_UNLOCK(lvp, 0);
685 			error = vop_stdlock(ap);
686 		}
687 		vdrop(lvp);
688 	} else
689 		error = vop_stdlock(ap);
690 
691 	return (error);
692 }
693 
694 /*
695  * We need to process our own vnode unlock and then clear the
696  * interlock flag as it applies only to our vnode, not the
697  * vnodes below us on the stack.
698  */
699 static int
700 null_unlock(struct vop_unlock_args *ap)
701 {
702 	struct vnode *vp = ap->a_vp;
703 	int flags = ap->a_flags;
704 	int mtxlkflag = 0;
705 	struct null_node *nn;
706 	struct vnode *lvp;
707 	int error;
708 
709 	if ((flags & LK_INTERLOCK) != 0)
710 		mtxlkflag = 1;
711 	else if (mtx_owned(VI_MTX(vp)) == 0) {
712 		VI_LOCK(vp);
713 		mtxlkflag = 2;
714 	}
715 	nn = VTONULL(vp);
716 	if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
717 		VI_LOCK_FLAGS(lvp, MTX_DUPOK);
718 		flags |= LK_INTERLOCK;
719 		vholdl(lvp);
720 		VI_UNLOCK(vp);
721 		error = VOP_UNLOCK(lvp, flags);
722 		vdrop(lvp);
723 		if (mtxlkflag == 0)
724 			VI_LOCK(vp);
725 	} else {
726 		if (mtxlkflag == 2)
727 			VI_UNLOCK(vp);
728 		error = vop_stdunlock(ap);
729 	}
730 
731 	return (error);
732 }
733 
734 /*
735  * Do not allow the VOP_INACTIVE to be passed to the lower layer,
736  * since the reference count on the lower vnode is not related to
737  * ours.
738  */
739 static int
740 null_inactive(struct vop_inactive_args *ap __unused)
741 {
742 	struct vnode *vp, *lvp;
743 	struct null_node *xp;
744 	struct mount *mp;
745 	struct null_mount *xmp;
746 
747 	vp = ap->a_vp;
748 	xp = VTONULL(vp);
749 	lvp = NULLVPTOLOWERVP(vp);
750 	mp = vp->v_mount;
751 	xmp = MOUNTTONULLMOUNT(mp);
752 	if ((xmp->nullm_flags & NULLM_CACHE) == 0 ||
753 	    (xp->null_flags & NULLV_DROP) != 0 ||
754 	    (lvp->v_vflag & VV_NOSYNC) != 0) {
755 		/*
756 		 * If this is the last reference and caching of the
757 		 * nullfs vnodes is not enabled, or the lower vnode is
758 		 * deleted, then free up the vnode so as not to tie up
759 		 * the lower vnodes.
760 		 */
761 		vp->v_object = NULL;
762 		vrecycle(vp);
763 	}
764 	return (0);
765 }
766 
767 /*
768  * Now, the nullfs vnode and, due to the sharing lock, the lower
769  * vnode, are exclusively locked, and we shall destroy the null vnode.
770  */
771 static int
772 null_reclaim(struct vop_reclaim_args *ap)
773 {
774 	struct vnode *vp;
775 	struct null_node *xp;
776 	struct vnode *lowervp;
777 
778 	vp = ap->a_vp;
779 	xp = VTONULL(vp);
780 	lowervp = xp->null_lowervp;
781 
782 	KASSERT(lowervp != NULL && vp->v_vnlock != &vp->v_lock,
783 	    ("Reclaiming incomplete null vnode %p", vp));
784 
785 	null_hashrem(xp);
786 	/*
787 	 * Use the interlock to protect the clearing of v_data to
788 	 * prevent faults in null_lock().
789 	 */
790 	lockmgr(&vp->v_lock, LK_EXCLUSIVE, NULL);
791 	VI_LOCK(vp);
792 	vp->v_data = NULL;
793 	vp->v_object = NULL;
794 	vp->v_vnlock = &vp->v_lock;
795 	VI_UNLOCK(vp);
796 
797 	/*
798 	 * If we were opened for write, we leased one write reference
799 	 * to the lower vnode.  If this is a reclamation due to the
800 	 * forced unmount, undo the reference now.
801 	 */
802 	if (vp->v_writecount > 0)
803 		VOP_ADD_WRITECOUNT(lowervp, -1);
804 	if ((xp->null_flags & NULLV_NOUNLOCK) != 0)
805 		vunref(lowervp);
806 	else
807 		vput(lowervp);
808 	free(xp, M_NULLFSNODE);
809 
810 	return (0);
811 }
812 
813 static int
814 null_print(struct vop_print_args *ap)
815 {
816 	struct vnode *vp = ap->a_vp;
817 
818 	printf("\tvp=%p, lowervp=%p\n", vp, VTONULL(vp)->null_lowervp);
819 	return (0);
820 }
821 
822 /* ARGSUSED */
823 static int
824 null_getwritemount(struct vop_getwritemount_args *ap)
825 {
826 	struct null_node *xp;
827 	struct vnode *lowervp;
828 	struct vnode *vp;
829 
830 	vp = ap->a_vp;
831 	VI_LOCK(vp);
832 	xp = VTONULL(vp);
833 	if (xp && (lowervp = xp->null_lowervp)) {
834 		VI_LOCK_FLAGS(lowervp, MTX_DUPOK);
835 		VI_UNLOCK(vp);
836 		vholdl(lowervp);
837 		VI_UNLOCK(lowervp);
838 		VOP_GETWRITEMOUNT(lowervp, ap->a_mpp);
839 		vdrop(lowervp);
840 	} else {
841 		VI_UNLOCK(vp);
842 		*(ap->a_mpp) = NULL;
843 	}
844 	return (0);
845 }
846 
847 static int
848 null_vptofh(struct vop_vptofh_args *ap)
849 {
850 	struct vnode *lvp;
851 
852 	lvp = NULLVPTOLOWERVP(ap->a_vp);
853 	return VOP_VPTOFH(lvp, ap->a_fhp);
854 }
855 
856 static int
857 null_vptocnp(struct vop_vptocnp_args *ap)
858 {
859 	struct vnode *vp = ap->a_vp;
860 	struct vnode **dvp = ap->a_vpp;
861 	struct vnode *lvp, *ldvp;
862 	struct ucred *cred = ap->a_cred;
863 	int error, locked;
864 
865 	if (vp->v_type == VDIR)
866 		return (vop_stdvptocnp(ap));
867 
868 	locked = VOP_ISLOCKED(vp);
869 	lvp = NULLVPTOLOWERVP(vp);
870 	vhold(lvp);
871 	VOP_UNLOCK(vp, 0); /* vp is held by vn_vptocnp_locked that called us */
872 	ldvp = lvp;
873 	vref(lvp);
874 	error = vn_vptocnp(&ldvp, cred, ap->a_buf, ap->a_buflen);
875 	vdrop(lvp);
876 	if (error != 0) {
877 		vn_lock(vp, locked | LK_RETRY);
878 		return (ENOENT);
879 	}
880 
881 	/*
882 	 * Exclusive lock is required by insmntque1 call in
883 	 * null_nodeget()
884 	 */
885 	error = vn_lock(ldvp, LK_EXCLUSIVE);
886 	if (error != 0) {
887 		vrele(ldvp);
888 		vn_lock(vp, locked | LK_RETRY);
889 		return (ENOENT);
890 	}
891 	vref(ldvp);
892 	error = null_nodeget(vp->v_mount, ldvp, dvp);
893 	if (error == 0) {
894 #ifdef DIAGNOSTIC
895 		NULLVPTOLOWERVP(*dvp);
896 #endif
897 		VOP_UNLOCK(*dvp, 0); /* keep reference on *dvp */
898 	}
899 	vn_lock(vp, locked | LK_RETRY);
900 	return (error);
901 }
902 
903 /*
904  * Global vfs data structures
905  */
906 struct vop_vector null_vnodeops = {
907 	.vop_bypass =		null_bypass,
908 	.vop_access =		null_access,
909 	.vop_accessx =		null_accessx,
910 	.vop_advlockpurge =	vop_stdadvlockpurge,
911 	.vop_bmap =		VOP_EOPNOTSUPP,
912 	.vop_getattr =		null_getattr,
913 	.vop_getwritemount =	null_getwritemount,
914 	.vop_inactive =		null_inactive,
915 	.vop_islocked =		vop_stdislocked,
916 	.vop_lock1 =		null_lock,
917 	.vop_lookup =		null_lookup,
918 	.vop_open =		null_open,
919 	.vop_print =		null_print,
920 	.vop_reclaim =		null_reclaim,
921 	.vop_remove =		null_remove,
922 	.vop_rename =		null_rename,
923 	.vop_setattr =		null_setattr,
924 	.vop_strategy =		VOP_EOPNOTSUPP,
925 	.vop_unlock =		null_unlock,
926 	.vop_vptocnp =		null_vptocnp,
927 	.vop_vptofh =		null_vptofh,
928 	.vop_add_writecount =	null_add_writecount,
929 };
930